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Abstract: Solar energy plays a major role in the transition to renewable energy. To ensure that
large-scale photovoltaic (PV) power plants operate at their full potential, their monitoring is essential.
It is common practice to utilize drones equipped with infrared thermography (IRT) cameras to detect
defects in modules, as the latter can lead to deviating thermal behavior. However, IRT images
can also show temperature hot-spots caused by inhomogeneous soiling on the module’s surface.
Hence, the method does not differentiate between defective and soiled modules, which may cause
false identification and economic and resource loss when replacing soiled but intact modules. To
avoid this, we propose to detect spatially inhomogeneous soiling losses and model temperature
variations explained by soiling. The spatially resolved soiling information can be obtained, for
example, using aerial images captured with ordinary RGB cameras during drone flights. This paper
presents an electrothermal model that translates the spatially resolved soiling losses of PV modules
into temperature maps. By comparing such temperature maps with IRT images, it can be determined
whether the module is soiled or defective. The proposed solution consists of an electrical model and
a thermal model which influence each other. The electrical model of Bishop is used which is based on
the single-diode model and replicates the power output or consumption of each cell, whereas the
thermal model calculates the individual cell temperatures. Both models consider the given soiling
and weather conditions. The developed model is capable of calculating the module temperature for a
variety of different weather conditions. Furthermore, the model is capable of predicting which soiling
pattern can cause critical hot-spots.

Keywords: PV soiling; electrothermal modeling; PV monitoring

1. Introduction

To achieve net zero greenhouse gas emissions by 2050, a global energy system trans-
formation is vital. At the forefront, solar and wind will account for the largest share of
renewable energy sources [1,2]. This development can already be seen in the continuously
growing cumulative installed photovoltaic (PV) capacity worldwide [3]. Large-scale PV
power plants play an important role. Monitoring their performance becomes essential to
maintain the highest possible power output, as modules may become defective or soiled.
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Defective modules can show mechanical damage, thermal damage, or manufacturing
errors [4]. Specific examples are cell cracks, burn marks, or defective bypass diodes [5].
These failures cause power production decreases and consequently, income losses. There-
fore, the replacement of defective modules should be considered. Furthermore, defects
can lead to hot-spots and even cause security issues. Hot-spots are locations within a PV
module that show a temperature increase compared to the remaining PV module’s surface.
However, hot-spots are typically not defined by the temperature increase exceeding a
certain threshold. Instead, a hot-spot is typically defined as a cell being operated with a
current higher than its short-circuit current. This causes the affected cell to be operated in
the reverse bias region and thus leads to power dissipation and local heating [6].

Soiled PV modules are modules that have accumulated dust, pollen, and other contam-
inants on the module surface [7]. As a layer of soiling prevents parts of the incoming solar
radiation from reaching the PV cell, less energy is converted into electricity [8]. This results
in power loss due to soiling, income loss, and accelerated degradation [9,10]. On a global
average, power losses are assumed to be around 4–7%, and income losses are estimated at
EUR 3–5 billion per year [11]. Certain countries exhibit even higher annual power losses
due to soiling, as Maghami et al. [12] found in a comparative analysis. The modules should
therefore be cleaned in many cases. Homogeneous soiling affects a module’s behavior
similar to a change in incoming solar radiation [7,13]. In this case, the electrical losses in
terms of output power are approximately equal to the optical losses. However, inhomoge-
neous soiling can be critical as it generally leads to higher electrical losses and potentially
causes hot-spots which in turn can cause various operating faults. Bird droppings and
leaves are examples of inhomogeneous soiling. Power losses caused by inhomogeneous
soiling are at times much higher than the corresponding optical losses [12]. This is related
to the electrical properties of the module. Cells are connected in series and the maximum
current of the affected string is limited by the soiled cell. This effect is referred to as elec-
trical mismatch [14]. In severe cases, the heaviest soiled cell dissipates parts of the energy
generated by the lesser soiled cells [14]. As a result, the affected cell heats up compared to
its neighbors. This can lead to the formation of hot-spots.

If hot-spots are detected, it can be difficult to determine their origin. A distinction
between hot-spots on defective and soiled modules is desired. Infrared thermography
(IRT) has emerged as a typical approach to detect hot-spots in general for both defective
and soiled modules via analyzing the temperature distribution of the modules. However,
as both defective and soiled PV cells heat up, the IRT images show the same qualitative
behavior for both cases [4,9]. This is illustrated in Figures 1 and 2. The temperature
deviations in the IRT image seen for defects (Figure 1) and artificial shading/soiling
(Figure 2) are similar and it is not directly clear from the ITR images if the modules are
defective. Additional electroluminescence measurements shown in Figure 3 can confirm
that the module from Figure 1 indeed has several defects.

In summary, IRT does not directly differentiate between defective and soiled modules.
This potentially causes false identification and might lead to the obsolete cleaning of defec-
tive modules, unnecessary additional measurements after the detection of the heated areas
(e.g., electroluminescence), or the unnecessary replacement of soiled but intact modules.
These measures represent an avoidable effort.

One way to overcome this problem is to distinguish between defective and soiled
PV modules in an automatized way using optical and IR images. Costs are reduced by
the avoidance of unnecessary replacements and manual checks on site alike. Additionally,
losses due to lower energy production and thus lower revenues are avoided. To this end,
we propose to not only rely on drone flyovers for IRT to detect defective modules but
also to additionally assess the inhomogeneous soiling of the PV module. Such soiling
data can be captured, for example, using optical RGB images [15]. RGB images have been
used to calculate cell-resolved soiling losses for dust-like soiling. Other studies have also
investigated dust [16,17] as well as snail trails [18]. The latter three studies have a practical
shortcoming in that they do not state the electrical loss caused by the soiling.
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Figure 1. (Left): RGB image of a defective module. On the RGB image it appears clean, and a potential
hot-spot is not observed. (Right): IR image of the defective module. The IR image clearly shows
4 hot cells. By having access to both the RGB and the IR images, one can conclude that the module is
defective. One string, the third and fourth column from the right, is bypassed. The temperature is
slightly increased compared withthe other cells (except of the hot-spots).
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Figure 2. (Left): RGB image of the artificially shaded/soiled cell. (Right): IR image of the rear side
of the PV module seen in the RGB image on the left. The artificially shaded cell shows a significant
temperature increase (hot-spot).

In this study, the soiling data are processed in sequence with an optical, electrical, and
thermal model to obtain a second temperature map reflecting the expected temperature of
a PV module without any defect, but with the measured spatially resolved soiling loss. The
combination of the optical and electrical models determines if the soiling distribution is
indeed sufficient to cause a hot-spot and deliver the expected cell temperature.

The modeled temperature map is then compared to the measured one from the IRT
camera that reflects both soiling and defects. In case the IRT image shows a hot-spot, but
the modeled temperature map does not, the hot-spot is caused by a defect. When IRT
images show a hot-spot and the modeled temperature map also shows a hot-spot for the
same cell, the soiling is likely the origin of the hot-spot. In this case, however, it is possible
that in addition to the local soiling, a defective cell is also present. If the hot-spot persists
after appropriate cleaning, it can be concluded that the cell is defective.

This approach allows us to determine which modules need to be replaced and hence
avoid false identification and the replacement of intact modules. The required extra effort
is to additionally measure and evaluate the soiling pattern, using the here-presented model
and, e.g., RGB images, which many IR camera systems can capture in parallel to the IR
images anyway.
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Cipriani et al. have developed a Convolutional Neural Network (CNN) that is capable
of distinguishing anomalies observed in IR images in two categories, “dust” and “fault” [19].
The accuracy of this classification was 98% for the tested cases. This distinction comes close
to the desired one described above, but it is not the same. The authors used the terms
“hot-spot” and “fault” interchangeably because there was no soiling that was so intense
that it could cause a hot-spot in their dataset. At the same time, “dust” is considered to
be a different anomaly on the IR images that does not cause a hot-spot. This means that
the method presented by Cipriani et al. cannot distinguish between hot-spots caused by
soiling and hot-spots caused by defects. This separation is the objective of our work.

This paper is structured as follows. First, an overview of the state of the art is given in
Section 2. Different existing thermal models and monitoring methods are discussed. Then,
the developed electrothermal model is explained in detail in Section 3. The experimental
setup and the validation of the electrical and thermal results of the model are discussed in
Section 4. Finally, a summary is made and an outlook is given in Section 5.

2. The State of the Art

There are various approaches for the temperature of PV modules. Some models focus
on providing a single module temperature. This means that these models implicitly assume
the module to be clean or homogeneously soiled, the cells and the module to be fully intact,
and hence the temperature to be homogeneous. Their advantage is that they are easy to
implement and involve a low computational effort. Other models focus on calculating
the hot-spot temperature that can arise when a cell of a module experiences a certain
degree of shading. Typically, the models consider either the entire area of a cell to be
covered with a layer of a certain transmittance or a certain area of a cell to be covered
with a completely opaque layer. The latter category of studies shows methods to calculate
the hot-spot temperature of defective cells. Typically, these models are structured in the
following way. The models are only applied if a hot-spot is detected on an IRT image. After
observing the hot-spot, its temperature distribution is calculated. These defects, which are
typically shunts, cannot be predicted by the model. These methods therefore require an IR
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image for the temperature calculation. We are going to use RGB images to calculate the
temperature. Later, we want to compare our calculated temperature against the IR image.
In contrast to other thermal models from the literature, the IR image is not used as an input
for the electrothermal model.

2.1. Thermal Models

There are several previously published models to estimate the PV cell temperature.
Such models consider the incoming solar radiation, the wind speed, the ambient temper-
ature, the relative humidity, soiling (either measured or estimated), and the load resis-
tance [20–22]. Several studies show that the cell temperature is a particularly important
factor for predicting a PV module’s efficiency as a temperature increase of 1 K typically
causes a relative reduction in efficiency at around 0.4% for silicon modules [23–25].

One of the simplest thermal models is the Ross model [26]. The Ross model is defined
in Equation (1) and determines the cell temperature Tc. The model requires the following
input parameters: the ambient temperature Ta, the global tilted irradiance GTI, and the
module’s NOCT (normal operating cell temperature) TNOCT . The NOCT is stated by the
manufacturer in the data sheet. It considers the following conditions: GTI = 800 W/m2,
wind speed = 1 m/s, ambient temperature = 20 ◦C, and air mass 1.5.

Tc = Ta + GTI · TNOCT − 20 ◦C
800 W/m2 (1)

Note that for all equations in this section, the temperatures are considered in ◦C and
the irradiances are considered in W/m2.

The Sandia Photovoltaic Array Performance Model [27] considers wind effects. In the
first step, the model determines the PV module’s backside temperature and the surface
temperature on the module’s rear side, Tm. In the second step, it calculates the cell temper-
ature Tc. The Sandia model requires the GTI, two empirically determined coefficients a
and b based on the module structure and the type of mounting, the wind speed vw, and the
ambient temperature Ta. Equation (2) shows how to determine the backplate temperature
Tm and the cell temperature Tc, respectively. Note that ∆T describes the temperature differ-
ence between Tm and Tc for a GTI of 1000 W/m2. a has the unit K · m2/W and b has the
unit s/m.

Tm = GTI · a · exp(b · vw) + Ta

Tc = Tm + GTI
1000 W/m2 · ∆T

(2)

The Faiman model is a thermal model which uses empirical heat loss factors [28].
Equation (3) describes how the cell temperature Tc is determined based on the ambient
temperature Ta, the GTI, the two heat loss factors u0 and u1, and the wind speed vw.

Tc = Ta +
GTI

u0 + u1 · vw
(3)

The U.S. National Renewable Energy Laboratory developed the NOCT Cell Tem-
perature Model as part of the System Advisor Model (SAM) [29]. It is one of the most
sophisticated thermal models. Equation (4) illustrates how the thermal model predicts
the cell temperature Tc. Input variables are the ambient temperature Ta, the GTI, and the
module efficiency ηre f at reference conditions. In addition, the effective transmittance–
absorbance product ατ is required, which combines the transmittance and absorptance
effects of the photovoltaic cell with the incoming solar radiation G. Both Tnoct and vw are
adjusted by the type of mounting and the height above the ground leading to TNOCT,adj
and vw,adj. To obtain these parameters, an offset is added to TNOCT , and vw is multiplied by
an attenuation factor [29].

Tc = Ta +
GTI

800 W/m2 ·
(

TNOCT,adj − 20 ◦C
)
·
(

1 −
ηre f

ατ

)
· 9.5

5.7 + 3.5 · vw,adj · s/m
(4)
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These thermal models consider the ambient temperature and solar radiation to deter-
mine cell temperatures. Three of them also include wind speed, which is expected to have
a major impact on the results [13,30]. Yet, the thermal models lack in replicating the whole
PV module under partial shading or partial soiling conditions. Even though single cells can
be simulated and their temperatures determined on the cell level, the effects of shaded cells
on their neighboring cells and the entire surrounding string are not considered. However,
this would be necessary for our purpose.

2.2. Modeling of Hot-Spots

Qian et al. have developed a model that is capable of simulating the hot-spot tempera-
ture of a partially shaded cell [31]. They have investigated different degrees of shading,
changing the covered area of a given cell. A key finding was that half-cell modules are
less prone to create hot-spots. If a hot-spot occurs, the temperature increase will be signifi-
cantly lower compared with an analogous full-cell module. The developed model was not
validated against a measurement. The model was not designed to be applied in outdoor
conditions. Instead, the estimation of the above-mentioned difference between half-cell and
full-cell modules was the objective. Solheim et al. have simulated a PV hot-spot accurately
using a finite elements method [32]. They considered 800,000 nodes per module. This
makes the approach too intense in terms of calculation to be applied to a larger scale. A
study by Rossi et al. presented a thermal model that is not only capable of estimating the
final hot-spot temperature, but that is also capable of modeling the process of the affected
cell heating up over time [33]. It is a dynamic model instead of a steady-state model. Fur-
thermore, the paper proposed a method to detect hot-spots. The hot-spot detection relies
on current sensors connected to the output of each module. It is desirable to use images for
hot-spot detection as this would remove the need of the above-mentioned current sensors.
The current sensors would offer the advantage of permanently providing data. A drone
camera system would not have this advantage. Surveillance cameras can continuously
record data. The thermal model has not been validated under outdoor operating conditions.
Geisemeyer at al. developed a thermal model that is capable of calculating the hot-spot
temperature of a partially shaded cell [34]. Their model not only gives a value of the
temperature, but it also gives the temperature distribution within the affected cell. On the
other hand, their model is very complex and unsuitable to be applied to a larger number of
modules.

To the best of our knowledge, there is no thermal model with low calculation effort for
hot-spot temperature simulation of soiled or shaded cells that is validated over a larger
time interval under real operating conditions that uses only the cell-resolved soiling and
meteorological data as inputs.

This paper aims to develop a simple enough electrothermal model that is usable
for real operating conditions and the specific application case with cell-resolved soiling
input data that provides the temperature output with cell resolution. In particular, the
electrothermal model is connected to the cell-resolved soiling measurements from [15,35].

3. Description of the New Electrothermal Model
3.1. Thermal Model

The thermal model developed in this work is illustrated in Figure 4. It has a structure
of four layers and six temperature nodes. The four layers are the soiling layer, the front glass
cover, the silicon layer, and the backplate. The temperature nodes are Ta, the temperature
of the upper side of the soiling layer Ts, the temperature of the upper side of the glass layer
Tg, the silicon temperature Tc (subscript c referring to the cell), the temperature of the lower
side of the backplate Tb, and the ground temperature Tf (subscript f for the floor). Note
that we consider the silicon layer to be much thinner than the other layers. Roughly, the
silicon layer should be around 300 µm [36]. By making this assumption we can assume that
there is only one cell temperature, and the cell has no thermal resistance. Note also that the
description of a PV cell as a stack of three layers is generally a big simplification. The goal is



Energies 2024, 17, 4878 7 of 25

to develop an easily usable thermal model. The goal is not to predict the temperature with
sub-digit precision. Furthermore, the back reflector is neglected because of its thickness of
around 20 µm [37]. Thin passivation layers are also not considered here.
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Note furthermore that out of the six above-mentioned temperatures, the ambient
temperature and the ground temperature are inputs while the other four are outputs of the
model. Ta is measured with a CS215-L thermometer (Hinesburg, VT, USA). Tf has been
estimated to be 10 K colder than the ambient temperature. This assumption is connected
with uncertainties. However, it has been confirmed that the resulting variations in Φth, f ,
if Tf had a 10 K uncertainty, are one order of magnitude smaller than the convective heat
transfer on the rear side for the case of a non-hot-spot and two orders of magnitude smaller
for the case of a hot-spot. In the future, the simplest method would be to measure the floor
temperature. There are also various approaches to model the ground temperature [38–40].
However, for our purposes, they are less suitable as they are quite complex by themselves
and generally require many inputs. Furthermore, the floor temperature is not going to
be spatially homogeneous as the ground experiences a shading pattern that changes over
time. Additionally, the ground and the module’s rear side are not parallel to each other.
Therefore, the rear side in reality does not receive the entire thermal radiation emitted by
the ground. Instead, it should receive a weighted average of Φth, f and Φth,sky.

Energy fluxes in between the four layers and the surroundings can be divided into
five categories: GTI G, thermal radiation Φth, thermal conduction

.
qcond, convection

.
qconv,

and generated surface power density pc. The surface power density pc is defined as the
electrical power Pc generated by the PV cell, divided by the cell area A. The GTI is measured
by a reference cell in the wavelength range from 400 nm to 1150 nm. According to the
manufacturer, the relative deviations against class pyranometers are up to 5%. The thermal
radiation Φth,sky of the sky is measured by a pyrgeometer (see Table 1). The pyrgeometer
roughly starts to measure at 4 µm until 100 µm. The thermal radiation of the sky could also
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be estimated with a weather model in case there is no pyrgeometer available. The other
fluxes are not measured and are only intermediate results for the model.

Table 1. Overview of the origin of the known parameters for the thermal model.

Quantity Symbol Unit Source

Solar irradiance in the module plane G W m−2 SOZ-03 reference cell by NES Sensors GmbH (Damme,
Germany)

Thermal sky radiation Φth,sky W m−2 CGR4 Pyrgeometer by Kipp & Zonen (Delft, The
Netherlands), serial number IRCGR4-120446

Wind speed vw m s−2 NRG 200 m wind wane by NRG Systems (Hinesburg, VT,
USA)

Ambient temperature Ta
◦C CS215-L thermometer

Ground temperature Tgr
◦C Estimated from ambient temperature

Surface power density pc W m−2 Electrical model
Absorptance α - Literature [41–44]
Reflectance ρ - Literature [41–44]

Transmittance τ - Literature [41–44]
Emissivity ε - Literature [41–44]

Thermal conductivity λth W m−1 K−1 Literature [41,42,45–47]
Layer thickness d mm PV data sheet [48]

Cell area A m2 PV data sheet [48]
Stefan–Boltzmann constant σ W m−2 K−4 Natural constant

Atmospheric pressure pair Pa Barometer
Elevation H m Google Maps

Atmospheric density ρair kg m−3 Literature [49]
Thermal conductivity of air λair W m−1 K−1 Literature [49]
Kinematic viscosity of air ν m2 s−1 Literature [49]

Specific heat capacity of air cp J kg−1 K−1 Literature [49]
Characteristic length, module height L m PV data sheet [48]

The thermal radiation emitted by the soiling layer is denoted as Φth,s. Φth, f is the
thermal radiation emitted by the floor and Φth,b is the thermal radiation emitted by the
back sheet.

Gs,τ is the part of G that is transmitted through the soiling layer. Gs,ρ is the part of G
that is reflected at the soiling layer or, in other words, scattered back to the air above the
soiling layer. As for the soiling layer, reflection and transmission can take place at each
interface between the layers. Gg,τ is the part of G that is transmitted through the glass
layer. Gg,ρ is the part of G that is reflected at the interface between the soiling layer and
the glass layer. Reflections of second order are neglected here. For example, Gg,ρ can be
reflected again at the interface between glass and soiling, but we work without this term
as a simplification. G f ,ρ is the part of the GTI that reaches the back sheet of the module.
Attenuations occur because the module itself is shading the ground. A part of the light
that reaches the ground is reflected, both directly and diffusively. Finally, only a fraction of
the reflected light reaches the module’s rear side. The ground albedo and the view factor
have to be considered for G f ,ρ. The view factor describes the fraction of the light reflected
by the unshaded area that reaches the module’s back sheet. Gb,τ is the part of G f ,ρ that is
transmitted through the back sheet and Gb,ρ is the part that is reflected there.

.
qcond,gs is the conductive heat transfer through the soiling layer.

.
qcond,cg is the conduc-

tive heat transfer through the glass layer.
.
qcond,cb is the conductive heat transfer through

the back sheet. All conductive heat transfers point away from the cell. This is defined this
way because the cell is the layer that absorbs the most radiation and is therefore the hottest.
.
qconv,s is the convection that takes place on the soiled surface.

.
qconv,b is the convection that

takes place on the rear side of the module.
pc is the power density generated by the cell which describes the electric power exiting

the cell (positive sign) or the received electric power converted to heat (negative sign). All
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quantities are defined in such a way that they are positive for common operating conditions
without a hot-spot.

Assuming steady-state temperatures and considering each layer by itself, input and
output fluxes can be equated in the form of balance equations. The balance equations for
each layer are shown in Equations (5)–(8). The order of the equations is the same as the one
of the layers shown in Figure 4.

G + Φth,sky = Gs,τ + Gs,ρ +
.
qcond,gs + Φth,s +

.
qconv,s (5)

Gs,τ +
.
qcond,gs +

.
qcond,cg = Gg,τ + Gg,ρ (6)

Gb,τ + Gg,τ = Gc,ρ + pc +
.
qcond,cg +

.
qcond,cb (7)

G f ,ρ + Φth, f +
.
qcond,cb = Gb,τ + Gb,ρ + Φth,b +

.
qconv,b (8)

Equations (9)–(11) describe how the thermal radiation, the thermal conduction, and
the convection depend on the temperature, respectively. For thermal radiation, the key
parameters are the body’s emissivity ε, the Stefan–Boltzmann constant σ, and the body’s
surface temperature Tbody. The thermal conduction depends on the thermal conductivity
λth, the temperatures of hot and cold sides Thot and Tcold, and the corresponding thickness
d. Convection depends on the temperature difference between the surface and the ambient
temperature

(
Tbody − Ta

)
and the convective heat transfer coefficient h, which depends on

the windspeed vw itself.
Φth,body = ε · σ · Tbody

4 (9)

.
qcond,hot,cold = λth ·

Thot − Tcold
d

(10)

.
qconv,body = h(vw) ·

(
Tbody − Ta

)
(11)

Both free and forced convection are considered. The heat transfer coefficients are
combined as the square root of the quadratic sum [50]. In some cases, larger exponents
instead of two might be used. Notton et al. discuss a few different forced and free
convection models for PV modules [45]. We use the free convection model by [51] and the
forced convection by [52]. See, therefore, Equations (12) and (13). Equation (14) shows how
free and forced convection are combined. Roughly speaking, for windspeeds above 3 m per
second the forced convection dominates. vice versa for windspeeds below 1 m per second,
the free convection can be interpreted as a lower limit.

h f orced = 11.4
W
m2 + 5.7

W · s
m3 · vw (12)

h f ree = 1.42
(
(Tm − Ta)sinβ

L

)0.25
(13)

h =
√

h f orced
2 + h f ree

2 (14)

L is the characteristic length of the module, which in this case is the module height. β is
the inclination of the module. Tm and Ta are the module temperature and the ambient
temperature, like in the literature models discussed above.

We derive the air parameters from the US Standard Atmosphere [49]. Some parameters
are estimated involving certain assumptions. For example, we assume that there is no
transmission through the cell, meaning we neglect UV and IR radiation passing through
the semiconductor layer. The error we make by making this assumption should be of
the same order of magnitude as the neglect of multiple reflections. For the convection,
some parameters are also determined using the Python library fluids [53], which contains
functions of the US Standard Atmosphere [49]. Other parameters are derived from the data
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sheet of the PV module [48]. The physical properties of each layer will be discussed in
Section 3.2.

3.2. Material Properties of Layers

We selected a set of material properties based on the literature and the module data
sheet. This set includes optical properties such as reflectance, transmittance, and emissivity.
The parameter set also includes the thermal conductivity. In addition, the layer thickness
is stated. All parameters are illustrated in Table 2. If there are multiple values for one
parameter, the one emphasized in bold was finally implemented in the thermal model.
The * symbol indicates that the value is an assumption with justification in the caption
of this table. The emissivity of silicon is not stated here because thermal radiation only
takes place at surfaces, i.e., at the interfaces with air. In our model, the silicon layer is
therefore not emitting thermal radiation. The thermal conductivity of silicon is not stated
because the silicon layer is assumed to be thin against the glass and backplate layers. The
absorptance of each layer is not stated here as it can be calculated simply, as the sum
of reflectance, transmittance, and absorptance has to be one. The transmittance through
the semiconductor layer itself is neglected. The literature states that the fraction of the
light that is transmitted through the silicon layer is in the low single-digit percent range.
Additionally, most parts of this light are then reflected at the back reflector, which has not
been included in our model. Note also that the thickness of a dust layer will be different
in each situation. A reasonable dust particle diameter is 10 µm [11,54]. Since there is no
significant thermal resistance in such a thin layer, this thickness can be neglected. The dust
surface temperatures and the module surface are basically the same.

Table 2. This table summarizes the most important properties of the four module layers. If there are
multiple values stated for a parameter, the value in bold is chosen. (*) indicate approximations. The
explanations are given in the text.

Hemispherical
Reflectance

Hemispherical
Transmittance Emissivity Thermal

Conductivity Thickness

ρ [-] τ [-] ε [-] λ [W m−1 K−1] d [mm]

Soiling layer (dust) (1 − τ) · 0.95 [55] Optically
measured

0.903 [56] 0.27 [57]
0.01 *0.907 [56] 3.34 [57]

Artificial soiling
(foil stack)

Optically
measured

Optically
measured 0.92 [58] 0.2 [59] Measured

Glass
0.08 [41,44] 0.92 [41,44] 0.837 [42]

0.85 [41]
0.9 [45]

0.98 [46]
3.0 [42]1.0 [42]

0.04 [43] 0.95 [43,60,61]
1.8 [45]

3.2 [41]2.0 [41]

Silicon
0.07 [43]

0 * - - -
0.08 [41]

Back sheet 0.86 [41] 0.1[41]
0.769 [42] 0.15 [41] 0.3 [41]
0.9 [41,43] 0.155 [42] 0.35 [42]

0.56 [47]

For the ground, we assumed an emissivity of 0.947 [56]. The albedo of the ground was
0.189 [62]. We assumed that 5% of the incident light would be reflected and reach the rear
side of the module. This could only be estimated as parts of the ground were shaded by
the module itself. Also, not the entire part that was reflected at the ground went in the
direction of the module. The larger part went toward the rest of the hemisphere.

The soiling layer’s parameters were estimated as follows. The most important prop-
erty was the transmittance as it determines whether the cell generates or dissipates energy.
For dust-like soiling, one can assume that reflection and scattering dominate over absorp-
tion [11]. For other soiling types, considerations have to be made individually. In our



Energies 2024, 17, 4878 11 of 25

experiments, we used a stack of foils which would also have a very low absorptance. For
the experiments presented in Section 4.2, the transmittance of the foils were measured
optically with a Perkin Elmer Lambda 1050 spectrophotometer (see Appendix A). In the
future, the transmittance model developed in [,[35]] can determine the transmittance of dust
using RGB images of the affected modules. In terms of the emissivity, there is the literature
for both: the plastic foils used here and for mineral dust, which is a future application.
Ground reflectance, i.e., the albedo, is also a prerequisite for the precise determination of
the energy balance [63]. The ground emissivity varies depending on the ground type. For
instance, the bare soil calcaric regosol shows an emissivity of 0.947, whereas green-colored
short grass has a higher emissivity of 0.976 and dry grassland reaches a value as high as
0.99 [56]. Finding an accurate value that suits our testbench was less important because
only a fraction of the radiation reflected on the ground would be reflected toward the
module’s rear side. A large portion of the reflected radiation leaves in the direction of the
sky. It is only possible to roughly estimate this fraction. The equations above assume that
the ground experiences the entire GTI, while in reality parts of the ground are shaded by
the module itself. The uncertainty of this factor of how much ground-reflected irradiance
hits the module’s rear side is much greater than the uncertainty of the reflectance property
itself or different ground types. Also, this factor is going to change over time.

3.3. Electrical Model and Combination to Electrothermal Model

The electrical model by Bishop is used [61]. It has been implemented in the Python
package pvlib [64,65]. The Bishop model is based on the single-diode model. Figure 5
shows the equivalent circuit diagram of the single-diode model. According to the single-
diode model, a PV cell consists of a current source, a diode, a shunt resistance Rsh, and a
series resistance Rs. Iphoto is the photocurrent generated by the current source depending
on the illumination. Idark is the dark current passing through the diode. Ishunt is the current
through the shunt resistance. Vj is the voltage across the diode junction. Iout is the output
current of the entire PV cell and Vout is the output voltage of the entire PV cell. M

(
Vj
)

is
the leakage current source.

Iout = Iphoto − Isat ·
[

exp
(

q · (V + Iout · Rs)

nkT

)
− 1

]
− Ishunt (15)

Ishunt =
Vj

Rsh
·
[

1 + a ·
(

1 −
Vj

Vbr

)m]
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Equation (15) implicitly defines the IV curve [61]. Isat is the saturation current of the
diode, q is the elementary charge, n is the diode ideality factor, and k is the Boltzmann
constant. The current over the shunt resistance can be calculated by Equation (16) according
to Bishop [61]. Vbr is the breakdown voltage, a is the fraction of ohmic current involved in
avalanche breakdown, and m is the breakdown exponent. The breakdown parameters are
taken from [66]. The Bishop model is capable of calculating the IV curve for an individual
cell and is capable of calculating the IV curve of any connection of various cells either in
parallel or in series or both. In particular, electrical mismatch is considered for the case that
one cell is shaded, soiled, or defective.

The single-diode parameters are not immediately known. They are calculated by the
methods presented in [67]. A detailed comparison of different algorithms to calculate the
parameters was performed by Restrepo-Cuestas in [66,68]. They depend, on the one hand,
on the module’s characteristics that are stated in the data sheet, and on the other hand, they
depend on the illumination of the cell. Additionally, a potential efficiency reduction due
to aging and module-specific production-related deviations from the design efficiency are
considered. The data sheet’s power and efficiency are adjusted such that the model results
match the measurements for the power, voltage, and current for a calibration interval. The
temperature effect on the model parameters was considered as given in the data sheet to
obtain the expected power under standard test conditions (STC).

The electrical model takes an initial estimate of the NOCT, according to the data sheet,
for the cell temperature Tc and calculates a power Pc. This power estimate is then divided
by the cell area, giving the surface power density pc for the cell. The thermal model receives
the surface power density as one of the parameters to predict the cell temperature Tc. These
better estimates of the cell temperatures are then fed back into the electrical model, as it
might differ from the originally estimated temperature. In the tested datasets used in this
work, both power and temperature predictions converge after three iterations. The power
changes afterwards by less than 0.01 W per iteration and the temperature by less than 0.01
K. Figure 6 illustrates the interconnection of the electrical and thermal models.
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The module is considered to be a serial connection of three sub-strings of 24 cells each.
There is a bypass diode in parallel to each sub-string. The model allows assigning every cell
its individual properties. In particular, every cell has its soiling transmittance. IV curves are
calculated on cell, string, and module levels. Correspondingly, electrical mismatch losses
are considered. The same current must flow through all cells unless the bypass diodes are
active. The most affected cell limits the total current. If the total current is greater than the
ISC of the most affected cell, this cell dissipates energy. Also, the temperature of each cell is
considered as input data. This cell-resolved temperature is used as an iterative input of the
electrical and thermal model.
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3.4. Non-Linear System of Equations

Equations (5)–(8) build a set of four equations with four unknown quantities. There
are four unknown temperatures, Ts, Tg, Tc, and Tb. All other parameters are known (or
estimated) as described in Tables 1 and 2 above. Some of the temperatures occur in the
fourth power. This makes the system non-linear and not analytically solvable. However,
this system can be solved numerically. We used the fsolve function of the scipy package [69].

3.5. Thermal Inertia

As described above, the model solves a set of non-linear equations for the steady-state.
In reality, the cell temperature does not instantly respond to a change in input parameters,
e.g., a change in incoming radiation. The thermal inertia of the module is not considered
when applying the steady-state assumption. To roughly consider the thermal inertia a
rolling average is applied. Averaging is performed over ten temperature values modeled
with the above described model and the average is assigned to the last of the corresponding
timestamps of the final time series. The time interval is chosen as a simple best-by-test
approach. In the following, the rolling average is applied to the developed model as well
as to the models from the literature.

4. Experimental Validation and Discussion
4.1. Experiment with Clean PV Modules

The performance of the electrothermal model under clean conditions was analyzed
within six consecutive days, from 26 April to 1 May 2023. In particular, the performance for
module temperature determination was compared to measurements and the state-of-the-art
models described in Section 2.1. The temperature was measured with a Pt-1000 sensor
(uncertainty class B) which was mounted on the module’s rear side with an adhesive
thermo-film. The module of interest is manufactured by JA Solar and has a nominal power
of 390 W [48]. Details can be found in the data sheet [48]. All timestamps in this work refer
to UTC + 1.

Figure 7 compares the modeled temperature to the measured one over the above-
mentioned periods. In general, the model worked well and was capable of giving a good
estimation of the module temperature. For some intervals, a negative bias was found
(e.g., 26 April, 15:00–16:00) while the model overestimated the temperature for other time
intervals (e.g., 1 May, 14:30–16:00). Reasons for this and possible solutions were assumed to
be mostly related to the convection model. For example, currently, only the wind speed is
considered, but not the wind direction. Also, the convection should in theory depend on the
position of a given cell within the given module. The effects of the convection modeling will
be discussed further related to the experiment with soiled modules (Section 4.2). Further
potential enhancements could be a better consideration of thermal inertia which plays a
particular role when the GTI or the wind speed suddenly changes.

Three metrics were analyzed to describe the performance of the model. The root mean
square error (RMSE), the mean average error (MAE), and the mean bias error (MBE) are
described in Equation (17), where N is the total number of data points, i refers to the time
stamp, xi is the measured value, and x̂i is the predicted value. x is the average of all xi.

RMSE =

√
∑N

i=1(xi−x̂i)
2

N

MAE = ∑N
i=1|xi−x̂i |

N

MBE = ∑N
i=1(x̂i−xi)

N

R2 = 1 − ∑N
i=1(xi−x̂i)

2

∑N
i=1(xi−x)2

(17)
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Figure 7. Measured and simulated module temperatures of the clean module for the six-day long test
period.

The obtained error metrics over the six days, 10:00 to 16:00 each, were an RMSE of
2.6 K, an MAE of 2.2 K, and an MBE of −1.3 K. The R2 value was 0.8677.

Figure 8 (left) shows the results of the developed model and the four above-mentioned
thermal models from the literature for one exemplary day. On the right, this figure shows
the two most important meteorological parameters impacting the module temperature,
namely the irradiance (GTI) and the wind speed. Table 3 summarizes the error metrics
of all thermal models. The developed model performed similarly to the two best models
from the literature, the Faiman model and the NOCT model. The developed model had the
lowest RMSE with a value of 2.6 K, which was marginally better than the next best Faiman
model, while the MAE was insignificantly higher with a value of 2.2 K. The absolute value
of the MBE of the developed model was 1.3 K and hence higher than the one of the NOCT
model with a value of only 0.2 K. The temperature deviation had an impact on the module’s
efficiency. Typically, the efficiency dropped by 0.4% for a temperature increase of 1 K. The
impact of temperature deviation on the yield was not the decisive factor for our objective
as the model was designed for hot-spot analysis. Quick hot-spot identification and hot-spot
temperature estimation was possible with the new model and are discussed in the next
section.
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Figure 8. (Left): Temperature determined with the different thermal models as well as the measured
temperature as a function of time. Four models from the literature and the developed model are
shown. An interval of the day April 29 has been chosen as an example. (Right): GTI and wind
speed are shown for the exemplary time interval as these are key parameters influencing the module
temperature.

Table 3. Summary of the error metrics for the different thermal models, both from the literature and
the developed model. This table refers to the clean state. The data refers to the entire test period
consisting of six days.

Model RMSE [K] MAE [K] MBE [K]

Ross 9.4 8.7 8.6
Sandia 4.0 3.6 3.4
Faiman 2.7 1.9 0.5
NOCT 2.9 2.1 0.2

Developed model 2.6 2.2 −1.3

4.2. Experiment with Soiled PV Modules

For the soiled experiment, one cell of the module was entirely covered with an artificial
shading material, as shown also in Figure 2. The material used was a stack of foils and its
transmissivity was roughly constant over the visible spectrum. The effective transmittance
was 44.6% as determined by optical measurements and via analyzing the IV curves. The
spectral transmittance is shown in Appendix A. The goal of the artificial soiling was to
provoke a hot-spot and make the soiled cell dissipate power. Therefore, the qualitative
regime of the transmittance is more important than its absolute value. Additionally, the
hot-spot temperature and humidity can change the foils’ optical properties over time. The
experiment was performed from 9 March to 14 March 2024.

Figure 9 compares the measured and simulated IV curves. For example, only four IV
curves of one day, March 12, are shown with a time difference of 2 h each. One can see that
the shapes of the IV curves are qualitatively correct. There is a slight tendency to predict
too high open circuit voltages and too low short-circuit currents. The IV curve with the
timestamp 14:00 was impacted the most. The reason was probably related to simplifications
of the underlying electrical Bishop model [61]. The position of the maximum power point
was calculated relatively accurately. The height of the plateau of the current differs slightly
between measurement and simulation. The reason might be that the transmittance of the
artificial soiling layer slightly changed over time. As the foils used as artificial soiling
heated up, they might have changed their transmittance. Figure 10 compares the measured
and simulated electrical powers in a plot as a function of time. In general, the electrical
power was calculated well (RMSE = 2.1 W, MBE = −0.2 W, MAE = 1.6 W). The R2 of
modeling the electrical power was 0.9991. On average, the relative deviation between
the predicted and measured power was 1.37%. One subfigure corresponded to each day,
starting in the upper left with the 9th of March and continuing to the 14th of March in the
lower right.
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Figure 9. Measured and simulated IV curves. Exemplary, one day and four timestamps are chosen
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circles indicate the maximum point points. The electrical simulation to calculate the IV curves was
performed with the Bishop model [61].

The right side of Figure 12 compares the measured and simulated hot-spot tempera-
tures and the measured temperature of a clean cell. Each day is discussed individually. To
explain and understand the features that occur one must have a look at the GTI, the wind
speed, and the wind direction which are shown also in Figure 12, but on the left side each.
On the 9 March, the temperature was simulated well with an RMSE of 4.8 K. This was a
day with a low GTI and strong wind from the southwest direction. For the 10 March, the
model predicted a hot-spot with temperatures about 20 K above those of the clean cells but
underestimated the temperature significantly by more than 30 K resulting in an RMSE of
32.7 K and an MBE of −30.9 K. On that day, the GTI was generally pretty high and there
was strong wind from the west direction. In this context, a high GTI referred to the GTI
reaching about 1000 W/m2 at solar noon and, overall, only a few clouds over the day. On
the 11 March, the temperature estimation was good for the first two hours of the analyzed
time interval. Afterwards, the temperature was underestimated similarly to the 10 March
resulting in an RMSE of 21 K and an MBE of −16.7 K. On the 11 March, the GTI was high
and the wind from the west direction grew continuously stronger over the day. On the 12th
the temperature was estimated well. In the morning the temperature was overestimated
slightly while it is underestimated slightly in the afternoon, resulting in an RMSE of 12.5 K
and an MBE of 1.5 K. In the morning there was basically no wind, and in the afternoon
there was a slight wind coming from the west direction. The GTI was high. On the 13th
the temperature was calculated overall accurately with an RMSE of 7.7 K and an MBE of
0.9 K. The GTI was high and there was a wind of about 5 m/s from the east direction. On
the 14th of March, the temperature was, generally speaking, slightly underestimated with
an RMSE of 11.2 K and an MBE of −6.6 K. The GTI was high and there was a small but
continuously increasing wind from the west direction. Over six days, the model performed
with an RMSE of 17.7 K, an MAE of 13.1 K, and an MBE of −9.0 K. The model achieved an
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R2 of 0.7712 and the hot-spot temperature increase compared with the clean cell was on
average calculated with a deviation of 25.8%.
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Figure 12. The left subfigure of each column shows the most important meteorological data determin-
ing the temperature. The wind direction is given in degrees. Here, 0◦ corresponds to wind coming
from the north direction. Then, it is counted clockwise. Meaning, e.g., 90◦ corresponds to wind
coming from the east direction. The right subfigure of each column compares the measured and
hot-spot temperatures simulated by the developed model. Additionally, the temperature of a clean
cell, a non-hot-spot cell, is shown in dark gray. In total: RMSE = 17.7 K, MBE = −9.0 K, MAE = 13.1 K,
R2 = 0.7712.

The deviations found are assumed to be mainly related to convection modeling. In
the west of the PV testbench, there was a big hall that reduced the wind coming from that
direction. The meteorological station measuring the wind was not affected by this hall for
west winds. This means that in the case of the wind coming from the west direction, the
wind speed was systematically overestimated for the convection modeling. This leads to an
overestimation of the convection and an underestimation of the temperature. In particular,
this explains the deviations for the 10th and 11th of March. For the 9th of March, there was
a low GTI and therefore an overall low temperature. This also means that the effect of the
convection was less pronounced. For the 12th and the 14th of March, there were overall only
small wind speeds present. This caused the deviations to be lower. A more representative
wind measurement would most likely improve the results significantly. At the same time,
there will not be wind measurements in PV parks close to each PV module in the field.
It is unlikely there will be accurate wind measurements for every location within a large
PV park. Hence, the validation mimics a realistic situation and input data accuracy. Even
with the observed deviations, the model is capable of distinguishing accurately between
hot-spots and cells with a normal operation temperature.

5. Conclusions and Outlook

This paper has presented a new way of electrothermally modeling soiled PV modules.
The electrical part of the model uses the established Bishop model. The model is capable
of calculating the IV curves of a module, the electrical power output, and the module
temperature with cell resolution. The calculated IV curves matched well with the measured
ones and the power under regular operating conditions could be determined accurately
(RMSE of the electrical power was 2.1 W and MBE was −0.2 K over 6 days and the nominal
module power of 390 W). The average relative deviation between measured and simulated
power was 1.37%. These metrics are an indication that the use of the single-diode model is
unproblematic. However, replacing the single-diode model with the two-diode model is
not expected to lead to significant improvements.

The meteorological parameters considered by the thermal model are the GTI measured
by a reference cell, the wind speed, the infrared radiation measured by a pyrgeometer, the
ambient temperature, and the air pressure. All meteorological data were measured at a
weather station 100 m north of the testbench that contains the modules of interest. When
calculating the temperature of a clean module, the model showed a similar performance to
the two most accurate models, the Faiman model and the NOCT model, with only minor
differences in the error metrics RMSE, MAE, and MBE, out of four well-established models.
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The developed model was capable of calculating the hot-spot temperature of soiled
or partially shaded modules. Over a test period of six days, the temperature estimation
showed an RMSE of 17.7 K. At times the temperature prediction was accurate while it
deviated for certain conditions. For the best individual day, the RMSE was as low as 4.8 K.
The temperature increase caused by a hot-spot compared to a clean cell was determined
on average with a relative deviation of 25.83%. The deviations have been explained and
differences between the wind conditions directly next to the PV modules compared to the
wind at the wind mast are assumed to be the main cause of the deviations. Such a spatial
separation of the anemometer and the PV module is also to be expected in real PV plants,
so the experimental setup is considered to be adequate.

The model manages to correctly predict whether the soiling or shading pattern is
sufficient to cause a hot-spot. In case an IR image shows a hot-spot, the model is capable
of stating if the hot-spot can be caused by soiling or shading or if it must be caused by a
defect. Operators of a PV plant should be alarmed when either a hot-spot is detected on an
IRT image or the developed electrothermal model states that a soiling pattern seen on an
RGB image will cause a hot-spot. When both applies at the same time it is alarming as well.
However, in this case cleaning is likely sufficient.

The results of this study suggest that the accuracy of the thermal model is limited by
the uncertainty of the meteorological parameters used as an input. The electrical model is
currently not limiting the thermal model. If a higher accuracy of the electrical model (better
than the current 1.37% relative deviation) is desired, the underlying single-diode model
could be replaced by the two-diode model.

The developed model can be used to enhance the monitoring of PV plants. The
new method is applicable, for example, in combination with IR monitoring flights. It can
potentially be applied to large scales.

Currently the method is only tested for technologies based on crystalline silicon. If the
method was to be used for, e.g., thin-film or perovskite modules, larger deviation would be
expected.

Further developments of the method can go in different directions. On the one hand,
the method can be applied to different kinds of modules. In particular, it could be used for
half-cell modules which are currently often used. On the other hand, improved convection
models that consider also the wind direction could be implemented to enhance the model’s
accuracy. Also, the developed model could be tested with image-based soiling information.
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Abbreviations

PV Photovoltaics
IRT, IR Infrared thermography, Infrared
EL Electroluminescence
RGB image Red, Green, Blue image (image type)
IV curve Current-voltage curve
UV light/radiation Ultraviolet light/radiation
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CNN Convolutional Neural Network
STC Standard test conditions
NOCT Normal operating condition temperature
RMSE Root mean square error
MAE Mean average error
MBE Mean bias error
Symbols
.
qcond Conductive heat transfer
.
qconv Convective heat transfer
cp Specific heat capacity
P Electrical power
A Cell area
T Temperature
G Irradiance
vw Wind speed
h Convective heat transfer coefficient
q Elementary charge
R Resistance
n Diode ideality factor
η Module efficiency
Φ Thermal radiation
λ Thermal conductivity
ρ Hemispherical reflectance
α Absorptance
ε Emissivity
τ Hemispherical Transmittance
ν Kinematic viscosity

Appendix A

Figure A1 shows the optically measured spectral transmittance of the foils used
as artificial soiling in blue. Averaging the spectral transmittance weighted by the solar
spectrum shown in red (ISO9845-1 Main Spectra GTI) and the spectral response of the
module shown in dark gray [70,71] results in a wavelength averaged transmittance of
44.6%.
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Appendix B

The simulation parameters are shown in Table A1. Note that the single-diode param-
eter cannot be stated here as the parameters vary with the meteorological conditions, in
particular the current source depends on the incoming irradiance.

Figure A2 shows the setup from the top. Figure 2 has previously shown the setup
including the artificial soiling material.

Table A1. Summary of the simulation parameters. Breakdown parameters are taken from [66,68].
The parameters are corrected for aging.

Quantity Value

Breakdown factor 0.002

Breakdown voltage −14 V

Trigger voltage of the bypass diode −0.5

Breakdown exponential factor 3

Efficiency 0.17622%

Short circuit current under STC 9.61 A

Open circuit voltage under STC 47.13 V

Power under STC 349 W

MPP current under STC 9.26 A

MPP voltage under STC 37.80 V

Temperature coefficient of the power −0.37 %/K
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Figure A2. Top view of the setup used. The lower fifth module from the right is used for the exper-
iments. Figure 2 has already shown the module with its artificial shading. 
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experiments. Figure 2 has already shown the module with its artificial shading.
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