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Introduction
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INTRODUCTION: TYPES OF RECEIVERS

Solar power towers → Increasing variety of receivers’ geometries

Receivers

Cavity Open 

volumetric

Tube

CylindricalCurvedFlat

Synhelion →

Industrial in 

this project
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• Flux Density Measurement (FDM) in the central receiver
• Enhancement of average performance 

• Accurate tracking of heat losses → Possible decoupling between heliostat measurements 

and receiver measurements

Challenges:
- Universality

- Continuous and non-disruptive

- Harsh conditions

- Computing power

- Processing time

INTRODUCTION: FDM RELEVANCE
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INTRODUCTION: MOTIVATION

𝜌(𝜃, 𝜑, 𝜃𝑟 , 𝜑𝑟 , 𝑑, 𝜙) =
𝐿𝑟(𝜃, 𝜑, 𝜃𝑟 , 𝜑𝑟 , 𝑑, 𝜙)

𝐿 𝜃, 𝜑 𝑐𝑜𝑠𝜃𝑑Ω

Now the BRDF is also a function of the 

geometry of the cavity (depth, aperture

diameter) → Discarded use, difficult

characterisation

- Inherent perspective problems: most of the 

fraction reflected can‘t be captured in camera

- Some heliostat reflection is reabsorbed by

other walls

Hybrid use of cameras and computing methods: 

Real-Time Image Enhanced Data-Driven Digital-

Twin (Real-TImE 3DT)

d𝜙
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Aims
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AIMS

Rome, 2024-11-10

• (Near) real-time measurement

• Non-disruptive

• Easy user interface

• Connection between conventional measurements and possible future 

trends (data-driven models)

• Self-corrected with AI enhancement

• “Towards Smart CSP”
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Methodology: digital twin



10

Grayscale

results (ML)

RGB high-

resolution

Data platform:

Dynamic 

parameters

• Pyrheliometers

• Heliostat tracking

(alignment and 

aimpoints)

• Ambient thermometer

• Time clock

• Sun tracking

Static 

parameters

• Plant features:

location, hel. Field

• Circumsolar ratio

• Receiver

• Atmospheric

extinction

Periodic 

„get“ 

request

Dynamic data

packages
Data 

treatment

Iteration 

configuration

and run

Auto setting
Automatic run

and results

processing

Python library

DIGITAL TWIN MODULE

Operator: 

manual 

overwriting
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DIGITAL TWIN MODULE: USER INTERFACES

STRAL: viewing tool

PYTHON: human-machine interface 
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Methodology: AI-enhancement
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Real-TImE 3DT: TRAINING FLOW DIAGRAM

Data platform
Ray-tracing

simulation

Real-time 

data

Meas. method

Flux prediction (aperture plane)

Flux measured (aperture plane)

UNet

Possible 

training out of

working hours

• 1st training phase: sim2sim

Mapping simulation without

tracking errors to simulations with

tracking error

• 2nd training phase: sim2real

Use pre-trained model to map from

realistic simulation to real images

obtained by measurement methods
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Real-TImE 3DT: OPERATING FLOW DIAGRAM

Data platform
Ray-tracing

simulation

Real-time 

data

Flux prediction

(aperture plane)

Trained 

UNet

Corrected flux

distribution

(Rays power)

Corrected

ray direction

Rays projection

in „.obj“ cavity

Real time 

digital twin

AI 

correction
Cavity

projection
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METHODOLOGY: PARAMETRIC ANALYSIS

East
North

Up

𝑛𝐻

𝐴𝑃

𝛼
𝜙

𝐹𝐷𝑀 = 𝑓(𝛼, 𝜙, 𝐴𝑃, 𝑛𝐻 , 𝐸, 𝑇𝐸)

𝐸: atmospheric extinction

𝑇𝐸: tracking error matrix (4 tracking

errors in 2153 heliostats)
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METHODOLOGY: PARAMETRIC ANALYSIS

▪ DNI, 𝛼 and 𝜙 → Parameters defining each of the 

atmospheric conditions (931) → Understanding of a deep

set of different combinations of these parameters

▪ 𝑬→ Leary Hankins model for the whole dataset (both label

and input) → The neural network ignores this parameter

▪ 𝑨𝑷→ Vector of aimpoints → Only one aimpoint centered in 

the cross of the cavity axis and the aperture plane (realistic

approach for cavities)

▪ 𝑻𝑬→ Control variable → Used to validate the performance

of the neural net → Present in label but not in input

Semicontrolled conditions

Rome, 2024-11-10



17

METHODOLOGY: PARAMETRIC ANALYSIS

▪ 𝒏𝑯 → Array of active heliostats →16 areas considered; 931 cases for each defocused area →

Implicit understanding for the model about the effect of each area of heliostats

Areas are defined because it is

impossible to know the functional

dependency of each heliostat with

the resulting DNI (2153 x 931 cases)

Synergy with Sun to Liquid II →

IMDEA field is only composed of

~200 heliostats → Possibility to

define smaller areas
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METHODOLOGY: PARAMETRIC ANALYSIS

8:00 AM 10:00 AM 11:00 AM 12:00 PM 2:00 PM 4:00 PM 6:00 PM

8:00 AM

6:00 PM 8:00 AM

6:00 PM

Repeated pattern during the

different days in the shape

and bright of the light beam

Direction and 

length of the

longest radius of

the beam
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METHODOLOGY: U-NET CORRECTION

▪ U-Net architecture developed

▪ Dataset normalized [0,1] 

▪ Images cropped and downsampled (256x256px)

▪ 80% used for training
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Results: digital twin
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RESULTS: PROOF OF CONCEPT

Asynchronous definition

Static definition:

Accurate model of the

Solar Tower Jülich 

defined automatically

(less than one minute)

• List of heliostats to be modified

• Modification

• Live defocus

• Live change of tracking error

• New aimpoint

• Time auto adjustment

• DNI 

• Sun position change

Synchronous adjustment

Real time adjustment: 

latency < 7s (depending

on amount of heliostats)
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RESULTS: PROOF OF CONCEPT

Real time variation in the result

Results labelled and saved

in local disk automatically

(process latency ~2s)
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RESULTS: TRACKING ERROR MODELS

▪ Application of the digital twin for checking the influence of tracking error models

▪ Grayscale images used for this case

▪ Images normalized against peak conditions of the period → Needed for bright level assessment

▪ 931 meteorological situations logged in experiments between 2014-16 (TestRec)

▪ Cherry-picked case (09.04.2014 @ 7:00:00 AM)

Influence of modelling tracking error → 6%* of

RMSE and peak value up to 78 kW/m2 (20-25%)

* RMSE is even underestimated because most of the pixels are

black due to the dimension of the spot

16 combinations of 

heliostats tested →

Dataset of 15827 pairs

of images
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Results: AI-enhancement
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CURRENT STATUS: U-NET CORRECTION

▪ Pre-training analysis performed (sim2sim)

▪ Best hyperparameters found:

▪ Learning rate: 0.001, ReduceLROnPlateau → Factor: 0.03

▪ Epochs: 50

▪ Batch size: 16

▪ Employed loss function: MSE pixel-wise

▪ Employed accuracy function:

▪ Based on the total amount of power collected by evaluation plane comparing output and label

▪ Examines differences between flux measured in the output of the model (𝑋𝑟,𝑖) and the target 

( ෠𝑋𝑟,𝑖) pixel-wise and adds the values

𝐴𝑝𝑖𝑥,𝑋 =
σ𝑖 𝑋𝑟,𝑖 − ෠𝑋𝑟,𝑖

σ𝑖
෠𝑋𝑟,𝑖
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CURRENT STATUS: RESULTS

▪ Loss and accuracy plots

▪ Different curves represent different augmentation techniques:
▪ Dark blue: original dataset

▪ Pink: random noise maps (amplitude of 7%), horizontal and vertical flips each applied to 40%

▪ Green: random noise maps (amplitude of 3%), horizontal and vertical flips each applied to 25%

▪ random noise maps (amplitude of 1.25%), horizontal and vertical flips each applied to 25%

▪ Dark orange: random noise maps (amplitude of 3%), horizontal and vertical flips each applied to 25%

Successful augmentation: same 

generalization as in original dataset

• MSE (loss) reduced from

6% to 0.03% 

• Accuracy reaching 97.5%
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CURRENT STATUS: RESULTS

▪ Inference results

2019-05-07 @ 13:43:59 → High intensity

2018-06-04 @ 12:14:52 → Medium intensity

• Peak differences: from

25% to <10%

• Better distribution: 

avoid hotspot effect

• Able to predict

tracking error effects

with accuracy
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CURRENT STATUS: RESULTS

▪ Inference results

2018-06-14 @ 07:43:59 → Very low intensity

Also valid for low intensities

Rome, 2024-11-10



29

CURRENT STATUS: UNET + AG 

▪ Attention gates → Better feature recognition: improvement of isolines

Epoch 33 Epoch 37
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CURRENT STATUS: UNET3+ 

▪ Deep and dense connection

Epoch 36 Epoch 45
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CURRENT STATUS: SUMMARY

Rome, 2024-11-10

UNet UNet + AG UNet3+

Training time (h) ~8 ~10 ~20

Accuracy (%) 97.5 98.7 98.5

Loss (%) 0.034 0.022 0.024

Trainable in commercial

laptop? (Y/N)

Y N N

Topography attention (Y/N) N Y N

Noise handling? (Y/N) N Y Y

Tracking errors predicted?

(Y/N)

Y Y Y
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Thanks for listening! 

THE END

Funded by the European Union (HORIZON MSCA 

Doctoral Network, Project number 101072537).


