REAL-TIME IMAGE ENHANCED DATA-DRIVEN DIGITAL TWIN (REAL-TIME 3DT) FOR CSP FLUX DENSITY MEASUREMENTS

SOLARPACES 2024

Author: Sergio Díaz Alonso, sergio.diazalonso@dlr.de Supervisor: Dr. Christian Raeder Director(s): Prof. Dr. Bernhard Hoffschmidt, Prof. Dr. Robert Pitz-Paal

LIST OF CONTENTS

1. Introduction

2. Aims

3. Methodology

- 1. Digital twin
- 2. AI-enhancement

4. Results

1. Digital twin

Rome, 2024-11-10

2. AI-enhancement

 S P

INTRODUCTION: TYPES OF RECEIVERS

Solar power towers → Increasing variety of receivers' geometries

INTRODUCTION: FDM RELEVANCE

- Flux Density Measurement (FDM) in the central receiver
	- Enhancement of average performance
	- Accurate tracking of heat losses \rightarrow Possible decoupling between heliostat measurements and receiver measurements

Challenges:

- **Universality**
- Continuous and non-disruptive
- Harsh conditions
- Computing power
- **Processing time**

AIMS

- (Near) real-time measurement
- Non-disruptive
- Easy user interface
- Connection between conventional measurements and possible future trends (data-driven models)
- Self-corrected with AI enhancement
- *"Towards Smart CSP"*

Methodology: digital twin

DIGITAL TWIN MODULE

DIGITAL TWIN MODULE: USER INTERFACES

STRAL: viewing tool

PYTHON: human-machine interface

INTRODUCE HERE THE HELIOSTATS TO BE ADJUSTED ###### #hel list = [1,140,158,172,529,1032,1055,1111,1429,1932] hel_list = [140,158,172,529,1032,1055,1111,1429,1932] #hel list = $[1]$ #### INTRODUCE HERE THE ADJUSTMENT: Defocus/aimpoint change/tracking error correction ###### # If the change is hel. defocus --> defocus = True (analog for the rest) $defocus = False$ aimpoint change = True # Defocus and aimpoint change cannot be refered simultaneously to the same heliostat tracking error correction = False $new_ainpoint = [0,0,0]$ # Introduce here the aimpoint new tracking error = $[1.25, 1.25, 1.25, 1.25]$

Methodology: AI-enhancement

Real-TImE 3DT: TRAINING FLOW DIAGRAM

• **1st training phase: sim2sim**

Mapping simulation without tracking errors to simulations with tracking error

• **2nd training phase: sim2real**

Use pre-trained model to map from realistic simulation to real images obtained by measurement methods

Real-TImE 3DT: OPERATING FLOW DIAGRAM

METHODOLOGY: PARAMETRIC ANALYSIS

- **DNI,** α **and** ϕ \rightarrow **Parameters defining each of the** atmospheric conditions (931) \rightarrow Understanding of a deep set of different combinations of these parameters
- \bullet \rightarrow Leary Hankins model for the whole dataset (both label and input) \rightarrow The neural network ignores this parameter
- \overrightarrow{AP} \rightarrow Vector of aimpoints \rightarrow Only one aimpoint centered in the cross of the cavity axis and the aperture plane (realistic approach for cavities)
- \overrightarrow{TE} \rightarrow Control variable \rightarrow Used to validate the performance of the neural net \rightarrow Present in label but not in input

Semicontrolled conditions

METHODOLOGY: PARAMETRIC ANALYSIS

-
- $\overrightarrow{n_H}$ \rightarrow Array of active heliostats \rightarrow 16 areas considered; 931 cases for each defocused area \rightarrow Implicit understanding for the model about the effect of each area of heliostats

Areas are defined because it is impossible to know the functional dependency of each heliostat with the resulting DNI (2153 x 931 cases) **Synergy with Sun to Liquid II → IMDEA field is only composed of ~200 heliostats** → **Possibility to define smaller areas**

METHODOLOGY: PARAMETRIC ANALYSIS

Repeated pattern during the different days in the shape and bright of the light beam

Direction and length of the longest radius of the beam

METHODOLOGY: U-NET CORRECTION

▪ **U-Net architecture developed**

- **Dataset normalized [0,1]**
- **Images cropped and downsampled (256x256px)**
- **80% used for training**

Results: digital twin

RESULTS: PROOF OF CONCEPT

Asynchronous definition

Synchronous adjustment

- List of heliostats to be modified
- Modification
	- Live defocus
	- Live change of tracking error
	- New aimpoint
- Time auto adjustment
	- DNI
	- Sun position change

Real time adjustment: latency < 7s (depending on amount of heliostats) defined automati (less than one minute)

RESULTS: PROOF OF CONCEPT

Results labelled and saved in local disk automatically (process latency ~2s)

RESULTS: TRACKING ERROR MODELS

EXPEDENTIFY Application of the digital twin for checking the influence of tracking error models

- Grayscale images used for this case
- **Images normalized against peak conditions of the period** \rightarrow **Needed for bright level assessment**
- 931 meteorological situations logged in experiments between 2014-16 (TestRec)

▪ **Cherry-picked case** (09.04.2014 @ 7:00:00 AM)


```
30
           Influence of modelling tracking error \rightarrow 6%* of
25 \frac{9}{7}RMSE and 16 combinations of \int m^2(20-25\%)heliostats tested →
20
                             Dataset of 15827 pairs
\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}<br>Scaled flux d
                                     of images
          * RMSE is even underestimated because most of the pixels are
          black due to the dimension of the spot
l 5
```


Results: AI-enhancement

CURRENT STATUS: U-NET CORRECTION

- **Pre-training analysis performed (sim2sim)**
- Best hyperparameters found:
	- Learning rate: 0.001, ReduceLROnPlateau \rightarrow Factor: 0.03
	- **Epochs: 50**
	- Batch size: 16
- Employed loss function: MSE pixel-wise
- Employed accuracy function:
	- Based on the total amount of power collected by evaluation plane comparing output and label
	- **Examines differences between flux measured in the output of the model** $(X_{r,i})$ **and the target** $(\hat{X}_{r,i})$ pixel-wise and adds the values

$$
A_{pix,X} = \frac{\sum_{i} |X_{r,i} - \hat{X}_{r,i}|}{\sum_{i} |\hat{X}_{r,i}|}
$$

CURRENT STATUS: RESULTS

▪ **Loss and accuracy plots**

- MSE (loss) reduced from 6% to 0.03%
- Accuracy reaching 97.5%

- Different curves represent different augmentation techniques:
	- Dark blue: original dataset
	- Pink: random noise maps (amplitude of 7%), horizontal and vertical flips each applied to 40%
	- Green: random noise maps (amplitude of 3%), horizontal and vertical flips each applied to 25%
	- random noise maps (amplitude of 1.25%), horizontal and vertical flips each applied to 25%
	- Dark orange: random noise maps (amplitude of 3%), horizontal and vertical flips each applied to 25%

CURRENT STATUS: RESULTS

▪ **Inference results**

2019-05-07 @ 13:43:59 → High intensity

• Peak differences: from 25% to $< 10\%$

- Better distribution: avoid hotspot effect
- Able to predict tracking error effects with accuracy

Rome, 2024-11-10

CURRENT STATUS: RESULTS

▪ **Inference results**

Change done in the NN Difference to label Input image Corrected image Difference Output image Target image **Difference** 0.03 0.00 0.01 0.03 0.04 0.05 0.06 0.00 0.005 0.01 0.02 0.00 0.02 0.04 0.06 0.08 0.00 0.01 0.02 Normalized flux density Difference Normalized flux density Difference

2018-06-14 $\textcircled{2}$ 07:43:59 \rightarrow Very low intensity

Also valid for low intensities

Rome, 2024-11-10

CURRENT STATUS: UNET + AG

■ Attention gates \rightarrow Better feature recognition: improvement of isolines

Epoch 33 Epoch 37

CURRENT STATUS: UNET3+

▪ **Deep and dense connection**

30

Output

Rome, 2024-11-10

THE END

Thanks for listening!

Funded by the European Union (HORIZON MSCA Doctoral Network, Project number 101072537).

