Lunar Laser Ranging for Testing Relativity and Studying the Earth-Moon System

Mingyue Zhang¹, Liliane Biskupek², Jürgen Müller¹

1 Institute of Geodesy (IfE), Leibniz University Hannover

2 Institute for Satellite Geodesy and Inertial Sensing, German Aerospace Center (DLR)

IWLR 2024 (Kunming, China) | 20-26 Oct. 2024

Principle of Lunar Laser Ranging (LLR)

A15 L2 Research focuses on: Determination of Earth rotation parameters (ERPs)

✓ Relativity tests

L1

 ✓ Differential Lunar Laser Ranging (DLLR)

Jniversität Hannover

Earth Rotation Parameters

Normal Points (NPs) over 53 Years

31620 normal points over the time span April 1970 - July 2023

Years

Better NP Distribution with IR NPs

Earth Rotation Parameters (ERPs) Estimation

- ✓ Connection between ERPs and LLR $\mathbf{r}_{GCRS} = \mathbf{Q}(t) \mathbf{R}(t) \mathbf{W}(t) \mathbf{r}_{ITRS}$ $\Delta UT1 (x_{p}, y_{p})$
- ✓ LLR NPs selection
 - all observatories
 - min. 15 NPs per night, 519 nights
 - ▶ 04.1984 05.2023
- ✓ LLR analysis
 - Until 1983: Kalman Earth Orientation Filter (KEOF) series COMB2019; from 1983: IERS Co4 EOP series
 - ERPs fixed for nights not considered in the fit
 - > standard parameters of Earth-Moon system with either $\Delta UT1$, x_p or y_p

6

niversität

Earth Rotation Parameters (ERPs) Estimation

Relativity Tests

Leibniz

Jniversität

Hannover

Relativity Tests

- $\checkmark\,$ Equivalence of inertial and gravitational mass
 - Earth and Moon as test bodies
 - in the gravitational field of the Sun
 - $\Delta \left(\frac{m_g}{m_i}\right)_{EM}$: difference between the ratio $\frac{m_g}{m_i}$ for the Earth and Moon
 - in the gravitational field of galactic dark matter

 Δa_{EM} : additional acceleration of the Moon relative to the Earth towards the galactic center

 \checkmark Equivalence of active and passive gravitational mass

 $\Delta \left(\frac{m_a}{m_p}\right)_{Al,Fe}$: difference between the ratio $\frac{m_a}{m_p}$ for Al and Fe of the Moon

- \checkmark Temporal variation of the gravitational constant G
- ✓ PPN parameters γ (space-curvature) and β (non-linearity of gravity)

Estimation Results for Relativity Tests

Parameter	Estimation result	Data time span	Data number	Source	
$\frac{\dot{G}}{G}$	$(-5.0 \pm 9.6) \cdot 10^{-15} yr^{-1}$		27485	Biskupek et al. (2021)	
$\gamma - 1$	$(1.7 \pm 1.6) \cdot 10^{-4}$	04.1970-04.2020			
$\beta - 1$	$(6.2 \pm 7.2) \cdot 10^{-5}$				
$\Delta \left(rac{m_g}{m_i} ight)_{EM}$	$(-0.6 \pm 2.1) \cdot 10^{-14}$	04.1970-03.2021	28093	Zhang et al. (2022)	
Δa_{EM}	$(2.3 \pm 4.1) \cdot 10^{-17} \text{ m. } s^{-2}$				
$\Delta \left(\frac{m_a}{m_p} \right)_{Al,Fe}$	$\pm 3.9 \cdot 10^{-14}$	04.1970-04.2022	30172	Singh et al. (2023)	

Jniversität

Differential Lunar Laser Ranging

Principle of Differential Lunar Laser Ranging (DLLR)

- ✓ one station two reflectors
- \checkmark short switching interval
- ✓ range difference
- ✓ expected accuracy ~30 µm
- ✓ atmospheric error, significantly reduced

iversität

Characteristics of Differential Lunar Laser Ranging

- LLR and DLLR data:
- ✓ same number (28093)
- ✓ same time span (04.1970-03.2021)
- \checkmark same observatories and reflectors
- ✓ same data distribution
- ✓ DLLR data accuracy increased 200 times compared to real LLR
- ✓ DLLR switching interval (1.5 min)

Parameter	LLR	DLLR			
$ heta_m$ [rad]	4.4×10^{-9}	1.4×10^{-11}	Estimation of		
ω_{mz0} [rad/s]	2.1×10^{-16}	0.6×10^{-18}	Iunar orientation,		
k u c [rad/d]	1.1×10^{-10}	0.8×10^{-12}	interior largely		
f_c	1.6×10^{-6}	0.6×10^{-8}	improved		
X_{m0} [km]	8.5×10^{-5}	2.3×10^{-5}			
Y_{m0}	3.0×10^{-5}	1.9×10^{-5}			
Z_{m0}	2.9×10^{-5}	1.1×10^{-5}			

- ✓ inclination between XY-plane of inertial frame and lunar mantle equator θ_m
- ✓ initial z-component of angular velocity of lunar mantle ω_{mz0}
- \checkmark friction coefficient between the core and mantle *kvc*
- ✓ oblateness of the lunar core f_c
- ✓ Initial position of lunar mass center (X_{m0} , Y_{m0} , Z_{m0})

LLR and DLLR Combination

Ratio of estimation accuracy of LLR as well as DLLR&LLR for parameters related to lunar orientation, rotation and interior

Case	Data timespan	Reflector/Reflector	Parameter accuracy ratio Acc_LLR/Acc_DLLR&LLR			
		Daseline (KB)	$ heta_m$	ω_{mz0}	kvc	f_c
LLR	04.1970-03.2021 (real LLR)+ 04.2021-03.2026 (simulated LLR)	A11, A14, A15, L1, L2				
LLR&DLLR	LLR+04.2021-03.2026 (simulated DLLR)	LLR: 5 reflectors DLLR: RBs from random combination of 5 reflectors	8.9	48.3	58.6	107.0

Only 5-year DLLR data added, parameter estimation related to lunar orientation, rotation and interior improved a lot, especially the oblateness of lunar core f_c improved by 107-fold

Conclusions and Outlook

✓ ERPs benefit greatly from improved LLR data, especially from IR NPs with high number of NPs per night and better distribution

✓ LLR can conduct many different relativity tests

- > Equivalence Principle of inertial and gravitational mass
- Equivalence Principle of active and passive gravitational mass
- Temporal variation of the gravitational constant
- > PPN parameters
- ✓ DLLR would significantly improve parameter estimation related to the lunar orientation, rotation and interior, if really achieving the expected high accuracy
- ✓ Combination of LLR and DLLR is more practical to benefit from the DLLR advantages when DLLR data time span is short
- ✓ Combination of LLR and DLLR for the investigations of ERPs and relativity tests_

15

References and Acknowledgements

Biskupek, L., Müller, J., & Torre, J. M. (2021). Benefit of new high-precision LLR data for the determination of relativistic parameters. Universe, 7(2), 34. https://doi.org/10.3390/universe7020034

Biskupek, L., Singh, V.V., Müller, J., Zhang, M. (2024). Potential of Lunar Laser Ranging for the Determination of Earth Orientation Parameters. In: Freymueller, J.T., Sánchez, L. (eds) Gravity, Positioning and Reference Frames. REFAG 2022. International Association of Geodesy Symposia, vol 156. Springer, Cham. https://doi.org/10.1007/1345_2024_238

Singh, V. V., Müller, J., Biskupek, L., Hackmann, E., & Lämmerzahl, C. (2023). Equivalence of Active and Passive Gravitational Mass Tested with Lunar Laser Ranging. Physical review letters, 131(2), 021401. https://doi.org/10.48550/ARXIV.2212.09407.

Zhang, M., Müller, J., Biskupek, L., & Singh, V. V. (2022). Characteristics of differential lunar laser ranging. Astronomy & Astrophysics, 659, A148. https://doi.org/10.1051/0004-6361/202142841

Zhang, M. (2023). Characteristics and Benefits of Differential Lunar Laser Ranging (Doctoral dissertation, Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover).

Zhang, M., Müller, J., & Biskupek, L. (2024). Advantages of combining Lunar Laser Ranging and Differential Lunar Laser Ranging. Astronomy & Astrophysics, 681, A5. https://doi.org/10.1051/0004-6361/202347643

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC 2123 QuantumFrontiers, Project-ID 390837967, by the SFB 1464 TerraQ – Project-ID 434617780 and by the Deutsches Zentrum für Luft- und Raumfahrt (DLR, German Aerospace Center), Institute for Satellite Geodesy and Inertial Sensing.

16

Thank you

Email: zhang@ife.uni-hannover.de

IWLR 2024 (Kunming, China) | 20-26 Oct. 2024