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INTRODUCTION: TYPES OF RECEIVERS 4
DLR

Solar power towers - Increasing variety of receivers’ geometries
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INTRODUCTION: FDM RELEVANCE 4
DLR

* Flux Density Measurement (FDM) in the central receiver

« Enhancement of average performance
 Accurate tracking of heat losses - Possible decoupling between heliostat measurements
and receiver measurements

Challenges:
Universality
Continuous and non-disruptive

Harsh conditions
Computing power
Processing time
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INTRODUCTION: MOTIVATION
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Hybrid use of cameras and computing methods:
Real-Time Image Enhanced Data-Driven Digital-
Twin (Real-TImE 3DT)
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AIMS #
DLR

* (Near) real-time measurement
* Non-disruptive
« Easy user interface

« Connection between conventional measurements and possible future
trends (data-driven models)

o Self-corrected with Al enhancement
« “Towards Smart CSP”
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DIGITAL TWIN MODULE

/"« Plant features: |\

location, hel. Field
« Circumsolar ratio

« Receiver

« Atmospheric

\_ extinction /

(&

« Heliostat tracking
(alignment and
aimpoints)

 Time clock
« Sun tracking

/ * Pyrheliometers \

« Ambient thermometer

|

Static
parameters

Auto setting

Dynamic data
packages
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Operator:
manual
overwriting
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and results
processing
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configuration
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Data platform:
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DIGITAL TWIN MODULE: USER INTERFACES

STRAL: viewing tool DLR

Power Tower
- Environment
[#- Shading Objects
[#- Receiver
= Aim Points
# No.: 1
#-No.: 3
# No. 4
#-No.:: 5
[=- Heliostat Field
Mirror Surface: 17 621.820 m?
Global Reflectivity: 0.920
& Heliostat Prototype
#2153 Heliostats
Choose Single Heliostat: 0
Transmission
Enable Atmosph. Losses: Yes
- Type: Custom Function
# Description: learyhankinsatmostupel_2

PYTHON: human-machine interface

hel 1list = [14@,158,172,529,1032,1055,1111,1429,1932]

defocus =
aimpoint change =
tracking error_correction =

new aimpoint = [0,0,0]

new tracking error = [1.25,1.25,1.25,1.25]




’@ p !;;? solarPACEs Marie Sktodowska-

Solar Power & Chemical Energy Systems: -Curie Actions




Real-TImE 3DT: TRAINING FLOW DIAGRAM #
DLR

—

Flux prediction (aperture plane) « st training phase: sim2sim

Xl data

Mapping simulation without
tracking errors to simulations with
tracking error

Ray-tracing
Data platform simulation

\ -
& .

Meas. method Flux measured (aperture plane) -

« 2nd training phase: sim2real

Use pre-trained model to map from
realistic simulation to real images
obtained by measurement methods

Possible

training out of —) @
working hours — k €SP




Real-TImE 3DT: OPERATING FLOW DIAGRAM

Real time
digital twin

Flux prediction
(aperture plane)

axmm Real-time D . ) —
Xl data 5

Ray-tracing

Data platform  simulation

i DLR

Corrected flux

Al DITELIC Cavity
correction | distribution projection
£
(Rays power)
Trained
UNet

Corrected
ray direction

Rays projection
in ,,.0bj" cavity
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METHODOLOGY: PARAMETRIC ANALYSIS

DLR

FDM = f(a, ¢, AP,y E, TE)

E: atmospheric extinction

TE: tracking error matrix (4 tracking
errors in 2153 heliostats)



METHODOLOGY: PARAMETRIC ANALYSIS #
DLR

DNI, a and ¢ -> Parameters defining each of the

atmospheric conditions (931) - Understanding of a deep
set of different combinations of these parameters

E - Leary Hankins model for the whole dataset (both label
and input) = The neural network ignores this parameter

— | Semicontrolled conditions

AP - Vector of aimpoints - Only one aimpoint centered in
the cross of the cavity axis and the aperture plane (realistic
approach for cavities) B

TE - Control variable > Used to validate the performance
of the neural net - Present in label but not in input
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METHODOLOGY: PARAMETRIC ANALYSIS

DLR
= ny ~> Array of active heliostats =16 areas considered; 931 cases for each defocused area >

Implicit understanding for the model about the effect of each area of heliostats
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Areas are defined because itis Synergy with Sun to Liquid Il 2
impossible to know the functional IMDEA field is only composed of
dependency of each heliostat with ~200 heliostats = Possibility to
the resulting DNI (2153 x 931 cases) define smaller areas




METHODOLOGY: PARAMETRIC ANALYSIS #
DLR

8:00AM 10:00AM 11:00AM 12:.00PM 2:00PM  4:00 PM 6:00 PM

8:00 AM_

6:00 P 8:00 AV
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Repeated pattern during the
different days in the shape
and bright of the light beam

Direction and
length of the
longest radius of
the beam




METHODOLOGY: U-NET CORRECTION #
= U-Net architecture developed DLR

>

Input
Output

Max pooling 2*2
Up-conv 2*2

Conv 3*3

Conv 1*1
Copy and crop
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Ny Ve

i-i-1
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» Dataset normalized [0,1]

» Images cropped and downsampled (256x256px)
= 80% used for training

2 &
Rome, 2024-11-10 ~
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RESULTS: PROOF OF CONCEPT

Asynchronous definition

Synchronous adjustment

i DLR

 List of heliostats to be modified
» Modification
» Live defocus
» Live change of tracking error
* New aimpoint
« Time auto adjustment
* DNI
« Sun position change

Real time adjustment:
latency < 7s (depending
on amount of heliostats)

defined automat

(less than one m




RESULTS: PROOF OF CONCEPT

Real time variation in the result

Flux map in the receiver
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Results labelled and saved
in local disk automatically
(process latency ~2s)

DLR



RESULTS: TRACKING ERROR MODELS #
DLR

= Application of the digital twin for checking the influence of tracking error models
» Grayscale images used for this case
» Images normalized against peak conditions of the period - Needed for bright level assessment
= 931 meteorological situations logged in experiments between 2014-16 (TestRec)

Max DNI Conditions
944.1 47.7]  189.3] 4/12/2016] 2:00:00 PM

= Cherry-picked case (09.04.2014 @ 7:00:00 AM)

F35

2014-04-09T070000

Ideal Realistic Difference - 30

Influence of modelling tracking error - 6%* of
RMSE and 16 combinations of  [M?(20-25%)
heliostats tested 2>

Dataset of 15827 pairs

_ of images :
* RMSE is eVerrurocresumorcooesaose MOst of the pixels are

black due to the dimension of the spot J— |
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CURRENT STATUS: U-NET CORRECTION #
DLR

Pre-training analysis performed (sim2sim)

Best hyperparameters found:
= Learning rate: 0.001, ReduceLROnPlateau - Factor: 0.03
= Epochs: 50
= Batch size: 16

Employed loss function: MSE pixel-wise

Employed accuracy function:

= Based on the total amount of power collected by evaluation plane comparing output and label

= Examines differences between flux measured in the output of the model (X, ;) and the target
(X,;) pixel-wise and adds the values

A = YilXri = X
pix, X Zi |Xr,i |
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CURRENT STATUS: RESULTS ‘#7
Successful augmentation: same DLR

» Loss and accuracy plots generalization as in original dataset

L . Accuracy/train
oss/train

D ol  MSE (loss) reduced from
. 9 P 6% to 0.03%
- g P - Accuracy reaching 97.5%
o rc -
) S 7
§ 2 //

= Different curves represent different augmentation techniques:
= Dark blue: original dataset
= Pink: random noise maps (amplitude of 7%), horizontal and vertical flips each applied to 40%
= Green: random noise maps (amplitude of 3%), horizontal and vertical flips each applied to 25%
= random noise maps (amplitude of 1.25%), horizontal and vertical flips each applied to 25%
= Dark orange: random noise maps (amplitude of 3%), horizontal and vertical flips each applied to 25%
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CURRENT STATUS: RESULTS

= Inference results
2019-05-07 @ 13:43:59 - High intensity

Difference to label
Target image

DLR

Original difference
With tracking error

Difference

Output image

Difference

Without tracking error

 Peak differences: from

e — e EE— . — e — =) L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.00 0.05 0.10 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.02 0.04 0.06 0 < (0)
Normalized flux density Difference Normalized flux density Difference 25 /0 tO 10 /0

o Better distribution:

2018-06-04 @ 12:14:52 - Medium intensity avoid hotspot effect
Difference to label « Ableto predICt

Difference tracklng error eﬂ:ects
with accuracy

Original difference

With tracking error Target image

Output image

Difference

Without tracking error
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CURRENT STATUS: RESULTS
= Inference results

DLR

2018-06-14 @ 07:43:59 - Very low intensity

Change done in the NN Difference to label

Input image Corrected image Difference Output image Target image Difference

e ———————, s B e o e '
0.00 0.02 0.04 0.06 0.08 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03 0.04  0.05 0.06 0.00 0.005 0.01
Normalized flux density Difference Normalized flux density Difference

Also valid for low intensities




CURRENT STATUS: UNET + AG
= Attention gates -> Better feature recognition: improvement of isolines ﬁ

Epoch 33 Epoch 37

Image 3 Rage-4 ] Image 1 Image 2 Image 3 Image 4

Image 1 Image 2

r0.20
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Intensity
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' 0.015
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CURRENT STATUS: UNET3+

* Deep and dense connection
Epoch 36

Image 1 Image 2 Image 3 Image 4

e . ‘ ‘

Target/Label . . ‘

Difference

Image 1

Image 2

Epoch 45

Image 3 Image 4 —

r0.25

+0.20

0.00
Intensity

0.020

~ 0.015

0.010

0.005

Difference



CURRENT STATUS: SUMMARY

Training time (h)
Accuracy (%)
Loss (%)

Trainable in commercial
laptop? (Y/N)

Topography attention (Y/N)
Noise handling? (Y/N)

Tracking errors predicted?
(Y/N)

UNet

97.5
0.034

Z

UNet + AG

~10
98.7
0.022

<

UNet3+

98.5
0.024

<

i DLR




Thanks for listening!
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