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Wissensbasierte Entwurfsmethodik zur Bereitstellung von Flugzeugrumpf-
Konstruktionsdetails für multidisziplinäre und fidelitätsvariable Analyse-
modellgenerierung 
TU Berlin 
 
In dieser Arbeit wird eine wissensbasierte Entwurfsmethodik (KBE, engl.: knowledge-based 
engineering) vorgestellt, welche einerseits zur Unterstützung der konsistenten disziplinären 
Modellgenerierung für multidisziplinäre Entwurfsanalyse- und -optimierungsanwendungen 
(MDAO, engl.: multidisciplinary design analysis and optimization) geeignet ist und andererseits 
die Möglichkeit zur Einbindung neuartiger Produktarchitekturen bietet. 
Auf dem Weg zu einer nachhaltigeren und CO2-neutralen Luftfahrt, ist die inkrementelle 
Verbesserung von hochoptimierten Luftfahrzeugkonfigurationen mit zunehmend hohem 
Entwicklungsaufwand verbunden. Die Einführung neuer Technologien wie 
Flüssigwasserstoffantrieben geht zudem mit unausweichlichen fundamentalen Änderungen der 
Produktarchitektur einher. 
Vor diesem Hintergrund ist der Einsatz rechnergestützter Entwurfs- und Analysemethoden 
unabdingbar, um zum einen schnellere und präzisere Entwurfszyklen zu ermögliche und zum 
anderen die frühe Bewertung unkonventioneller Flugzeugarchitekturen zu ermöglichen, die nicht 
durch empirische Entwurfsmethoden abgedeckt werden können. Zudem ist der Entwurf häufig 
durch multidisziplinäre Integrationseffekte getrieben, wodurch kollaborative MDAO-Kampagnen 
nötig werden, an denen eine Vielzahl von Experten und Entwurfsprogrammen beteiligt ist. Um 
die Kommunikation zu vereinfachen, werden häufig zentrale Datenmodelle wie CPACS 
(Common Parametric Aircraft Configuration Schema) zum Datenaustausch eingesetzt. 
Der Flugzeugrumpf ist von besonderem Interesse, da der Entwurf von vielen höchst 
unterschiedlichen Disziplinen, wie Struktur- und Kabinenentwurf, Industrialisierung oder Human 
Factors, beeinflusst wird. Um mit Hilfe von MDAO aussagekräftige Ergebnisse erzielen zu 
können, müssen all diese Aspekte berücksichtigt werden. Die große Breite eingesetzter 
Entwurfs- und Analysemethoden und die stark unterschiedlichen Anforderungen, welche 
Produktdetails bekannt sein müssen, stehen einer Integration detaillierter und umfassender 
Rumpfanalysen derzeit allerdings im Weg. 
Um dieser Problematik entgegenzutreten, werden mit der in dieser Arbeit präsentierten KBE-
Methodik Multi-Modellgenerierungsfähigkeiten entwickelt, die es ermöglichen konsistente 
Analysemodelle in unterschiedlichsten Detaillierungsgraden bereitzustellen. Aufbauend auf 
CPACS als zentralem Datenmodell verbindet der Ansatz Parameter und ausführbare Regeln, die 
in deklarativer Form zur Verfügung gestellt werden, zu einem Wissensgraphen. Eine 
graphenbasierte Formulierung bietet zahlreiche Vorteile, z.B. die Möglichkeit Abhängigkeiten 
zwischen Parametern nachzuverfolgen oder neues Wissen modular einzubinden. Zudem wird 
der Programmablauf dynamisch zur Laufzeit auf Basis von Nutzerabfragen bestimmt. Regeln 
werden demnach nicht ausgeführt, bis sie zur Bearbeitung einer Nutzerabfrage benötigt werden, 
wodurch die unnötige Ausführung rechenintensiver Regeln vermieden wird. 
Das System enthält sowohl Geometriemodellierungs- als auch Entwurfsregeln. Es wird eine 
parametrische Modellierungsengine für CPACS vorgestellt, die detaillierte Regeln für die 
Geometriegenerierung von Rumpfstruktur und Kabine bereithält. Die Entwurfsregeln ermöglichen 
die Erstellung komplexer Layouts auf Basis einiger weniger Entwurfsvariablen. Dies erlaubt es, 
Datensätze, beispielsweise aus dem Flugzeuggesamtentwurf, die nicht alle zur Modellerstellung 
notwendigen Details beinhalten, mit entsprechenden Daten anzureichern. Im Zusammenspiel 
erlauben die Regeln somit die flexible Erstellung von Geometrien, die exakt den 
Genauigkeitsanforderungen unterschiedlicher Analysemodelltypen angepasst sind. 
Des Weiteren sind zwei Beispiele für Systemmodifikationen gegeben, welche der Integration 
neuer Produktarchitekturen dienen sollen: Eine Modifikation ist einer Nurflüglerkonfiguration 
gewidmet, während die zweite der Integration großer kryogener Tanks im Rumpf dient. 
Die Vielseitigkeit des KBE-Ansatzes wird mit Hilfe einiger Anwendungsstudien aufgezeigt. 



Zunächst werden zwei konventionelle Konfigurationen betrachtet, eine Single-Aisle-
Konfiguration und eine Twin-Aisle-Konfiguration mit zwei Decks. Beide Studien werden mit dem 
konventionellen Basisregelsatz durchgeführt. Anschließend werden Studien für eine 
unkonventionelle Nurflüglerkonfiguration, sowie eine Wasserstofftankintegration vorgestellt, in 
denen die jeweiligen Systemmodifikationen zum Einsatz kommen. Zum Abschluss wird die 
Fähigkeit des Systems demonstriert, Analysemodelle bereitzustellen, die dem Stand der Technik 
entsprechen. Dazu werden für die Single-Aisle-Konfiguration ein globales Finite-Elemente-
Modell und ein Modell zur interaktiven Kabinenvisualisierung für Human-Factors-Analysen 
erstellt. 
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In this work, a knowledge-based engineering (KBE) methodology is introduced, which is capable 
of supporting the generation of consistent disciplinary analysis models of the aircraft fuselage for 
multidisciplinary design analysis and optimization (MDAO) applications on the one hand, and 
open to novel architectures on the other. 
On the path towards more sustainable and carbon neutral aviation, increasing efforts are 
necessary to achieve incremental product improvements for a highly optimized aircraft 
configuration. Meanwhile the introduction of new technologies, such as liquid hydrogen (LH2), 
inevitably entails fundamental changes to the overall aircraft architecture. 
Against this backdrop, advanced computational design and analysis methods are indispensable 
to enable faster, more accurate design cycles on the one hand, and to allow for the early 
assessment of unconventional aircraft architectures beyond the scope of empirical design 
methods on the other. In addition, the design is often driven by multidisciplinary integration 
effects, resulting in a need for collaborative MDAO campaigns involving a multitude of experts 
and computational design tools. To facilitate communication, central data models such as the 
Common Parametric Aircraft Configuration Schema (CPACS) are often used for design data 
exchange. 
The aircraft fuselage is of particular interest, since its design is impacted by many diverse 
disciplines, including structural and cabin design, industrialization, and human factors. In MDAO, 
all of these aspects need to be accounted for to achieve meaningful results. Yet, the large variety 
of analysis and design methods and the vastly different requirements in terms of available product 
details currently pose an obstruction to the integration of detailed fuselage assessment. 
To address this issue, the KBE methodology presented in this work provides multi-model 
generation capabilities to enable consistent analysis model generation at very different levels of 
fidelity. Built upon CPACS as central data model, the approach combines sets of parameters and 
executable rules, formulated in a declarative manner to assemble a knowledge graph. The graph-
based formulation provides a number of benefits, e.g. the possibility to trace dependencies 
between parameters or incorporate new knowledge in a modular fashion. Furthermore, the 
program flow is determined dynamically at run time, based on user requests. Consequently, rules 
are not executed until they are needed to fulfill a user request, thus avoiding the unnecessary 
performance of computationally expensive tasks. 
Both geometry modeling and design rules are included in the system. A parametric modeling 
engine for the fuselage based on CPACS is presented, which includes detailed modeling 
capabilities for the structure and the cabin. The design rules enable the generation of complex 
layouts based on a small set of design variables. This makes it possible to enrich data sets, e.g. 
from overall aircraft design, which lack necessary details for the model generation. In 
combination, the rules enable the flexible generation of geometry models to match the fidelity 
requirements of different types of analysis models. 
Two examples of system modifications to accommodate novel architectures are furthermore 
given, one for a blended wing-body configuration and another for the integration of large 
cryogenic tanks in the fuselage. 
Several application studies are presented to highlight the versatility of the KBE approach. First, 
two conventional configurations are considered, one single-aisle and one twin-aisle and twin-
deck. Both studies are performed using the basic conventional fuselage design rules. Next, 
studies for the unconventional blended wing-body and LH2 tank integration problems are shown, 
applying the respective system modifications. Finally, the capacity to provide state of the art 
analysis models is demonstrated by deriving models for global finite element analysis and 



interactive visualization for human factors evaluation for the single-aisle configuration. 
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Abstract

In this work, a knowledge-based engineering (KBE) methodology is introduced, which is capable
of supporting the generation of consistent disciplinary analysis models of the aircraft fuselage for
multidisciplinary design analysis and optimization (MDAO) applications on the one hand, and open
to novel architectures on the other.

On the path towards more sustainable and carbon neutral aviation, increasing efforts are necessary
to achieve incremental product improvements for a highly optimized aircraft configuration. Meanwhile
the introduction of new technologies, such as liquid hydrogen (LH2), inevitably entails fundamental
changes to the overall aircraft architecture.

Against this backdrop, advanced computational design and analysis methods are indispensable to
enable faster, more accurate design cycles on the one hand, and to allow for the early assessment of
unconventional aircraft architectures beyond the scope of empirical design methods on the other. In
addition, the design is often driven by multidisciplinary integration effects, resulting in a need for
collaborative MDAO campaigns involving a multitude of experts and computational design tools. To
facilitate communication, central data models such as the Common Parametric Aircraft Configuration
Schema (CPACS) are often used for design data exchange.

The aircraft fuselage is of particular interest, since its design is impacted by many diverse disciplines,
including structural and cabin design, industrialization, and human factors. In MDAO, all of these
aspects need to be accounted for to achieve meaningful results. Yet, the large variety of analysis and
design methods and the vastly different requirements in terms of available product details currently
pose an obstruction to the integration of detailed fuselage assessment.

To address this issue, the KBE methodology presented in this work provides multi-model generation
capabilities to enable consistent analysis model generation at very different levels of fidelity. Built upon
CPACS as central data model, the approach combines sets of parameters and executable rules, formu-
lated in a declarative manner to assemble a knowledge graph. The graph-based formulation provides
a number of benefits, e.g. the possibility to trace dependencies between parameters or incorporate new
knowledge in a modular fashion. Furthermore, the program flow is determined dynamically at run
time, based on user requests. Consequently, rules are not executed until they are needed to fulfill a
user request, thus avoiding the unnecessary performance of computationally expensive tasks.

Both geometry modeling and design rules are included in the system. A parametric modeling engine
for the fuselage based on CPACS is presented, which includes detailed modeling capabilities for the
structure and the cabin. The design rules enable the generation of complex layouts based on a small
set of design variables. This makes it possible to enrich data sets, e.g. from overall aircraft design,
which lack necessary details for the model generation. In combination, the rules enable the flexible
generation of geometry models to match the fidelity requirements of different types of analysis models.

Two examples of system modifications to accommodate novel architectures are furthermore given,
one for a blended wing-body configuration and another for the integration of large cryogenic tanks in
the fuselage.

Several application studies are presented to highlight the versatility of the KBE approach. First,
two conventional configurations are considered, one single-aisle and one twin-aisle and twin-deck.
Both studies are performed using the basic conventional fuselage design rules. Next, studies for
the unconventional blended wing-body and LH2 tank integration problems are shown, applying the
respective system modifications. Finally, the capacity to provide state of the art analysis models is
demonstrated by deriving models for global finite element analysis and interactive visualization for
human factors evaluation for the single-aisle configuration.

V





Kurzfassung

In dieser Arbeit wird eine wissensbasierte Entwurfsmethodik (KBE, engl.: knowledge-based enginee-
ring) vorgestellt, welche einerseits zur Unterstützung der konsistenten disziplinären Modellgenerierung
für multidisziplinäre Entwurfsanalyse- und -optimierungsanwendungen (MDAO, engl.: multidiscipli-
nary design analysis and optimization) geeignet ist und andererseits die Möglichkeit zur Einbindung
neuartiger Produktarchitekturen bietet.

Auf dem Weg zu einer nachhaltigeren und CO2-neutralen Luftfahrt, ist die inkrementelle Verbesse-
rung von hochoptimierten Luftfahrzeugkonfigurationen mit zunehmend hohem Entwicklungsaufwand
verbunden. Die Einführung neuer Technologien wie Flüssigwasserstoffantrieben geht zudem mit un-
ausweichlichen fundamentalen Änderungen der Produktarchitektur einher.

Vor diesem Hintergrund ist der Einsatz rechnergestützter Entwurfs- und Analysemethoden unab-
dingbar, um zum einen schnellere und präzisere Entwurfszyklen zu ermögliche und zum anderen die
frühe Bewertung unkonventioneller Flugzeugarchitekturen zu ermöglichen, die nicht durch empirische
Entwurfsmethoden abgedeckt werden können. Zudem ist der Entwurf häufig durch multidisziplinäre
Integrationseffekte getrieben, wodurch kollaborative MDAO-Kampagnen nötig werden, an denen eine
Vielzahl von Experten und Entwurfsprogrammen beteiligt ist. Um die Kommunikation zu vereinfa-
chen, werden häufig zentrale Datenmodelle wie CPACS (Common Parametric Aircraft Configuration
Schema) zum Datenaustausch eingesetzt.

Der Flugzeugrumpf ist von besonderem Interesse, da der Entwurf von vielen höchst unterschiedlichen
Disziplinen, wie Struktur- und Kabinenentwurf, Industrialisierung oder Human Factors, beeinflusst
wird. Um mit Hilfe von MDAO aussagekräftige Ergebnisse erzielen zu können, müssen all diese Aspekte
berücksichtigt werden. Die große Breite eingesetzter Entwurfs- und Analysemethoden und die stark
unterschiedlichen Anforderungen, welche Produktdetails bekannt sein müssen, stehen einer Integration
detaillierter und umfassender Rumpfanalysen derzeit allerdings im Weg.

Um dieser Problematik entgegenzutreten, werden mit der in dieser Arbeit präsentierten KBE-
Methodik Multi-Modellgenerierungsfähigkeiten entwickelt, die es ermöglichen konsistente Analysemo-
delle in unterschiedlichsten Detaillierungsgraden bereitzustellen. Aufbauend auf CPACS als zentralem
Datenmodell verbindet der Ansatz Parameter und ausführbare Regeln, die in deklarativer Form zur
Verfügung gestellt werden, zu einem Wissensgraphen. Eine graphenbasierte Formulierung bietet zahl-
reiche Vorteile, z.B. die Möglichkeit Abhängigkeiten zwischen Parametern nachzuverfolgen oder neues
Wissen modular einzubinden. Zudem wird der Programmablauf dynamisch zur Laufzeit auf Basis von
Nutzerabfragen bestimmt. Regeln werden demnach nicht ausgeführt, bis sie zur Bearbeitung einer
Nutzerabfrage benötigt werden, wodurch die unnötige Ausführung rechenintensiver Regeln vermieden
wird.

Das System enthält sowohl Geometriemodellierungs- als auch Entwurfsregeln. Es wird eine para-
metrische Modellierungsengine für CPACS vorgestellt, die detaillierte Regeln für die Geometriege-
nerierung von Rumpfstruktur und Kabine bereithält. Die Entwurfsregeln ermöglichen die Erstellung
komplexer Layouts auf Basis einiger weniger Entwurfsvariablen. Dies erlaubt es, Datensätze, bei-
spielsweise aus dem Flugzeuggesamtentwurf, die nicht alle zur Modellerstellung notwendigen Details
beinhalten, mit entsprechenden Daten anzureichern. Im Zusammenspiel erlauben die Regeln somit
die flexible Erstellung von Geometrien, die exakt den Genauigkeitsanforderungen unterschiedlicher
Analysemodelltypen angepasst sind.

Des Weiteren sind zwei Beispiele für Systemmodifikationen gegeben, welche der Integration neuer
Produktarchitekturen dienen sollen: Eine Modifikation ist einer Nurflüglerkonfiguration gewidmet,
während die zweite der Integration großer kryogener Tanks im Rumpf dient.

Die Vielseitigkeit des KBE-Ansatzes wird mit Hilfe einiger Anwendungsstudien aufgezeigt. Zunächst
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Kurzfassung

werden zwei konventionelle Konfigurationen betrachtet, eine Single-Aisle-Konfiguration und eine Twin-
Aisle-Konfiguration mit zwei Decks. Beide Studien werden mit dem konventionellen Basisregelsatz
durchgeführt. Anschließend werden Studien für eine unkonventionelle Nurflüglerkonfiguration, sowie
eine Wasserstofftankintegration vorgestellt, in denen die jeweiligen Systemmodifikationen zum Einsatz
kommen. Zum Abschluss wird die Fähigkeit des Systems demonstriert, Analysemodelle bereitzustellen,
die dem Stand der Technik entsprechen. Dazu werden für die Single-Aisle-Konfiguration ein globales
Finite-Elemente-Modell und ein Modell zur interaktiven Kabinenvisualisierung für Human-Factors-
Analysen erstellt.
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1. Introduction

Decarbonization and digital transformation are two of the most preeminent topics in the aviation
community today. To meet the goals of the Paris Agreement on climate change [UNF15], which
calls for a limitation of the global temperature increase to 1.5◦C compared to pre-industrial levels,
ambitious emission goals have been formulated for the aviation sector e.g. in the road map to net zero
carbon dioxide emissions until 2050 by the Air Transport Action Group [ATA21]. Similar goals have
been expressed by different organizations on German national and European [CF20; DLR21a] level in
reference to the European Green Deal [EC19], which targets being the first continent to achieve net
zero emissions by 2050.

These goals for aviation can be achieved only by combining gains through sustainable aviation fuels
(SAFs), operations, market-based measures and technology improvements. Whereas improvements
in the first three fields can be implemented almost immediately and require virtually no changes
to the existing fleet, improvements in technology demand more lead time for product development.
Nevertheless, the potential emission savings due to new technologies may amount to up to 34% of the
total projected carbon dioxide emissions by 2050 [ATA21]. This forecast is based on the assumption
that new, unconventional propulsion technologies such as electric or hydrogen will be brought to the
market by 2040. Introducing these novel technologies has the advantage that, differently from SAFs,
direct emissions of CO2 and other greenhouse gases such as NOx are reduced. On aircraft scale, the
technological changes introduce fundamentally new requirements, such as the need for cryogenic fuel
storage, resulting in new and unfamiliar architectural solutions.

Towards this goal, digital transformation holds the promise of integrating all available competences
in an organization to form a digital continuity, also referred to as the “digital thread”, to reduce cost and
time to market. Programs to foster digital transformation are found both at major original equipment
manufacturers (OEMs) [Air23] and in research organizations, such as the German Aerospace Center
(DLR) [DLR21a].

Due to the novelty of the product architecture, virtual testing using numerical methods is indispens-
able to assure the safety and performance of new developments and thus manage the entrepreneurial
risks for the manufacturer. While the aerospace industry has been among the very early adopters of
computational methods for product development, driving the development of state-of-the-art technol-
ogy, such as computer-aided design (CAD) and the finite-element method (FEM), the forthcoming
challenges require digital transformation beyond simply using computers for isolated analyses. Instead,
the multidisciplinary nature of the aircraft development process, where the influence of integration
effects between multiple disciplines can often eliminate the impact of improvements in individual
disciplines, must be reflected in interdisciplinary and collaborative digital processes.

The field of multidisciplinary design analysis and optimization (MDAO) aims to couple different
types of numerical analyses to better assess these effects. Often, automated collaborative processes are
deployed, where information is exchanged among experts using a common central data model, such
as the Common Parametric Aircraft Configuration Schema (CPACS). However, whereas the coupling
of a few disciplines, predominantly aerodynamic and structural analysis, is well-represented in the
literature, the ambition of a digital end-to-end continuity associated with digital transformation is
yet to be realized. On the one hand, a link to take into account stakeholder requirements should
be established leveraging model-based systems engineering (MBSE) techniques in order to correctly
formulate the design problem. On the other hand, more types of disciplinary analysis must be made
available to the MDAO process for a more complete evaluation of the design, which is often driven by
aspects outside the classical aero-structural domain.

With respect to the latter aspect, the aircraft fuselage is a particularly interesting example. Its
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1. Introduction

design is driven not only by performance considerations, such as a lightweight structure to reduce
emissions, but also by passenger needs and safety requirements, which drive the design of the cabin
in particular. At the same time, OEMs need to be able to manufacture and sell the aircraft at a
profit, which means requirements pertaining to manufacturing and industrialization are increasingly
important. Most hydrogen aircraft concepts found in the literature furthermore assume a tank, which
is installed in the fuselage.

The diverse requirements of the analysis models w.r.t. the level of fidelity of the underlying geometric
representation of the product pose a particular challenge. They can not usually be fulfilled using the
established approach of a central CAD-based digital mock-up (DMU), requiring either manual addition
or removal of geometric features.

As an alternative to a central DMU, multi-model generators (MMGs) based on a central parametric
description, such as CPACS, and a knowledge-based engineering (KBE) framework, where process
knowledge is formalized as a set of rules, have been proposed. However, few works have examined the
specific requirements of the fuselage in a multidisciplinary setting. Furthermore, the knowledge base
in the tools is typically difficult to adapt to support fundamentally different architectural solutions.
This type of capability is, however, critical in order to enable effective assessment of the novel types
of aircraft needed to meet the decarbonization goals.

To examine these issues, this thesis is structured as follows:

Chapter 2 The state of the art for digital systems for aircraft design is discussed, covering the range
from handbook methods to sophisticated MDAO systems. Special attention is given to the field of
fuselage and cabin design. A closer look is taken at the steps necessary for integrating high-fidelity
fuselage analysis into predominantly aeroelasticity-driven MDAO processes and possible roadblocks
are identified.

Chapter 3 A research hypothesis is derived based on the findings of the previous chapter. It is then
broken down into four working hypotheses, which provide guidance for the subsequent discussion.

Chapter 4 Enabling technologies for successful deployment of large-scale fuselage and cabin MDAO
are discussed, such as standardized geometry- or data-centric common models of aircraft and auto-
mated design and analysis capabilities for multiple disciplines and at multiple levels of fidelity. Finally,
knowledge-based engineering techniques are introduced as a means of augmenting design details and
handling diverging geometry requirements from different disciplines.

Chapter 5 A KBE methodology for providing suitable geometry models of the aircraft fuselage
and cabin, which are tailored to the specific level of fidelity required for analysis model generation,
is proposed based on the data-centric CPACS aircraft data schema. The underlying knowledge-
based system (KBS) implementation is explored, which accepts data provided via CPACS and links
it through various sets of rules using graph-based reasoning. In this way, a graph-based parameter
engine for CPACS is implemented. Furthermore, a modular approach to rule set definition is proposed,
which enables the quick implementation of additional rule sets to adapt the KBS to new aircraft system
architectures.

Chapter 6 In this chapter, the design rules applied to generate aircraft fuselages and cabins are
presented. The structure of the chapter mirrors that of the corresponding rule sets, i.e. the outer
shape of the fuselage, the structure and the cabin. A dedicated section to discuss the management of
geometric fidelity levels is also provided. Finally, new rule sets - one for the integration of a simplified
parametric model of an liquid hydrogen (LH2) storage tank and one for the determination of the cabin
space of a blended wing-body configuration - are introduced as examples for architecture modification.
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Chapter 7 The applicability of the approach to actual design studies is investigated in this chapter
using a total of six example cases. First, the capabilities for augmenting design details are shown
in a cabin design synthesis of a single-aisle narrow-body configuration for an empty outer mold line.
To illustrate the support for large parameter spaces, the study is repeated for a twin-aisle wide-body
configuration and a multi-deck layout.

Next, the capabilities for adapting the system to novel architectures are shown by performing a
design of a fuselage with an integrated LH2 storage tank and a blended wing-body (BWB) cabin
layout, leveraging the corresponding new rule sets.

Finally, the capability to derive consistent analysis models at different levels of fidelity is demon-
strated. On the one hand, a geometry model is generated based on the requirements for fuselage
structure sizing using a global finite-element model (GFEM), to demonstrate support for lower levels
of fidelity. On the other hand, a detailed model for immersive visualization is generated, which covers
the high-fidelity end of the spectrum of analysis models.

Chapter 8 The key findings of this thesis are collected and summarized. Based on those insights,
suggestions for further research trajectories are provided.
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2. Background: Digital systems for aircraft and
fuselage design

Over the years, the way in which aircraft are being designed and developed has evolved, embrac-
ing technological advances in other fields and adjusting to market needs. While advances e.g. in
materials science and engine concepts have enabled improvements at product level, the continuous
increase in computing power has furthermore had a significant impact on the development process.
Computer-aided design (CAD) software for virtual product modeling and numerical analysis tools are
commonplace in industrial environments today.

Comprehensive and continuous digitization holds the promise of a highly integrated and flexible
enterprise process, commonly referred to as a digital thread [SP+17; SW18], which can take full
advantage of these technologies. However, current development processes, which are discussed in
detail in section 2.1, are still rather strictly separated into multiple design phases, which are traversed
sequentially, and disciplinary silos, which inhibit exchange of information.

Furthermore, incremental, evolutionary developments are currently the norm. That said, many
authors including Mavris, Tenorio, and Armstrong [MTA08] and Ciampa and Nagel [CN21] stress the
need to evaluate a large variety of aircraft system architectures early in the design process to properly
assess the true potential of emerging technologies.

By stepping from evolutionary to revolutionary developments – a consequence of considering novel
aircraft system architectures – many established evolutionary aircraft design procedures are invali-
dated. In the past, empirical methods built upon knowledge of previous programs have served to
understand the complex underlying interdisciplinary relationships in aircraft design. Yet, the further
removed a given architecture is from the empirical knowledge base, the more it becomes necessary to
turn towards numerical analyses based on physics and detailed knowledge of the product, to develop
an understanding of the aircraft configuration. The challenge of connecting the various design disci-
plines in a meaningful and efficient way has led to the field of multidisciplinary design analysis and
optimization (MDAO) [Sob95], which is discussed in section 2.2. Distributed, collaborative processes,
where dedicated analysis and design capabilities are contributed by disciplinary experts, have become
a viable solution to manage the complexity of modern MDAO processes [Kro04; MD+16; CN20].

2.1. Fuselage and cabin in the aircraft design process

Aircraft are highly complex products. Accordingly, aircraft design is a complex process. Over time,
a number of texts have appeared, e.g. by Torenbeek [Tor76], Raymer [Ray89], and Roskam [Ros97],
proposing a structured methodological design approach in order to manage this complexity. Despite
their age and reliance on empirical data, many of them are still considered standard literature in
aircraft design. All methodologies mentioned share the common trait that the aircraft design process
is broken down into three phases.

Conceptual design phase During this phase, fundamental decisions about the aircraft architecture
are made, based on mission and efficiency requirements. According to La Rocca [LaR11], approxi-
mately 1% of the engineering staff are involved, over a duration of weeks to months. This phase is
concerned with covering the breadth of the design space to find the most promising architecture for a
given transportation task, which is formulated in the top-level aircraft requirements (TLAR). Aside
from the cruise mach number and constraints related to airport operations, such as take-off field length
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2. Background: Digital systems for aircraft and fuselage design

or wing span limit, the number of passengers and the design range are elementary components of the
TLAR for civil passenger aircraft.

The range R for steady flight at climb cruise conditions, i.e. at constant angle of attack α, velocity
vAC and specific fuel consumption c, after Bréguet (s. e.g. [Tor76; Cav06]) given by

R =
vAC

c

L

D
ln

(︃
Wi

Wi −Wf

)︃
(2.1.1)

provides a good example for a very simple mission performance evaluation. It illustrates how the range
can be influenced by aerodynamic efficiency L

D , the structural mass Wi and fuel mass Wf , aside from
the aforementioned velocity. Even though the design missions of real-life aircraft programs are usually
more complex, it remains a fundamental task during the conceptual design to determine estimates of
these product properties. The estimates should be sufficiently accurate to perform meaningful trade
studies for different architectures and to properly assess the benefit of new technologies.

Preliminary design phase In this phase, the configuration is frozen, and more detailed analysis is
performed. To this end, key product details, such as the lofting must be specified. The goal is to
provide an accurate cost estimate before proceeding to the next phase. Around 9% of the engineering
staff are involved in this phase, which lasts in the order of months to years [LaR11].

Detail design phase All the details and components necessary to assemble the physical aircraft
must be designed, including brackets, riveting, wiring etc. Furthermore, the manufacturing process
and necessary tooling are traditionally mainly developed in this phase. It also includes large structural
tests required e.g. for certification. La Rocca [LaR11] states that 90% of the engineering staff will be
working on this phase for several years.

The design phases are bookended by a market survey or customer request on the one hand, which
results in the postulation of the TLAR for a new design, and the manufacturing and operation phase
of the finished product on the other. More recently, the decommissioning of the product has become
an additional important aspect to consider, which enables the assessment of the complete product
life-cycle [JS14; EWP18].

In figure 2.1.1, the development of available product knowledge and committed cost over the design
phases is shown. It highlights the importance of the early design phases. Even though the duration
and cost of these phases is relatively small compared to detail design, the decisions taken in the
early phases based on very little knowledge largely determine the design and hence both the cost
and ultimately the success of the entire aircraft program. As stated e.g. by Mavris and DeLaurentis
[MD00] and Ciampa and Nagel [CN17], the earlier detailed product knowledge is made available in the
design process, the more design freedom is given to the engineers, since adverse effects and potential
risks can be identified early. In return, the true committed cost is very likely lower, since fundamental
errors requiring expensive redesigns are less probable.

According to e.g. La Rocca [LaR11] and Air Transport Action Group [ATA21], conventional configu-
rations have currently reached a phase of saturation, where evolutionary improvements, while requiring
substantial development efforts, have increasingly minor effects. Instead revolutionary changes are re-
quired, to address growing environmental concerns in society and achieve the ambitious international
decarbonization goals outlined in chapter 1. Emission penalization schemes as well as the volatile en-
ergy market, furthermore provide economic incentives. Strengthening the role of preliminary design by
increasing the breadth and depth of the product knowledge made available during this phase becomes
imperative, not only to provide a technically sound product, but also to manage the entrepreneurial
risk for original equipment manufacturers (OEMs) due to uncertainties associated with revolutionary
changes.

In the following, first a look is taken at existing aircraft design frameworks in section 2.1.1, which are
then inspected in more detail w.r.t. their integration of details of the cabin and fuselage in section 2.1.2.
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Figure 2.1.1.: Current and future relationship between available knowledge, design freedom and com-
mitted cost over the design process phases (after [MD00])

Unconventional aircraft system architectures and the corresponding new challenges for conventional
aircraft design frameworks are explored in section 2.1.3. High-level approaches for digital processes
capable of handling these challenges are discussed in section 2.1.4.

2.1.1. Review of computational aircraft design frameworks

The formalized methodology provided in literature on the one hand, and the need for exploration of
large design spaces and thus for fast computation on the other, have resulted in the development of a
large number of computational aircraft design frameworks. Table 2.1.1 provides a non-exhaustive list
of frameworks developed over several decades, which are explained in the following.

Early codes, such as FLOPS (Flight Optimization System) and PASS (Program for Aircraft Syn-
thesis) were developed in the United States by the National Aeronautics and Space Administration
(NASA). PrADO (Preliminary Aircraft Design and Optimization program) is among the earliest tools
published in Europe and pays heed to the multidisciplinary nature of the design process by splitting
it into separate design functions. The functions are then passed through sequentially. Consistency
is asserted by comparing the design results to the initial assumptions in an iterative loop. Later im-
plementations, such as PADLab (Preliminary Aircraft Design Lab), openAD (open Aircraft Design),
MICADO (Multidisciplinary Integrated Conceptual Aircraft Design and Optimization environment)
or PreSTo (Aircraft Preliminary Sizing Tool) follow a similar philosophy.

The design functions are based on regressions on empirical data of existing aircraft. Whereas this
method is mature for conventional configurations and leads to very good results, its use is limited
for configurations, which are too far removed from the knowledge base. This led to efforts to add
physics-based analysis capabilities to the existing tools e.g. by Österheld [Öst03], who added numer-
ical structural analysis to PrADO. This approach is taken further in the CEASIOM (Computerized
Environment for Aircraft Synthesis and Integrated Optimization Methods) design system, where sev-
eral dedicated disciplinary analysis tools are orchestrated via a central graphical user interface (GUI)
for overall aircraft design (OAD). A comparable solution is SUAVE (Stanford University Aerospace
Vehicle Environment), which is, however controlled via a Python script instead of a GUI. Initiator
is the conceptual design part of the Design and Engineering Engine (DEE) developed by TU Delft,
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Table 2.1.1.: List of aircraft design frameworks
Name Institution Publication
AAA DARCORP [Ros97; Ros18]

CAPS/pyCAPS MIT [AD+16; DR19]
CEASIOM KTH Stockholm [BRI08; RZ+12]
FAST-OAD ONERA [Sch18; DD+21]

FLOPS NASA [McC84]
Initiator/DEE TU Delft [LLB12; EVL14]

MICADO/UNICADO RWTH Aachen [RA+12; Ris16; ASS21; SA+21]
openAD (formerly VAMPzero) DLR [Böh15; WA+20; MZM21]

OpenVSP NASA [GDG96; Hah10; MG22]
Pacelab ACE PACE [SE07]

PADLab TU Berlin [Gob15; TUB17]
PASS NASA [Joh77]

PrADO TU Braunschweig [Poh86; Hei94]
RAPID Linköping University [SM+12; MS+15; Mun17]
RDSwin NASA [Ray16]

SAS/PreSTo/OPerA HAW Hamburg [SS10; ASS11; Hei12; Nit13]
SUAVE Stanford University [LW+15; BW+16; MC+17]

TASOPT MIT [Dre10]
VisualCAPDA TU Berlin [SH+96]

which also provides a multi-model generator (MMG) to automatically derive consistent disciplinary
analysis models. The models are analyzed to evaluate the flight performance. The overall process can
be controlled by an optimization.

Tools like CAPS (Computational Aircraft Prototype Syntheses) and OpenVSP (Open Vehicle Sketch-
pad) deserve a special mention, due to their strong focus on the geometry of the outer mold line (OML).
This makes them significantly more versatile than the aforementioned tools, as evidenced by several
studies on general aviation configurations [AD+16; MG22]. Notably, SUAVE also provides an inter-
face to OpenVSP. That said, the amount of detail, when it comes to the structure or payload is limited
in these tools, even though CAPS offers some support for structural model generation [JG+19].

Expanding upon the approach used in PrADO and CEASIOM, some recent conceptual design tools
like openAD have been designed specifically to provide a preliminary design synthesis, which serves
as an input to subsequent analyses at higher levels of fidelity performed using separate tools resulting
in modular, possibly distributed design systems. To communicate the design data, it is stored in a
common data exchange model (e.g. CPACS, s. section 4.1.2). In this way, the preliminary design
process development can be decoupled from the physics-based analysis tools, to a certain extent. The
merits and limitations of this approach are discussed further in section 2.2.4.

Recent versions of Initiator or MICADO also offer support for common data exchange models by
providing interfaces to export the designs, which are generated from the TLAR, to CPACS data sets.
This enables the tools to fulfill a role comparable to openAD. For CEASIOM, on the other hand,
CPACS has even been adopted for internal data storage and transfer between individual design com-
ponents. UNICADO (UNIversity Conceptual Aircraft Design and Optimization) is another notable
project to adopt CPACS for data exchange. The aim of UNICADO is to cluster the conceptual aircraft
design capabilities of several German universities based on lessons learned during the development of
tools like PrADO, PADLab or MICADO [SS21].
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2.1.2. Integration of fuselage and cabin in preliminary design environments

As stated previously, the number of passengers is among the key information given by the TLAR.
In a conventional passenger aircraft configuration, the primary purpose of the fuselage is to provide
the space for the payload, i.e. the passengers, while producing as little drag and using as little struc-
tural mass as possible. This makes it a crucial component of the aircraft even in conceptual design.
Therefore, the aircraft design frameworks presented in table 2.1.1 are examined closer w.r.t. the level
of detail of the fuselage and cabin modeling in this section.

Fidelity level and parametric description of the fuselage geometry The drag contribution of the
fuselage is dictated by the OML. As such, a parametric description of the OML is an integral part of
any aircraft design tool. Rough drag assessment is possible using very basic parametric descriptions.
For instance, Roskam [Ros02] proposes a very reduced description, where the fuselage is considered as a
cylinder with a diameter df and a length lf . The parameters can be used to compute a fuselage fineness
or slenderness ratio λf =

lf
df

, which can be related to an estimate of the fuselage drag coefficient cDB
.

For more detailed analysis, Roskam proposes splitting the fuselage into a spherical cockpit section
(also referred to as forward section), a cylindrical mid-section and a conic aft section. This subdivision
is the basis to many preliminary fuselage design tools for conventional aircraft [Met08; God08; Şen10;
NS10] and is also introduced in texts on structural design e.g. by Niu [Niu88]. Differences arise in
the parametrization of the various sections, most importantly the cross-section of the middle section.
Aside from a circular cross-section, elliptic or double bubble shapes are often implemented. A rather
complete collection of the cross-section types that occur in aviation is provided by OpenVSP [MG22].
In addition to the aforementioned section types point, super-ellipse, rounded rectangle, CST (Class-
function/shape-function transformation, s. section 4.1.1.1) and general fuselage (free form) cross-
sections are available.

The importance of the cross-section to the overall design is documented e.g. by Metzger [Met08] and
Fuchte [Fuc14], who show the effects of the choice of cross-section in conjunction with the cabin seating
layout on the direct operating cost of the aircraft. Other authors, such as Şen [Şen10] investigate the
effect of the cross-section on the structural loads and therefore mass.

PreSTo [ASS11] and PADLab [TUB17] can provide detailed fuselage shapes, which also include
the cockpit and tail sections. However, these sections are not fully parametric, instead relying on
predefined geometry, which is scaled to fit the design.

A different approach is chosen in CPACS, which is the basis for tools like openAD and CEASIOM.
Here, the fuselage is described using a sequence of sections distributed along the length of the fuselage,
which gives additional freedom in the description of the non-cylindrical sections. Sections can be
defined either by a point list, or using a rectangle, superellipse or CST parametrization to separately
describe the upper and lower half. Circles and ellipses are also supported, being special cases of
superellipses. In the simplest case, the fuselage surface is built by linear interpolation between the
sections. This has the disadvantage that the resulting fuselage surfaces are not smooth, but contain
discontinuities at the profile curves. Therefore, optional guide curves can be specified to control the
transition between adjacent segments at a section.

A comparable approach is implemented in ParaFuse by Jonge [Jon17], which provides a detailed
parametrization of the cockpit and tail sections using a combination of cross-sectional profile curves
and guide curves at the top, the bottom and side of the fuselage as shown in figure 2.1.2. The
implementation is based on the commercial KBE software ParaPy [DB23].

A very similar method based on the commercial CAD program CATIA (s. section 4.1.1.4) is im-
plemented in RAPID (Robust Aircraft Parametric Interactive Design) as described by Staack et al.
[SM+12]. The OML is described using three guide curves, which span the entire fuselage length. For
the interpolation between the cubic Bézier curves (s. section 4.1.1) are applied, which can be modified
freely to model a large variety of fuselage shapes.

In CAPS [AD+16], a more general solution based on CAD feature trees (s. section 4.1.1.3) is chosen.
It is built using the Engineering Sketch Pad (ESP) [HD13], a custom CAD environment based on a
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Figure 2.1.2.: Fuselage definition in ParaFuse (from [Jon17])

modified version of the Open CASCADE Technology (OCCT) kernel (s. section 4.1.1.4). Nonetheless,
similar fuselage modeling techniques are ultimately applied, as well. The resulting model is sufficiently
detailed to derive surface meshes for computational fluid dynamics (CFD) analyses, which can provide
a superior drag assessment both in accuracy and flexibility than the aforementioned approach by
Roskam.

Similar functionality is available in OpenVSP. Unlike the previous examples, OpenVSP is not reliant
on a dedicated CAD kernel. Instead, a custom geometry kernel is provided. Despite this, a clear trend
towards integrating CAD capabilities to enable modeling of smooth fuselage surfaces is discernible.
A custom geometry kernel may be a viable solution for lean, highly specialized tools. However, the
availability of the capabilities a fully realized CAD kernel is an enabling factor when trying to add
further details to the design. Nonetheless, it remains important to identify key parameters, as proposed
by Roskam to understand general relationships.

Integration of cabin design details Information about the cabin is of essence when designing the
OML of the fuselage. Most importantly, the dimension of the cross-section is governed by the number
of seats abreast nSA and the fuselage length depends on the cabin length lcabin. Commonly, the TLAR
prescribe a certain number of passengers nPAX , which need to be accommodated by the fuselage. An
empirical relationship between the number of seats abreast and the number of passengers is given by
Raymer [Ray89]:

nSA = 0.45 · √nPAX . (2.1.2)

The cabin length can then be estimated by

lcabin =
nPAX

nSA
· kC , (2.1.3)

where kC is an empirically determined average seat pitch, which takes into account the real seat pitch
for all classes, cross aisles due to exits and monuments, e.g. galleys and lavatories. Many of these
parameters are in turn functions of the desired level of comfort in the cabin. Similarly, the width of
the cabin can be computed using

wcabin = waisle · naisle + wseat · nseat + 2 · dseat−wall. (2.1.4)

Once again, the computation of the width requires additional details, such as the seat width wseat, the
number naisle and width waisle of the aisles, and the distance dseat−wall to the fuselage wall. Moreover,
many of the parameters involved are subject to constraints by the certification specification [EAS21],
which prescribes e.g. minimum aisle widths (CS 25.815) and the maximum number of seats between
a seat and the nearest aisle (CS 25.817).

The underlying approach outlined by the above equations is referred to as inside-out design. This
means the cabin dimensions are computed first and the fuselage dimensions are derived based on the
results. The approach can be applied for clean-sheet designs. Outside-in design is the counterpart to
inside-out design. It implies that the fuselage dimensions are already known and a fitting cabin must
be designed subsequently. Aircraft cabins can be exchanged multiple times across the life-cycle of an
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2.1. Fuselage and cabin in the aircraft design process

aircraft, which provides the opportunity to install improved, customized cabins. The design of such
cabins is a typical example for an outside-in design task. However, the distinction between the two
types of design is not clear cut. For instance, the design of cabins for families of aircraft is constrained
by the shared cross-section, but free w.r.t. the cabin length, resulting in a hybrid inside-out/outside-in
design task.

Equations 2.1.3 and 2.1.4 furthermore illustrate that detailed information about the cabin is neces-
sary to provide a reliable assessment of the cabin dimensions. Therefore, more detailed cabin design
capabilities have been developed for some of the design tools listed in table 2.1.1.

For example, ParaFuse [Jon17] provides the capability to initialize a cabin layout based on the
fuselage definition as shown in figure 2.1.3. The layout includes a seating arrangement as well as
simplified galleys, lavatories and overhead stowage compartments. Seat rails are considered in the
seat layout. The tool is a development of the cabin design capabilities provided in the DEE by TU
Delft first described by Brouwers [Bro11] under the name DARfuse. The design can be performed
using either the outside-in or inside-out approach. A similar distinction is made in CabLab by Gobbin
[Gob15]. However, unlike ParaFuse, CabLab performs the design exclusively in two dimensions, based
on a cabin basis surface. A 3D CAD model can be derived from the results only in postprocessing.

Figure 2.1.3.: ParaFuse cabin model (from [Jon17])

Munjulury et al. [MS+15] present an extension of the RAPID design tool, which enables deriva-
tion of details, including the aircraft interior, based on the previously mentioned design of the OML.
Aside from the cabin layout, which includes the seating layout, doors, windows, galleys, lavatories and
containers, the cockpit area is also represented. The configuration of the cabin layout is performed
using a Microsoft Excel spreadsheet, where conformity with the certification specifications and accept-
able means of compliance for large aeroplanes (CS-25) [EAS21] and comfort standards is evaluated
[Mun14]. However, no information is given concerning the use of automation of the cabin layout
generation. The stated purpose of the cabin design is the determination of a required cabin length,
which can be compared to the available length provided by the OML. Furthermore, the cabin mass
can be estimated.

Beyond the previously mentioned design tools, another three-dimensional cabin design tool is pro-
posed by Motzer [Mot16]. It is shown, how very detailed geometry models of the cabin can be produced
in CATIA using graph-based design languages (s. section 4.1.2), deployed via complementary external
software. The models are used to perform wire and pipe routing for the electrical and and ventilation
system. However, Motzer considers the cabin design activities to be strictly downstream from the
preliminary and structure design processes. As such, inputs are received, but no feedback is provided,
which affects e.g. the exit layout design as only one type of exit can be installed, due to limitations
from the prescribed frame pitch.
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Automated design capabilities for only the fuselage have been demonstrated by Fuchte, Gollnick,
and Nagel [FGN13]. Using a list of constants and user-defined settings, a fuselage shape is provided
along with the corresponding layouts of the structure and cabin, based on a requested number of
passengers. The cabin layout includes the floor plan or layout of passenger accommodation (LOPA)
and a simplified representation of the secondary structure. Similarly to preliminary design tools like
PrADO, the design process consists of a series of individual steps, which are executed according to
a predefined sequence. A final analysis step provides cabin data, such as the number of passengers,
masses and comfort standards. Based on these results, an iteration is performed to fulfill the number
of passengers requirement. The design tool is implemented in MATLAB, but provides an interface
to CATIA implemented via Visual Basic for Applications (VBA) scripts for visualization or analysis
mesh generation. The authors furthermore highlight the interoperability with other advanced analysis
tools via a common central data model (CPACS, s. section 4.1.1).

In industry, the myCabin extension to the commercial Pacelab ACE preliminary design framework
is a common choice for cabin configuration. Schneegans and Ehlermann [SE07] provide some back-
ground on the methodology. Applications have been published e.g. by Szasz [Sza09] and Abritta,
Thorbeck, and Mattos [ATM12] illustrating some very powerful knowledge-based engineering features
(s. section 4.3). However, it has not been shown, how the tool can be applied for automatic design
studies over large parameter spaces, as is required in preliminary design campaigns [FGN13].

Topics related to the cabin, which require a higher level of detail, such as manufacturing or human
factors, are hardly considered by any of the above authors. Nevertheless, these issues have a major
impact on the economic success of the final product. The importance of simultaneous design of
the product and planning of the manufacturing or assembly, which is sometimes referred to as co-
engineering or co-design, is illustrated by an increasing interest in the aerospace industry [PR+17;
BC+18]. Consequently, it is desirable, to include such considerations in the conceptual and preliminary
design stages, in order to provide a more complete understanding of the product and quickly identify
potential showstoppers, before selecting a design for a new aircraft program.

2.1.3. Challenges of preliminary design of novel aircraft system architectures

As the level of sophistication of conventional tube-and-wing configurations approaches saturation,
engineers are increasingly pushed towards considering novel concepts or aircraft system architectures
to further reduce the ecological footprint of aviation [LaR11]. Configurations are usually proposed
due to significant advantages in one particular discipline. However, it can often be shown that the
detailed integration of these technologies will have adverse effects in other disciplines, which may
counterbalance or even outweigh the initial benefits [Rec22].

For instance, researchers have proposed a high aspect ratio wing to improve the aerodynamic per-
formance. However, the aspect ratio of the wings is also limited by structural constraints e.g. the
root bending moment [JS+14; KM14]. This has led to the investigation of strut-braced wing (SBW)
configurations [Gra98; PM+17; HG+20], where the bending moment is reduced by introducing an
additional support strut. However, the introduction of the strut for improved structural support,
results in a compromised aerodynamic performance again.

Another example is the blended wing-body (BWB) [Lie04; Han09; DV14; BV18], which promises
gains in aerodynamic performance and structural mass by placing payload in lift-producing areas and
reducing the wetted surface. Yet, the concept has never been realized in a large scale passenger aircraft
program due to unresolved issues e.g. w.r.t. stability and control, pressurization, evacuation or ground
handling.

In light of the advancing climate change, driven also by greenhouse gas emissions [LF+21], electric
propulsion and clean energy carriers are also receiving more attention [DLR21a; CF20; ATA21]. Liquid
hydrogen (LH2) has been identified as a potential replacement for fossil fuels as energy carrier in
aeronautics [See10; SA+19; DP+22]. Possible scenarios include direct combustion as well as fuel
cells for electrical energy generation for all-electric or hybrid electric propulsion architectures [Por18].
It has also been pointed out e.g. by Hoelzen et al. [HS+22] that, along with the introduction of
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LH2, deep structural changes in the air transportation and energy supply system will be necessary.
On the vehicle scale, the storage requirements of LH2 compared to kerosene necessitate substantial
architectural changes. These include installation of dedicated tanks, which can fulfill the updated
storage temperature and pressure requirements [WK+18; GS19; BC+21] and need to be taken into
account in the design process.

Conceptual and preliminary design systems based on handbook methods will not be able to give
reliable estimates to perform the trades outlined for the above aircraft system architectures unless
significant changes to the systems are implemented. This is exemplified by the work of Hansen
[Han09] and Schürmann [Sch16], who describe the substantial efforts necessary to adapt PrADO for
BWB and supersonic transport architectures respectively, based on the work of Österheld [Öst03].
Similarly, Jungo [Jun14] illustrates the effort required to implement support for SBW configurations
in the CEASIOM system. Moreover, Ko et al. [KM+02] note significant integration effects due to
the detailed design of the strut for a SBW configurations, such as shock formation at the wing-strut
intersection due to a channel effect. Correct assessment of the penalty due to this effect requires
detailed consideration of the fairing of the intersection region.

This need for additional information also applies to the cabin design. For instance, details of the
cabin and exit layout of a BWB configuration, are critical to accurately determine evacuation times,
which are commonly cited as a big risk in conjunction with such a configuration. Several published
examples of cabin designs for BWB configurations are available, e.g. by Lee [Lee03], Eelman et al.
[ES+04], Nickol [Nic12], and Baan [Baa15]. However, only Baan attempts to automate the BWB cabin
generation for integrated design processes in the Cabin Configurator tool. Two examples of BWB
layouts generated by the tool are given in figure 2.1.4. Fuchte et al. [FP+14] provide an assessment
of the optimal overall shape of the revenue space without providing a detailed cabin layout.

Figure 2.1.4.: Cabin Configurator BWB layouts including galleys (red) and lavatories (green; from
[Baa15])

Another particular challenge of novel architectures is that their parametric description may be
fundamentally different to that of conventional architectures described in section 2.1.2. For instance,
the modeling strategy for BWB configurations often analogous to wings [CZN10], which makes the
fuselage a section of the wing as opposed to a discrete body. In this context, the previously established
segmentation of the fuselage into three sections also no longer applies. Yet another complicating factor
for larger BWB passenger aircraft is the limited availability of mature structural concepts [VT10;
QA21a].

For LH2-fueled designs, the placement of the tanks is an active research topic. Various architectural
solutions have been proposed [DP+22], with tanks mounted on the wings as pods, or integrated into
the fuselage as illustrated by Silberhorn et al. [SA+19] and Troeltsch et al. [TE+20]. In the latter case,
tanks may be placed either in front of or behind the cabin, which requires an increase in fuselage length.

13



2. Background: Digital systems for aircraft and fuselage design

Another option is to place the tanks above the cabin, which entails a larger cross section. Either way,
a drag penalty is expected, due to the increase in surface area and an adverse effect on the fuselage
slenderness ratio. Furthermore, a stretched fuselage will have implications w.r.t. weight and balance,
rotation clearance during takeoff, control surface effectiveness etc. In this case, accurate knowledge of
the cabin and tank dimensions will not only make the fuselage length estimation more reliable, but
also provide parameters for trade studies to assess e.g. the potential for gains in performance due to a
decrease in comfort level. Moreover, whereas the effects mentioned can be identified on a preliminary
design level, it must be expected that many other complications due to the tank integration will only
arise at a more detailed integration level e.g. of the subsystems.

It follows that, to ensure their relevance given the future challenges in aviation, conceptual and
preliminary aircraft design environments need to be flexible to support fundamentally new aircraft
system architectures on the one hand and at the same time be capable of providing a high level of
detail as required for a meaningful assessment on the other. Since state of the art handbook methods
are unable to handle this discrepancy, numerical analysis must be introduced on a larger scale on the
one hand, but at the same time be made more accessible for design integration on the other.

2.1.4. Digital process for evaluating and comparing arbitrary aircraft system
architectures

In the previous sections, the need to augment the digital aircraft design process in the early design
stages has been discussed. On the one hand, the goal is to assess new configurations at a higher
level of detail, to better include economically critical aspects like manufacturing. On the other hand,
the approach must allow for the evaluation of novel aircraft system architectures, which lie outside
of the empirical knowledge base reflected by traditional handbook methods, but hold the promise of
a significantly improved product. In this context, numerical analysis can help anticipate unexpected
effects on a detailed integration level.

At the same time, Mavris, Tenorio, and Armstrong [MTA08] raise the issue of comparing funda-
mentally different concepts fairly, i.e. finding ways to determine the “best” solution for vastly different
concepts. To this end they propose the definition of a product via functional requirements, which are
modeled from stakeholder inputs and broken down into TLAR. Brooker [Bro06] also raises the issue of
conflicting design goals and how the importance of a given goal might change over time due to reeval-
uation of externalities such as climate impact. This means, the functional requirements might evolve
over time, as well. Crawley, Cameron, and Selva [CCS15] describe the system architecture as the link
between a functional architecture, as expressed by the requirements and the formal structure, i.e. the
possible engineering solutions to fulfill said requirements. These considerations have all contributed
to the rise of the vision of aircraft system architecture optimization.

In pursuit of this vision, Ciampa and Nagel [CN21] propose the Complex System Development
Framework shown in figure 2.1.5, to enable the propagation of stakeholder requirements down to
TLAR. It is applied to model the functional architecture of the aircraft, using techniques from model-
based systems engineering (MBSE) in order to provide different aircraft system architectures. Com-
pared to traditional document-based systems engineering, MBSE facilitates data communication, im-
proves traceability and handling of information and reduces ambiguity by storing information in digital
models [DF+21]. Changes can not only be communicated quickly to connected stakeholders, but au-
tomated processes can be deployed to react to these changes. According to Ciampa and Nagel, MBSE
can be applied for stakeholder definition, requirements management and architecture generation, but
also for life-cycle modeling and resource planning.

Aside from MBSE, MDAO is the second important component of the framework. As illustrated
by figure 2.1.5, MDAO is applied for the downstream product design, based on the requirements and
architecture provided by the upstream MBSE process. As discussed in more detail in section 2.2, a key
contribution of MDAO is the combination and coordination of numerical analysis tools for the different
aircraft design disciplines, which are deployed to provide a design solution for a given architecture.

A complete realization of such a process for architecture optimization, places massive demands w.r.t.
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Figure 2.1.5.: Complex System Development Framework combining MBSE and MDO (from [CN21])

the flexibility on the MDAO process and its constituting analysis tools. They must not only support
a wide range of design variables, but fundamentally different product architectures. The knowledge-
based geometry generation approach proposed in chapter 3 is aimed to facilitate the analysis model
generation for the aircraft fuselage and cabin by providing usable geometry models irrespective of the
top-level architecture.

2.2. Multidisciplinary optimization and integrated collaborative design
workflows

It was established in section 2.1 that a sequential design process is applied in the majority of prelimi-
nary design tools, where different disciplinary design modules are traversed in a predefined order. An
iteration is performed to ensure consistency of the assumptions. As more and higher fidelity analyses
are introduced into the design process, this approach becomes prohibitively slow. This is true for com-
plex system development frameworks designed to support different aircraft system architectures, which
are dependent on high-fidelity numerical analysis. Therefore, the techniques from multidisciplinary
design analysis and optimization outlined in the following are applied.

First, the problem of multidisciplinary analysis is discussed in section 2.2.1 and then developed into
multidisciplinary optimization in section 2.2.2. After this, current research trajectories are highlighted.
On the one hand, the problem of finding an efficient geometry description to enable gradient-based
optimization is discussed in section 2.2.3. On the other hand, approaches to handle increasingly
complex multidisciplinary systems including more and more disciplines are considered in section 2.2.4.

2.2.1. Multidisciplinary analysis in aircraft design

Aeroelasticity, especially of the wing, is the most prevalent example for multidisciplinary problems in
aircraft design. As illustrated by the aeroelastic triangle [Col46], effects due to the interactions between
fluid dynamics, structural elasticity and inertial forces, which can have a significant impact on aircraft
safety, can only be evaluated by combining analyses from the different disciplines. Consequently
fluid-structure coupling is the earliest example of multidisciplinary design analysis (MDA).

Early fluid-structure MDA was performed using dedicated monolithic codes, however as analysis
methods for the individual disciplines became more sophisticated, partitioned approaches, which cou-
ple disciplinary analysis codes in an iterative process have become the norm [WG+19; WD+21; Tra16;
KHH13; SD+12]. Figure 2.2.1 illustrates a static aeroelasticity analysis process using eXtended De-
sign Structure Matrix (XDSM) notation [LM12]. The disciplinary analyses are placed on the main
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2. Background: Digital systems for aircraft and fuselage design

diagonal, while coupling variables can be found in the off-diagonal entries. Entries in the same column
as the analysis block denote inputs, whereas entries in the same row are outputs. Since the analyses
are performed according to the sequence of the diagonal, entries in the upper triangular describe feed-
forward connections, whereas entries on the lower diagonal introduce feedback connections. Taking
these rules into account, figure 2.2.1 expresses that the aerodynamic loads at the interface fΓ, which
are provided by the aerodynamic analysis, depend on the displacements at the interface dΓ. The
displacements are a result of the structural analysis, which in turn requires the loads as an input.
These interface variables can also be referred to as state variables of the system. Since all off-diagonal
connections in the XDSM are filled, the system is considered fully coupled.

Aerodynamic
Analysis

fΓ

dΓ
Structural
Analysis

Figure 2.2.1.: XDSM of the fluid-structure interaction problem

In order to solve the MDA problem, the Block Gauss-Seidel procedure can be applied [LM12], as
illustrated in figure 2.2.2. A new coordinator block named MDA is introduced to the process, which
performs a fixed-point iteration on the coupled problem. To resolve the feedback loop, the MDA
component provides an initial guess for the interface displacements dtΓ and compares it to the output
after running all the tools once. If the residual, which is often chosen to be the ℓ2-norm

⃦⃦
dΓ − dtΓ

⃦⃦
2
, is

below a given tolerance, the iteration terminates and the current values of dΓ and fΓ are accepted as
results. Otherwise, a new guess for the displacements dtΓ is computed. While an abundance of methods
exists to estimate the new guess (s. [MY10] for a comprehensive evaluation), good convergence can
often be achieved by simply setting dt,i+1

Γ = diΓ.

dtΓ

(no data)
0, 3 → 1:
MDA

1:dtΓ

fΓ

1:
Aerodynamic

Analysis
2:fΓ

dΓ 3:dΓ

2:
Structural
Analysis

Figure 2.2.2.: XDSM of the Gauss-Seidel MDA for the fluid-structure interaction problem

Other MDA procedures besides the Gauss-Seidel iteration exist, such as the Jacobi iteration
[LM12], where all state variables from the last iteration are provided to all analysis blocks by the
MDA coordinator block, instead of passing data sequentially between analysis blocks. On the one
hand, this procedure has the advantage that all analyses can be executed in parallel, which can yield
a significant run time benefit. On the other hand, it is more difficult to assert feasibility of the result,
i.e. consistency of the different outputs.
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2.2. Multidisciplinary optimization and integrated collaborative design workflows

2.2.2. From analysis to optimization

The purpose of analysis in aircraft design is to inform design decisions. So far, the MDA presented
in the previous section only provides consistent load, displacement distributions. To leverage these
capabilities to automatically make design decisions, the process in figure 2.2.2 can be expanded to in-
clude an optimization. Sobieszczanski-Sobieski [Sob95] refers to this methodology as multidisciplinary
design optimization (MDO). Over time, the more general acronym MDAO, a conglomerate of MDA
and MDO, has also gained popularity [SM+15].

A typical simple MDO task could be to determine the wing aspect ratio A, which results in the
longest range R according to equation 2.1.1. A more slender wing improves the aerodynamic per-
formance L

D . However, it is also necessary for the wing structure to withstand the loads, i.e. all the
stresses σ in the wing must be lower than the smallest allowable stress σallow for any given structural
component. The allowable stress is typically be computed for each failure mode, e.g. static strength,
buckling or fatigue and depends on both material properties, such as the yield strength Rp,0.2 and the
geometric properties of the structure, e.g. the panel aspect ratio apanel/bpanel for single panel buckling
[Bru73]. Failure to meet the criteria can be resolved e.g. by increasing the skin thickness tskin, at
the cost of increased structural mass Wi and thus reduced range. In addition to the aforementioned
stress-based criteria, strain-based criteria exist for carbon fiber reinforced polymers (CFRP) [Nah86;
SKH04]. They are, however, omitted in the following due to their limited range of applicability
according to Soden, Kaddour, and Hinton [SKH04].

Based on the above, an optimization problem can be formulated:
minimize

A,t
−R(A, t)

subject to Amin ≤ A ≤ Amax,

tskin,min ≤ tskin ≤ tskin,max,

σ (t)− σallow (Rp,0.2, apanel, bpanel, tskin, ...) ≤ 0,

(2.2.1)

The aspect ratio A and the skin thickness t are the design variables, the negative range is the objective
function, and the stress limit and the limits for A and t are constraints. The evaluation of the range
and the stress constraint requires additional state variables w.r.t. to the original MDA. The stress
distribution σ and the structural mass Wi can be provided by the structural analysis in addition to
the displacements, while the aerodynamic performance L

D can be computed as part of the aerodynamic
analysis. All other inputs, e.g. the yield strength Rp,0.2 or the specific fuel consumption c, are assumed
to be constant.

Figure 2.2.3 shows the XDSM of one possible MDO process implementation for the problem in
equation 2.2.1 using the multidisciplinary feasible (MDF) architecture [CJ+94]. The nested MDA
loop is treated by the optimizer like a single disciplinary analysis. MDF is a popular architecture
choice, because the consistency of the state variables is automatically ensured by the MDA [ML13].
However, a large variety of different MDAO architectures have been proposed to address specific
applications, of which Martins and Lambe [ML13] provide a comprehensive overview.

The goal of optimization is to minimize a given objective function f (x) w.r.t. the design variable
vector x under the inequality constraints ci (x) ≥ 0. Optimality is defined by the Karush-Kuhn-
Tuker (KKT) conditions [Kar13; KT51], which are sometimes also referred to as the design equation
[IM+20]. For unconstrained problems, the gradient of the objective function disappears at the mini-
mum, while the Hessian is positive definite, i.e.

∇f (x∗) = 0 and∇2f (x∗) is positive definite. (2.2.2)

If constraints are present, the first-order criterion must be expanded to take into account the possibility
of minima on the constraint boundary. To this end, the gradient of the Lagrangian function for the
optimization problem is considered, instead of the objective function. If only inequality constraints
are present, this results in

∇L (x∗, λ∗) = ∇f (x∗) +
∑︂
j

λ∗j∇cj (x∗) = 0. (2.2.3)
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A(0), t(0) d
t,(0)
Γ

A∗, t∗
0, 6 → 1:

Optimization A A, t A, t

1, 4 → 2:
MDA

dtΓ

f∗
Γ,

L
D

∗
2 :

Aerodynamic
Analysis

fΓ
L
D

d∗Γ,W
∗
i , σ

∗ dΓ

3 :
Structural
Analysis

Wi σ

R

5 :
Breguet
Range

fc
5 :

Constraints

Figure 2.2.3.: XDSM of the optimization process for the range problem using the MDF architecture

The Lagrange multipliers λi are only active, if the corresponding constraint is active, i.e. λ∗i ci (x
∗) =

0 for all constraints. Furthermore, the problem must be feasible, which means all constraint conditions
must be fulfilled and λi ≥ 0 for all Lagrange multipliers. It follows that a potential minimum is
reached if the gradient of the objective function can be equalized by a weighted sum of the gradients
of the active constraint functions.

Depending on the type of objective function, constraints and design variables, different classes of
optimization problems exist, each with different corresponding solution algorithms [Kel99; NW06;
PT+07]. MDAO problems are typically nonlinear programming problems (NLPs). Furthermore,
the objective function may not be explicitly known, but the result of e.g. a call to a closed-source
commercial analysis tool. Several types of optimization algorithms exist for such a case, which are
briefly discussed in the following.

Gradient-based optimizers Gradient-based optimizers use quasi-Newton gradient-descent methods
to iteratively solve the NLP. Commonly, constrained and unconstrained optimizers are distinguished,
as are mono- and multidimensional optimizers. MDAO problems, like the example given in equation
2.2.1, tend to be constrained multidimensional problems. These types of problems can be solved using
sequential quadratic programming (SQP). Implementations e.g. NLPQL [Sch86] or SLSQP [Kra88],
are available in open-source scientific computing libraries.

A key enabler for large-scale gradient-based optimization is the availability of sensitivities of the
objective function in the form of total derivatives w.r.t. the design variables [MH13]. The total
derivative for the objective function f is computed using the chain rule [MN21] and given by

df

dx
=
∂f

∂x
+

n∑︂
i=0

∂f

∂yi

dyi
dx

. (2.2.4)

The sensitivity terms dyi
dx contain contributions from each component of the multidisciplinary system.
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As discussed e.g. by Moore [Moo12], the computation can become rather complex depending on the
system architecture. However, it can be concluded that every analysis tool involved in the process
must provide not only the analysis result, but also the derivatives of the analysis result w.r.t. the
overall design variables.

Several approaches have been proposed to compute the derivatives of analysis tools. If the underlying
analytic functions are known manually implementing the derived functions is an option. This is,
however, rarely the case for real-life engineering problems, where complex numerical codes are often
used. Instead it may be necessary to apply techniques such as finite differences (FD), complex step
(CS)[MSA03] or algorithmic differentiation (AD)[GW08]. In FD, tools are considered as black boxes,
thus making it the easiest method to implement. Some optimization algorithms even provide a built-
in internal FD scheme [Pow94; Pow09]. However, one additional function call is required per design
variable, which is unacceptable if many design variables or computationally expensive high-fidelity
analyses are involved. CS and AD are more efficient, but need to be supported by the analysis tools
themselves.

A common drawback of gradient-based optimizers is that they are only capable of finding local
optima for non-convex functions.

Bayesian optimization The problem of potentially unavailable analysis sensitivities is addressed in
Bayesian optimization. Instead of providing the sensitives directly, a surrogate model of the mul-
tidisciplinary system is constructed from a low number of sample points, selected using a design of
experiments (DoE) scheme. Many authors choose Kriging [SW+89], also referred to as Gaussian
process regression, as surrogate model [SAZ03; LK+09; BL+17], but other approaches have been
demonstrated as well [Kri05; HM18; BH+19]. The surrogate model provides a smooth interpolation
between the known samples, the gradients of which are known. This allows for gradient-based optimiz-
ers to be deployed on the surrogate model. In an iterative loop, the optimum value of the surrogate
model can then be compared to the true result of the multidisciplinary system, and the process is
either repeated for a new model, which includes the new sample point, or stopped if the results are
sufficiently close.

Aside from a predicted function value, the surrogate model also provides an estimate of the variance,
i.e. the reliability of the estimate of the function value. This enables the computation of different infill
criteria, which can be optimized instead of the objective function itself. The weighting of the function
value against the variance can be tuned to pursue an optimization strategy, which is focused on either
exploration, i.e. the broad evaluation of the design space to avoid getting stuck in local minima, or
exploitation, i.e. quick convergence towards a local minimum [SPG02].

Stochastic optimizers In this class of optimizers, stochastic methods, where the design variables
are modified randomly or semi-randomly, are applied to increase the chances of finding the global
minimum. Another advantage is that unlike e.g. gradient-based optimizers, stochastic optimizers can
handle discrete design variables, such as integers. Thus, they provide an interesting option for the
evaluation of entirely new classes of optimization problems, such as mixed-integer linear (MILP) and
nonlinear (MINLP) programming problems.

On the downside, stochastic optimizers require a very large number of function evaluations compared
to gradient-based optimizers, which makes them ill-suited for MDAO problems with long running dis-
ciplinary analyses, e.g. CFD. [MN21]

Over the years, numerous publications on MDAO applications have appeared, the detailed discussion
of which exceeds the scope of this thesis. Sobieszczanski-Sobieski and Haftka [SH97] list early examples,
where MDAO has been applied for simultaneous aerodynamic and structural optimization as well as
for simultaneous optimization of structures and control. A more recent review of MDAO research by
Papageorgiou et al. [PT+18] still finds an overwhelming bias towards aerodynamics and structures in
literature. Cabin design as well as connected analyses e.g. of human factors or manufacturing aspects
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are not present. The study furthermore shows that the vast majority of applications so far has been in
academia. Nonetheless, publications e.g. by Giesing and Barthelemy [GB98], Gazaix et al. [GG+11],
Piperni, DeBlois, and Henderson [PDH13], and Cavalcanti et al. [CL+18] are indicative of a sustained
interest, also in industry.

In many studies on MDAO applications, the authors apply either an ad-hoc implementation, or
custom-built frameworks [AL+04; LH+04; AK05] to assemble the MDAO process. While this is a
relatively simple task for basic MDAO problems, it becomes more difficult as the complexity of the
problem increases. As a result, the openMDAO library [GMN10; HG12; GH+14; GH+19] provides a
unified open-source programming framework for facilitating the development of MDAO applications.
It not only facilitates the formulation and exploration of MDAO systems, but also provides access to
nonlinear solvers for MDA and optimizers. Furthermore, the computation of the total derivative is
handled, based on the sensitivities for the individual disciplines, which can also be provided.

Weck et al. [WA+07] describe the range of possible trajectories for new research in MDAO in terms
of two extremes: horizontal and vertical growth. Essentially, horizontal growth is concerned with
the increasing the fidelity and efficiency of current MDAO processes. In contrast, vertical growth
is concerned with increasing the number of disciplines involved to provide a more comprehensive
understanding of the product to ultimately enable the evaluation of more challenging and complex
optimization problems. According to the authors, MDAO research must address both these issues for
an ideal growth direction, which they refer to as “dream growth”. Therefore, the challenges and and
implications of both extremes are discussed in the following.

2.2.3. Horizontal growth: Geometry description for efficient high-fidelity gradient-based
optimization

Research activities towards horizontal growth of MDAO look to enable numerically efficient gradient-
based optimization including high-fidelity analysis and increasingly detailed design variables. However,
the set of disciplines involved remains largely untouched.

As discussed in section 2.2.2, tools must provide sensitivities w.r.t. the design variables in addition
to the analysis result in order to enable efficient gradient-based optimization. While few commer-
cial analysis codes provide this feature, eligible research codes have been published e.g. for aerody-
namic [WB+10; EP+16; TW+19] or structural analysis [SKH96; KM14]. Combined aero-structural
frameworks supporting gradient-based optimization have also been proposed [SD+12; Rei15; Sán17;
KS+19].

To enable fully gradient-based MDAO, it is furthermore necessary, to provide derivatives of the
geometry model generation w.r.t. the top-level geometric design variables, such as the wing aspect
ratio. To this end, Samareh [Sam99] describes three geometry parametrization schemes for MDAO
processes, the discrete approach, the free-form-deformation approach, and the CAD approach, which
are discussed in the following.

Discrete parametrization In the discrete approach, no central geometry model is provisioned, from
which the analysis meshes are derived. Instead, the points of the analysis grids are manipulated
directly. Whereas this approach is simple to implement and offers fine grained, localized control of
the geometry, it is impractical for real-life MDAO applications for a number of reasons. These include
difficulties to maintain a smooth geometry and ensure manufacturability of the results. Furthermore,
given the number of degrees of freedom in modern CFD surface meshes, there are too many design
variables for the optimization to remain efficient. Since the disciplinary meshes are all different from
one another it is also difficult to link disciplinary design variables in an MDAO context.

Free-form deformation The free-form deformation (FFD) scheme is adopted by many authors in
aerodynamic shape optimization or aero-structural optimization [Sam04; Ron06; Gu17] to overcome
some of the limitations of the discrete approach. In FFD, a control volume, described using a Bézier
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[SP86], B-spline [GP89] or NURBS [LW94] formulation (s. section 4.1.1), is placed around the com-
ponent of interest and deformed using the control points of the volume as design variables. The
analysis mesh points are mapped to the local coordinate space of the bounding volume, which yields
the corresponding local coordinates [u, v, w]. Evaluating the deformed bounding volume at these local
coordinates yields the deformed mesh points. This results in a smoother deformed surface and can
significantly reduce the number of design variables. However, the volume control points still do not
correlate well with intuitive engineering parameters. In fact, the problem is still artificially complicated
for many parameters, e.g. for the span. Instead of changing a single number, the span in FFD must
be modified by adjusting the lateral positions of at least half of the FFD control points. Moreover,
this makes it difficult to map optimization results back to product model parameters later.

CAD-in-the-loop modeling As a third option, a CAD-based approach is considered. Kenway, Ken-
nedy, and Martins [KKM10], Hwang and Martins [HM12], and Hwang, Kenway, and Martins [HKM14]
propose a purpose-built differentiated parametric geometry modeler, where a watertight OML geom-
etry is stitched together from a collection of B-spline surfaces. They also provide the possibility to
model simple internal structures, such as wing spars and ribs. However, as the requirements w.r.t.
the level of details of the geometry model increase, this approach is not sufficiently flexible and the
inclusion of a geometry model based on a full CAD kernel becomes an imperative.

Bobrowski et al. [BF+17] propose a reduced-order model (CAD-ROM) approach, where a surrogate
model of the surface mesh generation results is generated based on parametric CAD geometry built
in a commercial environment. Similar meta-modeling approaches have been discussed previously
for analysis tools in general [VS+14]. However, a sufficiently accurate surrogate model will still
require a prohibitively high number of sample points, each of which implies a call to the commercial
tool [MSR17]. The pyGeo library [HY+23] provides both FFD and parametric CAD capabilities by
providing interfaces to OpenVSP and ESP. However, analytical derivatives are only available for FFD,
whereas the parametric CAD interfaces rely on FD.

This leaves the application of a fully differentiated CAD kernel. Solutions have been proposed by
Dannenhoffer and Haimes [DH15] who implement FD for the ESP and by Banović [Ban19] who shows
a working example using AD. In both cases the OCCT CAD kernel [OCC23a] provides the basis for
the development. Even though, neither of the codes have been shown to work for large-scale aircraft
MDAO problems, promising results have been published e.g. by Xu, Jahn, and Müller [XJM13],
Dannenhoffer and Haimes [DH17], and Banović [Ban19]. A pathway towards making this technology
available e.g. for CPACS by leveraging parametric trees to chain algorithms has been proposed by
Kleinert et al. [KR+23].

The above shows that gradient-based MDAO is a very active field of research, where development
is bound to continue in the future. For the purpose of this thesis, it can be deduced that a geometry
model generation tool for an MDAO setting should be based on a CAD-kernel. Another requirement
is that a new implementation should be open to gradient evaluation using CS or AD. Consequently,
open source solutions should be preferred to proprietary commercial codes.

2.2.4. Vertical growth: Increased variety of disciplines and assessments through
collaboration and facilitated process setup

The notion that the success of new configurations will not exclusively be defined by the classical
disciplines of aircraft aeroelasticity has spawned a complementary movement to the research activities
outlined previously. In many cases, it can be advantageous from an economic perspective to sacrifice a
certain amount of mass or a few drag counts for the sake of e.g. improved production rate or passenger
comfort. In order to take these aspects into account in an MDAO process, the objective function must
be adapted to include these parameters and weigh them against the classical performance parameters.
Furthermore, analysis capability must be available to evaluate a given design w.r.t. these aspects.

The expansion of the scope of the MDAO entails a number of new challenges. Chiefly, the growing
variety and respective complexity of the disciplines involved make it impossible for a single person to
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overlook the entire process and adequately assess all of its results. This has motivated research on
collaborative design workflows, where each disciplinary tool or design competence is the responsibility
of a disciplinary expert [Kro04; CN20]. In this context Kroo [Kro97] identifies three distinct genera-
tions of collaborative MDAO systems, which have later been corroborated by Zill [Zil13] and Ciampa
and Nagel [CN20]:

In the first generation, which Kroo describes as integrated analysis with optimization, the optimizer
and the analysis capabilities are tightly integrated in a monolithic system. This requires low-level
access from the optimizer to the respective analysis codes, which on the one hand, makes it difficult to
incorporate established disciplinary analysis tools and on the other hand creates a significant barrier
for the addition of new analyses.

Therefore, in the second generation of MDAO, the coupling between the analysis tools is loosened
to enable distributed analysis. While the optimizer retains control of all the design variables, the
actual analysis is performed by dedicated disciplinary processes. It is possible for these processes to
be executed either on the same machine or on separate machines connected via network. The results
are fed back to the optimizer, which provides a new set of parameters to be evaluated in the following
iteration. State-of-the-art high-fidelity gradient-based MDAO frameworks such as the FlowSimulator
[Rei15] or the fluid-structure interaction component of SU2 [Sán17] can be considered part of the
second generation. However, distributed analysis has the drawback that the disciplinary analysis tool
providers can not directly influence the design variables, which are under control of the top level
optimizer.

This paradigm is therefore abandoned in the third generation of MDAO, which introduces distributed
design processes instead. In such a process, the participants do not only provide analysis capabilities,
but actively participate in the design by contributing design decisions. For instance, a structural
design tool would no longer just return the stress distribution or reserve factors, but contribute a
feasible or even optimal thickness distribution. This procedure has several advantages. To begin with,
design proposals are contributed by disciplinary experts, which are better trained to judge the design
results than the process integrator. Consequently, the task of the optimizer is no longer to process the
analysis output and propose design changes, but to coordinate and synchronize all contributions.

The shifting of the responsibility to make design decisions towards the design competence level
also facilitates the implementation of multi-fidelity processes, as described e.g. by Lazzara, Haimes,
and Willcox [LHW09], Böhnke [Böh15], and Dannenhoffer and Haimes [DH16]. Multi-fidelity implies
that various levels of abstraction of the model can be analyzed even within a single discipline. In
this way, low-fidelity analyses with low run time requirements can be deployed for large design space
explorations. As promising designs are identified, the level of fidelity is increased and higher fidelity
methods are deployed, which take into account additional design details at the cost of longer run
times. Analyses of the same model at different fidelity levels can be considered two separate design
competences. To facilitate the coordination of multi-fidelity contributions, Moerland, Becker, and
Nagel [MBN15] propose a division of the design competences into four discrete fidelity levels, ranging
from statistical and empirical tools (level 0 ) to highly accurate numerical simulation capabilities to
capture detailed local effects (level 3 ).

In theory, the third generation MDAO approach facilitates the addition of new disciplinary design
competences to the process, since each new competence will act as a black-box w.r.t. the overall
process. However, third generation MDAO processes are subject to an entirely new set of challenges:

Design competence provision In practice, the preparation of a disciplinary design tool for distributed
design processes requires non-negligible initial efforts by the design competence provider. Specific
technical requirements exist in terms of both tool automation and data interfaces [WCN22]. On the
one hand, the design tool should be capable of running fully automatically without user intervention
(hands-off automation). This includes not only the analysis, but also the subsequent decision making,
which can be automated e.g. using a nested optimizer. On the other hand, the tool should be capable
of providing and receiving all relevant information on the current state of the product from the process.
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This is usually implemented using wrapper interfaces to a central product data model as described in
section 4.1.2.

Furthermore, the tool should, to some extent, be robust towards missing or unexpected input data.
Some design details necessary for the analysis may not always have been made available by the preced-
ing tools in some stages of the design process. As a result, the missing details, for instance the struc-
tural layout of a fuselage, need to be initialized before the actual execution of the design competence.
So far, no unified solution for coordinating initial assumptions has been proposed. Instead, design
competence providers choose initialization parameters independently, without centralized checks for
overlaps. This workaround is acceptable if boundaries between disciplines are clear cut, as is the case
for structures and aerodynamics. However, it makes the design process vulnerable to inconsistencies if
responsibilities of disciplines can not clearly be separated, as is the case e.g. for the fuselage structure
and the cabin layout.

Non-technical barriers Aside from the technical difficulties, Belie [Bel02] also identifies some non-
technical barriers to MDAO, which fall into three general categories: Confidence, culture and com-
plexity. These barriers also translate into challenges for third generation MDAO processes.

Due to the black-box nature of disciplinary design competences and the ensuing lack of detailed
knowledge of the implementation, the results provided can be difficult to comprehend for most process
participants. This makes it harder to instill confidence in the design competence results. However,
according to Belie, this problem exists even in current development processes, since experts from
one department will have to accept results from another, without looking deep into the details. He
therefore proposes to build on proven, verified work as much as possible and provide high visibility of
both the process flow and the results.

For barriers due to organizational culture Belie lists inertia, e.g. due to the required initial devel-
opment efforts, territorial concerns between departments and fear of loss of control. The necessary
steps for disciplinary analysis experts to provide a third generation MDAO design competence listed
by Walther, Ciampa, and Nagel [WCN22], i.e. hands-off automation, willingness to share results,
and adherence to a central data schema, require competence providers to overcome these cultural
barriers. Both publications suggest that highlighting the benefits of MDAO and providing educa-
tion will help convince people to overcome their inertia. Furthermore, Belie recommends putting in
place cross-cutting organizational units with sufficient authority to foster interdepartmental exchange.
Baalbergen, Lammen, and Kos [BLK12] address the problem of inter-organizational barriers, by giv-
ing contributors in distributed MDAO processes full control over when and how often their tools get
accessed to prevent unwanted data extraction.

Finally, Belie mentions barriers due to complexity, which results from the interplay of data, human,
discipline and organizational layers. Even though complexity is presented as a non-technical barrier,
many of the solutions proposed to manage it, which are presented in the subsequent paragraph, are
technical in nature.

Collaborative workflow integration The collaborative distributed design systems typical for third
generation of MDAO can be implemented using e.g. a process integration and design optimization
(PIDO) framework. The open-source Remote Component Environment (RCE) [SF+12] and the com-
mercial ModelCenter [ANS23b], modeFrontier [EST23], Optimus [Noe23] or Isight [Das23] are estab-
lished tools in this field, which allow for individual design competences to be connected remotely via
network. A common trait of these systems is a visual programming interface, which allows the user
to connect blocks representing executable tools using arrows which represent data flow in a GUI.
The approach has been applied successfully in a number of projects both within a single organiza-
tion [KA+15; GK+18; Hei18] and in a cross-organizational setting [CP+19]. The design process is
controlled by an integrator, who is responsible for assembling the workflow and running the optimiza-
tion. Many of the integration tasks surrounding collaborative MDAO have been already identified by
Sobieszczanski-Sobieski [Sob95] in the early 1990s. Among the most time consuming tasks is the set
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2. Background: Digital systems for aircraft and fuselage design

up of the workflow, i.e. building the connections between available design competences.
As the number of disciplines or design competences increases further, the task of manually setting

up the design workflows becomes prohibitively extensive. In addition, slow reconfigurability is an
obstacle to rapid tool integration and MDAO system architecture exploration. The automation of
the problem setup has therefore been identified as another important research topic. Pate, Gray,
and German [PGG13] are among the first to propose the application of graph data structures to
perform dependency analysis on design competences and build MDAO workflows automatically. The
idea has since been picked up e.g. by Gent [Gen19a] and Page Risueño et al. [PB+20], who not only
implement and refine the graph based reasoning on the connections, but also provide interfaces to PIDO
frameworks or environments like openMDAO to create executable workflows automatically. Ciampa
et al. [CP+19] showcase the potential for reducing the MDAO process setup time using this approach.
A comparable framework has been presented by Gallard et al. [GV+18]. While a classical MDF
architecture is usually applied [TB+18], other dedicated architectures for collaborative optimization
have been proposed [KM00; IM+20]. For a more customized approach, Aigner et al. [AG+18], Lafage,
Defoort, and Lefebvre [LDL19], and Page Risueño et al. [PB+20] furthermore propose user interfaces
for interactive MDAO system exploration and manipulation.

To preserve the computational efficiency of the optimization and avoid exaggerated run times,
the increased number of disciplines must typically be balanced with sacrifices in analysis fidelity.
Furthermore, gradient-based optimization as outlined above is usually not possible due to limitations
of the tools involved. Instead, Bayesian optimization of surrogate model built from an initial sampling
plan of the design space is commonly used.

2.2.5. Summary

MDAO is introduced as a promising solution to handle the complexity of interdisciplinary dependencies
in aircraft design. Due to its coupling of numerical, often physics-based, analysis tools, MDAO is
deemed more fit to handle novel configurations than the traditional empirics-based aircraft design
methods discussed in section 2.1.1. Whereas in the past, much of the focus of MDAO has been placed
on the interaction of aerodynamics and structural design, more recent efforts strive to include other
design aspects, such as human factors or industrialization. In these fields, the aircraft cabin design
has a significant impact, which is why detailed knowledge of the cabin needs to be made available
within the respective MDAO processes.

Distributed collaborative processes break down the complex overall design task into disciplinary sub-
design-tasks, which can be handled by disciplinary experts. Product knowledge is typically exchanged
using a central data model, which serves as a single source of truth. However, the sub-tasks usually
involve an element of augmentation, where data, which is not yet available in the overall process but
required for the analysis, is added by the respective experts. Currently, no mechanism is available for
distributed processes to ensure the consistency of the assumptions, which undermines the authority
of the central data model. For instance, knowledge of the positions of the door cutouts is important
for both the structural and cabin design engineer. If both assume different door positions without
communicating their assumptions, it may severely compromise the results of the overall design process.
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3. Research hypothesis

In the following, a research hypothesis is formulated, based on the findings of chapter 2. In section 2.1,
the state of the art in fuselage and cabin design for early design stages has been explored, and the
applicability of the methods to new and unconventional configurations, necessary to meet the emission
goals stated in chapter 1. It is shown that the commonly used empirical methods are insufficient and
should be substituted with physics-based methods.

To handle the increased complexity and coordinate the different disciplinary contributions, col-
laborative third-generation MDAO techniques are introduced in section 2.2, where different experts
participate in a single distributed integrated design process. In this context, different disciplinary
analyses typically have different requirements w.r.t. design details, which need to be available. The
details are commonly augmented by the disciplinary experts as required, without assuring consistency
with other disciplinary assumptions, which can lead to inconsistent designs. On the other hand, the
fragmentation of the design knowledge impedes adaptations for novel configurations, as changes to a
multitude of tools are required.

To overcome these shortcomings, the application of knowledge-based engineering techniques (s.
section 4.3) to provide consistent and adaptive design detail generation capabilities is proposed in this
thesis, resulting in the following research hypothesis:

Research hypothesis Knowledge-based engineering techniques can be applied in the context of
multidisciplinary design analysis and optimization processes, both to gen-
erate new design details as they are required within the process and to
assemble geometry models for disciplinary analysis model generation at
the exact required level of fidelity. This methodology furthermore allows
adaptation to fundamentally new product system architectures. Linking
the generation of models and design details enables the automatic selection
and generation of only those design details, which are required inputs for
the model generation task at hand.

To assess the validity of the research hypothesis, the proposed methodology is applied to the use case
of the aircraft fuselage and cabin. Due to the close relationship e.g. between the structural design and
cabin design, this is an interesting use case in terms of interdisciplinary dependencies. To support
the discussion of the hypothesis in the subsequent chapters, it is furthermore broken down into the
following four working hypotheses:

Working hypothesis 1 Aircraft fuselages and cabins can be described using parameters, which can
be organized in a knowledge graph by providing rules, which define rela-
tionships between the parameters. This architecture enables the modular
inclusion of new knowledge and the setup of dynamically configured design
and modeling processes without predefined program flow.

Working hypothesis 2 Based on the knowledge graph, consistent geometry for disciplinary anal-
ysis can be derived. The level of fidelity is tailored to the disciplinary ap-
plication through targeted querying of the knowledge graph. Based on the
disciplinary models, analyses can be performed, enabling consistent mul-
tidisciplinary and multifidelity evaluation of the present design as needed
within third-generation MDAO processes.
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3. Research hypothesis

Working hypothesis 3 Using graph analysis, missing data for modeling a product instance can
be identified and the knowledge graph can be extended with design func-
tionality. This includes knowledge from diverse disciplines such as pre-
liminary design and structural design, thus enabling integrated interdisci-
plinary fuselage and cabin design.

Working hypothesis 4 The process is not only parametric and suited for exploration of large
design spaces, but also inclusive to novel product architectures through
extension of the knowledge graph, thus supporting fundamental decisions
on system architectures.
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4. Computer aided engineering methods to enable
fuselage MDAO

The collaborative approach in third generation MDAO entails the need for exchange interfaces for
product data, which allow experts to share newly generated product knowledge with collaborators
in the design process. In section 4.1 the underlying concepts and theory behind the prevalent CAD-
modeling approach are discussed. To overcome the shortcomings of this approach w.r.t. collaborative
MDAO applications, more general data-centric modeling approaches as described e.g. by Nagel et al.
[NB+12] are introduced as well.

To evaluate the applicability of the existing means of data exchange, different existing numerical
analysis and design capabilities are presented in section 4.2. In line with the research hypothesis
of this thesis stated in chapter 3, the focus is specifically placed on capabilities for fuselage and cabin
evaluation. The competences are evaluated in terms of which data is required and in what form. On
the one hand, this serves to illustrate the types of input data and level of detail required to enable
a given disciplinary analysis. On the other hand, gaps and overlaps between data requirements for
different analyses are identified.

Finally, the knowledge-based engineering (KBE) methodology is presented in section 4.3 as a po-
tential solution for providing product information tailored to the requirements of disciplinary analysis.
As shown e.g. by La Rocca [LaR11], the methodology enables the implementation of a MMG based
on a central product data model as well as automatic generation of product knowledge by formulating
executable relationships between product features.

4.1. The product in a digital engineering process

Commonly accepted, unambiguous interfaces between different design competences are a key enabler
for successful collaborative MDAO processes. As shown e.g. by Böhnke, Nagel, and Gollnick [BNG11],
a central common model can help reduce the number of interfaces, which must be implemented to
connect all disciplines involved in a given design process. Since all product data is stored in the central
common model, it represents the virtual product in digital engineering processes.

With geometry being a central aspect of engineering products, a central geometry model, sometimes
referred to as the central digital mock-up (DMU), is often selected to represent the virtual product (s.
section 4.2). Consequently, the description of geometry in computer-aided geometric design (CAGD)
systems is examined in section 4.1.1. That said, the amount of information available may be insufficient
to build an accurate geometry model of the configuration in the early aircraft design phases, as
exemplified by Raymer’s cylinder model for the fuselage from section 2.1.2. Conversely, in later stages
of MDAO, detailed information beyond sheer geometry may be required, to perform a given analysis,
such as material properties or mission details. To this end, data-centric product models have been
proposed, which are discussed in section 4.1.2.

The gap between data-centric parametric modeling and geometry-centric modeling using CAGD is
reflected in the working hypotheses. Whereas a parametric, i.e. data-centric description is mentioned in
working hypothesis 1, the need for a geometry-centric model is stated in working hypothesis 2.
To bridge this gap between the two formulations, the concept of a parametric modeling engine is
introduced in section 4.1.3, which can provide geometry-centric views based on the data-centric product
models.
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4. Computer aided engineering methods to enable fuselage MDAO

4.1.1. Geometric product models and CAGD systems

The need to transition from a data-centric parametric model to a geometric product description
expressed in working hypothesis 2 is further supported by section 2.2.3, where it is found that a
CAD-in-the-loop geometry model should be available for high-performance MDAO. An exasperating
factor in aircraft design is that the geometric shape has a direct effect on the performance on the
product. As a result, shapes e.g. the outer mold line often consist of complex free-form surfaces, which
must be understood in order to derive accurate geometries from the parametric description. For the
efficient implementation if subsequent details a good understanding of CAGD systems is furthermore
required. Therefore, the theory behind the most common types of free-form surfaces is discussed in
the following as well as some more general background on CAGD systems.

The idea of using computers to describe geometry dates back to the early days of computing [CM60;
Sut63] and CAGD systems are commonplace in industry today. There are numerous texts that outline
the theoretical foundations of CAGD, e.g. by Farin, Hoschek, and Kim [FHK02], Faux and Pratt
[FP79], and Sederberg [Sed12]. Nonetheless, some essential background is provided in the following.

Fundamentally, geometry is typically described by univariate curves x(u), which are discussed in
section 4.1.1.1, and bivariate surfaces x(u, v) described in section 4.1.1.2. Trivariate volume descrip-
tions x(u, v, w) are also possible, but more rarely used. Instead, different advanced techniques have
been developed to describe volumes, which are introduced in section 4.1.1.3.

4.1.1.1. Mathematical description of curves in CAGD

Considering the fuselage modeling techniques discussed in section 2.1.2, the defining role of curves
quickly becomes apparent. Every modeling approach assumes a cross-sectional profile, which is defined
by a curve. The assumption may be either implicit, e.g. the circular cross-section for the cylinder
model, or explicit e.g. the OpenVSP profile definitions. In addition, the need for guide curves to
realize more detailed fuselage representations is stated.

In CAGD systems, the simplest curve types are straight lines, which may be trimmed or untrimmed.
Other common types of analytical curves are conic sections e.g. circles, ellipses, parabolas or hyper-
bolas. All of these types of curves can be described analytically. However, they are usually not suited
to represent the fuselage profile and guide curves. Therefore, polynomial curve formulations, most
commonly Bézier curves, B-splines or non-uniform rational B-splines (NURBS) are available in most
systems to allow for a more flexible description of curves. NURBS curves and surfaces in particular,
have become the norm for representing the OML of aircraft, as they are the most general of the three
curve formulations. Comprehensive texts on NURBS theory are available, e.g. by Boor [Boo01], Farin
[Far01], and Piegl and Tiller [PT96]. The following explanations of the theoretic foundations are
primarily based on Farin [Far01].

In the following, some fundamental aspects of the three types of curves are discussed, which are
relevant when trying to describe aircraft component geometry.

Bézier curves Bézier curves are constructed from a control point polygon using a Bernstein
polynomial basis

Bn
i (u) =

(︃
n

i

)︃
ui (1− u)n−i , (4.1.1)

as illustrated by figure 4.1.1. The variable u is the running variable along the length of the curve,
which is defined in the interval [0, 1]. The polynomial degree of the curve is prescribed by n. An
important property of Bernstein polynomials and all subsequent basis functions, is that they form
a partition of unity, i.e. the sum of all basis curves always amounts to one, as expressed by

n∑︂
i=0

Bn
i (u) ≡ 1. (4.1.2)
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The curve x (u) is built by summing the Bernstein polynomials for all i ≤ n multiplied by a
corresponding control point ci :

x (u) =
n∑︂

i=0

ciB
n
i (u) . (4.1.3)

Equation 4.1.3 also illustrates the major weakness of Bézier curves. Since the number of basis
functions to evaluate is directly coupled to the number of control points, the function becomes expen-
sive to evaluate as curves become more complex and require more control points. Furthermore, the
polynomial degree increases with the number of control points, which makes them more difficult to
handle. On the other hand, only the control polygon is required to build a Bézier curve, since the
degree is determined by the number of control points.
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Figure 4.1.1.: Bézier curve and corresponding Bernstein basis functions for example control points

Many applications, such as visualization, require the evaluation of the curve at a discrete number of
sample positions u = [u1, ..., um]. In this case, the evaluation of the Bézier curve as given in equation
4.1.3 can be reduced to the scalar product

x (u) = B (u) · c, (4.1.4)

where c is a matrix containing the control point vector coordinate values and has the shape ndim × n
and the n×m-matrix B (u) contains each polynomial basis evaluated at the positions u. Consequently,
the result x (u) is a vector of curve point vectors and has the shape ndim×m. It follows from equation
4.1.1 that B (u) is a full matrix for Bézier curves, making evaluations expensive for both large
numbers of control points (i.e. high-order curves) and large numbers of sampling positions.

A useful property of Bézier curves is their affine invariance property. Affine maps are coordinate
transformations, which, among other things, preserve collinearity, parallelism, convexity, and ratios of
lengths and include commonly known translation, rotation, and scaling operations as well as combi-
nations thereof. The affine invariance property says that, if an affine map is to be applied to a Bézier
curve, it is sufficient to apply it to the control points.

Another interesting property, which can be exploited e.g. in intersection algorithms is the convex
hull property. It says that a Bézier curve will always be contained within the convex hull of its control
polyline. Therefore, if an object is outside of the convex hull, it is guaranteed not to touch the curve
(in 2D). A related property in this context is the variation diminishing property, which states that for
a curve in space, a plane will never intersect the curve more often than the control polyline.

Finally, the differentiability depends on the polynomial degree of the curve, and hence the number
of control points n. A Bézier curve is always Cn−1 continuous.
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4. Computer aided engineering methods to enable fuselage MDAO

Non-rational B-splines The limitations of Bézier curves can be avoided in non-rational B-splines
(often simply referred to as B-splines), by applying a piecewise polynomial basis function, where the
polynomial degree is decoupled from the number of control points. This is accomplished using a
recursive basis function:

Nn
l (u) =

u− tl−1

tl+n+1 − tl−1
Nn−1

l (u) +
tl+n − u

tl+n − tl
Nn−1

l+1 (u) , (4.1.5)

with

N0
i (u) =

{︄
1 if ti ≤ u < ti+1

0 else
. (4.1.6)

Visibly, the piecewise polynomial approach requires an additional knot sequence t with the entries ti
to be provided, which defines the intervals in which the polynomials are defined. Furthermore, n is
once again the polynomial degree of the curve, while l is the number of control points.

Using this basis, the curves are computed in a similar way as the Bézier curves in equation 4.1.3
using

x (u) =

l+n+1∑︂
i=0

ciN
n
i (u) , (4.1.7)

where ci is the i-th point in the control polygon. Consequently, unlike Bézier curves, the control
polygon c is not sufficient to describe a B-spline. Instead, the polynomial degree n must be stated
explicitly as well as the internal knot sequence t. A cubic B-spline curve using the same control points
as the Bézier curve in figure 4.1.1 is provided in figure 4.1.2, along with the basis functions. Just
like the Bernstein basis of the Bézier curve, the B-spline basis functions form a partition of unity.
However, each basis function covers only a subset of the full range of t. As a result modifications
of individual control points of a B-spline curve only have a localized effect. Curve segments that lie
sufficiently far away from the control point, will remain unchanged. This is referred to as a localized
modification scheme.

0.25 0.50 0.75 1.00

x

0.2

0.4

0.6

y

u = 0.

u = 1.

(a) B-spline curve

0.00 0.25 0.50 0.75 1.00

u

0.0

0.2

0.4

0.6

0.8

1.0

N
3 i
(u

)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

(b) B-spline basis functions

Figure 4.1.2.: B-spline curve and corresponding basis functions for example control points

Like for Bézier curves, the evaluation of the B-spline curve at the m discrete sample positions u
can be interpreted as a scalar product given by

x (u) = N (u) · c. (4.1.8)

Following equation 4.1.5 the matrix N (u) has the shape l + n+ 1×m. Unlike B (u), which is a full
matrix, N (u) is a band matrix due to the localized modification scheme.
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A Bézier curve can be understood to be a special case of a B-spline curve, where n = l, with
2 (n+ 1) knots and half of the knots clamped at each end respectively. Consequently, B-spline curves
share many of the properties of Bézier curves, such as affine invariance and convex hull. However,
it is also possible in B-splines for a value to appear multiple times in the knot sequence t. This is
expressed by the knot multiplicity k and can be used to introduce breaks in continuity into the curve.
The curve will be only Cn−k continuous at the knot of multiplicity k. This makes it possible to model
smooth curves with discontinuities or corners. The first and last knot of a clamped non-periodic
B-spline curve as shown in figure 4.1.2 always have the multiplicity n+ 1.

NURBS curves B-splines are a powerful tool to efficiently describe a large variety of shapes. However,
conic sections cannot be described exactly. To this end, NURBS are commonly available in CAGD
environments.

As explained e.g. by Farin [Far01], a conic section in E2 can be understood as the projection of a
quadratic parabola in E3 to a plane using⎡⎣ x

y
z

⎤⎦ →

⎡⎣ x/z
y/z
1

⎤⎦ . (4.1.9)

Applying the same rule,
[︁
wx wy w

]︁T will project to
[︁
x y

]︁T , where w is an additional weight
factor. This illustrates how B-spline or Bézier curves can be modified to describe conics by introducing
an additional weight per control point. The vector

[︁
wx wy w

]︁T is referred to as the non-rational
projection of the NURBS curve. As such, this type of curve can be handled like a common non-rational
B-spline. To evaluate the rational curve, the projection to rational space must be performed, which
yields

x (u) =

∑︁l+n+1
i=0 wiciN

n
i (u)∑︁l+n+1

i=0 wiNn
i (u)

. (4.1.10)

Figure 4.1.3 provides an example of a circle described using a NURBS curve.
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Figure 4.1.3.: Circle represented by a NURBS curve

Spline curve interpolation techniques Defining the curves via a control polyline has several con-
venient mathematical implications, which have already been addressed. However, it is not helpful
for practical engineering applications, as engineers are usually more concerned with points, which lie
on the actual curve. Spline interpolation techniques are helpful in determining a spline curve, which
passes through a given set of points. The approach is demonstrated here for non-rational B-spline
curves, but can analogously be applied to Bézier and NURBS curves.
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Essentially, the problem of B-spline interpolation is the problem of finding the control polygon
based on a given sequence of points by solving equation 4.1.8. The challenge is to choose the sample
parameter vector u, the knot vector t and the polynomial degree n in such a way that N (u) becomes
a square matrix, which can be inverted. Typically, the polynomial degree is prescribed by the user
before the interpolation, leaving the determination of the vectors u and t.

The length of the sample point vector u is determined by the number of points to be interpolated
m. The distribution of the values of u within the value range of the curve can, however, be chosen
freely. Common approaches include the uniform, chord length and centripetal method. Lee [Lee89]
proposes a unified formulation for all three approaches:

ui − ui−1 =
|xi − xi−1|e∑︁m

j=1 |xj − xj−1|e
, 1 ≤ i ≤ m. (4.1.11)

For the chord length method, the exponent is set to e = 1. This means that the parameter difference
for a segment between two points is equivalent to the distance between them, i.e. the chord length of
the segment, divided by the summed lengths between all point pairs. For the uniform method, the
exponent is set to e = 0, which means each chord length evaluates to 1. Therefore, the parameter
difference is the same for each segment. For the centripetal method, the exponent is chosen to be
e = 0.5.

From the resulting vector u the knot vector t can be computed using a moving average approach:

tj+n =
1

l

j+n−1∑︂
i=j

ui, j = 1, 2, ...,m− n. (4.1.12)

End knots must be appended for open B-splines.
Figure 4.1.4 shows the interpolation results for a simple example. Comparing the curve segment

lengths to their corresponding chord lengths, the chord length method is biased towards longer seg-
ments, whereas the uniform method is biased towards shorter segments. The centripetal method seems
to provide a good compromise between the two in many cases.
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Figure 4.1.4.: Interpolation results using different parametrization methods

A drawback of the interpolation approach is that the number of control points of the resulting curve
is coupled to the number of input points. Therefore, a high number of input points will result in a
curve that is expensive to evaluate. Instead of an interpolation, a least-squares approximation can be
performed, e.g. by solving

N (u)T x (u) = N (u)T N (u) · c (4.1.13)

for c. Here, N (u) must no longer be square and the desired number of control points nc can be
specified by the user, independently from the number of input points. Compared to the interpolation
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approach, this also changes the way the knot vector is determined. Instead of the moving average
approach given in equation 4.1.12, an evenly spaced distribution can be assumed.

Class function / Shape function Transformation (CST) curves While accurate knowledge of the
product shape is essential especially in later development stages, e.g. for manufacturing, in the earlier
stages it can be easier to describe aircraft geometry using just a few top-level parameters, such as
wing span or fuselage diameter. These parameters are also substantially more meaningful to the
design engineer than e.g. NURBS control points and weights and better suited as design variables for
MDO.

The CST introduced by Kulfan [Kul08], represents an attempt to provide a formulation, which
combines an accurate geometric curve description with a meaningful parametrization for aerodynamic
shape optimization. It is used to describe both wing and fuselage profiles ζ using

ζ (ψ) = CN1
N2

(ψ)S (ψ) + ψζT , (4.1.14)

where CN1
N2

(ψ) is the class function, S (ψ) is the shape function and ζT is the trailing edge thickness
ratio. The class function is defined as

CN1
N2

(ψ) = ψN1 (1− ψ)N2 . (4.1.15)

The exponents N1 and N2 can be used to manipulate the class of the profile. For instance, N1 = 0.5
and N2 = 1.0 are used for round-nose airfoils and N1 = 0.5 and N2 = 0.5 for elliptic profiles. The
shape function has the form

S (ψ) =
n∑︂

i=0

AiSi (ψ) , (4.1.16)

which is exactly the same as for Bézier curves or B-splines. Kulfan proposes the Bernstein poly-
nomial basis from equation 4.1.1 to represent the shape function, which then effectively amounts to a
one-dimensional Bézier curve. However, the overall shape of the curve is also modified by the class
function. Therefore the control points coordinate values Ai are considered coefficients, which can be
used to modify the profile. For instance, using a second degree Bernstein polynomial would provide
three shape functions with three corresponding coefficients. The first shape function is dominant in
the forward part of the profile, the second function controls the middle, and the third one the trailing
edge. It follows that the respective coefficients control the corresponding sections of the profile.

The class function, on the other hand, enforces the boundary conditions e.g. a round leading edge
and a sharp trailing edge for N1 = 0.5 and N2 = 1.0. In this case, the first coefficient affects the
radius of the leading edge, the second coefficient affects the thickness and the third one affects the
trailing edge tangent, providing more targeted design variables for optimization. Therefore, the CST
formulation provides an interesting example of how the complex curve formulations outlined above
can be related to more relevant engineering parameters. That said, the actual coefficient values Ai are
usually computed numerically and are difficult to interpret by themselves.

In addition to aerodynamic profiles, Kulfan proposes the application of CST curves to describe
fuselage cross sections, as shown in figure 4.1.5. Moreover, Jonge [Jon17] provides support for CST
cross-sections in ParaFuse. However, problems arise when trying to represent CST curves as NURBS
curves, e.g. to visualize the curves in CAD environments, which do not usually support CST curves.
Marshall [Mar13b] shows that an exact representation of CST curves using NURBS is possible for
the most common, but not all combinations of exponents. A prerequisite for Marshall’s method is a
pointed trailing edge, i.e. N2 = 1.0. This is not the case for the fuselage profiles proposed by Kulfan.
Consequently, Jonge applies a B-spline fitting technique to implement CST profiles in ParaFuse, albeit
without providing further details.
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Figure 4.1.5.: CST representations for different fuselage profiles (after [Kul08])

4.1.1.2. Spline-based description of surfaces and volumes

So far, the discussion was focused on univariate curves x(u). However, the curve descriptions can easily
be transferred to bivariate surfaces x(u, v). Analogously to analytical curves, analytical surfaces, such
as planes, cylindrical or spherical surfaces are also available in most CAGD environments.

With regards to spline curves, an additional coordinate direction v must be introduced to describe
surfaces. The topologically one-dimensional control point polygon is extended to a topologically two-
dimensional control point grid, as shown in figure 4.1.6. Furthermore, the basis functions need to be
evaluated twice, once for each topological direction. For the case of a B-spline surface, this results in

x (u, v) =

l1+n1+1∑︂
i=0

l2+n2+1∑︂
j=0

cijN
n1
i (u)Nn2

j (v) . (4.1.17)

The basis functions, i.e. the polynomial degree ni and the knot vector ti can be selected independently
for each topological direction. In this way, it is possible to describe surfaces, which are defined e.g. by
a cubic polynomial in one direction and a linear polynomial in the other.

Several techniques for building surfaces from points or curves have been proposed [PT96]. Some
relevant examples are listed in figure 4.1.7 and briefly discussed in the following.

Bivariate point grid interpolation (figure 4.1.7a) Bivariate grid point interpolation is an extension
of the curve interpolation approach in two dimensions. Instead of a polyline of points, a point grid is
required as input. Simply put, the curve interpolation is performed twice, once for each direction of
the point grid.
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Figure 4.1.6.: B-spline surface with corresponding control point grid

Point cloud approximation (figure 4.1.7b) Instead of a structured point grid, a surface can also be
constructed from an unstructured point cloud in 3D. In this case, a principal component analysis must
first be performed, to define the topological directions of the surface and estimate the uv-coordinates
of the points. A specific number of points must be provided to perform an interpolating fit of the
point cloud, which depends on the assumptions made for the surface. Therefore, it is usually more
useful in many cases to perform an approximation instead. The resulting surfaces have a tendency to
run off towards infinity outside the bounds of the point cloud.

Skinned surface (figure 4.1.7c) A surface is generated by an interpolation between a series of curves.
A challenge here is that the curves must be made compatible, i.e. they all need to share the same
polynomial order n and knot vector t. This requires application of advanced spline manipulation
techniques like degree elevation and knot insertion.

Swept surface (figure 4.1.7d) A surface is generated by extruding a profile curve along a trajectory
curve. This is essentially a special case of the skinned surface algorithm, which is applied to trans-
formed copies of the profile curve. The translations are computed based on the trajectory curve. It is
also possible to manipulate the orientations of the translated profiles.

Coons patch (figure 4.1.7e) A Coons patch is defined by four surrounding curves. The surface
is assembled by summing the linear skinned surfaces between the two pairs of opposite curves and
subtracting the bilinear patch defined by the corner points. Advanced implementations also support
the prescription of gradient distributions along the edges of the patch.

Gordon surface (figure 4.1.7f) A Gordon surface is an extension of the Coons patch, which op-
erates on a topologically structured curve network. Instead of computing a surface only between two
opposite curves, a skinned surface is computed for each of the two surface directions based on a se-
quence of curves. The patch, which is subtracted must contain all curve intersection points in the
curve network. In this context, Siggel et al. [SK+19] provide some further background on the prac-
tical challenges to overcome when building compatible curve networks. A big advantage of Gordon
surfaces over Coons patches is that continuity over shared edges between adjacent cells is ensured
without additional effort.

Analogously to equation 4.1.17, trivariate volumes can be created by further expanding the control
point grid from 2D to 3D and adding further topological directions [FH85]. An example for a trivariate
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(a) Bivariate point grid interpolation (b) Point cloud approximation

(c) Skinned surface (d) Swept surface

(e) Coons patch (f) Gordon surface

Figure 4.1.7.: Spline surface construction techniques
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B-spline volume is shown in figure 4.1.8. Whereas such volumes are rarely used in CAD environment,
they are commonly applied in FFD schemes, as described in section 2.2.3.

Figure 4.1.8.: B-spline volume and corresponding control point grid

4.1.1.3. Advanced CAGD modeling concepts based on tree structures

Building upon the previously established concepts of geometric curves and surfaces as well as ana-
lytically defined primitives, such as ellipsoids, boxes or cones, more advanced geometry description
techniques can be applied as described e.g. by Hoffmann [Hof89]. The common underlying idea is to
express shapes in terms of combinations of simpler shapes. The relationships can be stored in a tree
structure, where the final shape is the root and its source components are the leaves.

Boundary representation (B-rep) As mentioned previously, trivariate volume descriptions are rarely
found in CAGD systems. Instead, a boundary representation (B-rep) approach is often adopted, where
volumes, also referred to as solids, are defined by their bounding surfaces. To differentiate between
mathematical surface descriptions, as discussed in the previous section, and bounding surfaces in B-
rep, the latter are often referred to as faces. Analogously to solids, faces can be represented by their
bounding edges. A complete overview of the B-rep components implemented in the OCCT kernel
is given in table 4.1.1. As illustrated by figure 4.1.9, the B-rep formulation results in a hierarchical
structure, where a solid is described in terms of a collection of faces, each of which is in turn defined
by a collection of edges.

Table 4.1.1.: Terminology of B-rep compared to geometry as implemented in OCCT [OCC23a]
Dim. Geometry B-rep Comment
0D Point Vertex
1D Curve Edge An edge may be bounded by vertices

Wire A wire is composed of multiple edges
2D Surface Face A face may be bounded by a closed wire

Shell A shell is composed of multiple faces
3D Volume Solid A solid may be bounded by a closed shell

Compound solid A compound solid is composed of multiple solids

Constructive solid modeling (CSM) Volumetric solids provide the foundation for the constructive
solid modeling (CSM) approach. In CSM, geometry is described in terms of Boolean operations
on geometric sets. The Boolean operations include union (∪), intersection (∩) and difference (−).
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Figure 4.1.9.: B-rep representation of a tetrahedron (after [Hof89])

Using these operations, solids can be combined recursively, resulting in a tree structure as illustrated
by figure 4.1.10. To a certain extent, the approach can furthermore be extended to simpler shape types
e.g. faces and edges. CSM capabilities can be found in any modern CAGD framework. To facilitate
the use of CSM, most vendors furthermore provide predefined parametric primitives, such as boxes,
spheres, cylinders or cones. Schmidt [Sch12] proposes a formalization based on the Unified Modeling
Language (UML) for a number of primitives and subsequently demonstrates CSM capabilities, with
the goal to connect those to superordinate design processes. Based on ESP, Dannenhoffer [Dan13]
introduces the OpenCSM framework, which has been designed to provide built-in support for geometric
sensitivities for gradient-based MDO. It also includes a dedicated language to formulate CSM trees.

The mathematical implementation of these operations depends on the underlying geometry. For
Boolean operations involving polynomial curves or surfaces, it is necessary to apply iterative nu-
merical methods [PM10], which makes them computationally expensive and potentially unstable. In
addition to the numerical aspects, both Hoffmann [Hof89] and Dannenhoffer and Haimes [DH15]
point out the difficulty to properly identify and react to changes in topology when applying Boolean
operations to parametric models.

While B-rep and CSM are related in that they are both based on tree formulations, the two types of
trees must be kept separate. For instance, a difference operation, as shown for the sphere and the cube
in figure 4.1.10, accepts two B-rep trees as input, from which the intersection curves are computed. A
new B-rep tree is provided as output, which contains elements of both input trees, but is effectively a
new copy.

Parametric feature trees Parametric feature trees, which are very common especially in interactive
CAD environments, provide a generalization of the tree approach in B-rep and CSM linking them
to more general engineering parameters. They allow the user to combine custom defined parameters
using a set of operations. These include generative operations to build B-rep shapes or primitives
from scratch, such as rotations, extrusions and offsets, but also affine transformations. Boolean
operations can also be included, enabling CSM capability.

To illustrate, the simple example of a thick-walled cylindrical barrel as shown in figure 4.1.11 is
considered. It is defined by its length lbarrel, inner diameter dinner and wall thickness tbarrel. Two
possible feature trees to assemble the geometry are given in figure 4.1.12. On the one hand, a rectangle
with the length lbarrel and the width tbarrel can be created. It is then moved the distance dbarrel away
from the rotation axis around which it is subsequently extruded into a rotational body. The second
approach leverages CSM by creating two cylinders of the length lbarrel. The inner cylinder has the
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Figure 4.1.10.: CSM tree for a shape built using Boolean operations (after Wassermann et al.
[WB+16])

diameter dinner, whereas the outer one has the diameter douter = dinner+2tbarrel. The barrel geometry
is then simply created by subtracting the inner cylinder from the outer. The example exemplifies that
there is rarely one singular feature tree to describe a given geometry.

Another more detailed example is given by Dannenhoffer and Haimes [DH15], who use a feature
tree to describe a bolt.

Dannenhoffer [Dan13] furthermore lists drawbacks of the feature tree implementations in prevalent
CAD applications. This includes a very limited and proprietary language for the formulation of build
recipes. As a result, the number of parameters is usually kept low and the intended use is limited
to combining predefined primitives, resulting in a high modeling bias. This means that changes in
the fundamental product architecture, e.g. adopting a non-circular cross-section will require signifi-
cant changes in the model. Due to these drawbacks, in addition to missing support for derivative
computation and license cost, Dannenhoffer opts to introduce a new description language for feature
trees.

4.1.1.4. Review of CAD environments and data standards

The market for CAD solutions is vast, with an ever growing number of vendors and products. To
compile a comprehensive review of all available solutions would exceed the scope of this thesis. How-
ever, it is worth to highlight a few preeminent CAD solutions in various fields connected to this thesis.
In addition, a brief overview of CAD file formats is given.

Notably, the scope of many solutions exceeds the purely geometric product modeling, which is why
the more specific acronym CAGD is nowadays largely abandoned in favor of the more general CAD.

CATIA / 3DEXPERIENCE In aerospace, CATIA by Dassault Systèmes [3DS23b] remains the stan-
dard solution for OEMs. It provides an interactive user interface and a vast library of tools specific
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Figure 4.1.11.: Thick-walled barrel example geometry
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Figure 4.1.12.: Possible feature trees for a thick-walled barrel in XDSM notation

to aerospace applications. Automation of CATIA is possible using either the COM-interface, a VBA
macro interface, or the built-in Engineering Knowledge Language (EKL). EKL can also be used to
formulate moderately advanced relationships within the model, including loops and if/else constructs.
Segments of the feature tree can be re-used using the Power Copy or user-defined feature (UDF)
capabilities, which can be compared to high-level primitives in KBE (s. section 4.3.2.4). Knowledge
Patterns can be applied to create and manage multiple instances of a Power Copy or UDF controlled
by EKL code. That said, many capabilities for CATIA can only be accessed by purchasing additional
tool kits. Furthermore, code must typically be written in the user interface (UI) and is not externally
accessible, which results in a cumbersome development process and inhibits application of commonly
accepted best practices in modern software engineering.

Recent versions of CATIA are distributed as part of the 3DEXPERIENCE platform [3DS23c].
Whereas the CAD functionality is largely the same as in older versions, data is no longer stored
locally in the file system, but in a central product lifecycle management (PLM) server. The proprietary
centralized data management solution facilitates the interaction with other tools inside the platform,
but further impedes the accessibility via third-party tools.

Rhinoceros 3D A popular solution in the field of 3D computer graphics is Rhinoceros 3D [McN23].
Compared to CATIA, Rhinoceros places a stronger emphasis on interactive NURBS-based surface
modeling. A Python-based visual programming environment called Grasshopper is available, promis-
ing rapid setup of parametric modeling pipelines by domain experts with minimal coding skills re-
quired.

The visual programming approach is very similar to the PIDO frameworks used for MDAO workflow
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integration (cf. section 2.2.4). As such, it is particularly well-suited for small, easily comprehensible
example problems, but does not adapt well to the high level of complexity commonly found in real-
world applications, as indicated by Kirchhof et al. [KJ+23].

Open CASCADE Technology Finally, the Open CASCADE Technology (OCCT) library [OCC23a]
provides an open source implementation of a CAD kernel. Aside from being free of charge, OCCT
has the advantage that it provides access to functionality at a very low level, which comes at the
expen of a steeper learning curve compared to the commercial tools. Projects like FreeCAD, where
a user interface is implemented on top of the OCCT kernel, aim to improve accessibility and provide
an open source alternative to commercial CAD solutions. OCCT is written in the C++ programming
language, but bindings for other languages such as Python are available [Pav20].

File formats All of the above CAD tools have their own dedicated file formats, which are designed
to support a large subset of the feature set of the respective application. For instance, CATIA V5
provides the CATPart and CATProduct format, which can be used to store not only the geometry,
but also the feature trees. Analogously, Rhinoceros 3D provides the Rhino 3D model (3dm) format
and FreeCAD the FreeCAD Document (FCStd) format. OCCT provides a lower level geometry-only
binary format called BRep.

The mentioned formats tend to work well with the tool for which they have been designed, but
interoperability is usually a problem. Interfaces for import and export are either not available at all
or support only very small subsets of a given format’s feature set. The need for a common exchange
format for geometry has led to the introduction of the Initial Graphics Exchange Specification (IGES)
format, which provides a standardized definition of product geometry. It was later superseded by
the Standard for the Exchange of Product model data (STEP), which is the current ISO standard for
product model data exchange [ISO21]. Compared to IGES, STEP supports a larger set of product
data, including some metadata. However, a common drawback of STEP and IGES is the lack of
support e.g. for feature trees and parametric relationships. Furthermore, both are text formats by
default, rather than binary formats, which results in slow import and export operations.

4.1.2. Data-centric product model

In the previous section, the unambiguous mathematical description of the geometry or shape of the
product is presented as one possible way of sharing engineering data in a collaborative process. How-
ever, in aircraft design, significant amounts of non-geometric data as diverse as mass properties,
mission profiles, material properties and engine performance maps are necessary to perform a proper
analysis.

Modern CAD systems provide support for metadata connected to the geometry, such as compo-
nent group affiliation or assigned materials. Furthermore, visualization settings can be stored using
common exchange formats like STEP. Nevertheless, the sheer amount and heterogeneity of data re-
quired effectively prohibits its inclusion into the CAD model. Moreover, the geometry description
using e.g. NURBS curve formulations, though mathematically accurate, rarely provides parameters,
which correspond to the intuition of a design engineer or are expressive for an optimization. Con-
sequently, CAD-based geometry must be considered a necessary, but insufficient part of the digital
product description for the aircraft design process. This is reflected in working hypothesis 1work-
ing hypothesis 1, where a description based on parameters is explicitly called for.

Consequently, the evolution of data-centric product models for aircraft design is discussed in the
following, which aim to provide a more meaningful product description compared to a CAD model.

Design data input In its most basic form, a data-centric product model is a way of providing all
necessary input data to a design tool. This is usually a list containing a limited set of design parameters.
The tool then takes care of the distribution of the parameters and provides the desired outputs, which
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could range from an estimate of the mass, block fuel, or direct operating cost (DOC) to a detailed
CAD model. To the tool, the design parameter list provides a sufficiently complete description of the
product, since any other necessary information is computed using the implemented routines.

Some design tools, especially with an educational background e.g. OpenVSP or PADLab, also pro-
vide graphical user interfaces, which allow interactive modification of parameters. The set of param-
eters made available by the GUI effectively represents a parameter list as well.

Design data serialization As mentioned in section 2.1.1, most aircraft design frameworks consist of
an iterative loop, where new information about the product becomes available successively. This means
that the values of certain design parameters become available only later in the process. Therefore, the
design parameters are managed in memory in a central database in tools like PrADO or PADLab.

The need for a structured and predictable way to store data permanently becomes apparent when
implementing a feature for saving and loading design projects. As a result, developers have been
forced to find ways to store product data using dedicated data structures or ontologies. The process of
translating data structures or objects in memory to a form, which can be stored and reconstructed later
is commonly referred to as serialization. PADLab uses a struct-type data structure from MATLAB
as a product data container. The corresponding serialization tools are applied for saving and loading.
In PrADO a data management system layer is provided, which is accessed by the individual design
modules to manipulate the product data via an interface in FORTRAN. Both tools store the data in
binary form, which has advantages in terms of performance, but results in files, which are not readable
for humans. It also makes it difficult to access the data via third-party software, since the structure
of the data is controlled only by the respective design tool.

To overcome these limitations Risse et al. [RA+12] propose the Aircraft Exchange (AiX) format,
an aircraft definition schema based on the eXtensible Markup Language (XML)[W3C08]. XML has
several technical advantages that make it well-suited for data exchange. First, XML files are formatted
text files, which can be read and understood by humans. It also allows for information to be organized
in a hierarchy, which facilitates the navigation of the data. Finally, it provides schema definition and
validation capabilities, allowing for prescription and enforcement of the structure of the data set. This
makes it possible to implement software in adherence to the schema, which will function with any
valid data set.

AiX has been developed as a container format for the MICADO conceptual design tool. As such,
the purpose of the format is to contain the inputs i.e. requirements and specifications on the one hand,
and the product definition, including geometry, masses, accommodation etc. on the other. However,
Schültke et al. [SA+21] indicate that MICADO was conceived as a standalone-framework, implying
that AiX is not intended for use outside of MICADO. Instead they point to CPACS as an exchange
format for outward compatibility, which is discussed in the following.

Design data exchange The Common Parametric Aircraft Configuration Schema (CPACS) [LH11] is
also based on XML and thus shares the technical basis with AiX. However, the ambition for CPACS,
first stated by Nagel et al. [NB+12], is fundamentally different. Instead of merely providing a product
data schema to support a single closed framework, CPACS is designed to be a “common language” for
aircraft design. As such, it must be capable of providing data to a large variety of analysis and design
tools. Therefore, disciplinary analysis tool providers have been actively involved in the development
process. The initial geometry definition was proposed by Liersch and Hepperle [LH11], who not only
provide ways to describe e.g. the OML, but also necessary design requirements e.g. mission definitions.
The definition of wing structures is outlined by Dorbath, Nagel, and Gollnick [DNG11]. Scherer and
Kohlgrüber [SK16] later contributed a description schema for fuselage structures, whereas Fuchte,
Gollnick, and Nagel [FGN13] contributed a first cabin definition, which has recently been revised by
Walther et al. [WH+22a]. In this way, product descriptions for all common disciplines in aircraft
design have been included in CPACS.

It is worth noting that CPACS – or any product data model – is only a container for the exchange
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of product information. The actual knowledge on how to create this information must be provided
via disciplinary analysis and design capabilities. In this context, the hierarchical structure of CPACS
is exploited by storing more detailed data on deeper levels of the hierarchy [Zil13]. On the one hand,
this enables an evaluation of the design on various levels of fidelity, which is discussed in depth by
Böhnke [Böh15], allowing for successively higher fidelity analyses to add more and more design details.
On the other hand, other authors have applied CPACS for analyses at air transportation system level
[GS+11; KL+11].

Alder et al. [AM+20] provide a good overview of projects, where CPACS has been used successfully
in the past as well as perspectives for further development. Remarkably, many of the challenges
mentioned are not related to the technical definitions in CPACS, but to the supporting processes and
ecosystem. Despite extensive documentation being available [DLR23], the aspect of training has been
cited as a particularly important prerequisite to lower the entry barrier to a format as complex as
CPACS.

Towards design knowledge exchange Increasing interest can be noted in even more advanced data
modeling languages, such as the Unified Modeling Language (UML) [OMG17] and its derivatives like
the System Modeling Language (SysML) [OMG19] as well as the Web Ontology Language (OWL)
[W3C12]. They allow for storage and exchange of more complex relationships between pieces of infor-
mation. UML in particular is well-known from object-oriented programming (OOP), where objects
are described using classes with attributes (data) and methods (operations on the data). Relation-
ships between classes can be established through interactions. In this way, the behavior of the product
can be exchanged in addition to the structure. This combination is commonly referred to as design
knowledge (s. section 4.3.1). SysML is a derivative of UML, which aims to make the language more
suitable for complex systems engineering applications. OWL provides a modified understanding of
classes and additional description capabilities, which enable semantic reasoning on the available data.
This includes e.g. type inference. All languages can be serialized using XML syntax, however, the
additional overhead due to the modeling language means a decrease in readability compared to plain
XML.

Published applications include cabin systems modeling [Mot16; FH+21], manufacturing [PN19;
MS+22] and geometry description [Sch12; ZZM20]. OWL in particular provides significant additional
value w.r.t. XML. On the one hand, entries from one ontology are made available globally using an
uniform resource identifier (URI) and can be referenced from any other ontology. The result is referred
to as the semantic web [W3C23] and enables highly modular ontologies. The additional freedom comes
at the cost of a loss of control over individual ontologies and thus an increased risk of inconsistent or
duplicate definitions.

On the other hand, the type inferencing capabilities (s. also section 4.3) are a very powerful feature of
OWL. Using proven reasoners, properties of types can be determined at run-time based on predefined
rules using associated rule description languages like the Semantic Web Rule Language (SWRL), which
permits very efficient modeling, compared to the aforementioned languages. However, this also means
that the modeling procedure is significantly more complex, thus exacerbating the issue of the high
entry barrier observed for CPACS.

Evaluation of suitability for collaborative fuselage design The most important formats described
in the preceding paragraphs have been collected in table 4.1.2, in order to provide a comparison and
make an assessment w.r.t. their applicability for collaborative fuselage design use cases. To this end,
several criteria are identified to take into account requirements from both a software engineering and
an aircraft design perspective. For the former, aspects such as portability between different systems
as well as the availability of an open source library and a well-established long-term support are
of particular interest. For the latter, the possibility to explore the raw data in a human readable
format, a mature and stable data structure definition dedicated to the aircraft application case and a
manageable complexity of the modeling are key issues.
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Table 4.1.2.: Assessment of applicability of data formats for collaborative fuselage design
Storage format PrADO

parame-
ter list

PADLab
struct

CPACS SysML/
UML

OWL

Human readable + – + o o
Exchangeable o – + + +

Open source library – – + o o
Long term support – – + o o

Maturity for aircraft design + + + – –
Modeling complexity + o o – –

Rule support – – – o o

A clear distinction must be made between the first three columns, which contain dedicated data
formats for aircraft description, and the latter two, which are better compared to a technology like
XML. This means that they provide the means to describe a data model, but it is up to the user to
implement it for the actual use case e.g. aircraft. As long as no mature model for aircraft design,
similar to CPACS is available publicly, this rules out these technologies for the purpose of design
data exchange in the scope of this thesis. Furthermore, the capabilities of the included rule languages
like SWRL cannot match the versatility of an established general purpose programming language like
Python for describing complex relationships found in engineering. This is likely to diminish the benefit
of the languages builtin rule support, as the associated knowledge will likely need to be split between
the model and an associated software library anyway.

Out of the remaining entries, CPACS emerges as the most suitable format, outperforming the
PrADO and PADLab formats. Considering that CPACS has been designed explicitly for the purpose
of data exchange, this is to be expected. Notably, some authors investigating modeling formats
based on SysML or OWL [FH+21; MS+22] explicitly state that their developments are designed to
be complementary to CPACS i.e. build upon basic product information provided via that format.
This not only highlights the ubiquity of CPACS as an aircraft design data format, but also shows a
development path, where the aircraft design know-how contained in CPACS can be leveraged along
with the advantages of more modern knowledge modeling approaches.

4.1.3. Geometric interpretation via a parametric modeling engine

If geometry-centric models are necessary, but insufficient, to completely describe an aircraft in the
design process, this is also true for data-centric models. Whereas the CAD descriptions provide
unambiguous mathematical representations, most data-centric models are inherently vulnerable to
misinterpretation. This is not a major problem, as long as the model is designed for use with a single
program, since the correct rules for interpreting the parameters are already included in the program.
For input data and storage models, this is usually the case.

The set of rules to translate the parameters to CAD models is referred to as a parametric modeling
engine. Implementations of parametric modeling engines of varying degrees of sophistication are found
in most OAD environments. For example, interfaces to CATIA are provided by tools such as PreSTo
[ASS11] and PADLab [TUB17], whereas an interface to OCCT is available for MIKADO [Ris16].
PrADO and OpenVSP, on the other hand, have built-in visualization solutions. In all of these cases,
changes to the schema of the internal data-centric model are usually driven by changes in the tool,
which means the tool is adapted to changes in the format automatically.

For data-centric exchange models, by contrast, the situation is more complicated. A format such
as CPACS is designed to support a large number and variety of tools, all of which have a different
emphasis. The development of the format is therefore driven by the requirements and contributions
of stakeholders, instead of the development of any single tool. This results in a breadth of data
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represented, which exceeds the scope of any single tool. Furthermore, the multi-fidelity paradigm of a
format like CPACS means that options exist to provide data to a very high level of detail. However,
these are usually only required and thus supported by the respective disciplinary specialist.

The lack of a single central tool for data-centric exchange models means that consistent derivation
of geometry becomes an issue, due to the aforementioned inherent ambiguity of data-centric models.
One example is the definition of fuselage profile curves in CPACS. These are usually defined by a
list of points, ordered in circumferential direction. To generate e.g. a NURBS curve an interpolation
algorithm, as presented in 4.1.1.1, must be applied. However, this still leaves an infinite number of
possible curves, since the parameter distribution and polynomial order of the curve can still be chosen
freely by the user. Even though engineering intuition will clearly show that some results are closer to
the original intent of the designer than others, as far as the schema is concerned all possible solutions
are correct.

In the perimeter of CPACS, the TiGL Geometry Library (TiGL) [SK+19; SS+22] has been intro-
duced to address the issue of geometric interpretation. Implemented in C++ and built using OCCT,
TiGL accepts a CPACS file as input and provides CAD geometry representations of selected compo-
nents. Among other things, the OML, engines, the wing structure and wing movables are supported.
TiGL not only provides a GUI for interactive visualization and, to some extent, manipulation [Dro18]
of CPACS files, but also a programming interface. The idea is, for disciplinary tool developers to build
their analysis and design capability on top of the geometry capabilities of TiGL. Several examples for
structural analysis tools built using TiGL are provided in section 4.2.2.

A major weakness of TiGL is that it does not offer support for all geometric details, which can be
defined in CPACS, due to the vast scope of the format. For tool developers, this usually means that at
some point during the development, they will reach a point where they have exhausted the capabilities
of TiGL and must implement their own geometry rules to generate further geometric details. In the
best case the additional details are implemented in a way that is compatible to TiGL, as exemplified
by the development of the wing structure geometry for the tool Descartes [MPD13], which allows
them to be merged back into the TiGL library. However, the entry barrier for this approach is
fairly high, since it demands a high proficiency in software development using C++ and detailed
understanding of the OCCT kernel. As a result, some authors refrain from using TiGL altogether
and opt to develop a dedicated solution for their specific use case instead. Examples include the
tool jPAD [NM+16; DeM18] and a model generator based on CATIA described by Wunderlich et al.
[WD+21], which are intended to provide smooth outer surfaces and detailed representations of the
wing movables for aerodynamic analysis using CFD. Furthermore, in the structural model generators
cpacs-MONA [KS+19] and PANDORA [PKH18; WPK17], low-level B-spline libraries are applied for
surface modeling to accelerate e.g. the computation of intersection points between the fuselage surface
and structural component definition vectors (s. also section 4.2.2).

It is worth noting that in all parametric modeling engines mentioned above CPACS is considered
to be the single source of truth, while the geometric model is only a view of the parametric data in
CPACS. This means that changes in the geometry are only valid if they are based on a change in the
underlying CPACS data.

Nevertheless, the examples give an impression of the breadth of disciplines, to which the parametric
modeling engine has to cater. Furthermore, the difficulty for a library with a conventional object
oriented architecture such as TiGL to comply with the heterogeneous user requirements is revealed.
Similarly, the breadth of fidelity requirements must be handled on the individual tool level.

The graph-based methodology described in working hypotheses 1 und 2 is intended to overcome
some of these limitations by facilitating the model generation for different disciplines and fostering
re-use of existing geometry.

4.1.4. Summary

In this section, two types of product representations for digital engineering processes are discussed
and compared to the requirements from working hypotheses 1 und 2. On the one hand, classical

45



4. Computer aided engineering methods to enable fuselage MDAO

CAD geometry models are considered, which can provide an unambiguous description of geometry,
but have limitations w.r.t. non-geometric data. On the other hand, data-centric models provide nearly
unlimited freedom in terms of what kinds of data can be stored. However, if geometric information
is stored, it must usually be interpreted, which complicates working with the format and may lead to
ambiguities.

For complex products, such as aircraft, which require substantial amounts of both geometric and
non-geometric data during design, a hybrid approach using a parametric modeling engine is considered.
In this approach, the geometric parameters are stored in a data-centric format. The modeling engine,
which is deployed along with the format, provides rules on how the parameters are to be interpreted
and can be used to derive a CAD representation of the geometric subset of the product data.

The CPACS format is a well-established data-centric format for aircraft design, which provides the
means to describe the aircraft from the point of view of many disciplines, including cabin and structural
design. A complementary parametric modeling engine named TiGL is available, which, however, does
not support all geometric features of CPACS. Therefore, additional modeling relationships must be
implemented to describe fuselage structures and cabins at a sufficient level of detail to enable the
investigation of working hypothesis 2.

The considerations in this section show that both a data-centric parametric description and a CAD-
based geometric description are by themselves necessary but not sufficient to completely describe the
product. This corroborates working hypothesis 1, in which it is proposed to augment the parametric
data with rules to form a knowledge graph.

4.2. Computational analysis and design of the fuselage and cabin

In working hypothesis 2, the need to generate analysis models based on different disciplinary
analysis models is stated. In this section, previous work on computational analysis and design methods
for disciplines concerned with the fuselage and cabin, which could potentially be incorporated as design
competences in collaborative third generation MDAO processes, is therefore examined. The goal is
to identify necessary product details and geometric features, which must be provided by the virtual
product model in order to enable seamless and consistent integration of the respective disciplines.

A particular challenge is that the fuselage structure and the cabin design are closely interlinked and
cannot be treated independently from one another. Therefore, special attention is paid to overlapping
requirements between fuselage and cabin analysis methods.

Before discussing the existing work on fuselage analysis, a short theoretical introduction to relevant
analysis methods in the different fields is given in section 4.2.1. Examples of structural analysis of the
fuselage are then reviewed in 4.2.2. In section 4.2.3, different examples of human factors analysis are
considered. A short overview of industrialization evaluation of the cabin is given in 4.2.4. Finally, a
summary is provided in section 4.2.5.

4.2.1. Review of relevant computational analysis methods

In this subsection, the fundamentals of the underlying methods relevant to the analysis of the fuselage
and cabin w.r.t. working hypothesis 2 are discussed briefly. First, the guiding principles of structural
analysis using the finite element method are outlined in section 4.2.1.1. This includes structural
sizing methods, which are required for mass estimation. In section 4.2.1.2, the basic concepts of 3D
visualization are explained, which have an influence e.g. on the model generation for human-factors
analysis models.

4.2.1.1. Finite Element Method for structural analysis and sizing

The core of structural mass estimation based on numerical analysis is a sizing process, by means of
which necessary dimensions of the structural components to withstand all critical loads across the
flight envelope [Lom96] are computed.
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The fully-stressed design (FSD) method is a well-established approach to determine these dimensions
and has been described e.g. by Wallerstein and Haggenmacher [WH76] and Nagel, Kintscher, and Streit
[NKS08]. It is built upon the finite-element method (FEM), which is widely used and well documented
in literature [Sch84; ZT05; Bat08]. In FEM the structural deformations d at the nodes of an analysis
mesh, due to the load vector f are computed for the static case by solving

f = K · d. (4.2.1)

K is the stiffness matrix, which is assembled based on formulations of structural elements connecting
the nodes, providing simplified (usually linear) formulations of the structural behavior using

K =

∫︂
V
BTCBdV. (4.2.2)

The strain-displacement matrix B represents the kinematic behavior of the elements used to decompose
the structural domain and therefore depends on the type of element used. While a large variety of
different element types exists, topologically one-dimensional beam elements (s. section A.1 for the
derivation of the stiffness matrix) and topologically two dimensional shell elements are most commonly
used for the thin-walled structures usually found in aerospace. The matrix C represents the material
behavior.

For linear elements the volume integral in equation 4.2.2 can be computed cheaply using numerical
integration schemes such as Gauss-Legendre quadrature. Since K is usually symmetric and positive
definite the solution for d in equation 4.2.1 can be performed efficiently for multiple load cases, i.e.
different load vectors f by Cholesky factorization [Sch84].

Based on the deformations, which must be transformed to element coordinates, a strain distribution
ε in the elements can be computed using the element kinematics matrix B:

ε = B · d′. (4.2.3)

The strains can be translated into a stress distribution σ via the material matrix C:

σ = C · ε. (4.2.4)

For sizing, the stress results are compared to allowable stresses, which are computed using applicable
failure criteria, to ensure the structural integrity. For isotropic materials under tensile loads, the von
Mises stress can be compared to the yield strength of the material. More advanced criteria are
provided e.g. by Bruhn [Bru73] for buckling of skin panels under compression. The geometry, e.g. skin
thickness, is adjusted according to the ratio of computed stress and allowable stress:

tnewi =

(︃
σi

σallow

)︃ω

toldi . (4.2.5)

To avoid unrealistic results, minimum and maximum values for the thickness are usually provided, as
well. In an iterative process, this procedure is repeated, until the geometric design variables ti (and
as a result the structural mass) converge. The relaxation parameter ω can be adapted to accelerate
the convergence or improve the stability.

The stress-based sizing is commonly used for isotropic materials. In CFRP the stress may vary
depending on the orientation of a given layer. This has led to the introduction of different, usually
more complex failure criteria [Puc96; IJs11] for CFRP. For very complex structural designs, failure
criteria based on global-local analysis approaches have also been proposed [PM20].

FSD is a popular choice for structural sizing in preliminary aircraft design because of its compara-
tively simple implementation and good, if not optimal, results [Dor14]. The limitations of FSD have
been discussed by Patnaik, Guptill, and Berke [PGB95]. Instead, a structural sizing optimization can
be performed, as has been described e.g. by Ainsworth et al. [AC+10], Schuhmacher et al. [SD+12],
and Klimmek [Kli16].
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Review of finite element analysis and structural sizing tools At this point a short review of eligi-
ble finite element analysis (FEA) tools is given. Among the most popular commercial FEA programs
[Nag21] are MSC Nastran [Hex23], ANSYS Mechanical [ANS23a] and Abaqus [3DS23a] . Even though
Nastran is among the earliest implementations of the finite element method for engineering and still
dominates the market in the aerospace industry, both ANSYS Mechanical and Abaqus are sophisti-
cated and mature tools in their own right. ANSYS provides advanced scripting capabilities via the
ANSYS parametric design language (APDL), whereas the Abaqus CAE user interface can be con-
trolled using Python. All three codes provide mature capabilities for linear-elastic analysis, which are
adequate for preliminary structure sizing [WPK17]. In addition, all of the programs provide different
sets of additional analysis types.

Several open-source alternatives are available as well, which can, however, not compete with ma-
turity and the wide range of capabilities offered by commercial tools, yet [Ayy16]. Nonetheless, tools
like Code_Aster [EDF23] or B2000++ [SMR18] can be applied if a large number of comparatively
basic analyses is required, e.g. to manage license cost of commercial tools.

Aside from finite element analysis tools, specialized solutions for structural design are also available.
At the German Aerospace Center (DLR), the sizing tool S_BOT+ makes the FSD methodology avail-
able in ANSYS [Dor14; Nag21]. On the other hand, MSC Nastran provides optimization capabilities
via the solution 200 mode, which are leveraged e.g. by Klimmek [Kli16]. Similar capabilities are found
in the tool LAGRANGE developed by Airbus Defence & Space [SKH96]. Finally, HyperX (formerly
HyperSizer) [AC+10] is a commercial solution providing advanced features w.r.t. composite design
and failure criteria.

4.2.1.2. Fundamentals of 3D visualization

In section 2.1.2, human factors analysis is mentioned as a relevant type of analysis for the cabin. Often,
human in the loop simulations using virtual reality are performed to quickly evaluate accessibility or
customization options (s. section 4.2.3). The need for high performance visualization to achieve good
levels of immersion results in special requirements for the disciplinary analysis model generation for
working hypothesis 2. To derive these requirements some background on the basic theory of 3D
visualization is provided in the following.

Although development in the field is ongoing, the foundations of 3D visualization have been well-
established for many decades, and comprehensive literature is available [Hil90; SAM09; HD+13]. An
exemplary graphics pipeline is given in figure 4.2.1. It shows how the visualization is broken down
into a sequence of separate tasks, which need to be performed each time a frame is rendered. From
the details of the implementation for some of these steps, requirements for the provision of geometric
models can be deduced.

The first steps, i.e. Simulate and Pose are usually implemented within the interactive engine, in
order to provide the static state of the geometry at a given point in time. Culling is then used to
remove invisible faces from the view, e.g. because they are facing away from the camera (front face
culling), to improve performance. The reduced 3D geometry then enters the actual rendering pipeline.
The main steps are outlined in the following.

Camera Transformations & Projection The first step during rendering is a coordinate transfor-
mation from the global geometry coordinate system to the camera coordinate system. The camera
coordinate system may be defined by a camera location xc, a view direction vlook and an upwards
pointing vector vup.

In a first step, the origin of the global coordinate system is translated to the camera location xc

by subtracting it from all point coordinates. From the camera vectors, a rotation matrix Mc =
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Simulate
(includes AI & Physics)

User input

Pose

Cull

Camera Transformations
& Projection

Texture

Rasterize

Shade

Combine

Post-process

Dynamic 3D geometry

Static 3D geometry

Reduced 3D geometry

2D geometry

2D pixels

2D radiance

Displayable 2D image

Performed in hardware

Figure 4.2.1.: Basic rasterizing renderer pipeline steps (after [HD+13])

[︁
u v w

]︁
can be assembled using

w =
−vlook

∥vlook∥
, (4.2.6)

v̄ = vup − (vup ·w)w, (4.2.7)

v =
v̄

∥v̄∥, (4.2.8)

u = v ×w. (4.2.9)

By convention, the new z-axis denoted by the vector w points in the negative looking direction. The
resulting system is illustrated in figure 4.2.2.

Furthermore, the camera frame is scaled to the interval [−1, 1] for the x and y directions. To this
end, field of view angles in both directions θh and θv are given. In addition, a far plane, with the
distance dfar to the camera is given, which is set to be z = −1. This results in the scaling vector[︂

1

f tan
θh
2

1
f tan θv

2

1
z

]︂
.

Following the transformation of the camera, it is possible to compute the projection. The goal is to
transform the frustum defined by the above camera specification and an additional near clipping plane
distance dnear to a standard parallel view volume, in order to make distant objects appear smaller. This
requires a projective transformation on R3, which corresponds to a linear transformation on R4 and
a subsequent homogenizing transformation H using a similar mathematical approach to non-rational
projection in NURBS curves:

H (x, y, z, w) =
(︂ x
w
,
y

w
,
z

w
, 1
)︂
. (4.2.10)
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dnear
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Figure 4.2.2.: Camera projection system including vlook and vup (after [HD+13])

The transformation matrix Mpp from perspective to parallel projection on R4 is given by

Mpp =

⎡⎢⎢⎣
dfar − dnear 0 0 0

0 dfar − dnear 0 0
0 0 f dnear
0 0 −(dfar − dnear) 0

⎤⎥⎥⎦ . (4.2.11)

The result from the camera transformation and projection steps, is a 2D projection of the geometry
in the parallel view volume, along with depth information, which is the input for the next step in the
pipeline.

Rasterization Rasterization is the step of translating geometric data to pixels, i.e. image points,
which can be displayed on a screen. To this end, the intersections between the geometry and a ray
originating in the xy plane and pointing into negative z direction must be computed for each pixel in
the interval [−1, 1] in x and y direction.

A classical intersection algorithm has been described by Möller and Trumbore [MT97]. It works on
geometry, which consists only of triangular faces. The advantage of triangles over any other type of
polygon is that they are guaranteed to be planar and convex. A point on any triangular facet can be
described using barycentric coordinates

xtria (u, v) = (1− u− v)p0,tria + up1,tria + vp2,tria, (4.2.12)

where pi−1,tria is the i-th corner point in the triangle. The ray is defined by its origin p0,ray and unit
direction vray through xray (w) = p0,ray + wvray, where w is the distance from the origin. Setting
xray (w) = xtria (u, v) yields

[︁
−vray, p1,tria − p0,tria, p2,tria − p0,tria

]︁ ⎡⎣ w
u
v

⎤⎦ = p0,ray − p0,tria, (4.2.13)

which can be solved to find the barycentric coordinates u and v and the distance from the origin w e.g.
using Cramer’s rule. An intersection is found if both u and v are in the interval [0, 1] and u+ v ≤ 1.
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In the case of multiple intersections, which triangle is to be drawn is determined by the lowest distance
to the origin w, as shown in figure 4.2.3.

p0,ray

xray(w)

xtria,1

xtria,2

xtria,3

Figure 4.2.3.: Ray tracing applied to find the closest triangle for each pixel (after [SAM09])

Depending on the sequence of the loops, the image generation technique is referred to either as ray
casting or rasterization. In ray casting, the outer loop is performed over the pixel centers. For each
pixel, a ray is constructed and intersected with all triangles. The closest intersection is returned. In
rasterization, on the other hand, the outer loop is over the triangles. This means all pixel positions are
computed for one triangle before moving to the next. This has advantages in terms of memory use and
allows for simpler deployment of more efficient sampling techniques e.g. bounding-box optimization.

It follows from the above that, in order to perform rasterization efficiently, the fuselage and cabin
geometries for visualization must be provided in the form of a triangulated mesh. Common triangula-
tion algorithms such as Delaunay triangulation [Wat81; Reb93] are available in open source libraries
such as Gmsh [GR09] or OCCT.

Shading Once the closest intersections are known, the color of the corresponding pixels must be
determined. On the one hand, this entails the evaluation of the color or texture data of the eligible
faces, based on the uv coordinates computed during rasterization. On the other hand, a realistic
rendering of the brightness of the faces due to a given light source significantly improves the quality
of the image.

The basic assumption for computing intensity I of the light reflected by a face is given by Lambert’s
cosine rule

I = Idir cos θ, (4.2.14)

where Idir is the intensity of the incoming light and θ is the angle between the light vector vlight and
the surface normal. A face, which is perpendicular to the incoming light vector, will reflect all the
light and thus appear bright, whereas a face parallel to the light vector will appear dark.

Applied to a triangulated mesh, Lambert’s rule will yield a constant intensity for each triangle.
This is referred to as flat shading and provides acceptable results for objects with flat faces e.g. boxes
or pyramids. However, for curved surfaces, a smoother distribution is desirable to provide a better
impression of the underlying geometry. Increasing the mesh resolution alone does not prove sufficient,
as the eye is very sensitive to discontinuities across mesh edges. Furthermore, significantly increasing
the number of faces will have adverse effects on the performance of the rasterization.

Gouraud [Gou71] proposes an approach, where the intensity is instead computed for each vertex
of the triangle and then interpolated across the face. The approach has later been refined by Phong
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[Pho75], who proposes to interpolate the normals themselves to support more complex lighting models.
In both cases, knowledge of the normal vectors at the vertices is required, which can be provided by an
external algorithm, or approximated by averaging the normals of the adjacent faces. As illustrated by
figure 4.2.4, the method yields smooth renderings even for coarse meshes. Therefore, vertex normals
should be provided when creating visualizations of smooth surfaces, such as the outer fuselage surface,
in order to keep the polygon count low and improve rendering performance of the model. Whereas
it can be difficult to determine accurate normals based on a triangle mesh without any additional
information, the normal vectors at CAD surface points can be computed easily from the tangent
vectors in the two topological directions.

Original surface
and discretized
approximation

vlight

Original surface

Mesh vertices

Mesh edges

Lighting computed
per-vertex

Flat shading
(copying)

Gouraud shading
(interpolation)

Figure 4.2.4.: Illustration of flat vs. Gouraud shading (after [HD+13])

Classification of 3D visualization tools With 3D visualization firmly established in modern comput-
ing, a number of solutions, both proprietary and open source, are available to build 3D visualization
applications. In the following, a few solutions will be examined more closely along with possible use
cases.

Visualization library A visualization library is the lowest level of 3D visualization application. It
is used to create visualizations from the source code level. The Visualization Toolkit (VTK) [SML06],
an open source library for scientific 3D visualization originally written in C++ is an example for a
visualization library. It provides bindings to many other programming languages including Python.
A visualization library provides a lot of freedom to developers, but also requires high expertise.

Scientific visualization environment Built upon VTK, ParaView [Aya15] makes the capabilities
of the library available in a GUI. This facilitates interactive analysis of scientific data, e.g. FEM stress
results, or CFD flow fields. In addition to the interactive UI, a Python scripting interface is provided,
to support task automation.

Tecplot [Tec23] is another widely used desktop application for scientific data visualization. Unlike
ParaView, Tecplot is proprietary software.
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3D graphics environment Unlike scientific visualization environments, the primary use case for a
general purpose 3D graphics environment like Blender [Ble23] is interactive asset development for 3D
applications. To this end, limited geometry modeling functionality is available, including primitives
and spline curves, which serves to create inputs for mesh generation. However, the capabilities are
not on the same level as those of a fully realized CAD kernel. In return, mesh modification, texture
mapping and many more interactive features are provided in addition to the geometry modeling.
Many capabilities of Blender are also accessible via scripting, using the built-in Python interpreter.
Furthermore, an advanced ray tracing engine for high-quality rendering is provided.

Video game engine In contrast to the above applications, a video game engine such as Unity
[Uni23] provides a complete environment for game development. As such the features are not limited
to visualization, but also provide advanced possibilities for real-time user interaction, which can be
customized via a scripting interface. In the case of Unity, this interface supports the C# programming
language. Notably, a game engine is usually not intended to create or modify assets, but to compose
and present many assets in an interactive scene. A similar engine to Unity is the Unreal Engine
[Epi23]. An open source alternative is Godot [LMc23].

Mesh file formats In order to pass geometry models to scientific visualization tools or game engines,
suitable exchange formats are necessary. Among the most widely-used formats is the STL (originally
stereolithography) format [Gri04], which provides a basic notation for triangular meshes. STL files
can be provided in plain text or binary form. It is possible to store face normals in STL, to save time
for the computation, but vertex normals are not supported. Hence, STL is not an ideal format to
share models of curved surfaces.

The Wavefront OBJ format [Wav92], on the other hand, provides not only support for vertex
normals, but also uv-coordinates for texture mapping. The drawback of OBJ is that it is a pure text
format, which makes import and export operations expensive. Furthermore, the format has been out
of active development for a long time. Still, OBJ is widely supported by modeling and visualization
environments.

A more advanced alternative to OBJ, which is, however, proprietary, is the FBX (Autodesk Filmbox)
format [Aut23]. FBX adds support e.g. for motion data to the feature set of OBJ. It is available both
in text and binary form. However, due to the proprietary license, FBX is not supported by all open
source environments.

The glTF (GL Transmission Format) format [Khr17] is a comparatively recent development, which
aims to reproduce the feature set of FBX in an open standard. Like FBX it supports motion data
in addition to the geometric information and allows for model storage in plain text or binary format.
While support for glTF in open source projects is growing, support for many commercial tools including
Rhinoceros 3D and the Unity Engine is only available via external plugins at the time of publication.

4.2.2. Analysis and design of fuselage structures

Asserting the structural integrity of the airframe has been an essential engineering task since the
earliest days of aviation. At the same time, minimizing structural mass is key when trying to maxi-
mize performance, as evidenced by the Breguet equation (2.1.1), which has led to a comparatively
aggressive approach to lightweight structural design. Safe lightweight structures require a very good
understanding of the structural behavior under all possible load conditions. The introduction of large-
scale CFRP-components in recent aircraft programs has amplified this need. Consequently, detailed
structural analysis using advanced numerical methods is a well-established in the aircraft industry,
especially during detail design. Thus, it is an important discipline to consider, when evaluating the
analysis model generation capabilities described in working hypothesis 2.

When it comes to the earlier design phases, numerical structural analysis is widely used for mass
estimation. However, the amount of scientific work w.r.t. the fuselage structure is eclipsed by the
research on wing design [Dor14; HKM14; Kli16; QG16; MG+18], where aeroelastic effects have a much
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more immediate impact, and multidisciplinary design techniques like aeroelastic tailoring promise
significant potential for mass reduction. Nevertheless, the fuselage has its own set of relevant structural
challenges, ranging from pressurization, to crashworthiness, which merit closer consideration.

4.2.2.1. Global FEM approach for structure sizing

FEM-based sizing of aircraft structures requires a dedicated structural model, which is commonly
referred to as the global finite-element model (GFEM). In contrast to detailed fimite element models
(DFEMs) of individual components, such as brackets, which are often modeled using mainly solid
elements, the GFEM approach aims to represent the thin-walled structure of aircraft using simplified
structural elements like beams or rods e.g. for stiffeners and shells e.g. for skin panels.

Among the first efforts to include physics-based sizing methodology in an OAD context is the
work of Österheld [Öst03], who integrates FEM-based structural sizing into PrADO. She applies a
modified version of FSD on a half-model of the aircraft primary structure, shown in figure 4.2.5. A

Figure 4.2.5.: FEM model from PrADO (from [Öst03])

classical structural layout for passenger aircraft fuselages with a thin-walled structure reinforced by
longitudinal stringers and circumferential frames as described e.g. by Niu [Niu88] is adopted. The
parameter values for the model generation are provided by the PrADO database. Based on the work
of Österheld, adaptations for different aircraft system architectures have been developed later by
Werner-Westphal, Heinze, and Horst [WHH08] and Hansen [Han09]. Further sizing capabilities for
CFRP structures were later added by Rieke [Rie13].

In table 4.2.1 the components considered in the model by Österheld are listed and mapped to
their respective FEM representation. For comparison, the table then provides the FEM modeling
capabilities of subsequent tools, which are described in the following.

Parametric-associative CAD A different approach built around a central CAD model has been
demonstrated by Ledermann, Ermanni, and Kelm [LEK06]. Using a parametric-associative approach
built upon CATIA Knowledge Patterns, the authors propose the introduction of UDFs, which represent
parametric models of individual components. Indeed, many elements of KBE (s. section 4.3) are
already present in this approach. The UDFs can be combined to yield a complete CAD model of
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4. Computer aided engineering methods to enable fuselage MDAO

the airframe controlled by about 200 parameters. From this model, an FEM mesh is derived, as
illustrated by figure 4.2.6. Compared to Österheld, the model by Ledermann, Ermanni, and Kelm
features discrete stringer modeling and door cutouts, as shown by table 4.2.1. In addition a full model
is used, as opposed to the half-model described by Österheld, which makes it possible to take into
account unsymmetrical load cases. The model is applied to perform a topology optimization on the
wing box using rib positions and thicknesses of skin, spars and ribs as design variables and structural
mass as objective function. A genetic optimization algorithm is applied. The wing is only analyzed
for a 2.5g maneuver load case, expressed as shear, moment and torque curves along a loads reference
axis. No specific information is given on how non-geometric information, such as material properties,
are associated with the model, nor whether thicknesses can be stored in the central model or are
only found in the FEM representation. The latter option not only poses a risk w.r.t. design data
consistency, but also complicates data exchange.

Figure 4.2.6.: Fuselage geometry model (top) and analysis mesh as shown by Ledermann, Ermanni,
and Kelm [LEK06]

The modeling approach shown by Ledermann, Ermanni, and Kelm was subsequently developed
further by Weiss [Wei09], who turns the parameters and unstructured Knowledge Patterns into a
more formal parametric feature tree formulation. He also shows that attributes can be assigned to
entries in a CATIA feature tree. However, for complex parts this quickly results in a cluttered tree that
becomes difficult to manage and navigate. The examples provided by Weiss are mostly taken from
the automotive industry and on a detail design level, but serve to illustrate the potential for applying
optimization on the feature tree. Notably, spline points are used as design variables. In contrast to
Weiss, Hürlimann [Hür10] further pursues the wing design aspects of the work of Ledermann, Ermanni,
and Kelm, implementing a loads process driven by CFD, improved model details e.g. landing gears,
and more advanced failure criteria.

Wenzel, Sinapius, and Gabbert [WSG11] also adopt the parametric-associative approach. Unlike
Hürlimann, they also demonstrate it for constant cross-section fuselage barrels and the wing-fuselage
intersection area in addition to the wing. A distinguishing detail to the previous works is the intro-
duction of uniform design regions, i.e. regions of the FEM model, where the properties such as skin
thickness are the same for all elements. This not only reduces the number of design variables and thus
the complexity of the optimization problem, but is also more in line with current manufacturing prac-
tices. Another example for structural optimization leveraging the parametric-associative capabilities
of CATIA is given by Amadori, Jouannet, and Krus [AJK08].

In a later study, Dannenhoffer and Haimes [DH16] show that the feature-tree-based CAD modeling
approach implemented in the ESP can also be applied to derive structural analysis models in a similar
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4.2. Computational analysis and design of the fuselage and cabin

fashion.

CPACS-based In the context of integrated collaborative design activities at the DLR, a number of
analysis and design tools have been implemented based on the CPACS aircraft description schema
(s. section 4.1.2). One of the earliest examples is provided by Ciampa, Zill, and Nagel [CZN10] who
derive a vortex lattice mesh and a simple structural analysis model of a BWB configuration from a
CPACS data set. The geometry in CPACS is generated from a CST parametrization. Based on these
design variables and a structural sizing, an aero-structural optimization is performed to minimize the
structural mass.

Dorbath [Dor14] introduces ELWIS (Finite Element Wing Structure), a model generator for highly
detailed conventional wing models, including movables and landing gears. He also integrates a loads
process, which includes aerodynamic load computations using vortex-lattice methods, but also fuel
loads. All necessary analysis models are provided by what is referred too as a central multi-model
generator.

Complementary developments for modeling the fuselage structure have been carried out by Schwinn
et al. [SS+13] in the tool TRAFUMO (Transport Aircraft Fuselage Model), which has later been re-
named to PANDORA (Parametric Numerical Design and Optimization Routines for Aircraft) [PKH18].
Scherer and Kohlgrüber [SK16] provide a complete list of the structural components, which are part
of the fuselage model, along with their corresponding CPACS definitions. The components mostly
coincide with the list by Ledermann, Ermanni, and Kelm. However, the parametric description by
Scherer and Kohlgrüber goes to significantly higher levels of detail pertaining to e.g. the cross-sectional
profile of extruded stiffeners like stringers and frames, assigned materials, or skin panel groups, which
are similar to the uniform design regions proposed by Wenzel, Sinapius, and Gabbert. A resulting
fuselage model from TRAFUMO for a single-aisle configuration is given in figure 4.2.7.

Figure 4.2.7.: Fuselage structure model with detailed stiffener cross-section definition (from [SK16])

Scherer et al. [SK+13] furthermore demonstrate the compatibility of the wing and fuselage models,
by assembling them into a detailed model of a full configuration, generated solely from information
provided via CPACS. An example distribution of the von Mises stresses for a 2.5g load case is given
in figure 4.2.8. Petsch [Pet15] later proposes a more general way of modeling the wing-fuselage inter-
section region. The sizing for all of the models is performed in ANSYS Mechanical using the S-BOT+
sizing tool [Nag21], which implements FSD. In addition, Walther, Petsch, and Kohlgrüber [WPK17]
present a solver-agnostic implementation of the fuselage GFEM generation, enabling the solution of
the models using different solvers.

DELiS (Design Environment for Lightweight Structures), another GFEM generator based on CPACS,
has been introduced by Freund et al. [FH+14] and Führer et al. [FW+16]. The models provided by
DELiS provide fewer details than the model by Scherer et al. [SK+13], e.g. no explicitly modeled
stringers and less detailed wing-fuselage-intersection regions. On the other hand, the whole aircraft,
i.e. both fuselage and wing, is covered by a single tool, which contrasts the partitioned approach
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Figure 4.2.8.: Von Mises stresses (in Pa) for a 2.5g maneuver load case on a full configuration model
(from [SK+13])

described by Scherer et al. Furthermore, Bach et al. [BF+16] demonstrate a sizing optimization for
CFRP structures based on a DELiS wing model using the HyperSizer framework, whereas Scherer
et al. assume an isotropic material for the fuselage.

All of the above CPACS-based tools have been built on top of TiGL [SK+19] (s. section 4.1.3),
which is used to determine mesh point locations by computing intersections between the outer surface
and vectors computed from the definition planes of the structural components in CPACS. However,
Walther, Petsch, and Kohlgrüber [WPK17] show that a fuselage model generation implemented in-
dependently from TiGL can have significant performance benefits, due to better suited geometric
component descriptions and low-level geometry access, which enables e.g. efficient computation of
surface normals at the intersection points. Similarly, in cpacs-MONA (CPACS-ModGen-Nastran) by
Klimmek et al. [KS+19] a custom geometry modeling approach using B-spline surfaces is applied
[Kli16] to build full configuration FEM models for MSC Nastran. A subsequent optimization enables
the sizing of the structure not only due to static aeroelasticity, but also due to flutter and divergence
for isotropic and anisotropic materials.

The PyPAD (Python package for Preliminary Aircraft Design) tool suite presented by Travaglini
[Tra16] is a noteworthy example for a full configuration FEM model generator based on CPACS de-
veloped outside the DLR. Travaglini applies Abaqus CAE to build the model, using the TiGL library
as interface to CPACS. While its primary focus is on the wing modeling, the fuselage is represented
not only via frames, stringers and skin panels, but also a detailed center fuselage area for accurate
load transfer. PyPAD was initially developed as a successor to NeoCASS (Next generation Conceptual
Aero-Structural Sizing Suite) [CRT11], which is the structural sizing component in CEASIOM. There-
fore, similarly to the work of Dorbath, it also provides surface meshes for aerodynamic analysis using
an unsteady panel method in addition to the structural model in the sense of a multi-model generator.
In his thesis, Travaglini considers the possibility to use the OCCT CAD library for geometry modeling
instead of the commercial Abaqus CAE. He ultimately dismisses the former approach in favor of the
latter, citing the better documentation and Python scripting capabilities of Abaqus CAE as reasons.
An important drawback of Travaglini’s model is that the skin mesh is generated independently from
the stiffeners, which are subsequently connected using constraint elements. This not only introduces
numerical complexities, but also limits the design freedom for the skin sizing, since it is not possible
to properly assign sizing regions as shown by Wenzel, Sinapius, and Gabbert.

Another example for a non-DLR structural model generator is Descartes by Maierl, Petersson, and
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Daoud [MPD13]. Unlike Travaglini, the authors select the OCCT kernel and expand on the geometry
modeling capabilities provided by TiGL. While the structural modeling capabilities were initially
focused on the wing, with only rudimentary support for fuselage structures, more detailed fuselage
modeling, including beam-based frames and stringers and shell-based skin panels and bulkheads, has
been added later, enabling advanced analyses such as subsystem space allocation, in addition to FEM-
based structural sizing [TD+21]. Like PyPAD, Descartes can also provide aerodynamic analysis models
for loads calculation [Dei16]. Many published applications of Descartes use a medium altitude long
endurance (MALE) configuration as an example [WG+19; TD+21], which has many common aspects
w.r.t. a conventional tube and wing configuration. The structural models created by Descartes are
intended for use with the proprietary structural optimization tool LAGRANGE, which is a limitation
to a more general applicability of Descartes. However, many of the structural geometry modeling
algorithms developed by Maierl, Petersson, and Daoud have subsequently been made available in
TiGL [SK+19], which is possible due to the common open source CAD kernel.

Support for novel concepts In working hypothesis 4, the issue of compatibility with novel con-
cepts is raised. Most of the model generators considered thus far have mainly been focused on con-
ventional tube-and-wing configurations. Exceptions include Ciampa, Zill, and Nagel [CZN10], who
model a strongly simplified BWB configuration using wing modeling techniques, Travaglini [Tra16],
who demonstrates the capacity of his tool to analyze tailless aircraft, and Maierl, Petersson, and
Daoud [MPD13], who investigate a MALE configuration of an unmanned aerial vehicle (UAV), which
is, however, closely related to a conventional tube-and-wing configuration.

More detailed analyses of novel aircraft system architectures in the past have required significant
adaptations of existing tools, or even specialized analysis tool developments entirely from scratch. For
example, Hansen [Han09] shows the implementation of BWB support in PrADO, requiring significant
changes to initial assumptions and deep understanding of the overall code. Similarly, Gern [Ger15]
introduces the HCDstruct tool dedicated to generating finite element models of BWB configurations
based on OML data provided by OpenVSP. The tool was later adapted to add support for conventional
and double-bubble layouts [QG17]. The level of detail of the structure design represented by the
model is low compared to the aforementioned tools. Furthermore, the authors do not specify, how the
necessary details w.r.t. the structural layout are added to the OpenVSP data. The OML is once again
used to generate an aerodynamic analysis mesh to provide loads.

Another example for a BWB model generator is presented by Qian and Alonso [QA21a]. The level
of detail is significantly increased compared to Gern, as explicitly modeled fuselage stiffeners and cabin
boundaries are considered. Notably, the frames are modeled as shells, unlike the previous tools. The
model generation is implemented in Python [QA21b].

Picchi Scardaoni, Binante, and Cipolla [PBC17] describe a dedicated model generator for the fuse-
lage of a boxwing configuration based on Abaqus CAE. It supports single- and double-deck layouts
and provides frames, stringers, and floor structures all modeled using shell elements. The data is
provided in a custom XML file.

Hwang, Kenway, and Martins [HKM14] show applications of the GeoMACH (geometry-centric MDO
of aircraft configurations with high fidelity) geometry modeling tool [HM12], which include conven-
tional, BWB, double-bubble and SBW configurations. The geometry is described in a Python script
by combining different parametric geometric primitives and interpolants. The modeling approach is
somewhat similar to CPACS, as the geometry of the wing and body is described via sections. The
structural mesh consists exclusively of shells and includes frames, stringers, skin and floor panels as well
as a detailed wing structure. Only models with a significantly reduced number of modeled stringers
compared to real-life designs are shown and some details like bulkheads and floor support structures
are omitted altogether. In return, the structure can be expressed completely in terms of parametric
positions on the OML surface. This has the advantage that the shape of the structural members can
easily be differentiated. Furthermore, the structure can follow along with large deformations of the
OML. The drawback with the approach is that it quickly leads to warped structures, which may be
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difficult to realize, e.g. due to manufacturability constraints. Furthermore, the script-based modeling
approach, makes it hard to exchange models without sharing the library.

A similar approach to structural modeling to Hwang, Kenway, and Martins, albeit based on a CAD
kernel, has been proposed by Haimes and Drela [HD12].

Summary Current fuselage GFEM for structural sizing usually consist of shell and beam elements,
where shell elements represent the skin panels and beam elements represent the frames and stringers
as well as the floor beams. Bulkheads are commonly modeled, in order to create a watertight model
of the pressurized region. A detailed representation of the wing-fuselage intersection area is useful for
realistic load transfer.

Furthermore, many model generators are part of multi-model generation tool suites, which also
include an aerodynamic mesh generation component for loads analysis. Hence, knowledge of the
wetted surface is usually required. The different geometry inputs are managed via a central geometry
model, which is either CAD- or parameter-based.

FSD or optimization are used to determine structural parameters, such as skin thickness or beam
profile parameters, to assure structural integrity under all load conditions. The results can be used to
compute the mass of the primary structure, which provides a starting point for the estimation of the
overall structural mass.

4.2.2.2. Beyond GFEM

The model resolution of the GFEM is usually sufficient to perform a sizing of the structure under
aerodynamic loading. However, as standards in safety and comfort are increasing, it is necessary
to investigate other relevant scenarios, which require more detailed knowledge of the structure and
usually involve nonlinear structural analysis.

One such scenario is crashworthiness analysis, where the fuselage structure plays a key role in
dissipating the energy of the impact and thus increasing survivability of the event. As a result of
advances in analysis capabilities and computing power, these analyses are now also required to certify
new passenger aircraft. Schatrow and Waimer [SW16] provide an example for a suitable FEM analysis
mesh to assess the kinematic behavior of a fuselage barrel under crash loading, which takes into account
nonlinear material behavior. Notably, cabin details, such as seat models, are also taken into account in
order to accurately determine the accelerations to which passengers are subjected, which in turn allows
for assessment of the sustained injuries [Eib59; Wai13]. As inertial effects must be taken into account,
the distribution of the mass must be known as well. Furthermore, the mesh has a significantly lower
element size compared to GFEM meshes to ascertain a sufficiently fine resolution of failure regions on
the one hand and to allow for a high time resolution for transient analysis on the other [Wai13]. The
stable time step ∆tstable is linked to the allowable element edge length Le via the transmission speed
of longitudinal pressure waves in the material, i.e. the speed of sound cd:

∆tstable =
Le

cd
. (4.2.15)

For one-dimensional solids cd =
√︂

E
ρ .

Schwinn [Sch15] describes an effort to generate full fuselage models for crash analysis based on
CPACS introducing a locally refined mesh in the region of impact, which also contains simplified
representations of the seats as well as the door opening and detailed door surround structures. Siemann
et al. [SS+17] subsequently adopt this modeling approach for ditching simulation, where the water is
represented using the smoothed-particle hydrodynamics (SPH) method.

On the side of comfort improvement, interior noise reduction is an important topic. The analysis of
structural nose transmission is briefly discussed in section 4.2.3.2, where the structural model of the
fuselage requires a comparable level of detail to the crash case.
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These applications illustrate that more detailed representations of the structure than GFEM will be
required eventually, as the level of detail of the analyses in the development process increases. This
emphasizes the need for consistent multi-fidelity capabilities in structural analysis model generation.

4.2.3. Cabin analysis tools for Human Factors evaluation

Analysis of the aircraft cabin is often concerned with the comfort of the passenger. As such, the topic
should be taken into account in the selection of disciplines to illustrate the multidisciplinary analysis
model generation capabilities described by working hypothesis 2. In classical aircraft design, typical
measures for comfort are the seat pitch and width, the lavatory utilization, i.e. number of passengers
per lavatory, or trolley utilization, i.e. the number of passengers per full-size trolley (FST) [Tor76;
Lee03; Gob15]. However, in keeping with the vertical growth trajectory for MDAO, the goal is to
incorporate more detailed human-centered design aspects in early design phases, as proposed by Hall
et al. [HM+13], Bagassi et al. [BL+18], and Reimer et al. [RR+20]. This means that design decisions
should be made based on an assessment of their effects on passenger comfort, or more generally put,
the user experience [RN+12].

In the following, several types of analyses are reviewed, which may be connected to the analysis
process to enhance the assessment of comfort. First, simulation of human interaction with the cabin
for comfort assessment using human in the loop and human model approaches are discussed in sec-
tion 4.2.3.1. Then, aspects of noise and cabin airflow simulation using physics-based simulation are
examined in section 4.2.3.2. Finally, simulation approaches for boarding and evacuation are considered
in section 4.2.3.3.

4.2.3.1. Comfort assessment using human in the loop and human model simulation

Bagassi et al. [BL+18] propose comfort evaluation on a detailed level using both geometric evaluations
based on a human model and human in the loop simulations, which also allow for the evaluation of
subjective measures such as aesthetics. For this approach, detailed cabin geometry models must be
available.

Even though virtual reality (VR) methods have been applied in industry for a long time [Zep07;
BV16], advances in 3D visualization and VR technology [CFS17] have renewed interest of researchers
in rapid evaluation of the aircraft cabin from a passenger’s perspective using VR. De Crescenzio et al.
[DB+19] show an example for human-centric design evaluation for a business jet cabin using human in
the loop simulation. To this end, test subjects were shown two variants of a business jet cabin layout
in a VR environment. They were then asked to provide a rating of the variants on a Likert scale in
different predefined categories. The two variants of the cabin differ only in terms of material choices
for the surfaces, which are represented by two different sets of textures on the same underlying 3D
model, which must be provided a priori. The two options are shown in figure 4.2.9.

Using a similar experimental procedure, the interactive evaluation of components in a regional
aircraft cabin based on human in the loop simulation has been demonstrated by De Crescenzio,
Bagassi, and Starita [DBS21]. In the simulation, built using the Unity video game engine, subjects
did not only move through the cabin, but were asked to interact with components e.g. open an overhead
stowage compartment, access items in a galley, or step inside a lavatory. However, only a single variant
of the cabin was assessed.

Since the human in the loop analysis requires the interaction of a human user for each analysis,
it is not directly applicable for deployment within an MDAO process. Nonetheless, it is useful to
make these models available early in the design process and provide the option to perform the analysis
during post-processing of design a run.

A different approach has been proposed by Fuchs, Fuchte, and Biedermann [FFB19], who show a
multidisciplinary design evaluation of the passenger service channel (PSC) including a human factors
assessment. Given the relative position of the PSC and a seat row, accessibility e.g. of oxygen masks is
evaluated, based on distances between key points, which are then compared to requirements e.g. from
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Figure 4.2.9.: Different cabin options proposed by De Crescenzio et al. [DB+19]

the certification specification [EAS21]. This approach can essentially be reduced to an underlying
human model as proposed by Bagassi et al., which is expressed implicitly through the requirements.
Unlike human in the loop simulation, the human model approach requires no user interaction, which
makes it eligible for application in MDAO [FH+19].

The capabilities for the PSC can also be applied to full cabin configurations and different components
including the air conditioning system [FB+21]. Furthermore, a VR visualization environment is
implemented using the Unity engine to make the complexity of the subsystem architecture more
accessible to the engineer. Figure 4.2.10 shows the accessibility assessment of the PSC for a selected
seat in VR. The underlying product data is stored in a modular fashion [FH+21]: Basic aircraft
data e.g. the fuselage cross-section and the frame positions are extracted from CPACS and used to
place models of the frames. Cabin and subsystems information is stored in a separate XML file.
A system layout algorithm implemented in MATLAB provides the design rules, which are based on
geometric input parameters and certification requirements. The final design is passed to Blender via a
custom XML file. Using Blender Python scripting, the VR model is assembled from external geometry
models. Like De Crescenzio, Bagassi, and Starita, Fuchs et al. apply the Unity engine for interactive
visualization.

Engelmann, Drust, and Hornung [EDH20] show a similar model generation approach using Blender.
Since subsystems are not considered, they build the model solely based on the CPACS cabin description
initially introduced by Fuchte, Gollnick, and Nagel [FGN13]. Similarly to Fuchs et al., component 3D
models are retrieved from a separate 3D model database. Engelmann, Drust, and Hornung identify
image rendering and geometry assessment, e.g. the detection of component collisions as principal
applications for the 3D cabin model.

4.2.3.2. High fidelity physics-based human-factors analysis

High fidelity physics-based analyses to provide an evaluation of the cabin w.r.t. human factors are
more rare than the geometry-based assessments discussed in the previous section. Nevertheless, some
studies related to cabin noise have been published. Langer and Blech [LB19] propose an analysis
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Figure 4.2.10.: VR-driven accessibility evaluation as shown by Fuchs et al. [FB+21]

pipeline, which couples flow simulation using the Reynolds-averaged Navier-Stokes (RANS) equations,
modeling of fluctuating sound sources and structural modeling of the aircraft fuselage. High-fidelity
FEM analysis is required to properly determine the acoustic transmission properties of the fuselage
[TS19; HB19]. Papantoni [Pap17] furthermore takes into account the human perception of noise and
investigates active structural control measures to reduce the perceived noise based on an FEM model.
Efforts towards auralization of cabin noise pursue a similar goal of evaluating the human perception
[SM+22]. However, none of these works consider detailed aspects of the cabin, such as the secondary
structure. Only Hesse, Allebrodt, and Rege [HAR20] take detailed representations of components
such as sidewall panels and isolation materials into account when evaluating acoustic properties of the
fuselage.

Cabin airflow simulation is another type of analysis, which can be found in literature. Simulation
of the interior airflow using CFD requires very detailed and watertight representations of the cabin
geometry [FRW11]. Schmeling et al. [SS+20] show an application where the thermal distribution of
the cabin is analyzed to improve comfort and energy efficiency. The approach has also been applied for
the assessment of aerosol dispersion to evaluate health risks [SS+21]. A simpler approach to evaluate
thermal distribution using a two-dimensional cabin representation has been proposed by Gil et al.
[GS+22].

4.2.3.3. Boarding and Evacuation

Passenger flow simulations for boarding, deboarding and evacuation scenarios are also often found in
relation to cabin concept evaluation. Arguably, they can be understood as a subset of human model
simulations discussed in section 4.2.3.1. However, compared to passenger comfort, the implications
for operations and safety are more easily measured. On the one hand, improved boarding times lead
to shorter turnaround times and therefore promise a better utilization of the aircraft. On the other
hand, proof that the aircraft can be evacuated within a given time frame, must be provided by the
OEM for certification as specified in CS 25.803 [EAS21].

It is therefore not surprising that many authors of cabin design tools, such as Fuchte, Dzikus, and
Gollnick [FDG11] and Gobbin [Gob15], also look towards boarding and deboarding analysis to evaluate
their designs [FDG11; Fuc14; GKB21]. The PAXelerate tool by Schmidt et al. [SE+16] is another
example for this trend.

Fuchte, Dzikus, and Gollnick [FDG11] use a boarding simulation, shown in figure 4.2.11, to evaluate
and compare different cabin and fuselage layouts for a given number of passengers. They show that the
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inclusion of an additional quarter door in a configuration for 200 passengers can yield an advantage in
boarding time of up to two minutes. The introduction of a second aisle, on the other hand, can result
in an advantage of over 12 minutes, at the expense of a larger cross-section. The capabilities of the
tool are later expanded to support a complete turnaround simulation including deboarding, cleaning,
refueling and boarding. Furthermore, a preliminary design tool is connected to assess the DOC for
configuration with the modified fuselage. The results show that the time saved during turnaround
almost never justifies the additional fuel consumption due to the increased cross-section [Fuc14] from
an economical perspective. A similar study of the effect of the cross-section has been performed by
Smeets [Sme17] using ParaFuse.

Figure 4.2.11.: Boarding simulation (from [FDG11])

Engelmann and Hornung [EH19] apply the PAXelerate tool, to assess various boarding strategies,
such as random boarding, rear-to-front or window-to-aisle, for a given layout. They show that random
boarding is among the fastest possible strategies, due to the high number of passenger interruptions
for other strategies. Only the optimized strategy proposed by Steffen [Ste08] performs better, but
is also significantly more difficult to implement, due to its low robustness towards deviations. No
changes in the layout are proposed as a result of the analysis.

Contrary to the previous examples, Gobbin, Khosravi, and Bardenhagen [GKB21] investigate emer-
gency evacuation situations. According to CS 25.803 a manufacturer must demonstrate the capability
to evacuate the an aircraft of 40 passengers or more within a time frame of 90s, which is accomplished
in large-scale tests. The primary goal of the study is to tune the simulation to get as close as possible
to actual times measured by manufacturers. Again, no changes to the layout are considered. In terms
of geometry, the locations, dimensions and orientations of the emergency slides must be known in
addition to the aisles, seats and exit positions, as shown in figure 4.2.12.

Figure 4.2.12.: Cabin model including slides for evacuation simulation (from [GKB21])

A common trait of all these examples is that the simulation is essentially performed using a 2D
representation of the cabin floor layout. Seats and monuments amount to blocked areas. However,
Engelmann, Kleinheinz, and Hornung [EKH20] propose to take into account seat geometry, to evaluate
the available aisle width at various heights for a more detailed assessment. Gopani [Gop21] even
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demonstrates a fully realized three-dimensional approach by implementing the agent-based approach
for the Unity video game engine. As illustrated by figure 4.2.13 the simulation includes not only the
cabin, but also the airport waiting area and the bridge. However, unlike the other authors, Gopani
only provides a model of a small portion of the aircraft cabin.

Figure 4.2.13.: Boarding simulation in Unity (from [Gop21])

More so than the representation of the geometry, the correct prediction of the passenger movement
is a challenge in these analyses. It is often performed using commercial [GKB21; RR+21] or custom-
built [Ric07; FDG11; App14; SE+16] agent-based environments for motion flow simulation. Fuchte,
Dzikus, and Gollnick [FDG11] note the significant impact of user-provided estimates on how much
time is required for certain actions. Gobbin, Khosravi, and Bardenhagen [GKB21] try to improve the
accuracy of such assumptions w.r.t. the passenger behavior by investigating different age distributions
where each age class has different associated properties.

4.2.4. Cabin analysis scenarios for industrialization

Aside from human factors evaluation, applications for cabin manufacturing and assembly planning
will contribute substantially not only towards a more complete understanding of new aircraft design
candidates but also towards a more fully realized implementation of co-design in industrial processes.
To this end, Page Risueño and Nagel [PN19] propose a knowledge-based production modeling system
to describe the assembly of an aircraft cabin, based on semantic web technologies (s. section 4.1.2).

It becomes clear that reliable predictions on manufacturing time and cost are possible only if de-
tailed detailed information on available means of production and cost estimation relationships are
available. This kind of information is usually highly confidential, which makes it difficult to validate
methodologies for production modeling in a research setting. Therefore, Markusheska et al. [MS+22]
apply the aforementioned methodology to a simplified assembly process using robots, which can be
realized in a research lab. Srinivasan et al. [SM+21] describe the corresponding implementation at
shop floor level. Live process data is made available digitally. In this way assessment of the process is
possible to some degree.

As highlighted by Markusheska et al., product details are necessary as well as to process details,
which can partly be provided by CPACS. This includes e.g. positions and dimensions of the cabin
components. Furthermore, knowledge of constraints w.r.t. possible installation sequences, i.e. if one
part must be installed first before another can be installed, is also required. Currently, this data must
be provided in addition to the CPACS product description. For robot path planning more details on
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the cabin components and their structural attachment points must also be provided, to determine e.g.
gripping points. These details are usually not available in preliminary design processes.

As a result, the industrialization analysis of aircraft cabins will also benefit if more details are
made available in the early design stages. However, as a possible use case in the scope of this thesis,
it is excluded, since a meaningful assessment of complete cabins cannot yet be realized due to the
aforementioned limitations.

4.2.5. Summary

In this section a survey of computational analysis methods is provided, which may be applied to inform
design decisions on the fuselage and cabin in an MDAO process. The different analysis types, which
have been identified, are taken into consideration as candidates for examples to validate working
hypothesis 2 in the following.

On the one hand, example implementations for structural sizing using FEM analysis are given,
which are typically performed using a GFEM mesh representing the thin-walled fuselage structure.
The skin of the fuselage is modeled using two-dimensional shell elements, whereas the stiffeners and
floor structure are represented by one-dimensional beams. Details of the beam cross-section are
provided not in the form of explicit geometry but using beam properties.

That said, other types of FEM structural analyses to evaluate e.g. crash scenarios or vibro-acoustics
require substantially more detailed models. Here, stiffeners are usually modeled explicitly using shell
elements and the overall element edge length is reduced significantly. Simplified representations of
cabin components may be considered in order to take into account inertia loads due to their mass in
dynamic simulations.

On the other hand, examples for detailed cabin analysis to evaluate human factors are given. Interest
in human in the loop VR, where detailed cabin component models must be available as CAD models
or triangle meshes, is growing as availability of hardware and ease of use are improving. Textures to
represent materials and animations of the kinematics e.g. of a overhead stowage compartment opening,
greatly enhance the effectiveness, but require the use of video game engines to perform the simulation.
On the other hand, simulation approaches based on a simplified a human model can also provide
meaningful results e.g. w.r.t. certification or boarding duration requirements, if sufficiently detailed
geometry is available.

The challenge, when bringing these analyses together in a single MDAO process, is the heterogeneity
of the requirements for the geometry, which must be provided as the basis of the respective disciplinary
analysis models. Whereas the GFEM generation can be implemented via the intersection of the outer
fuselage surface with the frame and stringer definition planes, the models for crash simulations may
require extrusion of the cross-sectional profiles to provide detailed frame and stringer geometries.
Cabin components, which may simply be represented as a mass point in the structural analysis, must
be available in utmost detail for human in the loop VR analysis. To make matters worse, it must be
assured by the geometry process that the different representations of the product are all consistent
with one another to ensure correct results in the MDAO process.

The integration of the analysis methods into the MDAO process consequently requires the manage-
ment of both multiple levels of fidelity and multiple disciplines. From the perspective of a provider of
geometry models the distinction between multi-fidelity and multidisciplinarity can conveniently be ne-
glected, since different disciplines simply lead to different fidelity requirements for different geometric
components. Therefore, the problem of providing geometry models for multi-fidelity and multidisci-
plinary analyses in MDAO processes is reduced to the problem of providing multi-fidelity geometry
models, which consist of different combinations of component models at different levels of detail.

In the following section, knowledge-based engineering is introduced as a possible way of providing
multi-fidelity models, while ensuring consistency of the underlying design assumptions.
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4.3. Knowledge-Based Engineering

In the previous sections, two main difficulties for large-scale MDAO processes involving simultaneous
design of the fuselage structure and the cabin have been identified:

1. As already stated in working hypothesis 2, consistent geometry to derive models for various
disciplines must be available. Some authors e.g. La Rocca [LaR11] and Dorbath [Dor14] propose
a multi-model generator to generate the required geometry based on a small set of parameters.
As illustrated by the previous section, another dimension of this issue is the need for multi-
fidelity, i.e. providing geometric representations of the same component at different levels of
detail, as described e.g. by Böhnke [Böh15].

2. As pointed out in working hypothesis 3, there is a need for generation of new details. The
generation must support any state of a given product model, taking into account all relevant
and available product data. Centralized availability of this capability in an MDAO process, can
serve to better orchestrate augmentation of inputs and requirements and reduce inconsistencies.

Knowledge-based engineering (KBE) is a methodological approach, which has the potential to address
both these tasks simultaneously. According to La Rocca [LaR15]

“KBE is engineering using product and process knowledge that has been captured and
stored in dedicated software applications, to enable its direct exploitation and reuse in the
design of new products and variants.“

A number of followup questions arise from this definition, e.g. what exactly terms like product and
process knowledge entail, how their meaning is different from product and process data or information
and how knowledge can be formalized as executable software and deployed to design new products.
These matters are discussed in sections 4.3.1 and 4.3.2. Afterwards, in section 4.3.3, a review of
applications of KBE both for multi-model generation and design synthesis are provided. Finally, the
relationship between KBE and MDAO is briefly discussed.

4.3.1. Terminology

For most people, the understanding of terms such as knowledge, information and data is informed
rather by intuition than by concrete definitions. Therefore, the terms are treated as being somewhat
interchangeable. However, in KBE there is a clear distinction between the terms. For the purpose of
this thesis, the DIKW hierarchy [BCM04; Row07], which is shown in figure 4.3.1, is adopted. It is
named after the initials of the different hierarchy layers: Data, Information, Knowledge and Wisdom.

Data

Information

Knowledge

Wisdom

Figure 4.3.1.: The DIKW hierarchy (after Rowley [Row07])
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Following the hierarchy, data can be understood to be isolated numbers or symbols without con-
text. To gain information from data, it must be processed and put into context. Knowledge can be
understood as connected data and information, which can be applied to make predictions. Finally,
wisdom involves an understanding of the underlying principles within the knowledge.

According to Rowley, concepts become harder to implement using computers, as one moves up in
the hierarchy. Therefore, only data, information and knowledge are taken into account in the following
sections.

4.3.2. Methodology

As explained by Chapman and Pinfold [CP99], KBE was conceived by merging CAD technology
with OOP and artificial intelligence (AI) techniques. Consequently, the initial understanding of a
product in KBE is closely related to traditional CAD models, as described in section 4.1.1. The goal
of KBE is to accelerate the engineering design process and eliminate repetitive work by collecting
engineering expertise and design practices necessary for the creation of a given part and make them
available as executable software. Chapman and Pinfold do not specify any particular form for this
information. Instead a central corporate “knowledge base”, containing e.g. databases and external
company programs is envisioned.

4.3.2.1. KBE life cycle and knowledge capture

An early attempt to formalize not only the knowledge representation but the larger framework nec-
essary to successfully deploy KBE for actual product development is the Methodology and Tools
Oriented to KBE Applications (MOKA) [Sto01]. The idea behind MOKA is to formalize the life
cycle of KBE applications, so that they can be deployed in a corporate setting. The MOKA life cycle
consists of six steps.

Identify : Determine economical and technical feasibility for a KBE application. Provide technical
concept specification.

Justify : Assess necessary resources and potential risks. If all is well, the project receives go-ahead.

Capture: Collect and structure raw data from experts. The outcome is an informal model of poten-
tially used knowledge.

Formalize: The captured knowledge is assembled into a formal model, which consists of a product
model and a design process model, by a knowledge engineer.

Package: The knowledge from the formal model is translated to source code, from which a KBE
application is assembled.

Activate: The KBE application is deployed and users are trained.

Whereas many of the surrounding steps are aimed towards deployment of KBE on an enterprise level,
the detailed description of the Capture step in MOKA provides very concrete background on the KBE
system itself. Here, it is specified, which kind of information should be collected for the informal
model, by introducing the ICARE forms. The acronym is derived from the initials of the five different
categories for capturing engineering knowledge provided by the forms:

Illustration: Supplementary information, e.g. example cases, plots, etc. to support understanding of
the other forms.

Constraint: Specification of limitations or boundary conditions for entities.

Activity : Description of design process steps.
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Rule: Description of rules which affect the design process.

Entity : Description of aspects of the final product including form, function and behavior.

The ICARE forms furthermore provide the means to link different forms. For instance, an activity
will provide a reference to related entities and vice versa, as illustrated by figure 4.3.2. It is shown,
how the dependencies recorded in the forms naturally form a graph representation of the captured
knowledge.

(a) ICARE forms with references

(b) Graph of the structured knowledge

Figure 4.3.2.: Relationships between ICARE forms and resulting graph structure of the knowledge
(after [Sto01])

In the formal model, the ICARE forms are grouped into the product model, which contains the
Entity and Constraint forms, and the design process model, which contains the Activity and Rule
forms. The Illustration form is kept for documentation only, but is not translated into a formal model.
Referring back to the KBE definition by Chapman and Pinfold, the CAD model can be understood
as the product model within the formal model in MOKA, whereas the engineering expertise and best
practices are represented by the design process model.

4.3.2.2. Commercial off-the shelf KBE solutions

The application of commercial off-the-shelf (COTS) solutions holds the promise of reducing long-term
cost by outsourcing the development effort. The MMG presented by La Rocca [LaR11] is built using
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the commercial KBE program ICAD. Whereas ICAD has since been discontinued [LaR15], comparable
solutions are available today, such as Genworks GDL [CL07; Gen19b], ParaPy [DB23] and CATIA
KnowledgeWare [3DS23b], the latter of which is marketed as the successor of ICAD.

However, the COTS approach also entails some drawbacks. These include a reduced flexibility to
integrate new libraries, including e.g. a differentiated version of the OCCT CAD kernel as discussed in
section 2.2.3 to support high-fidelity gradient-based MDAO. It can also be argued that the majority
of the development effort for a KBE system will be spent on the design knowledge rather than the
framework. Since COTS solutions provide only the framework, the actual benefit in development
effort might therefore be relatively small. Furthermore, storing critical knowledge inside a commercial
system makes corporations susceptible to vendor lock-in, which may severely increase long term cost.

4.3.2.3. Elements of a KBE system

In contrast to the focus on organizational structure, which characterizes MOKA, La Rocca [LaR11]
more closely examines the implementation aspects on the software side for his MMG. He establishes
an understanding of KBE systems as a further development of knowledge-based systems (KBSs), i.e.
computer applications that use knowledge to solve problems in a specific domain [Neg11], thus placing
a stronger emphasis on the aspects of AI. Five key components for a KBE system, which are introduced
in the following are identified. A different terminology from La Rocca is adopted in this thesis for
the data and knowledge base components to avoid confusion with established concepts in computing
like relational databases. The components are instead referred to as data and knowledge repository
in reference to the well-established repository pattern (s. e.g. [PG20]). The original terms used by
La Rocca are given in brackets.

Knowledge repository (knowledge base) All engineering rules are stored in the knowledge repos-
itory. The distinction between activities and rules from MOKA is dropped altogether. Instead, La
Rocca breaks down the rules into five subcategories:

• Logic rules (or conditional expressions): If-then-else type relationships.

• Mathematical rules: Simple arithmetic relationships e.g. addition, subtraction, multiplication
etc.

• Geometry handling rules: Generation and manipulation of geometric entities.

• Configuration selection rules (or topology rules): Control the number of instances of an object
in the object tree.

• Communication rules: Link to external data, e.g. in databases or lookup tables.

ICAD provides the ICAD Design Language (IDL) to describe engineering rules, which is based on the
Common Lisp programming language. Lisp has a few unique features that make it a popular choice
for rule definition in commercial KBE tools. One of the key features is its support for a declarative
programming style, where code need not be written in the order of its execution. Instead the knowledge
repository can be understood as an unstructured collection of relationships between parameters.

That said, downside of IDL and even Lisp is their niche status, compared to more popular languages
such as Python. As a result, capable knowledge engineers to develop rules will be difficult to find in
the labor market and new candidates likely require extensive training. This puts the companies at risk
of expert lock-in, where competences and tools may get lost or become unusable upon the departure
of very few key experts.
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Workspace or data repository (data base) Unlike the knowledge repository, which is meant to be
stored long-term, the workspace is a short-term data storage for the product design problem at hand.
As new results are made available by rules from the knowledge repository, they are added to the
workspace. Negnevitsky [Neg11] refers to a data repository, instead of a workspace, in the context
of general KBSs. This term provides a better analogy to the term knowledge repository, given the
terminology established in section 4.3.1.

Due to the implementation based on a CAD environment, the data repository in the case of La
Rocca provides many entries, which are essentially parameters of a CAD model. However, he also
applies it to store and trace non-geometric data such as masses. It has already been discussed in
section 4.1 that a data-centric product model such as CPACS could in fact be better suited in such a
case. This is corroborated by La Rocca, Langen, and Brouwers [LLB12], who introduce an interface
to CPACS in a later version of the MMG.

Inference engine The inference engine is the core of the KBS. It provides reasoning mechanisms,
which attempt to deploy applicable rules from the knowledge repository in a structured way to solve
a given design task. The task is formulated based on a user query requesting a certain piece of infor-
mation and the data that is available in the data repository. Given these boundaries, a combination
of rules is found, which can provide the requested data as an output when executed in sequence by
applying reasoning algorithms.

Negnevitsky [Neg11] introduces forward- and backward-chaining as common reasoning algorithms.
In forward-chaining, eligible rules, which only require inputs that are already provided in the data
repository, are identified and executed. The procedure is repeated iteratively. Since new data is
added to the data repository with each iteration new rules become eligible for execution. The problem
is solved if a rule can be triggered, which can provide the information requested by the user. An
illustrative example for the approach is given in figure 4.3.3a. Here, the goal is to determine the
unknown variable Z by evaluating the available rules in the knowledge repository. A drawback of
the forward-chaining approach is that it is not known, if a given function will help progress towards
the requested data. Therefore, forward-chaining may produce a lot of unnecessary calls to rules,
exemplified by the rule to compute the variable L, which is called in figure 4.3.3a, but does not
contribute to the goal of determining the unknown variable Z.

To address this issue, backward-chaining, which is also referred to as goal-driven or lazy inference,
starts the process by identifying a rule, which can provide the requested piece of information. If not
all required inputs to that rule are available in the data repository, it is stored and further rules, which
can provide the additional missing inputs are identified. This procedure is repeated iteratively. Only
once all inputs to a rule are available in the data repository, it can be executed to provide additional
data repository entries. With new data available, it is reevaluated whether any of the functions in
storage can be executed. Figure 4.3.3b provides an illustration of the approach. Visibly one less rule
was triggered than in the forward-chaining example in figure 4.3.3a, as the unnecessary computation
of the variable L could be avoided.

If a solution is found by the inference engine, it is guaranteed to be consistent with the rules in
the knowledge repository and the inputs provided in the data repository. However, depending on the
available rules and data, the inference engine may not be capable of solving a given problem.

Explanation subsystem If the inference engine can provide a result, the result can be explained,
i.e. the exact sequence in which rules have been executed can be retraced, along with the related
inputs and outputs. Making this explanation available to the user not only helps to understand the
reasoning behind successful solutions, but also to detect, which data or rules might be missing in failed
solutions. Consequently, an explanation subsystem is considered an essential component of any KBE
system according to La Rocca.
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Figure 4.3.3.: Illustrative examples of inference mechanisms (after [Neg11])
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User interface Finally, La Rocca points out the need for a UI to interact with the KBE system. To
specify requirements for the UI, he identifies three user roles: The domain expert or knowledge engineer
to build and maintain the knowledge repository, the software engineer to develop the inference system
and the end user, who will apply the system to generate product designs. The roles are distinct and
should not interfere with one another. As such, different views of the system must be provided for
each task.

4.3.2.4. Structuring knowledge

La Rocca [LaR11] acknowledges that the low-level concepts contained in both the data and rule repos-
itory of KBE applications often do not correspond to the intuition of the end users, e.g. preliminary
design engineers. He therefore proposes ways to wrap the knowledge contained in the rules in higher
level objects, which he calls high-level primitives (HLPs) and capability modules (CMs), to make the
application more accessible.

HLPs, named as a counterpart to low-level primitives such as cylinders or boxes found in CAD, are
designed to represent different components of the aircraft. La Rocca proposes HLPs e.g. for wings,
fuselages and engines. Following an OOP paradigm, all the rules necessary to build the wing surface are
collected as methods in the HLP class definition. As a result only the most basic top level parameters
are exposed, which are familiar to design engineers. A beneficial side effect is that the parameters
usually also correspond to meaningful design variables for optimization. Additional capabilities can
be packaged with HLPs, including the generation of an internal structure [Laa08] to encapsulate the
complete design of a given component.

Moreover, different HLPs can be deployed to support different aircraft architectures. For instance,
the MMG provides support for conventional tube-and-wing, BWB, SBW and boxwing configurations.
Knowledge can be shared among different classes to some extent by introducing abstract base classes,
from which the HLPs can inherit. However, this approach quickly results in a complex object-oriented
structure.

A disadvantage of HLPs is an increased bias of the model and thus a reduced design freedom.
For instance, 4-digit NACA profiles are assumed for wings in the MMG, excluding modeling of CST
profiles. Therefore, the existing HLP would either have to be adapted, increasing the complexity of
the HLP, or a new HLP for CST profiles would have to be created, which could lead to a large number
of very similar HLPs, which would again impair accessibility.

Aside from HLPs, CMs have been introduced to capture more complex procedural knowledge re-
quired to derive analysis models for multidisciplinary analysis, e.g. the segmentation of the wing sur-
face, or the computation of the tank volume. While the rules are once again collected in classes, they
cannot be instantiated on their own, but only in terms of a HLP. Therefore, CMs can be understood
as operators on HLPs and thus ultimately constitute a more complex version of a rule.

4.3.2.5. Graph-based design languages

Expanding on the idea of a graph-based system representation found in MOKA, Schmidt and Rudolph
[SR16] propose the application of a graph-based design language based on UML (s. section 4.1.2). The
corresponding KBE system architecture is given in figure 4.3.4.

Vocabulary, i.e. parametric descriptions of components provided in UML, which mirror the concept
of HLPs, and rules, which can be provided as executable bits of Java code [Mot16], form a knowledge
repository, which the authors refer to as a production system. The inference mechanism, referred to
as design compiler, receives the system as input and builds a design graph, which serves as the central
data format. The design graph provides the input for a host of dedicated builder modules, which can
generate consistent CAD geometry, FEM and thermal analysis models as well as subsystem models
and routing.

The approach enables not only vendor-agnostic support of different CAD environments, but also
provides a basis for the implementation of a multi-model generator. Furthermore, results from analyses
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Figure 4.3.4.: KBE system based on graph-based languages as proposed by Schmidt and Rudolph
[SR16]

can be fed back to the production system in a similar way to an MDAO system. In this context, the
role of the design graph is similar to that of CPACS in the distributed design workflows introduced
in section 2.2.4. That said, no information is available if the multi-fidelity requirements for model
generation are propagated back to the design compiler, i.e. if the design compiler can be configured to
compute only those aspects of the design, which are necessary for the subsequent model generation.
This type of feature can significantly enhance the efficiency of the model generation.

4.3.3. Application examples of KBE

Successful applications of KBE have been shown e.g. in the automotive [CP99; CP01], aerospace
[LKT02; Dor14] and civil engineering [Sin14; HB21] fields. In the following, a few examples of appli-
cations are discussed, which relate to the two target use cases, stated in the beginning of this chapter.
First, the design synthesis aspect is considered in section 4.3.3.1, then multi-model generation is dis-
cussed in section 4.3.3.2. Finally, in section 4.3.3.3, the relationship between KBE and MDAO process
architecting tools is discussed.

4.3.3.1. Product and component design synthesis

Early motivation for the development of KBE was the automation of repetitive design tasks. Chapman
and Pinfold [CP99] show a simple example, where the frame structure of a car is created automatically
based on the outline.

Rentema, Jansen, and Torenbeek [RJT98] are among the first to propose application of KBE tech-
niques in conceptual aircraft design. A first implementation using ICAD is presented by La Rocca,
Krakers, and Tooren [LKT02]. Laan [Laa08] later shows an application of ICAD to generate wing
movables and structural details. In DARfuse, Brouwers [Bro11] presents a fuselage HLP, i.e. a para-
metric model capable of creating fuselage and cabin details, implemented using Genworks GDL. Based
on the work of Laan, Kulkarni et al. [KL+17] show a KBE system for a detailed rudder implemented
in ParaPy. ParaFuse [Jon17] also leverages ParaPy to provide an updated fuselage HLP, based on
the work by Brouwers in DARfuse. However, the main focus is on the parametric description and
regulatory constraints, rather than the KBE methodology. In terms of the fuselage structure, only the
seat rails are taken into account.

Another example is shown by Munjulury [Mun17], who provides a very detailed overall aircraft model
including interior, structures, engines and lading gears. The model is built using CATIA, leveraging
the available KBE features i.e. UDF, Power Copy and Knowledge Patterns. The approach is similar to
the parametric-associative modeling described by Ledermann, Ermanni, and Kelm [LEK06] or Wenzel,
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Sinapius, and Gabbert [WSG11] mentioned in section 4.2.2.1, but the model is meant to cover a larger
scope, also taking into account e.g. aspects of the cabin. Munjulury acknowledges the additional time
and expertise necessary to build and update the system, including the need for proficiency in multiple
programming languages.

Motzer [Mot16] demonstrates capabilities to provide fuselage and designs at a very high level of
detail down to subsystem level by applying graph-based design languages. He also takes into account
structural information, though strictly as input, thus neglecting the mutual effects of fuselage structure
and cabin design.

4.3.3.2. Multi-Model-Generation

The application of KBE has always been closely related to the automatic generation and evaluation of
analysis models. Based on their frame design, Chapman and Pinfold [CP01] show that FEM models
can be derived, where the walls are modeled as shells. To this end, the full model representation,
which has thick walls is simplified to a model with a surface representation of the wall.

In aircraft design, the need to support multiple disciplines, all of which have different model re-
quirements, has spawned multiple attempts to create a MMG using KBE techniques, as described
by La Rocca [LaR11]. As illustrated by figure 4.3.5, La Rocca demonstrates the application of the
MMG to derive aerodynamic and structural analysis models. For the aerodynamic method, both
panel methods and CFD are supported. Notably, the generation of details for multi-fidelity analysis
is mentioned as well.

Figure 4.3.5.: MMG applications (from [LaR11])

For the wing, Dorbath [Dor14] proposes a similar approach, where a MMG is used to derive a
large number of tool-specific parameters which serve as inputs to different analysis tools, based on a
small and manageable number of user-defined input variables. The specific analysis tools mentioned
by Dorbath are AVL (Athena Vortex Lattice, Drela and Youngren [DY24]) for aerodynamics and
ANSYS for structures. The MMG provides a knowledge base implemented in MATLAB to perform
the translation. However, it does not strictly qualify as a KBE application, as Dorbath opts for a
procedural implementation, instead of the declarative approach advocated by La Rocca. The element
of the inference engine, which is an integral component of a KBS, is therefore eliminated.

Bhagat and Alyanak [BA14], Alyanak et al. [AD+16], and Dannenhoffer and Haimes [DH16] demon-
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strate multi-model generation using the ESP. They apply an approach similar to HLPs to generate
and combine the individual aircraft components, which is implemented using the scripting language of
ESP. Like Dorbath, they adopt a procedural implementation. Once again, structural and aerodynamic
models are derived.

For the fuselage, Tooren and Krakers [TK07] demonstrate the generation of structural, acoustic
and thermal models of a fuselage barrel for coupled analysis using Abaqus CAE. Like La Rocca, the
authors use ICAD to generate the geometry. That said, a very basic cylindrical barrel geometry is
assumed, which does not properly reflect the geometric complexities of complete configurations.

4.3.3.3. Relationship to MDAO workflow generation

The techniques mentioned in 2.2.4 to assemble MDAO workflows automatically, bear close resemblance
to the approach used in KBE. Gent, La Rocca, and Hoogreef [GLH18] propose the CMDOWS container
format to describe MDAO systems. Several stages of the synthesis of the workflow are addressed. The
first stage is the tool repository, where parameters, separated into design variables, objective variables,
constraint variables and state variables, and executable blocks, which can be either a mathematical
function or a design competence that performs an unknown black-box operation, must be provided.
Each executable block provides sets of input and output parameters, which are required and provided
by the function respectively. If the executable block describes a design competence based on CPACS,
the corresponding parameters can provide references to data points in a CPACS data set using XML
XPath notation. In relation to the aforementioned elements of KBE, the design competences can be
considered the knowledge base, whereas, the parameters or by extension, the CPACS data set, can be
considered the data base.

From the tool repository, the MDAO problem and an MDAO solution strategy can then be derived
using graph-based techniques, which have been implemented in the tool KADMOS [Gen19a], to as-
semble the executable MDAO workflow. This corresponds to the inference engine in KBE. The final
MDAO system graph can then be exported to a PIDO framework, e.g. RCE (s. section 2.2.4), which
provides the explanation subsystem and the user interface.

The approach of comparable tools by Gallard et al. [GV+18] and Page Risueño et al. [PB+20] can
be mapped to the elements of KBE in a similar way.

4.3.4. Summary

Knowledge-based engineering techniques, which combine a set of rules provided in a declarative man-
ner and an inference engine to dynamically fill a product data base, have been applied successfully
to both create new aircraft and fuselage designs from scratch and provide disciplinary models for
aero-structural analysis. For the aerodynamic analysis models, multi-fidelity aspects have also been
considered e.g. by La Rocca [LaR11], who provides models both for panel method and CFD analysis.
As such, a MMG approach based on KBE methodology is promising w.r.t. the research hypothesis,
particularly working hypotheses 1 und 2, to enable dynamically reconfigurable product design and
taylored-fidelity model generation processes based on a central product model. Product design here
could also entail the generation of new details as described by working hypothesis 3.

Fundamentally, KBE is furthermore well-suited to react to changes in the overall system architecture
as required by working hypothesis 4, which is illustrated by the high-level primitives concept
proposed by La Rocca. However, due to the high number of different options, the system can become
highly complex very quickly, when using the proposed object-oriented approach.

None of the authors above demonstrate a fully integrated fuselage design approach, which takes
into account the interconnections of OML design, structural design and cabin design. Also, due to
the focus of the multi-model generation on aero-structural analysis, no example for a fuselage-specific
MMG is found, which can support the types of analysis presented in section 4.2. There is also no
indication, whether the requirements from the MMG are propagated back to the design process, to
avoid the generation of details, which are not necessary for a given analysis model.
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4.4. Contributions to the State of the Art

Based on the available research discussed in this chapter, several contributions of the work presented
in the subsequent chapters of this thesis to the state of the art can be identified.

Applying a KBE approach as described in section 4.3, the implementation of a comprehensive set
of design and modeling rules for the fuselage is described in chapter 6, linking generation of the OML,
structural design and cabin layout in such a way that enables consideration of complex interdisciplinary
connections. As shown, the KBE methodology implicitly results in a graph-based formulation, as
described by working hypothesis 1, where product parameters are connected via rules expressing
mutual dependencies. A novelty of the KBE implementation in chapter 5 in this thesis is that it is
designed around the parametric foundation provided by a central data model, i.e. CPACS. The design
capabilities may operate directly on the central model, but are also coupled to KBE formulation of
a parametric modeling engine within a single knowledge-based system. This allows for simple and
efficient integration of geometry-dependent design rules. As discussed in section 4.1, the parametric
modeling engine furthermore serves to bridge the gap between data-centric and geometry-centric
product representations.

The literature shows that KBE is well-suited for multi-model generation capabilities in an MDAO
context as discussed in section 2.2 and stated by working hypothesis 2. However, most applications
lie in the domain of OAD and aero-structure coupling. All of the applications shown for the fuselage,
such as the GFEM generators, are implemented in a procedural manner, rather than using KBE. It
is shown in section 7.3 of this thesis, how the KBE approach in chapter 5 can be applied as a multi-
model generator to provide tailored geometry models for disciplinary analyses related to the fuselage,
which have been discussed in section 4.2. This includes the creation of detailed analysis models of the
cabin, e.g. for human factors evaluation. So far, such models have not played a role in early design
processes. Instead, all studies shown rely on manually or semi-automatically created models, created
in a subsequent step to the overall design.

Aside from meeting multidisciplinary and multi-fidelity geometry requirements, consistency and
efficient automation are key aspects. The KBE approach presented in this thesis enables tracing of
the upstream dependencies for given geometry components, which means that, as stated in working
hypothesis 3, only design details necessary to the model generation need to be evaluated. This is a
direct consequence of the integration of the parametric modeling engine as part of the KBE system.
A single shared knowledge repository based on a central data model furthermore enables the dynamic
linking of rules from different disciplines without relying on a prescribed sequence of disciplinary design
contributions. Once generated, data, including geometric objects, is cached and thus available for later
re-use, also by other disciplines, which ensures consistency and improves efficiency.

Finally, it is shown in sections 6.3 and 7.2, how the knowledge-based approach provides the means to
quickly implement new rules to support different aircraft system architectures, while re-using as much
of the existing knowledge as possible. This helps improve the accuracy, efficiency and flexibility of
aircraft design processes for novel configurations, which have been discussed in section 2.1. It is stated
in working hypothesis 4 that it should be possible to include novel configurations by manipulating
the knowledge graph. However, most examples in the literature are either specialized KBE systems for
specific architectures or based on highly generic descriptions, which lack the necessary specificity to
describe products in the level of detail necessary for the types of analysis from section 4.2. In contrast
to this, suitable means of structuring and modularizing the knowledge are introduced in section 5.2
this thesis as well as mechanisms to minimize the necessary changes to the system and maximizing
the exploitation of applicable existing knowledge.
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In this thesis, the implementation of the KBE methodology for the fuselage and cabin design tasks in
the KBE application Fuselage Geometry Assembler (FUGA) using the Python programming language
[Pyt23] is discussed. Several factors have contributed to the decision to implement the methodology
from scratch rather than using one of the existing COTS solutions discussed in section 4.3.2.2.

On the one hand, a major strength of Python is its capability to interface with libraries from
different languages. In this way, CAD or mesh visualization capabilities which are readily available
via the OCCT and VTK libraries can be leveraged easily. On the other hand, Python also provides
versatile libraries for data handling, which facilitates the interaction with data e.g. from CPACS. Its
wide popularity1 furthermore reduces the risk of expert lock-in.

The choice of Python as programming language eliminates all existing solutions except for ParaPy.
However, available publications show a strong focus of ParaPy on encapsulated parametric component
models using objects according to the HLP approach [Sch17; Jon17; Plu21], whereas the goal of
this thesis is to investigate more flexible extensible graph-based KBE systems as stated in working
hypothesis 1. In addition, Schaft [Sch17] lists a number of missing features in the geometry kernel,
required to automate the design and model generation of aircraft structures. Thus, the pythonocc
library [Pav20] is adopted instead in the scope of this thesis, which provides bindings to the OCCT
kernel in Python.

Different capabilities of FUGA have been implemented in separate subpackages as shown in fig-
ure 5.0.1. This chapter is predominantly concerned with the implementation of the underlying KBE
methodology, which is found in the fuga.core subpackage. First, in section 5.1, the implementations
of the different KBE system elements listed by La Rocca [LaR11] are introduced. Then, in section 5.2,
the approach to structuring knowledge in the remaining subpackages is discussed, which is based on
a plugin architecture leveraging user-defined graph composition. Furthermore, ensuing possibilities to
assemble use-case specific design systems are considered.

fuga

core

cpacs

geometry

design

Figure 5.0.1.: Subpackage structure of FUGA

5.1. Knowledge-based engineering system implementation in FUGA

In this section, the implementation of the KBE system in FUGA is introduced.figure 5.1.1 establishes
the different process stages of the system, which will be revisited throughout this section. In general, a
setup and initialization phase and an application phase can be distinguished, based on the level of user

1Python has been the most popular programming language since 2018 according to Carbonnelle [Car23]
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interaction. Whereas not much user input is required during the system setup and initial data update
steps, the subsequent steps rely on user requests for the postulation of a specific design problem, which
can then be solved. As such, it is up to the user to guide the design process.

System
setup

(build MCG)

Update
data

repository

Problem
formulation
(build FPG)

System
execution

(PSG traversal)

Rule
repository

Initialization
data

User
request

Rule
outputs

Figure 5.1.1.: KBE system process stages

In section 4.3.2.3, the constituting elements of a KBE system after La Rocca [LaR11] have been
listed. The actual implementations of the concepts in FUGA are presented in the following subsections.
As mentioned before, the terminology of data and knowledge repository is adopted in this thesis,
instead of data and knowledge base as used by La Rocca.

To begin with, the implementation of the data repository is discussed in section 5.1.1. The data-
centric exchange format CPACS plays a fundamental role in this context, however, the geometry-
centric product description, too, must be accounted for.

Next, a simple protocol for the formulation of functional rules using Python objects is proposed in
section 5.1.2. The goal is to at once provide a maximum degree of freedom to the knowledge engineer,
i.e. the person concerned with the actual implementation of the rules and make integration into the
overall system as simple as possible. By collecting rules written in adherence to the protocol, the
knowledge or rule repository can be assembled.

Several key stages of the third key element, the inference engine, are shown in figure 5.1.1. During
system setup, all the connections provided in the rule repository are identified. Based on the available
data in the data repository and a user request for additional data, a problem is formulated, which
is then solved by executing the system, i.e. performing a traversal of all eligible rules. This step
can be repeated given a new user request. The implementation of the inference engine in this thesis
leverages a graph representation for the different steps. It is discussed in section 5.1.3. The approach
is closely related to the automatic collaborative MDAO workflow integration techniques mentioned in
section 2.2.4.

Finally, in section 5.1.4, it is discussed how the need for an explanation subsystem and a user in-
terface, which may be used to communicate the user requests to the system, can be satisfied by using
interfaces to established file formats and third-party software, avoiding a time-consuming implemen-
tation from scratch.

5.1.1. Data repository for data-centric and geometry-centric product description

In essence, the data repository provides a mapping between the unique name or address of a variable
in the KBE system and its value. In Python, the standard data structure for mappings is a dictionary,
which efficiently links a hashable key, e.g. a string, and a value, which can be an arbitrary Python
object. A Python dictionary thus provides a good foundation for the implementation of the repository.
The data repository supports several basic operations, which are inherited from dictionaries:

• add: Add a new key-value-pair.
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• update: Change the value for a key, which already exists in the repository. Fall back to add if
key does not exist.

• delete: Remove a key-value pair from the repository.

• get: Retrieve the value for a given key. If the key is not found in the repository, either a null
value is returned or an error is raised.

Using these operations, the data repository can gradually be filled with data, as it becomes available.
Typically, once the value of a variable has been computed, it is added to the repository, which acts
as a cache. This means, the variable does not need to be recomputed if it has to be used again, but
can simply be looked up in the repository. This ensures that expensive operations are not executed
unnecessarily often. However, a change in value of one variable, i.e an update, can also render other
results invalid, if they depend on the changed variable. These results must be removed from the
repository using the delete operation.

A data repository based on a Python dictionary provides significant freedom w.r.t. what types of data
can be stored. However, without a guiding structure the data quickly becomes difficult to navigate and
product data exchange will be tedious. Therefore, a common product description must be established
as a means to organize the data. In section 4.1.2, the common parametric aircraft configuration schema
CPACS was identified as a promising choice for data-centric or parametric description of aircraft, due
to its vast scope, high maturity, and relative ease of use compared to other formats. It has therefore
been selected as the basis for the KBE system to store the ground truth of the product. This means
that CPACS acts as the source for all modeling activities and a storage and exchange container for all
design results.

To establish a link between the data in the CPACS XML structure and the dictionary-based data
repository, all entries of the CPACS tree must be assigned a unique string as an identifier. Here,
the XPath notation of XML, which allows for navigation of the XML tree hierarchy using a notation
similar to file paths in computer operating systems, can be applied. An example is given by the
following listing, which provides the path to the first fuselage instance in a given CPACS file:

/ cpacs / v e h i c l e s / a i r c r a f t /model/ f u s e l a g e s / f u s e l a g e [ 0 ]

That said, some adjustments are made to the approach when parsing CPACS, in order to take ad-
vantage of some advanced features of the Python programming language. The main reason is that
CPACS adds the concept of unique identifiers (uIDs) to XML. The uIDs in CPACS have a similar
role to foreign keys in relational databases, allowing for references to an XML node from anywhere
else in the tree. This allows for the introduction of connections, which break up the strict hierarchical
structure of XML. Additionally, there are many instances of collection nodes to be found in CPACS,
i.e. nodes, which contain an arbitrary number of children of the same type. For collection nodes,
representing the data contained as a table can be more intuitive and practical, than a tree structure.

The pandas package [McK10; Num23] is well-established to work with tabular data in Python, which
is stored in so-called data frames. It supports merge operations between data frames, which allow for
lookup of uID references to be implemented in a very efficient way. This means that in many cases
the entries of collection nodes are not individually stored in the data repository, but in a single data
frame representing the entire collection (s. also [WPK17]). An example is provided in table 5.1.1.

Table 5.1.1.: Pandas data frame of the wing node for an example configuration
name description parentUID symmetry componentUID

uID
htp htp This is an HTP fuselage x-z-plane AircraftModel
vtp vtp This is a VTP fuselage NaN AircraftModel
wing wing This is a wing fuselage x-z-plane AircraftModel

The data frame is identified via a generalized notation the XPath of the collection node:

81



5. Extensible implementation of the KBE methodology

/ cpacs / v e h i c l e s /{ a i r c r a f t }/model/wings /wing

The generalization is necessary in order to take into account that CPACS provides separate but for
the most part identical nodes for describing rotorcraft and fixed-wing aircraft. To adapt to this, the
value of {aircraft} can be customized by the user depending on whether a fixed-wing or rotorcraft
use case is evaluated. No index is given to highlight that all XML nodes of this type are contained in
the table.

As discussed in section 4.1.3, a geometry-centric model will be required for the generation of the
analysis model and certain design tasks, in addition to the data-centric product model provided via
CPACS. Consequently, geometric data must also be stored in the data repository, along with the
CPACS data. To this end, the Python bindings for the OCCT CAD-kernel provided by the pythonocc
package allow for OCCT geometry to be represented by Python objects, which can in turn be stored
as values in the repository. Since the geometry models are not included in the XPath address space
of CPACS another identifier must be chosen by the knowledge engineer. Using a path based notation
similar to XPath providing the tool and subpackage name has proved to be a sensible approach to
keep the data repository organized. Borrowing from semantic web terminology, the path used as data
repository key will be referred to as uniform resource identifier (URI) in the following.

5.1.2. Rule repository enabled by function-based rule protocol

The rule repository is a collection of all rules available in the system. To facilitate processing by
the inference engine, all rules should be formulated according to a common standard. The design
of this rule formulation standard is motivated by the need to make it sufficiently simple as to allow
inexperienced programmers to implement rules quickly. At the same time, it should also grant sufficient
freedom to more experienced programmers. To this end, a rule protocol2 has been established, to
provide a basic template to implement and integrate new rules quickly.

The protocol needs to fulfill several fundamental requirements. First of all, the rule needs to be
provided as an executable piece of software. In Python, the simplest way to accomplish this is a
function. A function provides a single return value, which needs to be assigned to a repository entry.
The URI of this entry must be specified by the protocol. In a knowledge-based system, the input
values must furthermore be retrieved from the data repository. Hence, the URIs of the input values
must also be specified.

The basic design of the protocol is illustrated by figure 5.1.2. A valid implementation of the rule
protocol is a class in Python, which implements the attributes provides and requires a method
compute. The attribute provides of type “string” contains the URI under which the output of the
rule ought to be stored in the data repository. The attribute requires contains a set of all URIs,
which are necessary inputs to the computation that need to be looked up in the data repository.
Finally the method compute contains the necessary program code to compute the value specified by
the provides attribute based on the inputs found in the requires attribute.

Figure 5.1.2.: UML representation of the rule protocol

By default, a single dictionary is expected as input to the compute method, which provides a map-
ping between the input URIs and the corresponding data repository entries. This has the advantage
that the compute method does not reference any attributes of the class directly, making it a static
method. A static method can be treated exactly like a function, which means that, in its simplest
form, the rule definition essentially contains only a function and references to the inputs and output.

2For more background on protocols in Python s. PEP 544 [LLL17].
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However, the protocol also gives more experienced developers the opportunity to exploit the OOP
features of Python to design more advanced and complex classes or leverage inheritance as required.

Formulating the rules in this way has several advantages over a conventional procedural implemen-
tation. First of all, the computation itself is stateless, i.e. the result only depends on the inputs and
not the state of the remaining system. Statelessness has positive effects on reproducibility of results
and thus testability of the program. It also facilitates the implementation of parallel execution. Sec-
ondly, the relationship is provided in a declarative way, meaning it is not evaluated right away, but
only upon request. This enables e.g. lazy evaluation and corresponds to the findings of La Rocca, who
also advocates a declarative rule formulation.

The presented approach to rule formulation based on an established general-purpose programming
language has several advantages to other approaches, discussed in chapter 2. Compared to design
knowledge exchange formats such as OWL described in section 4.1.2, rules can be formulated with
the full language capabilities, including advanced and mature libraries e.g. for numerical computation,
data analysis or CAD. Due to the dynamic typing capabilities of Python, no restriction is placed on
which kinds of objects are to be used, which also means the architecture is open to future developments
in the language without additional integration effort. An advantage compared to a dedicated design
language such as IDL, mentioned in section 4.3.2.3, is the higher public awareness of a popular and well-
established language such as Python, which not only results in better availability of documentation,
but also makes it more likely for newcomers to the KBE tool to already be familiar with the language.

To assemble the rule repository, all relevant rules are collected and assembled into a single design
system. The specific rule implementations for fuselage and cabin design and modeling in FUGA
are provided by the fuga.geometry and fuga.design subpackages listed in figure 5.0.1, which are
introduced in chapter 6.

5.1.3. Graph-based inference engine

To implement the inference engine, an overall design system graph can be assembled based on the
rule repository using the dependencies specified in the individual rules. This representation, enables
reasoning on the system as shown e.g. by Pate, Gray, and German [PGG13] and Gent [Gen19a] for
MDAO systems. A similar approach is presented here, which is implemented using the NetworkX
graph library for Python [HSS08].

In the following, some background on graph theory syntax is provided first in section 5.1.3.1. Then,
the different types of graphs that are required for the implementation of the KBE inference engine
are introduced as well as their relationships. Finally, in section 5.1.3.3, solution strategies for different
types of problems are discussed.

5.1.3.1. Graph fundamentals

Following the notation used by Diestel [Die17], a graph G consists of a set of vertices (or nodes) V
and edges (or connections) E

G = (V,E), (5.1.1)

where E ⊆ [V ]2, i.e. all elements of E are two-element subsets of V . The order of the pairs in E
has no meaning for undirected graphs. It is, however, relevant for directed graphs (also referred to as
digraphs), where the order of each pair indicates the direction of the connection. For instance, the
connection from the vertex v to the vertex w would be the edge e = (v, w), where v is the initial and
w is the terminal vertex. In figure 5.1.3, an example for a digraph with

V = {a, b, c, d, e, f, g, h}
E = {(a, c), (b, c), (c, d), (d, a), (d, e), (d, f), (f, d), (f, g)} (5.1.2)

is shown.
The cardinality |A| of a set A denotes the number of entries. The edges directed out of the vertex

v are denoted by the set E+ (v) and its cardinality is referred to as the outdegree δ+ (v) = |E+ (v)|.
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Figure 5.1.3.: Example digraph

Analogously, the edges pointing towards the vertex are denoted by E− (v) with the indegree δ− (v) =
|E− (v)|. For the example of the vertex d in figure 5.1.3 the outdegree δ+ (d) = 3 and the indegree
δ− (d) = 2.

A path Q = (V,E) is a subgraph of G (i.e. Q ⊆ G), where

V = {v0, v1, ..., vk}

and
E = {(v0, v1) , (v1, v2) , ..., (vk−1, vk)} .

A cycle is a path where v0 = vk. The graph in figure 5.1.3 contains two cycles with VC1 = {a, c, d}
and VC2 = {d, f}.

A digraph containing cycles is referred to as a directed cyclic graph, whereas a digraph without cycles
is called directed acyclic graph (DAG). Retaining the vertices of the cyclic digraph from figure 5.1.3,
a DAG can be created by updating the edges, using e.g.

EDAG = {(a, c), (b, c), (c, d), (d, e), (d, f), (e, h), (f, g)}.

Due to the updated connections, the two graphs are not the same despite being composed of the same
set of vertices. The resulting graph is shown in figure 5.1.4.
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b c

d

e

f g

h

Figure 5.1.4.: Example DAG

In a DAG, the ancestors of a vertex v are all vertices with a path to v, whereas the descendants of
v are given by the set of vertices, which can be visited starting from v. The ancestors d in figure 5.1.4
are given by {a, b, c}, whereas the vertices {e, f, g, h} are descendants.

If a vertex v has no incoming edges, i.e. δ−(v) = 0, it is referred to as a source. Conversely, if the
vertex has no outgoing edges, i.e. δ+(v) = 0, it is referred to as a sink. In figure 5.1.4, the nodes a
and b are sources, whereas the nodes g and h are sinks.

The topological sorting algorithm by Kahn [Kah62] can be applied to a DAG G, to determine an
order of the vertices in G, in which the initial vertex of any given edge is guaranteed to appear
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before the terminal vertex. Multiple solutions of the topological sorting are possible. For the DAG in
figure 5.1.4, the order (a, b, c, d, e, f, g, h) is one feasible solution.

Two graphs G1 and G2 can be combined into Gc = (Vc, Ec) by forming the union of the respective
sets of vertices V = V1 ∪ V2 and edges Ec = E1 ∪E2. Van Gent and Pate also introduce the following
notation for unions involving more than two sets:⋃︂

i∈I
Ai =

⋃︂
A∈A

A = {x|x ∈ A for someA ∈ A} , (5.1.3)

where the set of sets A = {Ai|i∈I} is an indexed family of sets with the index i and the indexing set
I [SAE14].

Any graph can be represented by an adjacency matrix, where the rows and columns represent
the vertices in the graph and nonzero entries represent an edge from the row node to the column
node. Adjacency matrices are the foundation e.g. of N² and XDSM diagrams. Undirected graphs are
characterized by a symmetric adjacency matrix, whereas for digraphs, the upper triangular denotes
feed-forward connections and the lower triangular denotes feedback connections w.r.t. the order of the
nodes. The adjacency matrices for the two example graphs are depicted in figure 5.1.5. Visibly, entries
are found in the upper and lower triangular for the cyclic graph. For the DAG, however, only entries
in the upper triangular are present. This is due to the choice of a topological order for the row and
column order, which results in all connections being feed-forward.

a b c d e f g h
a 1
b 1
c 1
d 1 1 1
e
f 1 1
g
h

(a) Cyclic graph (figure 5.1.3)

a b c d e f g h
a 1
b 1
c 1 1
d 1 1
e 1
f 1
g
h

(b) DAG (figure 5.1.4)

Figure 5.1.5.: Adjacency matrices for example graphs

5.1.3.2. KBE system graph types

Several types of graphs are necessary to implement the KBE inference engine, which are introduced
in the following. The terminology is adopted from Pate, Gray, and German [PGG13]. Gent [Gen19a]
employs a slightly different nomenclature, which is also cited for comparison. To facilitate the com-
parison between the methodologies for KBE and MDAO, the term function is used to refer to both
KBE rules and MDAO tools.

Maximal connectivity graph (MCG) Based on the information contained in the provides and
requires attributes of the rule protocol, a representation of a given function y = fi (x) using a DAG
Gi = (Vi, Ei) can be created. An example is shown in figure 5.1.6a. Notably, the graph contains two
different types of nodes. The round nodes represent variable entries in the data repository, whereas
the rectangular node represents an executable function. Since each rule only provides a single output,
as per the protocol, a simplified representation can also be introduced, where the rule and its output
node are merged into a single node, as shown in figure 5.1.6b.

The maximal connectivity graph (MCG) M = (VM , EM ) is assembled by combining these individual
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Figure 5.1.6.: Graph representation of a KBE rule

graphs for all available functions:

VM =
⋃︂
i∈I

Vi, (5.1.4)

EM =
⋃︂
i∈I

Ei. (5.1.5)

It thus represents the entirety of the connections described by the function repository. In reference to
this, Van Gent chooses to adopt the name repository connectivity graph (RCG), instead of MCG.

Relating to the KBE process stages shown in figure 5.1.1, the MCG is instantiated only once during
the KBE system setup step, since the set of available rules is not expected to change. It forms the
basis from which all subsequent graphs will be extracted.

Fundamental problem graph (FPG) Unlike the MCG, which represents the entirety of the available
knowledge, the fundamental problem graph (FPG) is assembled at the problem formulation stage to
describe the knowledge subset necessary to solve a specific design problem. A design problem is defined
based on the information available in the data repository, i.e. the known variables, on the one hand,
and a request for a set of variables via their URIs on the other, as illustrated by figure 5.1.1.

The FPG contains all the paths in M , which lead from a known variable or a source to a requested
variable without passing another known variable. This can be accomplished by discarding all ancestors
of the input nodes and all descendants of the requested nodes in the MCG.

To ensure that the problem can be solved, the source nodes of the MCG should never be unknown.
Therefore, the data repository should be populated with seed data e.g. by parsing data from a CPACS
file before submitting the first user request. This is referred to as system initialization and reflected
by the initial data repository update step in figure 5.1.1.

Problem solution graph (PSG) In order to determine a solution to the FPG, a solution sequence
must be defined, which is referred to as the problem solution graph (PSG). As mentioned in sec-
tion 4.3.2.3, the challenge is that each rule may only be visited, once all required inputs are available
in the data repository. The PSG provides an order for the function calls to be executed, which ful-
fills this requirement. If the FPG is a DAG this is the case for the topological sort, as described in
section 5.1.3.3.

In place of a PSG, van Gent introduces two separate graphs, the MDAO data graph and the MDAO
process graph. This is related to the XDSM notation, which distinguishes data flow from process flow.
The data graph is concerned with which variables are exchanged between which functions. It thus
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contains both variable and function nodes. In many ways, it corresponds to the FPG. Differences are
minor and mostly concerned wit MDAO execution technicalities.

In the context of FUGA, managing the data flow on such a low level is not critical, because the data
repository is accessible to all functions. The process graph, on the other hand, provides the function
execution sequence and is thus the counterpart to the PSG in FUGA. Like the PSG, it only contains
function nodes.

5.1.3.3. Deterministic and numerical system solution strategies

At this point, the issue of the system solution is examined, i.e. how to determine a PSG, which
can provide a consistent solution to the design problem stated by the FPG. If no cycles are present
in the FPG, i.e. it is a DAG, topological sorting [Kah62] can be applied. Beginning at the source
nodes, the algorithm provides a node sequence, where a node is visited only, once all of its immediate
ancestors have been visited. An implementation of the topological sorting algorithm is provided in
the NetworkX library. Passing through the PSG, the required inputs are retrieved from the data
repository and passed to the compute method for each rule. The return value is then added to the
data repository under the key given by the provides attribute of the rule.

This deterministic approach is very straightforward and sufficient for many problems found in
FUGA. For instance, the feature-tree-like KBE-formulation of the parametric modeling engine con-
sists entirely of DAGs with CPACS parameters as sources and their geometric representations as sinks.
Nevertheless, there are cases, in particular when deploying KBE for design applications, where the
deterministic approach cannot be applied. Instead, numerical methods must be used.

One such case is the presence of cycles in the FPG. Cycles represent a dependency loop between
parameters, i.e. a rule to compute a given parameter requires information, which only becomes available
later in the process. The length increase of the fuselage for the tank integration problem described
in section 6.3.1 is an example of this. On the one hand, the length of the fuselage must be known to
determine the cabin layout and tank design. On the other hand, the length of the fuselage must later
be corrected to accommodate the requested tank volume.

This type of problem is closely related to the fluid-structure-coupling problem discussed in sec-
tion 2.2.1 and can therefore be resolved in a similar fashion using e.g. Gauss-Seidel iteration. By
introducing a coordinator block, the cycle can be broken at one of the nodes. In this way one loop of
the cycle is turned into a black box function

xnew = f (xold) , (5.1.6)

where xold is an initial guess for the splitting node value and xnew is the value of the same node at
the end of the cycle. Same as in MDAO, the problem of resolving the cycle can be reduced to a root
finding problem in the coordinator block:

g (x) = |f (x)− x| = 0. (5.1.7)

Different nonlinear root finding algorithms are applied in FUGA, depending on the type of the coupling
variable. Gradient-free techniques must always be employed, since the rule protocol does not foresee
derivatives. Therefore, the secant method is used if the variable is scalar, whereas Broyden’s method
is applied for vectors [Kel03; Rot03]. Implementations of both algorithms for Python are available in
the SciPy library [VG+20]. Other, non-numerical types of data repository entries, such as geometry
objects are not eligible for use as variables in the fixed-point iteration.

A related problem is the solution of inverse problems, i.e. moving in opposition to the direction of the
digraph. These types of problems essentially describe an attempt to derive less detailed information
from more detailed information, which is both somewhat outside the scope of FUGA and difficult to
accomplish properly in many cases, e.g. when trying to reverse-engineer TLAR from detailed CAD-
models. Still, fundamentally, the problem can be reformulated and solved like the cycle using fixed-
point iteration. To this end, an FPG can be built, where the requested variable is the source and the
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given variable the sink, once again providing a black-box function

y = f (x) . (5.1.8)

Assuming an target value ŷ for the requested variable, this can again be formulated as a root finding
problem for

g (x) = |f (x)− ŷ| = 0, (5.1.9)

which can be solved using the same methods as for the cycle.
Expanding on the aforementioned strategies, it is possible to formulate optimization problems on

the graph. To this end, any single path or set of paths in the graph from a set of nodes with the values
x to another node can be understood as a black box function f (x), as long as the values of x and
f (x) are numeric. Consequently, a nonlinear optimization problem can be formulated to minimize
f (x) w.r.t. x. Moreover, constraints can be introduced for the members of x.

Consequently, a variety of complex problems can be addressed by applying numerical methods to
the knowledge graph. However, there are still some limitations, pertaining to both the deployment
of numerical methods in FUGA and their efficiency compared to deterministic method. For instance,
the algorithm in FUGA is not yet capable of introducing converger or optimizer blocks automatically
based on user queries. Instead, the user must tell the system explicitly on which variable to perform
e.g. the fixed point iteration for a cycle at this point.

That said, a second aspect of the iterative numerical methods is their inherent performance penalty
compared to the deterministic solution. Knowledge engineers are therefore encouraged to formulate
design systems in a deterministic fashion wherever possible.

5.1.3.4. Cache invalidation

A convenient side effect of the graph-based formulation is that cache invalidation capabilities, as
demonstrated in principle by Kuhn et al. [KD+11], can be integrated with almost no additional
programming effort. Whereas cache invalidation is not necessary if the data repository is updated
during a traversal of the PSG, since the order of rule execution of the rules ensures consistent results,
it is required if a repository value is updated manually. This may occur, e.g. if the user would like
to modify a top level design parameter. A comparable situation is also at hand if a design variable is
updated during an iterative solution run, as described in section 5.1.3.3. In these cases, all descendants
of the modified variable (or variables) in the MCG must be identified and deleted from the data
repository.

5.1.4. Explanation subsystem and user interface via third-party software

La Rocca [LaR11] stresses the importance of providing an explanation subsystem to communicate the
activities of the reasoner and suitable user interfaces to interact with and inspect both the design
system and the outputs from various user perspectives. For FUGA, the conscious decision was made
not to develop a user interface from scratch, but to leverage existing software, which can provide more
features and a higher level of maturity. In the following, an overview of the different use scenarios and
the corresponding software solutions is provided.

Explanation subsystem FUGA implements several features to provide the functionality of an expla-
nation subsystem. Most importantly, the different graph representations. i.e. the MCG, FPG and
PSG can be exported to a graph exchange format such as graphML [Gra19] using the NetworkX
library. Aside from the graph connectivity, the nodes and edges can be enriched with metadata, e.g.
availability of a corresponding value in the repository. The graph can be inspected using specialized
software such as Cytoscape [SM+03] or Gephi [BHJ09].

N²-charts provide another way to visualize graphs based on the adjacency matrix. The openMDAO
package provides interactive N²-charts, which can be opened in the browser. FUGA provides the
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possibility to map the MCG to openMDAO for visualization. The rules are grouped by rule sets (s.
section 5.2.1), which can be expanded and collapsed.

The data repository log is another contribution to the explanation subsystem in FUGA. It records
any manipulation of the data repository, i.e. add, update and delete operations in a list, including
the timestamp. The log can be exported to a Microsoft Excel or CSV file at any time in the process,
allowing the user to retrace the activity of the inference engine.

Finally, the tool itself provides output messages informing the user about the progress at different
customizable levels of granularity.

User interface According to La Rocca [LaR11], a KBE system must provide three different user
interfaces to cater to three different use scenarios. On the one hand, there is the end user, who is
applying the system to generate designs and models, on the other hand, there are the knowledge
engineer and the software engineer, who develop the rules and inference system respectively.

Since FUGA is written almost entirely in Python, any development can be performed using an
established Python IDE (Integrated Development Environment). As illustrated by figure 5.0.1, the
separation between code related to the inference engine, which is relevant to the software engineer, and
the rule repository, which is the concern of the knowledge engineer, is instead achieved by deploying it
in separate subpackages. Specifically, the core package provides the inference engine, whereas all other
subpackages contain domain knowledge rules. In addition, the rules for different types of applications
are also distributed separately. As a result, a CAD geometry knowledge engineer and a simulation
engineer would likely develop their rule sets in separate subpackages.

For the end user interface, Jupyter Notebooks have proved to be a good solution. They allow
for interactive execution of Python code blocks from a web-browser [GP21; Jup23]. Setting up and
distributing a well-documented standard design process in a Jupyter Notebook as shown in figure 5.1.7,
has proved sufficient as an interface to perform a large majority of FUGA design tasks. To inspect
the results, models can be plotted in the Notebook or written to both CAD (s. section 4.1.1.4) and
mesh formats (s. section 4.2.1.2), which can be visualized using specialized tools.

5.2. Plugin-based graph extension for knowledge management and
architecture modification

In section 4.3.2.4 the need for structuring knowledge in complex KBE systems to make it accessible to
the end user was discussed. Whereas La Rocca [LaR11] introduces HLP and CMs inspired by OOP,
which cater to the requirements of preliminary aircraft design experts and have been adopted e.g. in
ParaPy, in FUGA the more basic concept of rule sets is introduced instead. More details are provided
in section 5.2.1. The rule sets can be leveraged in a plugin-based architecture to tailor the design
system to the requirements of the task at hand.

On the other hand, section 2.1.3 illustrates the need for the system to be adaptable to new archi-
tectures. This can be accomplished via new rule sets, which model system knowledge that deviates
from conventional designs, as shown in section 5.2.2.

5.2.1. Structuring knowledge using subpackages and rule sets

The fundamental approach to structuring the knowledge contained in the knowledge repository is to
share the rules in several separate and smaller sub-system graphs instead of one large MCG. To this
end, the rules must be grouped using the means described in this section. For each group of rules, a
smaller dedicated MCG can be assembled as outlined above. The overall MCG M = (VM , EM ) can
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Figure 5.1.7.: FUGA user interface in Jupyter Notebook

be assembled by composing the sub-system MCGs Mi = (VM,i, EM,i) using

VM =
⋃︂
i∈I

VM,i, (5.2.1)

EM =
⋃︂
i∈I

EM,i. (5.2.2)

This approach has the advantage that the different sub-system MCGs, i.e. the active rules in the
system can be selected and combined depending on the design problem at hand. In FUGA, a plugin-
architecture is implemented, which makes it possible for the user to add new rule groups to the main
design system at run time.

Two ways have been established in FUGA to structure and deploy the available knowledge, which
pursue two slightly different goals. One the one hand, subpackages are available to provide rules,
which belong to different tool functionalities. The top level subpackage structure tree of FUGA given
in figure 5.0.1 illustrates this grouping:

• The fuga.core subpackage provides the basic implementations of the data repository, the rule
protocol, and the inference engine. All other subpackages contain a collection of rules dedicated
to a specific purpose.

• The fuga.cpacs subpackage implements the interface to CPACS data sets. It can be used to
parse a given XML file in order to initialize the data repository with the available information.

90



5.2. Plugin-based graph extension for knowledge management and architecture modification

To this end, data mapping rules are provided to link entries in the CPACS tree to entries in the
data repository. On the other hand, the subpackage also contains methods for writing eligible
repository data back to a CPACS file. This may include newly generated information from the
KBE system.

• The fuga.geometry subpackage contains the rules of the parametric modeling engine. The
simplest use case of this subpackage is to assemble and plot a geometry model of all product
information from a given CPACS file. For this, the geometry subpackage depends on the cpacs
subpackage for data retrieval. In section 6.1, the rules of the subpackage are discussed in detail.

• If geometry models at a specific level of fidelity are required, the rules provided by the above
subpackages may be insufficient, as some necessary details may not be provided by the CPACS
file. In this case, the fuga.design subpackage can be triggered, to generate additional product
information. The subpackage contains design rules, which take CPACS data, such as the OML,
and additional user parameters as input to compute additional CPACS data, such as a structural
layout or a cabin configuration. Since the rules may depend on geometric component represen-
tations in some cases, the design subpackage depends on both the cpacs and the geometry
subpackage. The design rules are discussed further in section 6.2.

FUGA subpackages are distributed separately and can therefore be installed independently from one
another. In this way, it can be controlled, which parts of the business logic are shared and which parts
should remain proprietary. For instance, by distributing the core, cpacs and geometry subpackages,
a functionality similar to TiGL can be made available to partners. The design module is, however,
not shared in this scenario, to protect the knowledge contained in this subpackage.

Whereas subpackages serve to group the basic functionality of FUGA, rule sets can be used to
structure knowledge from different domains within a subpackage. In table 5.2.1, the rule sets for the
cpacs, geometry and design subpackages are listed, along with a brief description of the scope. As
outlined above, the fuga.cpacs subpackage provides a collection of rule sets for file I/O as well as for
mapping the data from the XML tree to data repository entries. The ruleset naming roughly mirrors
the corresponding CPACS tree nodes. In addition, some data preprocessing rules for the loft and
structure data are provided, which are identified by the views-prefix and universally applicable for
all subsequent subpackages. They include e.g. the routines to ensure that profiles are ordered in a
mathematically positive sense, or the assembly of symmetry maps for the wings and fuselages.

In the geometry and design subpackages, the knowledge is grouped according to the corresponding
design discipline, e.g. loft, wing, (fuselage) structure and deck. Each rule set contains the necessary
knowledge either to build geometric representations of the corresponding components based on CPACS
data (geometry subpackage), or to generate said CPACS data from design inputs (design subpackage).
Notably, no wing rule set is given in the design subpackage, as wing design is currently outside the
scope of FUGA. Nevertheless, the wing geometry must be taken into account, as it provides important
boundary conditions to the fuselage design. Meanwhile, the loft and lh2_tanks rule sets are optional,
as explained below, and thus put in parentheses.

In figure 5.2.1, the rule sets necessary for a conventional outside-in cabin design process are shown
in an N² chart along with their mutual dependencies. In this type of design process, the cabin layout
is generated based on a fixed OML, as described in section 2.1.2. The rule sets are identified by
their package name as well as their scope description from table 5.2.1. The chart was built using
the openMDAO framework, which was first introduced in section 2.2.2 and to which an interface is
provided in FUGA. Visibly, the outside-in design involves rule sets from the cpacs, geometry and
design subpackages. Since no design capabilities for the OML is available in the system, it must be
provided via CPACS and the corresponding loft geometry must be assembled using the respective rule
sets in the cpacs and geometry subpackages. This information is then used to generate the structural
and cabin design data as required, using the design subpackage rule sets. The results are passed back
to the corresponding model generation rule sets.
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package package scope rule set rule set scope
fuga.cpacs CPACS interface base

file I/O & data mappingfuselage
wing
...

views.geometry OML data preprocessing
views.structure structure data preprocessing

fuga.geometry model generation loft OML
wing wing (movables & structure)

structure (fuselage) structure
decks cabin/cargo

fuga.design design (loft) fuselage extension
structure (fuselage) structure

decks cabin/cargo
(lh2_tanks) LH2 tank design & model generation

Table 5.2.1.: Rule sets provided by the FUGA subpackages

Whereas the N² diagram is useful to visualize the dependencies between different rule sets, it is
somewhat misleading when it comes to the actual execution flow. As stated previously, feed-forward
connections are typically found in the upper triangular , while entries in the lower triangular represent
feedback connections. Some rule sets, such as the structural design and cabin design, are connected
both via a feed-forward and a feedback connection, which suggests the need for an iteration loop to
resolve the relationships. However, this is not actually the case, since the feed-forward and feedback
connections link different nodes inside the individual rule sets. Consequently, different nodes from the
two rule sets are visited intermittently while traversing the graph, without the need for any actual
iteration. This becomes clear when considering the more detailed representation of the MCG for this
system, which contains the connections between the individual nodes.

It is given in figure 5.2.2, along with the rule set affiliation of the individual nodes, which is given
by the node color. The nodes are arranged according to their topological layers from top to bottom.
Consequently, evaluation of the graph is performed by a downward traversal. As a rough orientation
aid, ellipses corresponding to the colors representing the respective rule sets are placed in the figure to
highlight concentrations of rules from a single rule set. Whereas the sequence of the ellipses suggests
a general program flow from design to modeling rules, it also becomes clear that the task of clustering
the rules is rendered more difficult by a substantial number of “outlier” rules. For example, rules from
structural design are found in the area dominated by cabin design, whereas some cabin design rules
can be found in the structural modeling section. These are the interspersed connections between the
rule sets, which lead to the perceived loop in the N² diagram. These observations once again highlight
the close interconnection between the disciplines.

5.2.2. Manipulation of system behavior for novel architectures

The modular approach to knowledge formulation using rule sets and subpackages not only allows
knowledge engineers to structure the existing knowledge, but also to extend the existing knowledge
base with new rule sets to account for fundamental architectural changes. An example is shown in
figure 5.2.3, which extends the initial outside-in design problem to include the integration of an LH2
tank in the rear fuselage, as described in section 2.1.3. The design problem is discussed in more detail
in 7.2.1.

The fundamental approach is to increase the fuselage length as much as necessary for the LH2
tanks with the required fuel volume to fit in the space between the rear pressure bulkhead (RPB)
and the horizontal tailplane (HTP) wingbox. Consequently, a fuselage design rule set for extending
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Figure 5.2.1.: N² diagram showing the rule sets and dependencies for a basic outside-in design

the fuselage length is now required, which is discussed in section 6.2.1. Furthermore, a design and
modeling rule set for the tanks is required, which is discussed in section 6.3.1. The other rule sets
from the outside-in design are retained. Figure 5.2.3 also illustrates that the new rule sets contain
references to existing conventional rule sets to determine e.g. the bulkhead and HTP positions. In this
way, previously existing knowledge can be applied also in novel contexts.

The additional rule sets can be used to both add new rule repository entries and replace existing
ones. When looking for a rule to compute a given data repository entry based on a user request, the
inference engine will respect a rule resolution order, where a rule placed in a lower rule set shown
in figure 5.2.3 will take precedence over a rule providing the same value in any of the higher data
sets. This provides a mechanism for overriding3 existing rules with modified implementations from
new, specialized rule sets. In this way, existing components from the default outside-in rule set can
potentially be mocked4 as required for new architectures, while descendants of these rules are applied
a usual, thus further enabling knowledge transfer across different architectural approaches.

5.3. Discussion

The graph-based KBE system implementation discussed in this chapter yields a number of advantages
compared to more conventional imperative and object-oriented approaches. The overall approach
shares many similarities with functional programming languages, such as Lisp, Haskell or Scala, thus
inheriting many of their advantages, which have been outlined e.g. by Chiusano and Bjarnason [CB14]
and Lipovaca [Lip18]. In this respect it is comparable to the approach of La Rocca [LaR11], who

3The term overriding is borrowed from OOP, where it refers to a method of a child class replacing the functionality of
the equally named method of its parent class [Lut10].

4The term mocking is borrowed from software testing, where it refers to simplified code, which mimics the behavior of
the real software [Lut10].
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Figure 5.2.3.: Extended N² chart for an LH2 tank rear fuselage integration problem

employed the Lisp-based ICAD design language.
A key property of the functional programming paradigm is that a function is not allowed to have

a side effect, i.e. when called it only computes and provides the return value without further altering
the state of the overall program. This is respected by the function protocol of FUGA introduced in
section 5.1.2, since it is only allowed to change the repository value specified in the provides attribute.
The lack of side effects facilitates the application of parallel computing, to run processes on a very
large scale [Mar13a]. On the other hand, the function also does not depend on the overall state of
the program, but only on the inputs provided. This means that, given the same inputs, the function
will always return the same value and is referred to as referential transparency. It makes it easy
to test individual functions even in a complex software system. The purely functional programming
paradigm is a specialization of declarative programming, which aims to tell the computer what things
are rather than what to do. The approach enables lazy evaluation, which implies that a value is
computed only when it is actually needed by the program. Since some model generation operations,
such as Boolean operations in CAD, can be comparatively slow, this is particularly valuable, since
it enables fast evaluation of lower-fidelity models without any additional programming effort.

On an engineering level, the graph based approach also provides some practical advantages. A
valuable capability of the KBE system is result or cache invalidation, which provides the means to
maintain consistency of a design. Furthermore, the KBE system is highly useful to react to missing
values. Due to the multidisciplinary and multi-fidelity nature of CPACS, it is very common that not
all details are available in a given data set. However, which details are missing exactly, usually varies
from one data set to another, depending on the specific analysis histories. Therefore, it is necessary to
be able to react dynamically to whatever information is available and trigger design rules as required
due to the inputs. This step is performed automatically and implicitly in FUGA, when extracting the
FPG.
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A possible drawback of the approach is its higher initial complexity compared to an imperative
implementation. Implementing rules according to the rule protocol requires a basic understanding of
the system and advanced Python language features. Also, the implementation tends to be more verbose
than a procedural or object oriented implementation, which can harm code clarity and maintenance.
However, it must be assumed that an imperative system to address the complex problem of fuselage
design will be at least equally hard to maintain. Furthermore, the growth in complexity when scaling
the system can be manged in a very elegant fashion for the declarative system using the rule set
approach.

The choice of using the Python programming language and the graph capabilities of the NetworkX
graph library to mimic the behavior of existing functional programming languages can also be brought
into question. Certainly the rule formulation and system execution could have been implemented in a
more compact and efficient way using one of the existing languages for KBE. However, in FUGA, the
reasoning on the system only takes a very small fraction of the run time compared to the execution of
the actual rules e.g. the model generation. Therefore, spending effort on run time optimization of the
inference engine is unlikely to yield a substantial benefit. On the other hand, rule development speed
is an important factor for the growth of the system. Here, Python is an obvious choice due to its repu-
tation for very quick development cycles, which comes at the expense of program performance [Ros98].
As a dynamically typed language, Python also does not require knowledge engineers to worry about
declaring data types right away and thus offers a very high flexibility for rule formulation. Another
advantage of Python is that it is well-established in the engineering and research community, which
makes it likely more easy to learn for newcomers. Furthermore, the language provides advanced sci-
entific computing capabilities and bindings to a vast amount of libraries also from different languages,
which can all be leveraged when implementing the rules.

As described in section 5.2, the methodological approach also allows for modular formulation, dis-
tribution and deployment of knowledge. This means that rules corresponding to a given domain can
be stored in a dedicated domain rule set, which can be managed more easily by a domain expert. On
the other hand, the approach enables ad-hoc assembly of custom design systems, tailored to a given
design task and target product architecture, as illustrated by the LH2 tank integration example. In
this way, the system can be augmented with new rules and is therefore open to support unconventional
architectures.

In conclusion, the implementation discussed in this chapter demonstrates the fundamental feasibility
of the approach to describe aircraft fuselages in a knowledge graph stated in working hypothesis 1.
The specific applicability to fuselage detail design and modeling for analysis alluded to by working
hypotheses 2 und 3 is, however, yet to be demonstrated. Similarly, the aforementioned capacity for
architecture modification, which is mentioned in working hypothesis 4, is to be demonstrated in
an example. Towards this end, the implementation of a knowledge-based system for fuselage design
and modeling using the methodology described in this chapter, which can also be extended for new
architectural requirements, is presented in the following in chapter 6. The corresponding application
examples are found in chapter 7.
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6. A KBE system for the design and geometry
generation of aircraft fuselages and cabins

In this chapter, the design and modeling rules for the fuselage and cabin, which comprise the KBE
system in FUGA, are discussed. They are distributed in the fuga.geometry and fuga.design sub-
packages. The interactions of rules of the different subpackages with the data repository are given in
figure 6.0.1.

On the one hand, the fuga.geometry subpackage is the KBE-driven implementation of a parameter
engine, providing rules to convert parametric data from CPACS into geometry models using OCCT.
This capability is necessary to validate working hypothesis 2. The rules are discussed in section 6.1.

The fuga.design subpackage, on the other hand, contains all rules used to generate new product
data based on existing product information, including data from CPACS and the available geometry,
or simplified parametric inputs. These rules are introduced in section 6.2 and provide the capabilities
described in working hypothesis 3.

The default rule sets in FUGA, contained in the aforementioned subpackages, provide design and
modeling capabilities for tube-and-wing configurations with conventional propulsion. In section 6.3 it
is shown how the architecture of the product can be manipulated by introducing additional sets of
rules, in order to extend the capabilities of FUGA towards novel configurations as required in working
hypothesis 4.

CPACS
parameters

fuga.design

fuga.geometry

Geometry
models

fuga.cpacsCPACS
XML file

User
parameters

Model export

Subpackage rules

Data repository

External data

Figure 6.0.1.: Interactions of subpackage rules and data repository in FUGA

A short discussion of the findings in this chapter is given in section 6.4.

6.1. Knowledge-based parametric geometry modeling engine

It has been established in section 4.1.3 that a data-centric product description format such as CPACS
needs to be paired with a parametric modeling engine to assure unambiguous geometric interpretation
of the parametric data. It has furthermore been established that existing solutions, such as TiGL,
are insufficient for the generation of detailed fuselage and cabin models, which are required to fulfill
the requirements of typical fuselage analyses discussed in section 4.2. Consequently, FUGA provides
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its own parametric modeling capabilities, which have been implemented using the OCCT CAD kernel
and a generalization of the feature-tree approach, which has been built using the KBE methodology
discussed in chapter 5. This is in line with the approach proposed in working hypothesis 1. The
baseline modeling capabilities for conventional aircraft are deployed in four separate rule sets, which
are presented in the following as a contribution towards the validation of working hypothesis 2.

The loft rule set, described in section 6.1.1, provides all the necessary relationships to generate a
CAD representation of the overall aircraft loft from CPACS. This includes both the fuselages and the
wings. Based on the results, the structure rule set, introduced in section 6.1.2, can be applied to
derive more detailed geometry models of the fuselage structure, including stiffeners and floor structures.
Some aspects of the wing rule set are discussed as well, as it provides additional wing details including
structures and movables, which are necessary inputs for the subsequent fuselage structure design (s.
section 6.2). The deck rule set introduces capabilities to generate cabin models based on CPACS deck
definitions. It is presented in section 6.1.3. The model generation steps are illustrated using the D240
configuration, a single aisle design for 240 passengers, as an example.

In section 6.1.4, it is discussed how the KBE approach to geometry generation based on these sets of
rules can be exploited to manage different geometry fidelity levels and meet the multi-fidelity geometry
requirements to support fuselage and cabin MDAO processes.

6.1.1. Overall aircraft loft generation rules

As discussed in section 4.1.3, the generation of OML geometry from CPACS data sets is supported
by all available parametric modeling engines as well as several disciplinary model generation tools.
Walther, Petsch, and Kohlgrüber [WPK17] discover significant potential for performance improve-
ment for specific applications, e.g. the determination of frame/stringer intersection points for GFEM
generation, compared to the prevalent TiGL library, justifying the implementation of an independent
modeling engine. Meanwhile, integrating the OML generation into the FUGA KBE system also holds
the promise of benefiting from all the advantages listed in section 5.3, along with additional control
to tailor the outputs to the requirements of subsequent modeling rule sets.

A diagram derived from the connections of the loft generation rule set is given in figure 6.1.1. It
describes the FPG to build a full CAD representation of the configuration as shown in figure 6.1.5a from
the basic fuselage information provided in the CPACS nodes. For improved clarity, an abbreviated
version of the XPath notation introduced in section 5.1.1 is used to label the nodes in the graph, where
only the last path component is shown. Moreover, the collapsed rule notation as shown in figure 5.1.6b
is used.

The nodes shown in the diagram are sufficient to model the complete configuration, since each node
implicitly processes all instances of a given type. For instance, the vertical tailplane (VTP) and the
horizontal tailplane (HTP) are modeled in the same way as wings in CPACS, which is why they are
implicitly included in the left branch of the diagram. Conversely, the right branch could, in theory,
include multiple fuselage instances to support multi-fuselage layouts. In figure 6.1.5a, the landing gear
is modeled using additional fuselage instances. An additional node for the engine model including
nacelle, rotor and pylon is also given. However, the engine model generation details are truncated,
since they lie beyond the scope of this thesis.

6.1.1.1. Coordinate system and unit conventions in CPACS

Many of the node names in CPACS contain references to an underlying coordinate system, via the axis
names x, y, and z. For the global coordinate system these axes denote the longitudinal, transverse,
and vertical axes of the aircraft. The origin of the system is placed in the symmetry plane of the
aircraft at the longitudinal position of the nose. For the vertical position, the height of the centroid of
the constant section is usually selected. While it is possible, in principle, to define bodies in different
axis systems in CPACS, it is an established good practice to adhere to this convention. It is therefore
assumed in FUGA that all inputs are provided in this manner.
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6. A KBE system for the design and geometry generation of aircraft fuselages and cabins

Furthermore, all numerical data in CPACS must be given in a consistent unit system. FUGA is
compliant with CPACS convention, by which the SI unit system is to be used. This must be taken into
consideration, e.g. when working with the certification specification, where data is commonly given in
imperial units.

6.1.1.2. CPACS aircraft body description

As described by Liersch and Hepperle [LH11], CPACS provides a unified way to describe the geometry
of primary aircraft components such as fuselages and wings, based on a sequence of cross-section
profiles. In the following, the modeling approach will be outlined briefly using the fuselage as an
example. Nevertheless, the same procedure can be applied for the wing with minimal adaptations.

Fuselages in CPACS are defined by instances of fuselageType, the structure of which is shown in
figure 6.1.2. The nodes, which are relevant for the body description, are called segments, sections
and positionings. The sections provide the starting point of the fuselage geometry generation.
They describe an unsorted collection of section profiles to represent the body shape. According to
Liersch and Hepperle, each section may consist of multiple section elements, which allows for e.g. the
description of a wing profile and the corresponding movable profiles in a single section. However, for
the fuselage a section typically consists of a single section element. This is also true for more exotic
cases such as twin fuselage configurations, where each fuselage would be represented by a separate
fuselage instance.

name

description

parentUID

transformation

sections

positionings

segments

structure

compartments

decks

fuelTanks

cutOuts

fuselageType

Figure 6.1.2.: XSD diagram representation of fuselageType in CPACS

A section element contains a reference to a profile definition. As of CPACS version 3.4, a profile
can be described using a point list, CST curves, ellipses or rounded rectangles. By convention, these
profiles are provided in the scale from −1 to 1, which means a scaling factor must be applied to achieve
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the proper scale required for the fuselage. For this, a transformation node is applied to each section
element, which can also be used to manage the relative positioning if multiple section elements are
present. A transformation node in CPACS provides descriptions of basic affine transformations in 3D,
i.e. scaling, rotation (as Euler angles) and translation. The scaling is always applied first. Then, the
refType attribute of the translation definition determines, whether the translation is applied before
(absLocal) or after the rotation (absGlobal).

Once the section elements are properly scaled and aligned, the section must be placed in 3D space.
One possible way to accomplish this is to modify the transformation node of the entire section. Unlike
the section element nodes, this transformation is applied on all section elements of the section. In
order to position the sections relative to one another, this means that individual transformations must
be computed for each section, when assembling the data for the export of a CPACS file. Notably,
neither the transformations for the section elements nor for the entire sections are listed in figure 6.1.1.
Instead, they are automatically read from CPACS along with the element or section definition data
and stored together in a single data structure.

All relevant geometries can be represented using the transformation approach. However, for wing
models in particular, engineers are more familiar with concepts such as sweep and dihedral angles
to describe the relative positioning of profiles. Therefore, the positionings node is provided in
CPACS to provide an additional means of positioning profiles relative to one another in terms of a
distance lpos, dihedral Γ and sweep angle Λ, as illustrated by figure 6.1.3. Using these parameters, a
transformation in 3D space can be computed, which is applied at the origins of the respective local
coordinate systems of the profiles. Since the profile origin is typically placed at the leading edge,
the angles can be understood as being related to the leading edge, in accordance with the CPACS
convention.

Λ

Γ l

Figure 6.1.3.: Parameters of CPACS positionings definition

At this point, the data from CPACS has been turned into an unsorted collection of section profiles,
which are properly scaled and positioned in the global 3D space. Depending on the definition, they
are either available as a point cloud or a curve (CST, superellipse).

6.1.1.3. Surface construction

Assuming a point-based profile definition, which is by far the most common curve description type
for fuselages in CPACS, a point cloud as shown in figure 6.1.4a can be built by merging the above
information. Several techniques exist to construct a CAD surface from this data. If all profiles have
the same number of sample points, the easiest and most efficient solution is to apply bivariate point
grid interpolation, introduced in section 4.1.1.2, as described by Walther, Petsch, and Kohlgrüber
[WPK17]. The circumferential direction is given by the order of the points in the profile definitions
and must be controlled, as it has an effect on the normal directions of the final surfaces. Typically,
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profile curves in CPACS should be ordered in a mathematically positive sense. To detect faulty user
inputs, it is, however, possible to compute the enclosed area of the profile using the trapezoidal rule.
If the order of the profile is incorrect, the area will be negative and thus the profile order is reversed.

Nonetheless, further information is required for an unambiguous description of the sequence of
the profiles in longitudinal direction, which is provided in the segments node in CPACS. A seg-
ment describes a stretch of surface from one section to another, by giving a fromSectionUID and a
toSectionUID. A digraph can be assembled from this information, which can be used to identify paths
(there is usually only one) and provide a section sequence using a topological sort.

Based on this information, the surface can be constructed as shown in figure 6.1.4c. In both TiGL
and FUGA, cubic B-Spline interpolation is traditionally applied in circumferential direction, whereas a
linear ansatz is selected for the longitudinal direction. Walther, Petsch, and Kohlgrüber [WPK17] also
show that a higher order interpolation can be used in longitudinal direction to achieve a smooth surface.
However, they also show the significant effect of the choice of interpolation parameter computation
method (i.e. centripetal, chord length or uniform; s. section 4.1.1.1) where the centripetal method
should generally be favored.

If the constituting profiles of the body contain different numbers of points, the bivariate interpolation
cannot be applied, since the points no longer form a regular grid, which can be interpolated easily. In
this case, a B-Spline curve must first be computed for each individual profile using curve interpolation.
Then, the skinned surface algorithm is applied to construct a surface by interpolating the curves in the
sequence, which is still provided via the segment definition. In this way, the other parametric profile
descriptions, i.e. CST, ellipse or rectangle can also be implemented as long as NURBS-representations
of the curve types are available, which can be used in the skinned surface algorithm. This may,
however, not always be possible to do exactly. For instance, the difficulty to describe CST curves
using NURBS is discussed in section 4.1.1.1. Similar problems arise for superellipses. In such cases
it may be necessary to provide an approximation of the curve instead, e.g. using the least-squares
approach given in equation 4.1.13.

A comparison of the bivariate interpolation and skinned surface algorithms is provided in section A.2.
In general, bivariate interpolation yields simpler surfaces with fewer control points than the skinned
surface algorithm, since the latter requires all profile curves to be compatible, i.e. share the same degree
and knot vector. This requires the application of degree elevation and knot insertion techniques, which
usually results in the circumferential knot vector being the union of all profile curve knot vectors and
thus more complex than any of the individual knot vectors. On the other hand, if very simple profile
definitions such as ellipses are applied, it is possible to build surfaces with accurate cross-sections
with significantly fewer control points than using an equivalent point list definition. As a result, both
algorithms have been implemented in FUGA, though bivariate interpolation is used whenever possible.

6.1.1.4. Configuration assembly

Once the body is built, it can be integrated into a configuration assembly. To this end, some additional
information is provided in the type definition. First of all, another transformation node is given in
CPACS, which serves to place the body as a whole in the global coordinate system. Unlike the
transformation nodes related to the sections, this one is provided explicitly in figure 6.1.1. An
optional parentUID can be applied to manipulate the frame of reference. In this way, the position
of the HTP in a T-tail configuration can, for example, be expressed in terms of an offset w.r.t.
the coordinate system of the VTP, which is more easily understood, than a position in the global
coordinate system. Furthermore, the type definition provides a symmetry attribute, which allows for
mirroring bodies on one of the coordinate planes. The feature is commonly used for wings.

For practical reasons, the transformations are applied to the profiles right away in FUGA when com-
puting the value for the fuselageProfileData variable. The order prescribed by the segment defini-
tion is already applied. Then the symmetry, which is stored as a mapping in the fuselageSymmetryMap
variable is applied. Finally, the surface is constructed from the points using one of the above tech-
niques.
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(a) Point cloud

(b) Section curves

(c) Skinned fuselage surface

Figure 6.1.4.: CPACS fuselage surface generation steps
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For volume computations and Boolean operations, it is necessary to make the main aircraft com-
ponents available as solid bodies in OCCT. As described in section 4.1.1.3, solids can be built from
closed shells. To obtain a closed shell from the surface built from the CPACS data, it must first be
determined, whether the surface is open or closed. Fuselage surfaces are usually closed in circum-
ferential direction and open in longitudinal direction. Therefore it is only necessary to close the end
profiles using flat faces bounded by the outer profiles. In the case of wings, it is possible to define
open trailing edges for the profiles to reflect a certain trailing edge thickness. In this case, the shell
must first be closed in circumferential direction before closing the outer profiles in spanwise direction.
To this end a swept surface can be constructed between the isoparametric curves at the beginning and
the end of the wing surface.

It has become a tradition in the CPACS tool landscape and openAD in particular, to model the
geometry of components that lack a proper representation in the schema as fuselages. Therefore a
given data set may contain any number of fuselage definitions to represent e.g. landing gears, engines
or aerodynamic fairings [Gu17; WH+18]. Meanwhile, even the novel designs discussed in section 2.1.3
still feature a single fuselage for payload accommodation. Therefore, the one fuselage to be considered
in the subsequent steps can be specified by providing a structuralFuselageUID in FUGA. That said,
it is not guaranteed that an explicitly defined fuselage body is present in CPACS. This special case is
considered more closely in section 6.3.2.

Figure 6.1.5a shows the outcome of the fusedLoft modeling rule, which computes a Boolean union
of the solid representations of the structural fuselage and all wings. In addition, engine geometry is
also provided. For comparison, the TiGL representation is also provided in figure 6.1.5b.

(a) KBE system output (shown in FreeCAD) (b) TiGL reference geometry (shown in TiGL Viewer)

Figure 6.1.5.: Comparison of the OML output from different parametric modeling engines

It can be seen that the FUGA outer loft modeling rule set can provide equivalent geometric rep-
resentations. However, there are also a few differences to be highlighted. FUGA provides the option
to reposition the longitudinal seam of the fuselage in circumferential direction. Changes in position
of the seam can have positive effect on the stability of Boolean operations in OCCT. Furthermore,
since the polynomial degree for the interpolation between the section curves can be chosen freely,
smooth fuselage surfaces can be created based on sections only. Smooth surfaces once again provide
an advantage in terms of stability, but it also means that additional assumptions go into the generation
of the surface, which cannot be communicated via CPACS.

Another observation is that no belly-fairing to smooth the transition between the wing and the
fuselage is present. This is common practice for CPACS data sets that are used to derive structural
analysis models (s. also [SK+13]), since the fairing is assumed not to be load-bearing.
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6.1.1.5. Generation of smooth surfaces from CPACS definitions

To avoid assumptions during the geometry generation, only linear interpolations between sections are
performed in TiGL, unless additional information on guide curves is provided [SK+19]. The guide
curve approach relates more closely to other preliminary design tools discussed in section 2.1.2, which
use belly, side and crown curves to describe the fuselage, than the purely section-based definition
commonly used in CPACS. However, many current synthesis tools, including openAD, do not provide
this information.

Figure 6.1.6.: TiGL representation of a CPACS configuration with guide curves

The guide curves are highlighted in figure 6.1.6 along with the previously used section curves.
Shown are the crown curve on the upper side of the fuselage and the port side curve, analogously to
the definition used by Jonge [Jon17] shown in figure 2.1.2. Furthermore, a leading edge guide curve is
given for the main wing, which prescribes a tangency of the leading edge of the inner wing segment to
the center wing box segment. Together, the guide curves and section curves form a curve network. A
B-spline or NURBS surface can be derived from a curve network using the Gordon surface algorithm
as described by Siggel et al. [SK+19]. As shown by the wing example in particular, this leads to a
smoother transition between the two segment surfaces.

The guide curve approach offers much potential to simplify the definition of fuselage surfaces in
particular by substantially reducing the number of section profiles used and simultaneously improving
the geometric quality and efficiency of the surfaces. However, it has not been implemented in FUGA
yet, due to the current lack of support from preliminary design tools, such as openAD.

6.1.2. Structural model generation rules

Following the OML, the model generation of the structural components is considered. Unlike the
OML, this capability is not typically found in CPACS geometry libraries or if so, at a comparatively
low level of detail.

The list of structural component types commonly considered in structural sizing tools for the fuselage
given in table 4.2.1 provides a reference, which structural components ought to be taken into account.
The corresponding modeling capabilities in FUGA are based on the description of the fuselage structure
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in CPACS introduced by Scherer and Kohlgrüber [SK16], which is found in the optional structure
node of the aircraft definition in CPACS shown in figure 6.1.2. The diagram for the CPACS XML type
of the structure node is given in figure 6.1.7. The description primarily assumes a semi-monocoque
structural design, where a thin walled skin is stiffened by additional structural members [Niu88].
This design paradigm is common to all modern transport aircraft. More recently, some more generic
structure types such as generalStructuralMembers, walls or interfaceDefinitions have been
introduced to CPACS to better connect to military applications and related topics such as onboard
system space allocation (s. e.g. [TD+21]). These types are, however, not relevant in the scope of this
thesis, where the focus is on large passenger aircraft. That said, some typical structure parts, such as
the forward landing gear bay, are still missing from the CPACS definition. In the scope of this thesis,
which focuses on the integration of the fuselage structure and the cabin, this is not a critical omission.

In addition, details of the wing structure are required e.g. to determine the location of the wingbox,
which influences the frame distribution, the design of wing/fuselage intersection areas and the exit
placement. The wing structure definition in CPACS, which has been used, can be traced back to
Dorbath, Nagel, and Gollnick [DNG11].

Both Scherer and Kohlgrüber and Dorbath, Nagel, and Gollnick subsequently provide implementa-
tions of GFEM model generators based on their respective proposed CPACS definitions. The under-
lying CAD model is restricted to the representation of the OML in TiGL. All further modeling is done
at FEM model level. Even though both go on to show some multi-fidelity (Scherer and Kohlgrüber
show a fuselage crash model, s. also Schwinn [Sch15]) or multi-disciplinary (Dorbath, Nagel, and Goll-
nick [DNG13] discuss the generation of corresponding meshes for aerodynamic loads computation on
the wing using the vortex lattice method) capabilities, the approach in both cases is essentially to
implement a separate tool, which returns consistent output if the same CPACS file is provided as
input. FUGA on the other hand also provides the structural component models based on the CPACS
definitions at the geometry level, making consistent geometric representations of all the components
at different levels of fidelity available to any connected analysis tool as required.

The graph representation of the model generation rule set MCG is given in figure 6.1.8. The system
is a subgraph of the outside-in design MCG shown in figure 5.2.2. Visibly, the rule set MCG graph
is very complex compared to the loft generation FPG given in figure 6.1.1. On the one hand, this is
because it contains all possible rules in the rule set as opposed to only the rules relevant to the problem
solution. On the other hand, the structural model generation task is inherently more complex, due to
the higher diversity of component types, as shown in the following.

The node color indicates the rule set, which contains the rule that provides the node value. The color
schema from figure 5.2.2 is retained. By analyzing the data given for the root nodes, dependencies
from other rule sets can be identified. On the one hand, it can be seen that the rule set contains
a number of references to the subpackage providing the CPACS Interface. This implies that data is
used, which is taken directly from a CPACS data set. On the other hand, some outputs of the loft rule
set in the OML model generation subpackage described in the previous section are also used. This
shows that, in addition to the CPACS data, geometric information of the OML is also required, which
is generated from other CPACS data, via the loft rules. The same applies to some wing geometry
details provided vial the wing model generation rule set.

Due to the complexity of the rule set graph, no description of a node-by-node traversal as found
in the preceding section is given. Instead the general model generation approach for the relevant
types of structural components is explained in the following, starting with the primary structure in
section 6.1.2.1 and floor structure in section 6.1.2.2. Then, wing-fuselage intersection areas, including
the wing-boxes, are considered in section 6.1.2.3 before ending the section with the structural cutouts
in section 6.1.2.4. Nevertheless, all the descriptions are reflections of the rules represented in the
rule set graph given by figure 6.1.8. Consequently, any intermediate value given in the figure can be
queried, resulting in the extraction of an FPG to determine all unknown ancestors, analogously to the
loft generation shown in figure 6.1.1.

106



6.1. Knowledge-based parametric geometry modeling engine

skin

stringers

frames

paxCrossBeams

paxCrossBeamStruts

cargoCrossBeams

cargoCrossBeamStruts

longFloorBeams

generalStructuralMembers

floorPanels

pressureBulkheads

windows

walls

paxDoors

cargoDoors

intercostals

centerFuselageAreas

tailplaneAttachmentArea

interfaceDefinitions

UIDGroupDefinitions

fuselageStructureType

Figure 6.1.7.: Diagram of fuselageStructureType in CPACS

6.1.2.1. Primary structure

Following the grouping of components given by Österheld, the primary structure of the fuselage is
composed of the entries for the paneling and the frames according to table 4.2.1. The component
description in CPACS by Scherer and Kohlgrüber assumes a slightly different grouping, but essentially
provides all relevant component data. In the following, the model generation approach for all CPACS
component definitions is given, which fall under the umbrella of the primary structure according to
Österheld.
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Frame and stringer grid The primary structure grid in CPACS is given by the distributions of
the structural stiffeners, i.e. the frames and stringers. The circumferential frames serve to maintain
the shape of the fuselage cross-section [Niu88] and carry loads due to the interior pressure [Öst03].
Longitudinal stringers primarily carry axial loads resulting from the bending moment in the fuselage
[Niu88].

The structure grid plays a fundamental role in the description of the fuselage structure in CPACS
as many of the structural components considered in the subsequent sections are defined via references
to its members. Both frames and stringers are described as topologically 1D geometric entities, i.e.
curves, which are assigned cross-sectional properties via a profile-based structural element definition,
analogously to beams in structure mechanics. The curves are constructed from definition surfaces,
which are described using the stringerFramePositionType in CPACS, shown in figure 6.1.9.

structuralElementUID
1..1

positionX
1..1

sectionElementUID
1..1

1..1

referenceY
1..1

referenceZ
1..1

referenceAngle
1..1

alignment
0..1

continuity
0..1

interpolation
0..1

1..1
stringerFramePositionType

1..1

Figure 6.1.9.: Diagram of the stringer and frame position definition on CPACS

Each stringer or frame position defines an intersection vector, which describes a point on the fuselage
surface as illustrated in figure 6.1.10. The origin of the vector is given by the positionX, referenceY
and referenceZ entries. Instead of providing the longitudinal position explicitly, a reference to a
section of the OML can also be provided. The referenceAngle provides the direction of the vector,
which is assumed to be perpendicular to the longitudinal axis of the fuselage.

positionX

z

x

(a) side view

referenceY

referenceZ

z
referenceAngle

y

(b) front view

Figure 6.1.10.: Stringer and frame position definition in CPACS (after [WC18])

If only a single position is provided, it is assumed that the vector describes the plane parallel to the
yz-plane, in which it lies. This approach is typically used to define frame planes. To describe more
complex shapes, a sequence of multiple positions can be given. In this case, the definition surface is
built by interpolating between the vectors at the different positions. A further parameter continuity
is provided to control the interpolation. The FUGA modeling algorithm accepts integer values from
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−1 upwards for this parameter. A continuity value of −1 results in the extrusion of the surfaces defined
by the vectors along the longitudinal axis, which requires the introduction of discontinuities between
the vectors of neighboring positions. Otherwise, a B-Spline interpolation of the corresponding degree
is performed between the curves representing the vector.

Intersecting the definition plane and the fuselage OML surface as shown in figure 6.1.11a yields the
structural component definition or trajectory curve T (v). As part of the intersection using OCCT,
the projection of the intersection curve onto the parameter or uv-space of the surface Tuv (v) is also
computed and can be made available separately in the knowledge repository. This curve is commonly
referred to as the p-curve and is shown in figure 6.1.11b.

(a) Cartesian space (b) Parameter space

Figure 6.1.11.: Computation of frame curve described by an oblique definition plane in Cartesian
and parameter space (from [WH+22a])

To retrieve a more detailed 3D representation of the structural component, the profile-based struc-
tural element description must be taken into account. The descriptions are provided separately from
the structural component definition in CPACS and can be referenced via the structuralElementUID
node. A profile-based structural element definition in CPACS consists of a geometric description of
the profile cross-section and a reference to a material. One option for modeling the cross-section is a
structural profile, which describes the profile as a set of points in 2D, which are connected by sheets,
as shown in figure 6.1.12a. In the profile-based structural element definition each sheet is assigned a
thickness and a material. This information can be used to construct a polygon representation of the
cross-section as illustrated by figure 6.1.12b. The polygon can also be represented by a first-degree
B-spline curve.

With both, the component definition curve and the profile curve available, a volumetric represen-
tation of the structural component can be constructed using the swept surface algorithm, introduced
briefly in section 4.1.1.2. The capacity to provide geometry models of structural components based
on CPACS data sets at this level of detail cannot be found in any other parametric modeling engine.
Still, such structural details are useful both for the cabin design, as described in section 6.2.3, and
for the derivation of detailed models for high-fidelity FEM analysis and immersive visualization. The
procedure for constructing the frame geometry using the swept surface algorithm is illustrated in
figure 6.1.13 for the example curve shown previously.

The swept surface algorithm is based on the skinned surface algorithm, which is applied in the loft
rule set to generate the surfaces of the OML. However, instead of a sequence of curves, the surface
is given by a trajectory curve T (v), which in this case corresponds to the definition curve of the
component, and a section curve C (u) (the profile curve). Based on this information the surface
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Figure 6.1.12.: Cross-section profile description in CPACS

(a) Transformed sections (b) Extruded surface

Figure 6.1.13.: Extrusion of frame surface using swept surface algorithm (from [WH+22a])

S (u, v) is given by
xswept (u, v) = T (v) +A (v)S (v)C (u) (6.1.1)

after Piegl and Tiller [PT96], where A (v) is a rotation matrix and S (v) is a scaling matrix. On the
one hand, the section curves are assembled using pre-scaled profiles, which means the scaling matrix
can be neglected, i.e. S (v) = I. The determination of the rotation matrix A (v), on the other hand,
is more challenging. For the frames and stringers it can be computed based on the trajectory curve
tangent vector Ṫ(v) = dT(v)

dv , since the planes of the profiles should be perpendicular to the trajectory
curve. If the trajectory curve is a B-spline curve, as is the case in FUGA, the tangent vector is given
by evaluating the derivatives of the basis functions. Furthermore, the profile should be aligned normal
to the fuselage surface, due to the attachment of the stiffeners to the skin. To determine the normal
vector, first the uv-parameter values of the curve point at a given position v on the fuselage surface
must be determined by evaluating the corresponding p-curve [usurf , vsurf ] = Tuv (v) . The normal
vector of the fuselage surface xfuse (usurf , vsurf ) can be evaluated at these coordinates. It is given by
the cross product of the tangent vectors in both topological directions, i.e.

nfuse (v) = nfuse (usurf , vsurf ) =
∂xfuse (usurf , vsurf )

∂u
× ∂xfuse (usurf , vsurf )

∂v
. (6.1.2)

The two vectors are perpendicular to one another and provide the depth (x, given by Ṫ (v)) and
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height (z, given by nfuse (v)) direction of the local profile orientation coordinate system. The width
(y) direction is given by the cross product. The normalized representations of three vectors combined
yield the rotation matrix A (v) .

This approach is applied e.g. for the stringers. However, in other cases, such as the frames, a
different approach to determine A (v) may be used. For instance, in FUGA, frames must be aligned
with the definition plane, rather than be normal to the fuselage surface. Therefore, the frame plane
normal is selected for the width direction, as opposed to selecting of the fuselage normal as height
direction. The height direction can then be computed analogously via the cross product. Following
the rotation, a translation of the profile C (u) is also performed, which is simply given by the point
on the trajectory curve T (v).

In figure 6.1.13a a series of transformed profiles is shown along with the vectors indicating their
height direction. They can be computed, simply by evaluating the above transformations at multiple
positions on the trajectory given by the sample coordinate vector v. Based on such a series of sample
profiles computed at the sample positions v, an extruded B-spline surface as shown in figure 6.1.13b
can be constructed using the skinned surface algorithm.

CPACS contains several additional parameters providing further control of the local alignment of
the cross-section profile of frames and stringers, which are given by the alignment node in figure 6.1.9.
It provides the means to transform the profile in its local coordinate system prior to the extrusion,
including offsets in local y and z direction as well as rotation around the local x axis.

Finally, the interpolation node provides control over how different section curves are combined.
It may take the values 0 or 1 in a sense of True or False. Different sections may occur if a structural
component is defined by more than one stringer or frame position, where the profile at the first
position is C0 (u) and the profile at the second position is C1 (u). If interpolation is turned off, the
previously described swept surface approach can be used on each curve segment individually using the
respective first profile. Otherwise, a dependency on the trajectory parameter must be added to the
profile curve C (u) in equation 6.1.1. Using a linear interpolation approach between the profile curves
at the positions

C (u, v) = C0 (u) · (1− v) +C1 (u) · v, (6.1.3)

assuming v ∈ [0, 1].

Sheet-based extrusions of the structural components are also provided in FUGA. In contrast to
the previously described volumetric extrusion, the sheet thickness of the profile is not modeled. This
means that the swept surface extrusion is performed for each sheet individually, instead of a common
profile polygon. The approach is useful e.g. for generation of shell-based FEM models as shown by
Hesse et al. [HW+23] or more lightweight visualization meshes.

Skin Aside from the grid structure of frames and stringers, the skin is another elementary part of the
fuselage primary structure. According to Wiedemann [Wie96], the skin is meant to transfer the loads
due to the interior pressure to the frames and stringers and carry most of the shear loads resulting
from transverse or torsional loads introduced into the fuselage e.g. during maneuvers.

The structural definition of the skin in CPACS is given in terms of the frame and stringer grid. A
skin sheet on the fuselage surface is bounded by a pair of frames and a pair of stringers and is assigned
a sheet-based structural element, via the sheetElementUID node. The sheet-based structural element
in turn contains a reference to a material and a thickness. For all areas of the fuselage surface that
are not assigned a skin sheet, a standard sheet element is provided. Analogously to profile-based
structural elements for curve-based structural components, sheet-based structural elements are used
for any surface-based structural components, analogous to structural shell elements. As shown e.g.
by Scherer et al. [SK+13], a skin sheet may span several frame and stringer bays. In this way, larger
regions of the fuselage can be assigned the same properties in a way that can also be communicated
to the sizing process. This allows for the incorporation of respective manufacturing constraints and
shell concepts.
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A skin sheet distribution for the example fuselage is given in figure 6.1.14. Visible are four circum-
ferential skin sheets, which are bounded by a total of four stringer curves, and 25 longitudinal sheets,
bounded by 26 frame curves. The radome is not assigned to a skin segment and is thus assigned the
standard sheet element. The upper skin sheets are defined across the seam of the fuselage, which is
also visible in the figure.

Figure 6.1.14.: Skin sheets of an example fuselage

A simple way to generate geometric representations of the skin segments is to recursively perform
splitting operations on the B-rep representation of the fuselage surface using all the frame and stringer
definition planes listed in the skin segment definition. This procedure will return a shell representation
of the fuselage, where each subcomponent represents an individual skin segment. For further process-
ing, e.g. meshing for FEM, it is important that those segment faces, which are split by the fuselage
seam, are identified and merged into shells (in a CAD sense). In this way, they are identified as a
single component by the mesher and can thus be assigned common sheet properties.

Pressure bulkheads Pressure bulkheads are typically found at both ends of pressurized transport
aircraft fuselages. The pressurization must be taken into account e.g. to realistically model the fuselage
load for load cases at higher altitudes. In common FEM solvers, pressure can be applied to shell
elements as a boundary condition. However, if the representation of the pressure vessel is not water-
tight, this will result in unwanted and unrealistic reaction forces may occur. This would be the case
if the bulkheads were omitted. Therefore, providing a model of the pressure bulkheads is essential.

In CPACS, bulkheads are always placed at a frame position. Consequently, instances of a bulkhead
in a given fuselage are always defined by a frameUID and a pressureBulkheadUID. The latter provides
a reference to a detailed definition of the bulkhead, which is stored in the structuralElements node,
whereas the former prescribes the position in longitudinal direction.

As of version 3.4, CPACS supports two different types of bulkheads, which can both be described
using the pressureBulkheadType. Both types consist of a base sheet and reinforcements. The base
sheet of flat bulkheads can be built simply by filling the plane circumscribed by a frame, whereas
spherical bulkheads are characterized by a dome shape, which is better suited to sustain pressure.
Flat bulkheads are reinforced by a grid of horizontal and vertical elements, while the stiffeners of the
spherical bulkhead are oriented in radial direction. Examples for both types of bulkheads are given in
figure 6.1.15.

The generation of the geometry model for the flat bulkhead is straightforward. First, the base
sheet is computed. This can be accomplished e.g. by constructing a filling face for the frame curve,
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(a) flat (b) spherical

Figure 6.1.15.: Pressure bulkhead layouts supported in CPACS

or by computing the intersection between the frame definition plane and the solid representation of
the fuselage. Then, the positions of the horizontal and vertical reinforcements are determined by
computing an even distribution between the horizontal and vertical bounds of the face.

By comparison, the model generation for the spherical bulkhead requires more steps, as the flat base
sheet is combined with a spherical dome. The pressure dome shape is defined by its depth tdome and the
radius at the frame rframe, both of which are provided in CPACS, via the nodes maxFlectionDepth
and bulkheadCalotteRadiusAtFrame respectively. The information can be used to compute the

psphere

tdome

p0,PB

rsphere
rframe

x

z

Figure 6.1.16.: Sketch of the relevant parameters of the spherical bulkhead base sheet

radius of the base sphere:

rsphere =
r2frame + t2dome

2 · tdome
. (6.1.4)

It is assumed that the dome is centered around the frame curve centroid p0,PB. It follows that the
center of the sphere for a spherical RPB is given by

psphere = p0,PB +
[︁
(tdome − rsphere) 0 0

]︁T
. (6.1.5)

To assemble the merged base sheet shape, the sphere solid representation is subtracted from the
flat base sheet using a CAD Boolean operation. In turn the shell representation of the sphere is
intersected with the half space behind the frame plane. The two resulting shapes can be merged
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to form the base sheet of the spherical bulkhead. The definition planes for the reinforcements are
arranged around pref in regular angular distance and extend along the x-axis.

To compute extruded representations of the bulkhead reinforcements, the same approach as for the
frames and stringers is used, regardless, which type of bulkhead is used.

6.1.2.2. Floor structure

The primary purpose of the floor structure is to provide accommodation for passengers and payload.
However, as pointed out e.g. by Niu [Niu88], the components of the floor structure are also integral
parts of the overall structural concept of modern aircraft. For instance, the floor crossbeams are
attached to the frames to act as tension ties, alleviating the loads on the primary structure due to
the interior pressure for non-circular cross-sections. Another aspect driving the design of the floor
structure is crash. The importance of this topic is illustrated e.g. by Schatrow and Waimer [SW16],
who investigate different design concepts to ensure energy absorption in the event of a crash is sufficient
when changing the material of the floor structure from aluminum to CFRP.

In alignment with the component grouping by Österheld in table 4.2.1, the floor structure compo-
nents in CPACS comprise the floor crossbeams, support struts, longitudinal beams and floor panels.
Like the frames and stringers, the crossbeams, support struts and longitudinal beams are defined as
profile-based structural elements. Consequently, they are described using a curve and cross-section
properties. CPACS distinguishes between cargo and passenger floor structures, which are, however,
composed of the same underlying component types. In FUGA, structural components of all floors are
therefore combined and processed together in a unified way.

Both crossbeams and crossbeam struts are always placed inside a frame plane. The crossbeams
extend in width direction with the height given by the positionZ node as illustrated by figure 6.1.17.
The support struts are in turn connected to the crossbeam at the absolute y position given by the
positionYAtCrossBeam node and at an angle around the longitudinal axis of the fuselage given by the
angleX node. Both the crossbeam and the strut curves are straight lines, limited by the OML of the
fuselage, which makes them easy to handle numerically, compared to the primary structure curves.

z

y

positionYAtCrossBeam
angleX

p
o
s
i
t
i
o
n
Z

Figure 6.1.17.: Sketch of the floor structure definition within the frame plane (after [WC18])

Longitudinal floor beams, which comprise both seat rails and simple floor support beams, can be
defined by providing multiple positions, similarly to stringers. Each position is described by a dedicated
longFloorBeamPosition node. Similarly to the crossbeam strut, the floor beam position is given at
a crossbeam, which is identified via its uID. The position on the beam is given by the positionY
parameter. In this way, a polyline spanning multiple crossbeams can be described. As for the stringer
and frame position definitions, continuity and interpolation settings are once again available to
control the curve interpolation continuity and cross-section shape interpolation respectively. The
resulting curves for the example configuration are shown in figure 6.1.18a.

Visibly, the crossbeam curves and the longitudinal beam curves lie in the same plane. This is
acceptable or even desirable in some cases, e.g. when building simplified GFEM models of the floor
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(a) Floor beam curves

(b) Extruded floor beams with (orange) and without adaptation to the fuselage surface (long
beams hidden)

Figure 6.1.18.: Floor geometry generation intermediate steps
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structure, but causes problems, once extrusion of the profile cross-sections is performed. The extrusion
is again implemented using the swept surface algorithm, as for the frames and stringers. Depending
on the definition of the respective cross-sections, the resulting volumetric models are likely to collide.
For this reason, the alignment node is essential when defining floor structures, as it allows for the
definition of vertical offsets for each profile.

Differently to the stringers, the alignment node for floor structure components provides an additional
option to define offsets in local x direction, i.e. in curve tangential direction, at both ends of the
definition curve. In this way, collisions e.g. with adjacent frames or between struts and crossbeams
can be avoided.

An additional option in FUGA is to project the closing profile onto the normal vector of the fuselage
at the intersection point with the definition curve. This reduces the penetration of the fuselage surface
by parts of the extruded floor structure, as shown in figure 6.1.18b, which would be detrimental e.g. to
the immersion in VR-driven human factors analysis. At the same time, the approach using the surface
normals is significantly more computationally efficient than computing the intersection between the
frame and the solid representation of the fuselage. The approach is only applied to crossbeams and
struts, but not to longitudinal beam, which in many cases do not end at the outer fuselage surface.
Therefore, they are omitted in figure 6.1.18b.

Finally, the floor panels are added between the longitudinal floor beams. They are the only sheet-
based component type of the floor structure. In CPACS, the geometry of a floor panel is described by
the floorPanel node, which provides uIDs for a pair of longitudinal floor beams as well as a pair of
x-positions. In this way, the bounds of the floor panel are given. The sheetElementUID node provides
a reference to the mechanical properties. An alignment node is once again available to determine the
offsets from the longitudinal beam definition curves in lateral and vertical direction.

Assuming the longitudinal floor beams to be defined by polylines that lie within the floor plane,
the floor panels can be modeled as flat polygons, which can be described by an ordered sequence of
points. To determine the corresponding points, both adjacent longitudinal floor beam curves must be
evaluated at the given x-positions. This can be done efficiently via linear interpolation of the curve
points w.r.t. the x-coordinate. In addition, all curve points lying between the bounding x-positions
must be included in the polygon. The offsets defined in the alignment node can then be applied to
the points. Lateral offsets are applied individually to the points on each longitudinal floor beam curve,
whereas the vertical offsets are applied globally. The order of the points on one of the curves must be
reversed before joining the two point lists to match the required order of the polygon.

A detailed floor representation including the floor panels and extruded representation of the floor
beams is shown in figure 6.1.19.

6.1.2.3. Wing-fuselage intersection areas

The wing-fuselage intersection areas are critical in ensuring a realistic load transfer from the wing
to the fuselage in structural analysis [Pet15]. Furthermore, like the bulkheads, they are part of the
pressure vessel for pressurized aircraft, separating the pressurized interior e.g. from the unpressurized
landing gear bay. For low-wing aircraft, the center fuselage area also introduces an interruption in the
cargo floor.

An initial description of wing-fuselage intersection areas in CPACS has been proposed by Scherer and
Kohlgrüber [SK16] for conventional low-wing aircraft. They differentiate between the center fuselage
area, which comprises the wingbox and the landing gear bay and the tailplane attachment area, which
provides the structural connection for the VTP and HTP. Petsch [Pet15] extends these definitions
to meet the requirements of SBW configurations, adding support for high-wing center fuselage areas
and T-tail attachments. Some fundamental features of the definition for low-wing aircraft given in
figure 6.1.20 are supported by FUGA. The choice of the features is primarily motivated by their
relevance to fuselage and cabin design.

For instance, the centerFuselageMainFrames node provides essential information for the cargo
floor design. A total of three frame uIDs are given by the node. The first two uIDs refer to the
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Figure 6.1.19.: Detailed floor structure geometry model

main frames adjacent to the wingbox. It is also assumed that the landing gear bay is located directly
adjacent to the wingbox. As such, it is bracketed by the second wingbox mainframe and the third
frame given by the definition. If a lower deck with a cargo floor is installed, it usually interferes with
the wingbox and the landing gear bay and, as a result, must be interrupted in the space between the
frames given in the centerFuselageMainFrames node.

The definition of the wingbox geometry in CPACS is provided separately from the center fuselage
definition, which means consistency between the frames referenced in the node and the actual geometry
must be verified. Any wing structure is defined in the 2D space of the wing midplane defined by the
sequence of the lines between the leading edge and the trailing edge center for each profile section. The
space is parameterized by the spanwise coordinate η and the chordwise coordinate ξ. The wingbox is
bounded by the front spar and the rear spar. As shown in figure 6.1.21a, the geometry of a spar is
defined by a sequence of points on the wing midplane, given in ηξ-coordinates. The resulting line in
Cartesian space is then extruded in positive and negative z-direction to form the frame definition
surface. A solid is constructed between these two surfaces using OCCT, which can then be intersected
with the wing solid introduced in section 6.1.1 to give the wingbox shape as shown in figure 6.1.21b.
The first two main frame planes from the center fuselage area definition should align with the spar
surfaces in the region of the center wing box. The spars are usually supplied by openAD and thus
need not be computed by FUGA.

Assuming the wingbox and mainframe positions to be consistent, the upper vertical bound for the
region between the first two mainframe uIDs is given by the upper shell of the center wingbox. For
the region of the landing gear bay, however, a different way to specify this bound is required, which
is given by the centerFuselagePressureFloor node. While this node contains several parameters
concerning additional details, fundamentally, the height of the pressure floor is given via a reference
to a stringer by the positionZStringerUID entry. It is implicitly assumed that the stringer will yield
a constant z-position. From this, it follows that the fuselage cross-section must be constant at the
position of the landing gear bay, which poses a limitation on the applicability of definition. An upper
boundary surface for the landing gear bay can be determined by mirroring the trajectory curve of
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centerFuselageMainFrames

centerFuselagePressureFloor

centerFuselageSidebox

centerFuselageLateralPanels

centerFuselageKeelbeam

centerFuselageLongFloorBeamsConnection

centerFuselageLowWingConfigurationType

Figure 6.1.20.: CPACS center fuselage area definition for low wing configuration

the stringer specified by the uID on the xz-plane. A surface can then be constructed by computing a
skinned surface between the two curves.

Extruding the surface in negative z-direction yields a solid, which can be used subsequently in
Boolean operations. To receive a representation of the space claimed by the landing gear bay,
the solid can be intersected with the solid defining the space between the two latter mainframes.
Analogously, a solid can be created by extruding the upper shell of the wingbox in negative z-direction.
The two solids can be merged and subtracted from the fuselage solid representation from section 6.1.1
to yield the cut fuselage shown in figure 6.1.22a. The required surfaces for the bulkheads and pressure
floors are created automatically by the solid-based Boolean operation algorithm in OCCT.

From the perspective of structure mechanics, the introduction of a cut in a region, which is subject
to significant compressive loads due to the bending moment acting on the fuselage, is highly unde-
sirable. Therefore, a very stiff keelbeam is usually installed, to provide additional structural support
[Niu88]. The keelbeam can be described using the centerFuselageKeelbeam node. Again, a num-
ber of parameters are available, which describe additional details, but the fundamental shape of the
keelbeam is once more described using only references to stringers. Similarly to the pressure floor,
the upper bound of the keelbeam is given by the keelHeightStringerUID. As a result, the upper
bound surface can be constructed in the same way. In addition, a second stringer is referenced by the
keelWidthStringerUID, which provides the width of the keelbeam. This time the stringer curve must
be extruded in upward and downward z direction and then again be mirrored on the xz-plane. The
definition shape of the keelbeam can then be determined by computing the intersection between the
solid defined by the width bounds and the solid provided by the height bound extruded in negative z
direction.

Using this definition shape, two ways are available to construct the keelbeam geometry from the
fuselage solid. On the one hand, it can be subtracted from the original center fuselage cutout shape,
for the keelbeam to be computed automatically as a part of the subtraction of that part from the
fuselage solid. This approach has the advantage that the fuselage surface is not interrupted, which
is beneficial when generating visualization meshes, since the complete outer skin is found in a single
surface. However, the drawback is that the ends of the keelbeam are not closed, leaving openings in
the forward and aft bulkheads of the center fuselage area, which must be closed in a separate step. On
the other hand, it is desirable for the bulkheads to be meshed as a single closed surface for structural
analysis, e.g. to more easily assign element properties. Thus, a second modeling approach is available,
where the keelbeam is modeled as a separate feature, by intersecting the definition shape with the
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(a) 2D plot of wing details defined in the ηξ-plane
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Figure 6.1.21.: Wingbox modeling

intersection of the fuselage and the basic center fuselage cutout shape. The result is then combined
with the cut fuselage model shown in figure 6.1.22a.

Irrespective of the selected modeling approach, the keelbeam is finally connected to the wingbox
using lateral panels, which are simply an upward extension of the keelbeam side wall to the wingbox.
They can be computed by intersecting the original sidewall definition planes obtained from extruding
the stringer given by the keelWidthStringerUID with the space between the first two mainframes
and subtracting the space below the keel beam height boundary and above the lower wing shell. The
resulting final center fuselage area configuration including the wingbox model is given in figure 6.1.22b.
Visibly, the keelbeam has been modeled using the first approach, since the fuselage surface is not
interrupted.

The center fuselage area provides a good example of how different components, such as the stringer
curves or the mainframes, but also the subsequently created solid bodies, can be re-used in a different
context to generate additional details. On the other hand, the strong dependency on frame and
stringer definitions means that design parameters for the center fuselage area must also be taken into
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(a) Center fuselage area base cutout from fuselage solid (b) Center fuselage area with keelbeam, panes and wing-
box

Figure 6.1.22.: Center fuselage geometry generation steps

account when designing the frame and stringer distributions. This aspect will be discussed further in
section 6.2.2.

6.1.2.4. Cutouts

Information on structural openings is essential in fuselage design. For instance, the size and placement
of doors directly affects certification, while window positions impact the design of sidewall panels.
Several ways to describe structural openings in the fuselage in CPACS have been proposed. Schwinn
et al. [SS+13] show detailed FEM models of the door openings and their surrounding structures using
a description based on frame and stringer positions. In FUGA, on the other hand, the more general
approach to describe structural openings in the fuselage using the cutOuts node has been adopted.
The geometric definition of a cutout in this node is shown in figure 6.1.23.
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(b) front view

Figure 6.1.23.: Cutout definition (from [WK+22])

Fundamentally, the cutout is described by a solid body, marked in orange in figure 6.1.23, which is
to be subtracted from the fuselage shell using Boolean geometry operations. The body is generated
by extruding a profile along a vector. The position of the cutout shape is defined by a positioning
vector (marked in blue), which determines a point on the fuselage and is defined in the same way as
e.g. a stringer position. The origin of the positioning vector is thus again defined by the entries for
positionX, referenceY and referenceZ, whereas the direction is given by the referenceAngle. At
the resulting intersection point on the fuselage a new local coordinate system is created for the cutout
profile extrusion. The orientationVector describes the local z direction, which is also the extrusion
direction. The 2D cutout profile is placed in the xy-plane of the local coordinate system, with the
normal projection of the alignmentVector prescribing the local x-axis. As of CPACS version 3.4
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the profile shape is restricted to a rounded rectangle with the width deltaX, the height deltaY and
the corner radius filletRadius. However, different applications in FUGA, such as the description of
cockpit windows or non-rectangular bulk cargo doors as shown in figure 6.1.24, require more freedom
in profile choice. Therefore, an adaptation of the definition to accept more general profile types, which
are also used e.g. for the fuselage shape description, has been proposed.1

(a) Rear fuselage area with non-rectangular bulk cargo
door

(b) Forward fuselage area with non-rectangular cockpit
windows

Figure 6.1.24.: Examples for non-rectangular cutouts

The cutout definition has been adopted in FUGA to describe structural openings, due to its wider
range of applications compared to the proposed definition by Schwinn et al. However, since the def-
inition is decoupled from the primary structure grid, KBE rules must be provided to ensure the
consistency between the openings and the structure, which are discussed in section 6.2.2.

6.1.3. Cabin model generation rules

The MCG for the cabin model generation rule set is given in figure 6.1.25. Similarly to the structure
design MCG, it is also a subgraph of the outside-in design MCG in figure 5.2.2. Once again, any node
in the system can be queried, resulting in the extraction of an FPG from the given MCG, which is
used to resolve the query.

Once more, the node color indicates the origin of the rules providing the nodes to trace the root node
dependencies. The input sources here are visibly less diverse than for the structure, as the description
of the cabin is less reliant on the description of the OML. Almost all relevant cabin data is extracted
from CPACS. The location of the CPACS file is used to correctly trace references to external files given
as relative paths. Apart from this, only the cabin space geometry representation provides a link to the
structural layout. This means that the model generation for the cabin can essentially be performed
independently from the other rule sets. The relationships and constraints to assure consistency of the
cabin with the structure are contained implicitly in the CPACS data. Undiscerning manipulation of
the values in CPACS can thus easily result in inconsistent designs.

Consequently, the cabin data should be the outcome of a cabin design process, as discussed in
section 6.2.3, where all the relationships to the structure are provided explicitly.

In the following, the general underlying approaches of the modeling rules implemented in the graph
are outlined.

Cabin representation in CPACS As discussed in section 4.1.2, different generations of cabin descrip-
tions within CPACS exist, with the first attempt dating back to Fuchte, Gollnick, and Nagel [FGN13].
In the scope of this thesis, the modernized description by Walther et al. [WH+22a] has instead been
adopted, where the cabin is described based on three main columns.

External geometry models constitute the first column of this definition. Unlike the structural model,
which relies complex geometric operations to determine the component shape, the cabin definition
is based either on these predefined models, which can be provided in a CAD or mesh format, or
primitive representations. As a result, the cabin modeling rules are substantially less complex than

1A related issue has been created on the CPACS GitHub page [DLR22].
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6. A KBE system for the design and geometry generation of aircraft fuselages and cabins

their structural counterparts, since the complexity of the component design is encapsulated in the
external models.

The second column is the cabin component library node shown in figure 6.1.26, which provides
descriptions of all available types of cabin components in CPACS. The supported types include seats
and monuments, such as galleys and lavatories, but also elements of the secondary structure, e.g.
sidewall panels, ceiling panels and luggage compartments. The geometric shape of the component
can be defined either by providing the dimensions of the bounding box, or by referencing the external
geometry model. A transformation node can be applied to scale and align the external geometry
further. The definition of a broad selection of both floor-based elements and elements of the secondary
structure is supported. Floor-based elements include seat modules, galleys, lavatories, class dividers
and cargo containers, whereas the secondary structure consists of sidewall panels, overhead stowage
compartments, and ceiling panels. Further missing cabin component types can be included using the
genericFloorElements node, which is used by Walther et al. [WH+22a] to include e.g. bar modules
or stairs2. Aside from the geometry, the library entries may contain additional metadata relevant to
the specific kinds of component. For instance, the entry for a seat module also provides the number
of passengers, which can be seated, whereas the definition for a galley contains the number of full-size
trolleys, which can be stored.

Figure 6.1.26.: XSD diagram of the deck element library

The library node serves to store the details of all the available components in a central location, but
the actual cabin layout is then defined in the deck node. The node forms the third column of the cabin
definition and is given in figure 6.1.27. It is referred to as the instance of the cabin inside the fuselage.
Cabin components are placed inside this cabin instance by referencing and transforming entries of
the component library. Depending on the type of component, different types of transformations are
given. For floor-based components, e.g. seats and monuments, a 2D transformation on the cabin floor
plane is applied. Elements of the secondary structure, on the other hand, can be transformed in three

2Stairs constitute something of a special case, since they require structural cutouts in floors and may introduce a
structural coupling between different floors. Some of these issues are considered in more depth in section 7.1.2.
Taking this into account, the introduction of a dedicated stairs type in a future version of CPACS could be of
substantial merit.
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dimensions to allow for adjustment of the vertical position.

Figure 6.1.27.: XSD diagram of the deck instance in the fuselage

Physical geometry model generation When assembling the cabin model, the first step is to read
the external model. Depending on the type of input, this can be accomplished using e.g. the OCCT
or VTK library.

If no model is provided, a bounding box is instantiated instead. For some types of models, e.g.
monuments, the intersection of the bounding box and the cabin space representation is computed in
this case, in order to avoid having the models stick out of the fuselage on the one hand and provide a
closer representation of the final component on the other.

A particular challenge during cabin model generation is the consistent handling of CAD geometry
and meshes, since it is not clear from the start what will be provided by the user. In either case,
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the alignment and scaling transformation from the library node must be applied to each component.
Then, copies of the components are created and transformed based on the layout description in the
deck node. These transformations must be applied consistently to both the CAD and the mesh-based
geometry.

Generally, FUGA is capable of providing both an all-CAD and an all-mesh representation of the
cabin layout. To this end, all CAD geometry must be converted to triangulated meshes, which can
be accomplished e.g. using the Delaunay triangulation algorithm provided by OCCT. Conversely,
reliably reconstructing CAD geometry from mesh data is a complex and computationally expensive
task. Therefore, only bounding box representations are derived from the meshes, which corresponds
to a model fidelity reduction. In figure 6.1.28 both the CAD and mesh representations of the cabin
layout for the example configuration are shown. For applications, such as mass analysis, the geometric
fidelity can be reduced even further by computing e.g. the centroid to represent the component.

Non-physical geometry model generation In addition to the component definitions, the deck defi-
nition in CPACS contains non-physical area and volume definitions, which serve different purposes.

The cabinGeometry node provides a discretized representation of the available space inside the
fuselage. Some authors cite the cabinGeometry node as the source for the outer bound of their
cabin design activities [FGN13; EDH20]. In FUGA, a different approach is adopted, where the cabin
geometry is constructed in CAD based on the structural definitions. This is described in detail in sec-
tion 6.2.3. In contrast, the cabinGeometry node contains a discretized structured grid representation
of the space. The parametric description of the grid in CPACS is illustrated by figure 6.1.29. Visibly,
the different width values are given for all values in a rectilinear sampling of the xz plane, which are
then grouped by height into contours.

Door definitions are also provided, however, for the updated cabin definition, a design decision
was made to make the cutout definitions presented in section 6.1.2 the single source of truth for
door geometry. Therefore, the doors given in the deck node simply provide a reference to a cutout.
Furthermore, non-geometric information relevant to cabin analysis is provided, e.g. the passenger
capacity or the door utilization, which can be one of boarding, cargo, emergency or service.

Other types of non-physical geometry are used to delineate regions of the cabin that should be kept
unobstructed, e.g. due to certification requirements. For instance, section CS 25.815 of the certification
specification [EAS21] demands a minimum aisle width depending on the passenger number. In section
CS 25.813, space requirements are provided to ensure access to the exits e.g. in case of an emergency.
Representative control geometries can be defined using the aisles and spaces nodes in the deck
definition respectively, to help assess whether these criteria are fulfilled. Spaces may include e.g.
passage ways to exits, cross-aisles or assist spaces, which may be required depending on the exit type.
The sketches in figure 6.1.30 illustrate, how the corresponding geometric representations are generated.

Aisles are represented using a surface on the cabin floor, which is described using a polyline corre-
sponding to the middle of the aisle. The points of the line are defined in xy-coordinates of the cabin
coordinate system, implicitly assuming z = 0, i.e. the line being at floor level. The width of the aisle
in lateral direction, i.e. the y direction of the cabin coordinate system, is given at each point of the
polyline.

Similarly, spaces are defined by a closed polygon on the cabin floor. The additional freedom provided
by this approach allows for more complex shapes to represent e.g. assist spaces. The polygon is
extruded in height direction to form a volume. The length of the extrusion is given by the height
parameter.

The non-physical geometry representations are not usually relevant in structural analysis models.
They may, however, be required for human factors evaluation e.g. for ingress or egress simulation.
These are usually performed in 2D as discussed in section 4.2.3.3. More advanced human-in-the-loop
simulations for comfort assessment as shown in section 4.2.3.1 are less likely to require the models,
unless very specific clash analyses are to be performed.
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(a) CAD

(b) Mesh

Figure 6.1.28.: Cabin representations for the example configuration
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Figure 6.1.29.: Contour lines defining the cabin geometry (from [WH+22a])
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(a) Aisle definition

[xi, yi]

[xi+1, yi+1]height

(b) Spaces definition

Figure 6.1.30.: Non-physical geometry definitions in CPACS (from [WH+22a])

Consequently, the greatest value of non-physical geometry is during the design phase. Figure 6.1.31
shows a plot of the LOPA, a standard output of FUGA during the early stages of the design and
modeling process, which can be generated very quickly. The plot combines simplified representations
of the physical cabin components and structure with the non-physical geometry. The bottom contour
of the cabin geometry data is used to provide a cabin boundary polygon. Doors are also marked
by red lines on the outer polygon representing the OML. By including representations of the free
spaces and aisles in these plots, violations of the aforementioned certification requirements, e.g. due to
inconsistent input data or a faulty rule implementation can be detected and corrected early, without
having to run the full high-fidelity model generation process.
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Figure 6.1.31.: LOPA of the example configuration
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6.1.4. Management of geometry fidelity levels

As illustrated by the different examples presented in section 4.2 different types of analyses require
vastly different levels of fidelity of the geometry model. The levels of fidelity are on the one hand
characterized by different levels of detail of the geometric representation of a given component, such
as beam-, shell- or volume-based representations of profile-based structures, or the mass of geometry-
based representation of cabin components. On the other hand, it may be possible to leave out certain
components altogether in certain analyses. The model generation rules discussed in the previous sec-
tions provide a basis for handling either of these cases in an efficient manner and without compromising
consistency of the models using the knowledge-based methodology implemented in FUGA.

Examples for two ways of building consistent multi-fidelity component representations have been
found. On the one hand, for extruded structural components, the models are generated based on avail-
able information by adding data. As such, more and more detailed models are created when traveling
along the model generation graph. On the other hand, detailed but non-parametric component models
may be given. Here, a data reduction is performed instead, e.g. when determining the bounding box
and centroid representations. As such, the level of detail is reduced when following the graph.

The declarative approach to formulation of the available modeling rules, which enables lazy eval-
uation, substantially contributes to the efficiency of the model generation, particularly in the data
addition case. Any required model can be assembled by requesting and combining the available build-
ing blocks in the system, which are provided either by another rule or by the user in an interactive
environment. Generation rules for component models, which have not been requested will be skipped,
meaning that only those rules are evaluated that are necessary for the computation task at hand. In
this way, expensive operations necessary to build highly detailed geometry are performed only if the
geometry is explicitly requested.

Another common trait of the different rule sets is that very detailed models are usually built from
simpler representations. For instance, detailed solid representations of the primary structure compo-
nents are built by extruding a section profile along a trajectory curve, which is in turn defined by a
plane. With the knowledge-based approach, all intermediate steps of the model generation process
can be made available to the user or different rules. Consequently, component geometry models at
different levels of detail are provided by the system automatically. Furthermore, due to the caching
of results in the data repository, less detailed representations can be retrieved without any significant
additional computational effort, once they have been visited during the computation of a more detailed
representation.

Three examples for geometric representations of the same design are given in figure 6.1.32. Fig-
ure 6.1.32a displays a geometry model which provides the basis for deriving a GFEM. Frames and
stringers are given as curves, as is the floor structure. Fuselage cutouts are not modeled explicitly.
The wing is represented only by the wingbox and ribs, in correspondence with the approach used
e.g. in PrADO or DeLIS, where the influence of the wing stringers is accounted for in the skin shell
properties. The cabin is represented using mass points.

In figure 6.1.32b, a CAD model of the configuration for display using the TiGL Viewer is shown. It
is intended as a way to make FUGA design results accessible e.g. to aircraft designers, who are familiar
with TiGL. Visibly, some configuration details have been added w.r.t. the structural model, e.g. for
the wing and engine, which have been introduced to match the established level of detail expected
from TiGL. In addition, bounding box representations for the cabin are now included instead of mass
points. On the other hand, the structure has been simplified by omitting the stringer curves, leaving
only the frame curves for orientation. Door and window cutouts are now shown.

Finally, figure 6.1.32c shows the detailed mesh representation of the same design in Blender. The
model as shown is ready to be exported e.g. to Unity for human factors evaluation. All previously
discussed structural details are modeled, including frame and stringer cross-sections, floors, cutouts
and wing details. A cockpit window cutout has been added to improve the realism of the model, which
is, however defined outside CPACS. The cabin is represented using detailed 3D meshes, of both the
seats and the secondary structure, which is now included in the model.
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(a) GFEM geometry

(b) CAD geometry for TiGL

(c) Triangulated mesh for VR

Figure 6.1.32.: Multi-fidelity geometry outputs for the example configuration
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All of the above models have been assembled using the same approach of making queries to the
FUGA KBE system to receive the necessary component representations and assembling the results.
They provide just a few examples of how the available component representations can be combined
into a configuration representation. In addition, the 2D LOPA representation in figure 6.1.31 is simply
another representation, derived from the multi-fidelity system in much the same way as the 3D models
shown above. In this case, however, instead of OCCT, the matplotlib plotting library [Hun07] is used
as geometry library.

The examples show that, using the KBE methodology described in chapter 5 and a suitable set
of rules as shown in the preceding sections, geometry models can be provided, which are tailored to
the fidelity requirements of specific disciplinary analyses. They therefore partially validate working
hypothesis 2. However, it is not shown yet that executable analysis models can be built from the
geometry data to evaluate the designs. To this end, two example analyses are provided in section 7.3.

6.2. Knowledge-based fuselage design rules

The multi-fidelity modeling capabilities described in section 6.1 can provide the basis for the generation
of analysis models for a variety of disciplines. However, as the level of fidelity is increased, the
parametric modeling engine relies on ever more detailed information being available in CPACS. This
is not necessarily the case in a real life collaborative product design process. Thus, if further product
information is requested by the modeling rules, but not available in the system, additional design rules
must be deployed in order to enable augmentation of details as stipulated by working hypothesis 3.

Dorbath [Dor14] establishes an understanding of a design process as essentially being a mapping
of a small number of user friendly input parameters to a substantially larger number of tool specific,
or, more generally put, more detailed parameters using a “knowledge base”. Consequently, the design
capabilities introduced here are based not only on the product information already available in the
data repository, which is a requirement for consistent designs, but also a manageable number of user-
friendly top level design parameters, which must be provided as additional inputs.

The design rules, which form the knowledge base according to Dorbath, have been collected in the
fuga.design subpackage and will be discussed in the following. Analogous to section 6.1, discussions
of the design rules are provided for the outer fuselage shape in section 6.2.1, the primary structure
in section 6.2.2, and the cabin in section 6.2.3. In principle, each rule set in the design subpackage
is designed to provide the source nodes to its corresponding generation rule set from the geometry
subpackage as sinks. However, the assignment of a given rule to one of the rule sets may be ambiguous
due to interdisciplinary dependencies, which are discussed in section 6.2.4.

6.2.1. Fuselage shape design rules/interfaces to OAD

The design of the outer fuselage shape is closely related to activities from OAD. Aside from cabin
design considerations, it is influenced by aerodynamics (cw), operations (e.g. rotation during takeoff),
and many more disciplines, which exceed the scope of FUGA at this point. Instead, the goal for the
fuselage design rule set is to either provide the basic geometry if none is available, or to make informed
changes to existing designs based on more detailed product information. To this end, two different
approaches to fuselage design are introduced in the following, which, though not mutually exclusive,
are deployed in separate rule sets.

On the one hand, the design of a fuselage shape from scratch based on cross-sections and guide
curves, similar to the approach taken by Jonge [Jon17] presented in section 2.1.2, is discussed in
section 6.2.1.1. The goal is to generate a CPACS section description as introduced in section 6.1.1
based on a reduced set of parameters. This capability is required to enable true inside-out fuselage
design.

On the other hand, in section 6.2.1.2, the options for extending the constant mid-section are dis-
cussed. This capability is usually required, if FUGA is applied in tandem with an OAD synthesizer
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such as openAD. In this case, an initial design is provided by the synthesizer and must only be extended
and adapted to suit the requirements of the structure and cabin integration. Not a true outside-in
design approach, this procedure can be referred to as a hybrid design.

6.2.1.1. Scratch design from cross-section and guide curves

Several aspects must be taken into account when designing the fuselage OML from scratch. As
discussed in section 2.1.2, the problem of the payload storage essentially introduces a tradeoff between
the design of the main cross-section in the mid-segment and the length of the fuselage. As discussed,
the two parameters are coupled via the number of seats abreast. Similarly, the aerodynamic drag
contribution can be approximated via the slenderness ratio, which again depends on the cross-section
and the length.

Apart from these basic parameters, additional details must eventually be considered, such as the
shapes of the cockpit and tail sections, which affect e.g. aerodynamic performance and rotation capa-
bility during takeoff, but also the available space inside the fuselage. Furthermore, new designs often
deviate from a circular cross-section, which introduces more degrees of freedom to the design.

An example for an implementation of such a detailed inside-out design process can be found in
ParaFuse [Jon17]. The process begins with the design of the cross-section. To this end, a low number
of reference points for the cabin cross-section layout is computed based on a given or computed number
of seats abreast, around which the cross-section profile selected by the user is fitted. The true length
of the fuselage is then determined by performing a cabin configuration. Based on the length and a
predefined cockpit and tail section shape, four guide curves are determined as illustrated by figure 2.1.2.
The fuselage surface is then generated by computing copies of the main cross-section curve at various
positions of the fuselage, which are scaled to fit inside the guide curves. The actual fuselage surface is
generated from these curves using a skinned surface interpolation algorithm.

A comparable approach to provide a very simple outer surface for conventional fuselages has been
implemented using FUGA. Based on the aforementioned segmentation of the fuselage into cockpit,
constant and tail segments, the surface is described by a network of the four longitudinal guide curves,
also used in ParaFuse, and four section definition curves describing the cross section at the boundaries
of the different fuselage segments, as illustrated by figure 6.2.1a. All curves are given as B-spline
curves. A smooth surface, as shown in figure 6.2.1b, can be generated from the curve network using the
Gordon surface algorithm. Visualization of the isophotes, sometimes also referred to as “zebra stripe”
shading, enables the assessment of the surface quality [Poe84]. Aligning isophotes at the transitions
between two surface patches indicate tangential continuity across the patch boundary. If the curvature
is furthermore continuous, this indicates curvature continuity. Examination of figure 6.2.1b thus
reveals that curvature continuity can be achieved in circumferential direction, whereas in longitudinal
direction, tangential continuity is reached, even at the transitions between sections.

(a) Constituting curve network (b) Surface with isophotes shown in TiGL Viewer

Figure 6.2.1.: Fuselage surface construction from curve network
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The modeling approach provides several options for manipulating the fuselage surface by modifying
the members of the constituting curve network. The underlying definition of the curves is illustrated in
figure 6.2.2. Visibly, the longitudinal guide curves and the section curves are mutually dependent via
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Figure 6.2.2.: Fuselage surface definition curves

a set of common points, which are marked in the figure. The placement of these points is related to a
multitude of fuselage parameters. To begin with, the lengths of the different segments lcockpit, lconstant,
and ltail must be provided, which, in summation, yield the overall length of the fuselage lfuselage.
Similarly, the width and height of the constant section wconstant and hconstant are prescribed. Similarly
to the ParaFuse implementation, these parameters can later be coupled to the cabin parameters via
FUGA.

Additional control over the cross-section is available via the choice of the section curve. While the
curve must pass through the shared points, its path can be chosen freely in between. To highlight
this, a superellipse cross section is shown in figure 6.2.2b, whereas a circular cross section is used
in figure 6.2.1a. A limitation, due to the implementation of the Gordon-surface algorithm, is that
the curve parameter should not deviate too much from the relative curve length, which precludes the
application e.g. of circles described by NURBS curves.

As shown in figure 6.2.2b, the shape of the cockpit and tail sections can furthermore be modified by
prescribing an eccentricity ∆znose and ∆zAPU , respectively. These parameters influence the position
of the respective end points w.r.t. the middle axis of the constant section. For the cockpit section,
it is furthermore assumed that the curves coalesce in a singular umbilical point. As highlighted in
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figure 6.2.2, the tangency at the nose is prescribed by a vector for each curve. The length of the vector
can be changed to modify the radius of the radome. Moreover, to ensure a smooth transition to the
constant section, another set of tangent vectors, all pointing in x-direction, is given at the end of the
cockpit section, as shown in figure 6.2.2a.

Analogously, the same tangent vectors are also prescribed at the beginning of the tail section. The
tail end, where the auxiliary power unit (APU) is commonly placed in conventional designs, is, however,
not represented by an umbilical point, but by a separate section profile. The section is characterized
by its own width and height wAPU and hAPU . Furthermore, unlike for the cockpit section, no tangents
are given at the APU section, resulting in a “free” boundary condition. Due to the different types of
boundary conditions for the guide curves in the different segments, it is advisable to construct the
curves separately for each segment and subsequently join the results.

To avoid loss of accuracy, the resulting surface can be passed directly to FUGA, to be used as the
basis for subsequent modeling steps. However, to enable the exchange of the fuselage shape, it must
be converted to a CPACS point cloud. Due to the modeling approach based on flat section curves, all
circumferential isoparametric curves lie on an offset plane of the yz-plane. Consequently, the profile
points needed for the description of the surface in CPACS can be computed simply by evaluating the
surface on a grid of longitudinal and circumferential coordinate samples.

In summary, the modeling approach provides a very simple way to build fuselage surfaces of good
geometric quality based on a very low number of parameters, which is adequate for preliminary
design studies. That said, the examples shown are still substantially different from surfaces of real
aircraft. One obvious aspect is the shape of the cockpit segment, which is missing the common
kink due to the cockpit window, which is often found in passenger aircraft. This would be possible to
implement at the cost of an increased number of input parameters. Different design parameterizations,
deployed using different sub-rulesets and made accessible via a categorical parameter, similarly to the
solution in ParaFuse, could help provide more versatile modeling capabilities without sacrificing too
much accessibility. That said, newer designs for smaller aircraft, e.g. by Embraer or Airbus Canada,
illustrate a tendency towards a less pronounced kink and are thus better represented in comparison.
Furthermore, the benefit in terms of design accuracy w.r.t. the cabin and structure is likely limited,
as long as the cockpit and the neighboring systems are not taken into account in detail in the design
process.

Another critical aspect is the design of the cross-section, which is typically a compound of multiple
segments in modern aircraft. While such sections can, in principle, be approximated using B-splines,
they are more difficult to describe parametrically on the one hand, and the resulting behavior of the
Gordon surface generation algorithm may be harder to predict and control on the other.

6.2.1.2. Design modification by extension of the constant mid-section

As mentioned previously, the creation of a fuselage shape from scratch may not always be necessary
or desirable. For instance, the entire idea of family concepts, which are commonplace in industry
today, is based on multiple configuration sharing the same fuselage cross-section and simply extending
or shortening the mid-section, where the cross-section is constant. This has some very practical
advantages in terms of manufacturing and reduces the need for redesigns.

In a collaborative environment, it may be necessary, to build a design based on input from another
source, where the assumptions are not clear. In this case it is advisable to keep disruptive changes to a
minimum, in order to facilitate the iteration of results. An example is the coupling of FUGA with the
OAD synthesizer openAD. In openAD, an assumption is made w.r.t. the length of the cabin, as well es
cross-sectional details e.g. the number of aisles and seats abreast. The output of the synthesis is then
passed to FUGA, where a more detailed design of the cabin is performed. The assumptions pertaining
to the given cross-section are respected, and only a new cabin length is computed and reported back
to openAD, which must be executed again to account for snowball effects.

This design approach is referred to as a hybrid design [Baa15], as it combines elements of outside-
in and inside-out fuselage design. It also has the advantage of being very simple to implement using
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CPACS. W.r.t. to the mathematical description of design problems, this approach furthermore has the
advantage of reducing the design of the fuselage OML to a single variable, i.e. the change in fuselage
length ∆lfuselage.

Figure 6.2.3 illustrates the hybrid fuselage extension approach implemented in FUGA. The extension
can simply be implemented by adding a translation in longitudinal direction ∆x to each section
positioning node. The total desired change in fuselage length is given by ∆lfuselage. As shown in
the figure, the fuselage can then be divided into three lengthwise segments. In the first segment, no
change in section position is made, i.e. ∆xsec = 0. In the mid-section, the section positions are offset
by half the length change, i.e. ∆xsec =

∆lfuselage
2 . The rear section is finally offset by the full length

∆xsec = ∆lfuselage. This procedure yields a relatively smooth distribution of the length change, given
that the segments are chosen well. In figure 6.2.3, the mid-section is determined based on the change
in cross-section area. In this way, the fuselage can be split into a cockpit section, mid-section and
tail section, as established in section 2.1.2. Another feasible approach, which has been described by
Walther et al. [WH+22b], is to assume an even split of the fuselage, where the length of each segment
is lseg =

lfuselage
3 . Whereas this method is more basic, less input data is required for the segmentation

since the section areas need not be computed before the length update, resulting in a less complex
system.

∆xsec = ∆lf selage∆xsec = 0 ∆xsec =
 lfuselage

2

Figure 6.2.3.: Hybrid fuselage extension

A continuous deformation approach, e.g. ∆xsec (x) = x
lfuselage

∆lfuselage was not adopted, because
the deformation distribution is also meant to be applied on any other object besides the fuselage, i.e.
wings, other fuselages, engines and pylons. To keep sub-configurations, such as the wing including the
pylon and engine nacelle, intact, it is necessary for the same displacement to applied to all of their
respective member components. Taking the configuration in the figure as an example, a continuous
approach would result in a lower displacement for the engine nacelle than for its pylon, because
the longitudinal position of the former is lower than that of the latter, thus breaking the relative
positioning.

The change in position of the wing and empennage implemented here is largely due to aesthetics.
In truth, a change in length of the fuselage, will invalidate the overall design. To achieve a consistent
design again, the wing position must be adjusted taking into account the overall center of gravity in
several different loading conditions. Similarly, the design of the empennage is affected. In the event
of a fuselage length increase, it will likely become smaller due to the increased lever arm [Tor76].
These types of considerations are performed by an OAD synthesizer. For a consistent overall design,
an iteration loop should therefore be set up, where the correct cabin length is communicated back to
the OAD synthesizer, and the fuselage design process is repeated for the new configuration. For the
purposes of this thesis, however, the simplified update is considered sufficient.
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6.2.2. Structure design rules

As discussed in section 6.1.2, Scherer and Kohlgrüber [SK16] and Dorbath, Nagel, and Gollnick
[DNG13] provide detailed CPACS descriptions of the structural layout of fuselages and wings respec-
tively. In both cases, the geometric interpretation is, however, demonstrated by FEM model generators
by the authors, whereas in this work a feature-tree-based CAD-driven approach is proposed. More-
over, a common trait of the FEM model generators is the need for the structural information to be
readily available in CPACS. The design capacity of both the TRAFUMO/PANDORA tool by Scherer
and Kohlgrüber and the ELWIS tool by Dorbath, Nagel, and Gollnick is limited to a sizing of an
existing layout in order to estimate the structural mass. The sizing encompasses the determination of
skin thicknesses and potentially some profile cross section parameters using the FSD routines imple-
mented in S_BOT+ in ANSYS [Dor14]. The topology of the structure, e.g. the number or position
of components, is, however, largely fixed.

That said, designs in a collaborative process are commonly the output of OAD synthesizers that
are not capable of providing such structural topology details. It is therefore necessary to instantiate
a structural layout in order to enable the application of any of the above tools. This process step is
not addressed by either of the authors, who instead expect the user to provide the necessary input
parameters directly in CPACS [Dor14]. In practice, it has, however, become clear that these definitions
are too complex to fill manually, especially in coordination with concurrent design activities e.g. for
the cabin.

Consequently, Fuchte, Gollnick, and Nagel [FGN13] describe an initial attempt at creating a compre-
hensive design tool that can initialize structural details of the fuselage along with a cabin layout. Yet,
while many promising capabilities are demonstrated, the tool is not sufficiently developed to support
automatic generation of executable FEM analysis models. In contrast, Walther and Ciampa [WC18]
present a tool for fuselage structure initialization dedicated to providing all necessary information to
generate executable FEM models, which is, however, lacking cabin integration capabilities.

In the following, the design rules for the structural layout implemented in FUGA are discussed,
which are a further development of the work of Walther and Ciampa. Due to the elevated importance
of the primary structure grid in the CPACS fuselage structure definition, the rules for the frame
and stringer distribution are presented separately in figures 6.2.13 and 6.2.2.3. In section 6.2.2.4,
the placement of the floors based on the primary structure grid is then discussed, followed by the
determination of bulkhead and skin properties in section 6.2.2.5.

6.2.2.1. Design inputs

Aside from a CPACS data set to provide the OML, the user needs to provide some additional inputs.
On the one hand, an additional XML file must be provided, which contains the simplified user friendly
input parameters. The XML tree may also be embedded in the original CPACS file, as an entry of the
toolspecific node. Tool specific namespaces are commonly used in CPACS to provide and document
input or control parameters, which are necessary for the application of a given tool, but not relevant
to the final design description.

On the other hand, a donor model must be provided, which should contain the structural element
definitions, i.e. profile and sheet based structural element descriptions as well as material data. The
role of the donor model is to provide a library of these elements to be referenced for the new design.

The input files are provided to FUGA during the instantiation of the structure design system.

6.2.2.2. Frame distribution

The frame distribution provides the basis for a significant portion of the structural definitions. As such,
parameters and assumptions about many different components must be taken into account during its
design on the one hand, which introduces substantial complexity. On the other hand, the frame planes
are commonly aligned normal to the longitudinal axis, which facilitates the design.
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In FUGA, the detailed frame distribution is designed based on two main inputs. On the one
hand, main frame positions xmfr must be provided where a main frame must be present e.g. for load
introduction. On the other hand, a nominal frame pitch ∆xfr,nom is provided to interpolate frame
positions between the main frames. Whereas the latter is an input parameter provided by the design
engineer via the input parameter list given in table 6.2.1, information on the former must be assembled
from the available data. FUGA places mainframes at

• Fuselage bounds, which are determined from the OML bounding box,

• Bulkhead positions, which are given in the input parameter list or by the VTP front spar (s.
also section 6.2.2.5),

• Door bounds, which are provided by the cabin layout (s. section 6.2.3),

• Wing box bounds, which are determined from the wing spar positions usually provided by
openAD,

• Landing gear bay, which is offset from the rear spar position by a length parameter in the input
list.

Since the frame plane normals are aligned with the x-axis, position of the i-th mainframe can simply
be represented by its longitudinal position xmfr,i.

The next step is to compute the positions of the regular frames between the main frames. To this
end, the required number of frames is computed based on the distance between main frames and the
nominal frame pitch using

nsections,i =

⌊︃
xmfr,i+1 − xmfr,i

∆xfr,nom

⌋︃
+ 1. (6.2.1)

From the number of frames, the position xf,ij of the j-th frame between the i-th pair of main frames
is given by

xf,ij = xmfr,i + j · xmfr,i+1 − xmfr,i

nsections,i
, {j ∈ N0|0 ≤ j < nsections,i} . (6.2.2)

A distribution resulting from the approach is given by figure 6.2.4.

Figure 6.2.4.: Frame distribution generated from mainframe positions

Due to the way the number of sections nsections,i is computed, the nominal frame pitch acts as an
upper boundary for the distance between two adjacent frames. It is, however, likely that the true
frame distance is actually slightly lower than the pitch. Furthermore, the distance between frames
will likely vary between different main frame pairs. That said, the main frame positions are observed
exactly by the layout. Different interpolation schemes than the one outlined above are fathomable,
such as a forward biased or centered pitch observing scheme as follows:

xf,ij = xmfr,i + j ·∆xfr,nom, {j ∈ N0|0 ≤ j < nsections,i} , (6.2.3)

xf,ij = xmfr,i +
(xmfr,i+1 − xmfr,i)− nsections,i ·∆xfr,nom

2
+ j ·∆xfr,nom, {j ∈ N0|0 ≤ j < nsections,i} .

(6.2.4)
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In these cases, the pitch given by ∆xfr,nom would be observed by all frame pairs, except for some
cases in the neighborhood of main frames.

Aside from the frame plane definition, the definition of the profile properties is a key aspect of
the frame distribution design. Here, the library of profile based structural elements provided by the
donor model is leveraged. Separate cross sections can be assigned to mainframes and regular frames
by referring to the uIDs of the desired profile based structural element in the donor data set. The
corresponding data is then copied over to the design data set and the uIDs are assigned to the newly
created frame instances.

6.2.2.3. Stringer distribution

In some ways, the procedure to compute the stringer distribution is similar to the frame distribution.
However, due to the increased geometric complexity of the stringer, several complications must be
addressed. To begin with, one stringer plane is usually not sufficient to properly represent the stringer
base curve along the entire length of the fuselage. Therefore, the stringer plane distribution is usually
split longitudinally e.g. as illustrated by figure 6.2.5a. In the figure, two separate distributions are
shown for the forward and the aft part of the fuselage. The confluence points of the planes, which are
extruded along the x-axis, lie in the nose and the center of the tail, resulting in a vertical offset. At
the same time, both distributions must be compatible, i.e. intersect the fuselage at the same point at
the transition position. Furthermore, the placement of seed values around the circumference requires
significantly more effort than the 1D-distribution of the frames in longitudinal direction, requiring
mapping between curve and Cartesian coordinates.

Computation of reference points based on angles Walther and Ciampa [WC18] present an approach
to describe such a distribution based on the number of circumferential stringers nstringer, which must be
provided in the input file. The orientation of the stringer planes is computed based on the assumption
that the stringer curves are arranged in equal angular distance around the centroid pst,ref of a reference
section, which lies in the constant mid-section of the fuselage. The stringer plane angles φ in Radian
are thus given by

φi = 2π · i

nstringer
, {i ∈ N0|0 ≤ i < nstringer} . (6.2.5)

The i-th stringer curve point pst,i at the reference section is then given by the intersection of the
fuselage surface and the vector defined by pst,ref and the i-th angle φi. In this way, the locations of
the stringer curves in the constant section are determined.

If window cutouts are present, it is possible to remove certain stringer curve points that fall in the
height range of the window cutouts. This is in line with common design practice [Niu88], where a
substantial increase in thickness of the skin around the windows is usually favored over interrupted
stringers.

Determination of stringer planes In order to construct the stringer planes, it must furthermore be
taken into account that the stringers must meet at confluence points. The points are chosen based
on the assumption that the stringers will meet in the first and last section of the fuselage. This
results in two segments of the stringer distribution, one from the fuselage nose section to the reference
section and a second one from the reference section to the tail section. The assumption of a singular
confluence point pcon,j , i.e. a single point in which all stinger planes meet, holds, if the end sections
are approximately circular. This is the case e.g. for aircraft nose cones. As shown in figure 6.2.5b,
all stringer planes then have to originate in pcon,j and pass through the curve reference points to
maintain consistency. Consequently the actual stringer plane angle φij for the i-th stringer and the
j-th confluence point is given by

φij = −arctan2 (pst,i,y − pcon,j,y, pst,i,z − pcon,j,z) . (6.2.6)
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(a) Isometric view

(b) Front view

Figure 6.2.5.: Stringer planes for piecewise constant interpolation scheme

If the height at the confluence section is significantly different from the width, as is the case e.g. for
the tail design of the Boeing 777, the assumption of a singular confluence point no longer holds, as
it will lead to uneven spacing of the stringer curves, with a cluster of curves along the longer sides.
Therefore, the stringers are instead assumed to end in a confluence line, on which all the confluence
points for the individual stringers pcon,ij lie. An ellipse analogy, which maps the angle φi to an ellipse
representation of the confluence section, is used to determine both the extent of the line and the
locations of the individual points on it. The ellipse axis lengths 2aellipse and 2bellipse are given by the
section height and width. Therefore, the ellipse is upright if the section height is larger than its width,
otherwise it is horizontal. The confluence line is given by the line between the foci of the ellipse. In
this way, cases ranging from a circle, i.e. aellipse

bellipse
= 1, to a line, i.e. aellipse

bellipse
= ∞ assuming aellipse is the

major semi axis, can be covered. The distance between the center and a focus is given by the linear
eccentricity of the ellipse

cellipse =
√︂
a2ellipse − b2ellipse. (6.2.7)

The point on the confluence line corresponding to a given angle φi is then given by

pcon,ij = [pcon,j,y, pcon,j,z + cellipse · cos (φi)] for an upright ellipse, (6.2.8)
pcon,ij = [pcon,j,y − cellipse · sin (φi) , pcon,j,z] for a horizontal ellipse. (6.2.9)
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Temporary values of φi can be computed using equation 6.2.6, taking the profile centroid pcon,j as
reference. Once the actual source points pcon,ij are known, the final angles φij are computed using
the same formula, but with the new point as reference.

The resulting stringer curves for a design using the above approach are shown in figure 6.2.6.

Figure 6.2.6.: Stinger curves from piecewise constant definition

Computation of reference points based on arc length The above approach does not work well, if
the reference cross section deviates significantly from a circular shape, which again leads to uneven
stringer spacing. Furthermore, it fails to take into account the parameters of the center fuselage area.
As explained in section 6.1.2, many key properties of the center fuselage area are given in terms of
frame and stringer positions. Therefore, if certain positions, e.g. the passenger floor height, are to be
respected, it must be considered during the design of the stringer distribution. The same is true for
the height and width of the keelbeam. Furthermore, it is a good idea to consider the floor heights, if
the goal is to generate a GFEM of the design. In the GFEM, floor beams may be moved to the nearest
frame/stringer intersection point to avoid the introduction of additional nodes and elements [SK+13].
The introduction of these constraints implies that, in the constant mid-section, some stringers are
expected at certain vertical positions due to the floors and keelbeam height as well as lateral positions
due to the keel beam width.

To incorporate these requirements, the assumption of an even angular distribution is abandoned in
favor of a more detailed evaluation of the reference section curve. Since the reference section can freely
be chosen within the constant center segment of the fuselage, any of the section curves that make up
this segment can be considered. The section curve Cref (v) =

[︁
Cref,x (v) , Cref,y (v) , Cref,z (v)

]︁T
is a B-spline curve, which is the outcome from an interpolation of the points of a CPACS section
element definition (s. section 6.1.1). To fulfill the above requirements, those points on the curve,
where the curve crosses the desired vertical or lateral position, must be determined. This means
solving

Cref,y (v) = yreq (6.2.10)

or
Cref,z (v) = zreq (6.2.11)

for the local curve parameter v for all lateral constraints yreq and all vertical constraints zreq. The
problem can be solved e.g. using a quasi-Newton gradient-based solution method, such as the secant
method. To ensure symmetry, it is a good idea to compute the parameter for a given zreq on both
sides of the fuselage by splitting the allowable solution range for v. The resulting parameter values
v∗ take on the role of seed values for the stringer distribution, much in the same way the mainframe
positions do for the frame distribution.

To determine the distance between the seed points, the arc length of the curve segments between
each pair of coordinates given by

s12 =

∫︂ v2

v1

⃦⃦⃦
Ċref (v)

⃦⃦⃦
2
dt (6.2.12)

as shown e.g. by Farin [Far01]. The integral can be approximated using e.g. the trapezoidal rule, i.e.
summing chord lengths between a sufficiently high number of sample points, or Gaussian quadrature.
For the purposes of the present application, the accuracy of the trapezoidal rule is usually adequate.
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Since the total number of stringers is given by nstringers, they must now be distributed across the curve
segments proportionately to the segment arc lengths. To this end, a target stringer bay arc length is
computed by dividing the length of the entire reference profile curve sref by the number of stringers:

∆sst,nom =
sref

nstringers
. (6.2.13)

Using ∆sst,nom and the known curve segment lengths, the number of stringers per segment can be
estimated analogously to the frames using equation 6.2.1.

To compute the equidistant Cartesian curve points w.r.t. the arc length, given the section curve
Cref (v) with v ∈ [vi,1, vi,2] and the number of stringers on the i-th curve segment nstringers,i, a
reparametrized representation of Cref can be used. A reparametrization τ = τ (v) allows for changing
the parameters of points on the curve, without changing its shape [Far01]. In the present case, a
reparametrization by the arc length given in equation 6.2.12 is required, i.e.

s (v) =

∫︂ v

v1

⃦⃦⃦
Ċref (v)

⃦⃦⃦
2
dv. (6.2.14)

The relationship can be inverted to provide the parameter of the original curve based on the new
parametrization t = t (s). The parameter sij for the i-th stringer in the j-th curve segment is then
simply given by

sij = i · sj
nstringers,j

, {j ∈ N0|0 ≤ j < nsections,i} . (6.2.15)

Based on the resulting curve points and the section centroid, the procedure for the determination of
the stringer planes can be applied as above.

A drawback of this second approach is that the user-requested stringer number may no longer be
matched exactly in all cases, due to rounding errors. On the other hand, it introduces the opportunity
for the user to prescribe the target bay arc length directly, which may be a more meaningful parameter
from a structural analysis perspective (s. e.g. Bruhn [Bru73], where many analysis methods based on
the bay arc length/height are provided). The arc-length approach furthermore translates better to
non-circular profiles.

Incorporation of cabin constraints for transport aircraft The above approach is sufficient to generate
structural designs, which can be evaluated and sized using FEM software as shown by Walther and
Ciampa [WC18]. However, as more details of the cabin are introduced, it becomes obvious that the
approach still has some shortcomings. For instance, figure 6.2.7 shows the structural layout around
a door cutout in the rear section, which has stringers bending upward and passing through the door
cutout. This is undesirable for typical door surround structure designs as shown e.g. by Niu [Niu88]
and Schmidt et al. [SK+15].

As a solution, a modified stringer plane arrangement can be adopted, where a third set of stringer
planes is added in order to force stringers to run in parallel to the passenger floor in the area of
the cabin. Such a stringer plane arrangement, assembled manually based on drawings of the original
A320-200 configuration [Sch11], is found in the D150 configuration used e.g. by Scherer et al. [SK+13].

This approach can be automated in FUGA, taking into account the available cabin geometry data
introduced in section 6.1.3, which provides information about the vertical position and extent of the
cabin as well as key positions in the fuselage, e.g. of the cockpit rear wall, the rear bulkhead and the
exits. Based on this information, the forward and aft boundary of the new stringer definition plane
segment can be determined. Typically, an offset from the forward limit of the most forward exit pair
and the rear bulkhead are good choices for the limits. In this way, it can be avoided that the middle
segments extend too far in the non-constant sections of the fuselage, which could cause undesirable
discontinuities in the stringer definition curves.

With the limits established, the stringer reference points are computed analogously to the previously
described approach, based on a reference section in the constant part of the fuselage. Differently from
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Figure 6.2.7.: Faulty stringer distribution surrounding the rear door (cf. figure 6.2.10)

the previous method, the definition vector distribution is then computed for the middle stringer planes
first. An example distribution is shown in figure 6.2.8a. The choice of origins for the vectors merits
particular attention. In the area of the cabin, which is located between the vertical position of the
cabin floor and a height limit, based on the cabin boundary geometry, the z-position of the origins is
aligned with the reference point on the circumference, resulting in a vector, and thus a plane, which
runs in parallel to the floor. In this way, it can be achieved that the stringers always run in parallel
to the passenger floor. Outside of the cabin region, the z-position of the vector origins is restricted to
the minimum or maximum of the cabin region, resulting in a hub and spoke distribution similar to
the previous examples.

(a) Baseline reference points and definition vectors (b) Updated outer reference points

Figure 6.2.8.: Determination of the stringer definition planes in the middle segment and updated outer
reference points

Next, the distributions of the forward and aft stringer definition plane sets must be determined.
This can again be accomplished using the confluence point projection approach described by equation
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6.2.6. However, instead of the reference points on the main reference section, the projected reference
points on the fuselage surface at the forward and aft limit of the middle stringer definition plane set
must be computed. The points can be computed by intersecting the fuselage surface with copies of
the middle stringer definition vectors translated to the forward and aft limit of the definition space.
The resulting points are given in figure 6.2.8b.

Applying the projection method to the new reference sections and combining the three sets of
stringer segment definition planes yields the distribution in figure 6.2.9a. Compared to figure 6.2.5a,
the third definition range is clearly visible. The front view in figure 6.2.9b reveals the horizontal
definition planes in the cabin area.

(a) Isometric view

(b) Front view

Figure 6.2.9.: Stringer planes including cabin

An updated view of the door area from figure 6.2.7 is given in figure 6.2.10. It shows that the
new design approach including the cabin data is clearly beneficial for a more structured stringer
arrangement around the doors. The improvement in the door areas comes at the cost of noticeable
kinks in the transition areas between different stringer curve segments.

As mentioned previously, the design method described here depends on inputs from the cabin
design rule set. In some cases, such as strong deviations from a classical passenger transport aircraft
configuration, this can be a disadvantage over the methods described earlier, which depend only on
the outer geometry. As such, it is desirable to retain both methods in the design system in a way,
where the advanced method is used if the cabin design and modeling rules are applicable, and the
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Figure 6.2.10.: Corrected stringer distribution surrounding the rear door (cf. figure 6.2.7)

basic method is used as a fallback if this is not the case. A simple way to accomplish this is to place
the basic design rules in the structural design rule set and the advanced rules in the cabin design rule
set. In this way, the rules in the former will be overloaded by the rules in the latter, if it is included
in the overall design system.

6.2.2.4. Floor element placement

As described in section 6.1.2.2, the floors in CPACS are initially defined in terms of the crossbeams,
which in turn reference the frame definitions. Consequently, a frame distribution must be available
at the beginning of the floor design. In addition to this, only very few additional parameters must be
provided in the user input deck.

To determine the vertical position of the floor, a z-position is given for the crossbeam. To begin
with, a crossbeam distribution across the full length of the pressurized region of the fuselage, i.e.
between the first and last bulkhead is assumed. Based on a side projection of the fuselage OML,
it is then determined, whether a given crossbeam curve lies outside the fuselage, in which case it is
eliminated. This occurs commonly e.g. for a lower cargo deck. A profile-based structural element
uID from the donor model must be provided along with the z-position, to determine the cross-section
properties of the crossbeam.

Along the length of the crossbeams, an arbitrary number of crossbeam struts can be generated by
giving a y-position on the crossbeam and an orientation angle. Based on a line representation of the
crossbeam, it is verified that the desired y-position of the crossbeam is within the fuselage bounds, in
which case the strut is added to the design. Again, a profile-based structural element definition must
be provided for each combination of y-position and angle. This process is repeated for all crossbeams
associated with a given floor.

Two different ways are available in FUGA to determine the longitudinal floor beams. Walther and
Ciampa [WC18] simply provide a list of y-positions and corresponding cross-section uIDs, based on
which a line is generated. The line extends across all crossbeams as long as its y-position is within
the fuselage bounds.

That said, the path of the longitudinal beams is closely related to the cabin layout. For instance,
seats are usually mounted in seatrails, and support beams are usually placed on both sides of the
aisles as well as on the outer bounds of the cabin. Therefore, designing the longitudinal floor beams
without consideration of the cabin layout is bound to result in inconsistent designs.
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Jonge [Jon17] implements a seat placement based on the seatrail paths, which are assumed to be
offsets of the OML for the outer seat blocks and straight lines for the inner blocks. This leads to curved
seatrails, which introduce difficulties in manufacturing and are harder to model in CPACS compared
to their polyline counterparts. Therefore, a different approach is implemented in FUGA, where the
seatrails are generated based on an existing seat distribution. The generation of such a distribution is
discussed in section 6.2.3.4. The seat models can be augmented with metadata, allowing for definition
of axes, where the longitudinal beams are expected to pass the seat, as shown in figure 6.2.11. The
inner axes represent seatrails, whereas the outer axes denote regular support beams.

Figure 6.2.11.: Floor beam axes defined for a seat model

The axes for each seat are combined into a set of polylines for each seat block, which must then
be resampled at the frame x-positions corresponding to the crossbeams to give the longitudinal beam
positions required for CPACS. Outside the bounds of the seat blocks, the line can be extrapolated
to determine the required lateral positions. The final result is shown in figure 6.2.12. Due to the
limitation of CPACS that longitudinal beams samples can only be placed at crossbeams, the beam
curves stored in the format cannot always match the axes provided by the model metadata exactly.
Nonetheless, reasonable consistency between the structure and the cabin layout can be achieved.

Figure 6.2.12.: Seat rails (orange) generated from seat layout

Floor panels are defined between adjacent longitudinal floor beams and bounded by longitudinal
positions, as explained in section 6.1.2.2. In the structural design rule set, it is assumed that a floor
panel is placed between each pair of neighboring beams created in the previous step. The computation
of the x-positions, which are assumed to be the same for all pairs of floor beams, is based on the frame
positions. To this end, the user can specify the number of frames nfr,panel spanned by each floor panel
as an input parameter. Thus, assuming nfr,span = 3, a break between panels would be introduced at
every third frame position, counting from the first crossbeam, where a longitudinal beam is present. If
the number of frames in the range is not evenly divisible by nfr,span, the last panel will be shortened.
The properties of the panels are given by a uID referencing a sheet-based structural element definition
in the donor model.

A final important aspect of the floor design in FUGA is the introduction of offsets. As explained in
section 6.1.2.2, offsets can be used to manipulate the cross-section profile of a curve-based structural
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component. In the preceding procedure, only a single z-position was provided, namely the vertical
position of the crossbeam. However, it is easy to understand that the physical counterpart e.g. of the
crossbeam and a longitudinal beam cannot be placed at the same position. Therefore, offsets must be
determined to arrange the various components in such a way as to avoid collisions. According to the
convention adopted in FUGA, the given z-position is interpreted as the upper bound of the crossbeam.
Considering the crossbeam profile with the points pprof , the necessary downward offset in z-direction
is given by the maximal profile z-coordinate ∆zCB = −max (pprof,CB,z). Similarly, the z-position also
represents the lower bound of any longitudinal beams and the offset is given by the minimal profile
z-coordinate ∆zLB = min (pprof,LB,z). An offset along the longitudinal axis may be applied e.g. to
avoid overlaps between the crossbeam and the frames or between the struts and the crossbeams. For
the floor panels, the vertical offset is assumed to be the height of the lowest longitudinal beam profile.

The input deck allows the specification of an arbitrary number of floors. In order to specify,
whether e.g. crossbeams be exported to the paxCrossbeams or cargoCrossBeams node of the fuselage
in CPACS, an additional attribute is_cargo_floor is provided.

6.2.2.5. Bulkheads and skin segments

As mentioned in section 6.2.2.2, bulkhead positions are essential inputs for the frame distribution when
creating the structural layout for a modern transport aircraft. The approach described by Walther
and Ciampa [WC18] implemented in FUGA allows the user to specify the longitudinal positions of the
outer bulkheads, either in absolute or relative fuselage coordinates, or in terms of an offset from the
longitudinal fuselage bounds. Furthermore, the number of bulkheads can be specified, to introduce
additional bulkheads in an evenly spaced distribution between the outer bulkheads. However, this
feature is not needed for conventional transport aircraft. If information on the VTP spar positions
is available, an additional rule can be introduced in FUGA, which places the RPB at the VTP front
spar, as is common in passenger aircraft designs.

In addition, the bulkhead properties must be provided. It is possible to either provide a single
property to use globally, or to provide a vector, where the properties of each bulkhead are speci-
fied explicitly. Both types of bulkheads introduced in section 6.1.2.1 are supported, and all CPACS
parameters can be set directly by the user via the input deck.

The designation of skin segments is necessary to assign mechanical properties to the fuselage skin.
It also provides a way to identify e.g. sizing regions for structural sizing, where all skin panels within
a skin segment share the same properties. In this way, constraints, e.g. due to manufacturing, which
prohibit each panel thickness to be sized individually, can be taken into account. For the skin thickness
sizing, this implies that all member panels of the skin segment are sized by the most critical panel in
the segment.

As described in section 6.1.2.1, the skin segments are bounded by stringers in circumferential direc-
tion and by frames in longitudinal direction. For the design, the number of lengthwise and circumfer-
ential skin segments can be specified by the user. The design algorithm will then attempt to split the
number of frame and stringer bays in longitudinal and circumferential direction as evenly as possible.
For the frames the starting point for the distribution is the front, whereas for the stringers it is the
crown curve. If an even split of the frame or stringer distributions is not possible, the segments at
the end and the bottom are adjusted respectively. Furthermore, an option is available to center the
upper circumferential segment around the crown curve instead of it beginning there. In this way, the
sizing regions can better be tailored towards the common load regions in the fuselage, i.e. tension at
the top, compression on the bottom and shear on the side.

As the design capabilities implemented in the fuga.design subpackage are not intended to provide
a sized structure, but a structural topology that is a basis for subsequent structural sizing tools, the
description of the skin thickness distribution is kept simple compared to those commonly found in
flying aircraft. Revisiting the idea of the major load regions, a thickness can be assigned by the user
to each circumferential segment, which is then applied along the fuselage length. A global material is
provided via a material uID, referencing the donor model.
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6.2.2.6. Cutouts

FUGA automatically determines the cutouts for windows, passenger doors and main cargo doors. The
passenger and cargo door cutouts are derived from the cabin and cargo floor layout respectively and
provide necessary inputs for the frame and stringer distributions. Conversely, the window cutouts are
introduced only once the frame distribution is complete.

The passenger door cutout positions are a result of the exit distribution from the cabin layout, the
design of which is described in detail in section 6.2.3.3. The x-positions depend on the distribution
of seats and monuments, whereas the z-positions rely on the cabin floor position and a possible sill
height. The cutout dimensions, i.e. the width wdoor and height hdoor as well as the corner radius
rcorner, are prescribed by the exit type, which is selected during cabin design based on the required
passenger capacity.

As discussed in section 6.1.2.4, the position of the cutout is given by a point on the fuselage
surface, described in terms of a reference point, given by the entries of positionX, referenceY and
referenceZ, and an angle, given by referenceAngle. To facilitate the description, the angle is chosen
so that the intersection vector is parallel to the y-axis, i.e. 90° for the left side of the fuselage in flight
direction and -90° for the right side. This means that the x and z-coordinates of the intersection
point can reliably be defined using the positionX and referenceZ nodes. Since the reference point
provides the center of the cutout, the values of the nodes are given by

xref,door = xmin,door +
wdoor

2
(6.2.16)

and
zref,door = zmin,door +

hdoor
2

, (6.2.17)

where
[︁
xmin,door, zmin,door

]︁
is the side view position of the lower forward corner of the door notwith-

standing the corner radius, which is applied subsequently.
Contrary to the passenger doors, no certification requirements exist w.r.t. the size of cargo doors.

Nevertheless, a cargo container, for which the aircraft is designed should comfortably fit through the
opening. Consequently, the size of the door is computed in FUGA based on the dimensions of the
intended container type and a tolerance margin. Both the type and the margin are specified by the
user, along with a corner radius.

With the dimensions established, the position of the cargo door is determined based on the cargo
floor layout, which is considered in section 6.2.3.6. The lower bound of the cutout is aligned with
the floor height to allow for smooth passage of the container during loading. Furthermore, the door
should be placed at one of the ends of each cargo floor segment. Multiple segments may exist due to
an interruption of the cargo floor by the center fuselage area. To ensure safe operations, the container
position, which is furthest from the wing is selected for each section. An example of the design
approach is given in figure 6.2.13.

Figure 6.2.13.: Cargo door placement due to container distribution

Finally, the windows are modeled based on the frame distribution. The dimensions of the window
cutouts are provided by the user as well as the height above the floor. The longitudinal position is
selected in such a way that a window is always centered between two neighboring frames. A window
is always placed, unless

• a boarding door is present (windows in emergency exit doors are allowed),
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• a monument is present in the adjacent space (s. section 6.2.3.5),

• the frame bay is outside the cabin boundaries.

No design capability for cockpit window cutouts is available at this point, as non-rectangular cutout
profiles are not supported by CPACS, yet. However, interfaces are provided ion FUGA to supply the
cutout shape as an external input.

6.2.2.7. Summary of structural design parameters

The collected simplified input parameters for the structural design in FUGA can be found in table 6.2.1.
Also listed is the corresponding input source from section 6.2.2.1, e.g. the user input deck or the donor
model. Parameters marked with the source decks, rely on input from the cabin layout. This mainly
affects the longitudinal beams, which rely on the seat layout and the shape and position of the door
cutouts, which are determined by the exit layout. Some further, indirect dependencies exist, e.g.
between the frame positions and the door cutouts or the advanced stringer generation and the cabin
boundaries, which can also be traced back to the cabin. However, these dependencies do not appear
in the list, since they are encapsulated in the design rule set and thus not exposed to the user.

The table shows that the number of necessary design inputs can be reduced substantially w.r.t. to
the overall number of parameters necessary to describe the structural layout in CPACS. On the one
hand, this is achieved by describing distributions of components e.g. frames or stringers, which are all
essentially similar, using generalized formulations. This means that less control over the placement
of each individual part is given to the user, as the task of creating part instances is taken over by
the design rules. Since the distribution of the components of the given types can be well described
algorithmically, this is a desirable behavior.

On the other hand, the number of parameters can be reduced by referencing libraries of predefined
knowledge via the donor model. As shown by table 6.2.1, this is primarily leveraged for the profile-
based structural element definitions and for the materials. Here, the user only needs to provide a
uID in the input deck, which references an entry in the donor model. In this way, the complexity
of describing the section or material properties is detached from the design process. In addition, the
limitation to a library of profiles, which can be understood as semi-finished products, or materials is
in line with common engineering practice, where designer is often limited to a certain set of options,
due to cost or certification constraints.

The list of parameters given in table 6.2.1 covers the structural design capabilities described in
this section. To determine the required cabin inputs, which, if missing, could prevent a successful
structural design run, a set of complementary cabin design rules is introduced in the following.

6.2.3. Cabin design rules

Analogously to the structure design rules in section 6.2.2, the rules for the generation of a cabin layout
are presented in this chapter. The goal is to provide cabin data according to the CPACS schema by
Walther et al. [WH+22a], which can be translated into a geometric model using the rule set discussed
in section 6.1.3. Similarly to the ambition described by Fuchte, Gollnick, and Nagel [FGN13], the goal
is to link the design of the structure and the cabin for a more integrated fuselage design, albeit using
the KBE approach discussed in chapter 5, to support the generation of cabin models at multiple levels
of fidelity.

Following a short introduction of the necessary design inputs in section 6.2.3.1, the design rules
for the determination of the available cabin space based on the structural layout are discussed in
section 6.2.3.2. The design of the exit layout is then described in section 6.2.3.3. Subsequently,
the positioning of the floor-based components, i.e. the seats and the monuments, is discussed in
section 6.2.3.4 and 6.2.3.5, before proceeding to the cargo floor definition in section 6.2.3.6. Finally,
the secondary structure component layout design is addressed in section 6.2.3.7.
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Table 6.2.1.: List of simplified structure design inputs in FUGA
Component Parameter/data item Symbol Source

Frames nominal frame pitch ∆xfr,nom user input deck
main/regular frame structural element uID - user input deck

main/regular frame structural element - donor model
Stringers number of stringers nstringers user input deck

stringer structural element uID - user input deck
stringer structural element - donor model

Floors crossbeam z-position zcb user input deck
crossbeam profile uID - user input deck

crossbeam structural element - donor model
crossbeam strut y-positions ystrut user input deck

crossbeam strut angles φstrut user input deck
crossbeam strut structural element uID - user input deck

crossbeam strut structural element - donor model
longitudinal beam y-positions ylong decks

longitudinal beam structural element uID - decks
longitudinal beam structural element - donor model

floor panel number of frame nframes,panel user input deck
floor panel thickness tpanel user input deck

floor panel material uID - user input deck
floor panel material definition - donor model

Bulkheads number of bulkheads nbulk user input deck
outer bulkhead x-positions xbulk,i user input deck

spherical bulkhead radius at frame rframe user input deck
spherical bulkhead depth tdome user input deck

number of radial reinforcements nreinf,r user input deck
number of horizontal reinforcements nreinf,h user input deck
number of vertical reinforcements nreinf,v user input deck

bulkhead sheet thickness tsheet,bulk user input deck
bulkheads sheet material uID - user input deck

bulkheads sheet material definition - donor model
bulkhead reinforcement structural element uID - user input deck

bulkhead reinforcement structural element - donor model
Skin segments circumferential skin thicknesses tskin user input deck

material uID list - user input deck
material definitions - donor model

start at zero degree switch - user input deck
Cutouts door widths wdoor decks

door heights hdoor decks
door corner radii rdoor decks
door positions xref,door, yref,door decks
window width wwindow user input deck
window height hwindow user input deck

window corner radius rwindow user input deck
window height above cabin floor zcab,window user input deck
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6.2.3.1. Design inputs

Fundamentally, cabin design is a trade-off between airline revenue, passenger comfort and safety
requirements within the bounds of the OML and the structure, which are driven by flight performance
considerations. Consequently all these fields must be considered during the layout generation. Once
again, this is accomplished via both information provided by rules from other rule sets and additional
information provided in a user input deck.

That said, the cabin design rules in FUGA are predominantly concerned with the design of the
cabin layout, as opposed to the components in the cabin, which are provided in the form of “dead”
geometry as part of the input deck. The geometry source may be provided as a CAD model, or as a
triangulated 3D mesh. A selection of models for various components including seats and secondary
structure is given in figure 6.2.14. In principle, it is also possible to incorporate 3D models retrieved
by laser-scanning physical components as described by Rauscher et al. [RB+21], even though the
comparatively high number of faces typically makes them more difficult to handle than meshes which
have been generated manually or based on CAD geometry.

Figure 6.2.14.: Mesh-based models of different cabin components

6.2.3.2. Cabin space

The cabin space plays an important role in the cabin design as it provides the boundary for the cabin.
As explained in section 6.1.3, a discretized representation of the cabin space is provided in CPACS.
In addition, Walther et al. [WK+22] propose an ad-hoc computation of the cabin space based on the
structural layout, which provides higher quality surfaces to be used e.g. in the creation of monument
models.

To this end, first, the available space within the bounds of the frames is determined, based on the
frame tip curves. To compute the tip curves, simplified frame surfaces are constructed analogously to
the frame surfaces discussed in section 6.1.2.1, but using a simplified section curve, which represents the
frame height. From these surfaces, the tip curves can be determined by evaluating the isoparametric
curve at the endpoint of the section curve. Using the skinned surface algorithm, a surface passing
through the tip curves as shown in figure 6.2.15 can be created. An OCCT solid body is built from
this surface by filling the surfaces circumscribed by the end tip curves.
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Figure 6.2.15.: Surface to represent the space circumscribed by the frames

Aside from the frames, the cabin is furthermore bounded by the floor, the cockpit rear wall and the
RPB. The vertical position of the floor is given by a position in z-direction, which can be computed
from the floor structure data taking into account the crossbeam z-positions and the offset due to the
longitudinal beam height. On the other hand, the cockpit wall and the rear bulkhead provide the
bounds in x-direction. Whereas the rear bulkhead position is given by the structural definitions for
an outside-in design scenario, the cockpit length is a user-defined parameter. Typical values lie in the
range between 3m and 5m. Incidentally, the position of the cockpit rear wall and the floor height also
indicate the position of the cabin origin, along with the center of the fuselage bounding box in width
direction.

To determine the cabin space, a box is generated, whose bounds in longitudinal direction correspond
to the longitudinal bounds of the cabin, whereas the lower bound in vertical direction is given by the
floor height. The upper bound, i.e. the height of the cabin space, is given by the user, whereas the
bounds in lateral direction are chosen to lie outside the bounding box of the fuselage surface. Now,
the CAD representation of the cabin space can be determined by computing the intersection of the
space bounded by the frames and the box as shown in figure 6.2.16.

To compute a discretized representation suitable for exchange using CPACS, a list of samples in
x- and z-direction is required. To this end, the user can select the number of samples to evaluate in
longitudinal and vertical direction respectively. The length and height of the cabin space are then
divided into evenly spaced segments correspondingly. To determine the missing width of the space
at each combination of xz-coordinates, the intersection point between a ray with its origin at the
coordinate and pointing in positive y-direction with the cabin space is computed. The y-coordinate of
the intersection point corresponds to the width of the cabin space for that sample. CPACS implicitly
assumes the cabin space to be symmetric, which is why the width is evaluated only on one side. No
verification of the assumption of symmetry is performed in FUGA, since the discretized cabin space
is only an output, which lies downstream of any design activity.

6.2.3.3. Exits

The exit layout is among the first properties of the cabin to be determined in a FUGA design run. The
certification specification provides various exit types in section CS 25.807, which are characterized by
their size and prescribe the corresponding passenger capacity. An overview is given in table A.3.1. It
follows that the choice of exit types largely depends on the overall number of passengers required by
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Figure 6.2.16.: Cabin space by intersection of the frame bounds and the box representing the known
cabin bounds

the TLAR.

Two possibilities are provided to determine the exit types in FUGA. On the one hand, it is possible
for the user to manually specify the sequence of exits from front to rear, by providing an ordered list
of exit types. Types are always assigned to pairs of opposite exist, which means four types must be
specified if four exit pairs are provisioned. This approach has the drawback that it is up to the user to
ensure that the capacity of the exits is sufficient w.r.t. the passenger number. Therefore, on the other
hand, a second, automatic approach leveraging mixed integer optimization has been implemented.

However, before explaining the automatic approach, the design of passageways and cross-aisles must
be considered. Certification requires in section CS 25.813 that exits be reachable via passageways from
the nearest aisle to the exit or cross-aisles between neighboring aisles. The necessary widths are listed
in table A.3.1 for the different exit types. In addition, larger exits of types A, B and C require assist
spaces to allow flight attendants to support passengers during an evacuation. For smaller exits, it is
sufficient if a cross-aisle is found in the vicinity of the exit, whereas for larger exits, it is required for
the cross-aisle to fully overlap with the passageway.

From the above information, a total cabin length penalty for an exit type can be determined, i.e.
how much the length of the cabin is increased due to the exit. The resulting optimization problem is
then to find a combination of exit types that fulfills the capacity requirements with a minimal length
penalty wexits.

To this end, the vector of the number of exit pairs per exit type nexittype as defined in table A.3.1 is
optimized, where each entry corresponds to the number of exits in the corresponding row of the table.
Correspondingly, the width penalty per exit type is given by wexittype and the capacity by cPAX,exit.
The cabin length penalty for each exit given by the width of the passageway and the adjacent assist
spaces. Consequently the length penalty for exit of the type described in the i-th row is given by

wexittype,i = wpassageway,i + nassist,i · wassist,i. (6.2.18)
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Based on this, the optimization problem can be stated as follows:

minimize
nexittype

nT
exittype ·wexittype

subject to nexittype,i ≥ 0, i = 1, . . . , nexittypes,

nT
exittype · cPAX,exit ≥ nPAX ,

nexittypes∑︂
1

nexittype,i ≥ 2.

(6.2.19)

Since the entries of nexittype can only be integer values, the above is classified as a mixed-integer linear
programming (MILP). The minimization is restricted by several constraints. The first constraint states
that the exit type count must be a non-negative integer. In the second constraint, the total capacity of
the exits is compared to the number of passengers demanded by the TLAR. It ensures that sufficient
exit capacity is provided. Finally, the sum of all exit type counts, i.e. the overall number of exit pairs,
irrespective of the type, is set to be at least two. This is required by CS 25.807 for aircraft where
nPAX ≥ 20.

More specific constraints may be introduced to the optimization problem in equation 6.2.19 as
required for the analysis at hand. For instance, the CS 25.813 poses some further limitations on the
exit layout for single-aisle configurations, where Type A and B exists must not be installed at the end
of the fuselage to allow for passenger flow from the front and aft. Conversely, CS 25.807 states that
if only two exits are present, they need to be situated near the ends of the cabin. In practice, this
means that, if a Type A exit is installed in a single-aisle configuration, at least two smaller exits must
also be installed. This relationship could be expressed in an additional constraint as follows:

nexittypes∑︂
1

nexittype,i − (ntypeA + ntypeB) ≥ 2. (6.2.20)

Furthermore, exit types can be eliminated from the table as required. For instance, the certification
process for the higher capacity A+ and C+ type exits is still ongoing, which is why they should be
eliminated from the list of eligible exits, e.g. when considering legacy designs for validation purposes.

Even though the automatic approach to determine the exit layout is very powerful, it is sometimes
possible to use multiple combinations of exit types to achieve the same length penalty. Furthermore,
the results stay the same irrespective of the order of exits. It is impossible to tell in advance, which
result the optimizer will return, which gives the method an element of randomness, which may be
undesirable to the design engineer. Consequently, the optimization is not used as default design
method in FUGA. It is, however, executed in the background as a means to validate the user inputs.
If a non-optimal solution is chosen, a warning will be raised proposing an optimal solution instead.
Then, it is the responsibility of the design engineer to adapt the exit sequence.

6.2.3.4. Seat distribution

The design of the seat distribution in FUGA is based on the concept of seat blocks. A seat block
contains a an arbitrary number of seats of the same type, which are arranged one behind the other
in longitudinal at a given seat pitch ∆xseat. To this end, references to external seat models can be
combined with a seat pitch to formulate class definitions in the user input deck. The seat pitch ∆xseat
is then one parameter to describe the level of comfort in the cabin.

A seat block can then be generated by referencing a class and giving a number of seats in the
block. As illustrated by figure 6.2.17, each block is bounded in longitudinal direction by another seat
block, or an exit zone (s. section 6.2.3.5). In lateral direction, it is bounded by an aisle or the cabin
boundary. The relevant cabin boundary is given by the cabin space at floor level. The aisle width is a
user input parameter. However, certification requires a minimum aisle width based on the passenger
number in section CS 25.815. Within the lateral bounds, seats can either be centered, or be adjusted
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to the left or the right, i.e. the wall or aisle respectively for the leftmost block. The exit zones are
positioned based on the seat block lengths from front to back. Due to e.g. cross-aisle overlap criteria,
it is still possible, for some space to remain. In this case the seat block remains shifted towards the
front. Nevertheless, the positions of the seats can be manipulated using an initial gap parameter.

aisle

exit
zone

OML

seat blocks

seat module

Figure 6.2.17.: Placement and bounds of seat blocks consisting of different seat module types

To allow for multiple classes, multiple seat blocks can be placed back-to-back between a given pair
of exits. Transitions e.g. from triple to double seat modules to account for reduced space in the tail
section can be implemented in the same way. Here, restrictions w.r.t. the number of seats abreast
must be observed. For a single-aisle configuration section CS 25.817 restricts the number of seats
abreast per row to three on each side of the aisle. For configurations with multiple aisles, up to five
seats abreast are possible between two aisles.

If the seat block distribution is given explicitly, the passenger number is given by the sum of
passenger numbers in the seats. However, it is often more desirable to determine a seat layout based
on a passenger number without having to assign block sizes manually. To this end, the design problem
could again be formulated as an optimization problem. Compared to equation 6.2.19, the problem is,
however, significantly more complex, since it combines mixed-integer design variables and black box
constraint functions. As such, automation of the distribution design is not considered as part of this
thesis. Instead, constraints are formulated via FUGA rules to ensure that some basic requirements are
met. These include logical checks, e.g. that the number of seats shall be equal to the requested number
of passengers, but also constraints due to certification requirements. An example for the latter is the
maximum exit distance, which is limited to ∆xexit ≤ 60ft by CS 25.807 (e) (4), since the distance
between the exits is actually driven by the sizes of the intermittent seat blocks.

The above methods assume that a non-parametric or “dead” seat geometry model as shown in
figure 6.2.18a is available, leaving only the seat pitch ∆xseat as a means of manipulating the passenger
comfort. However, many more parameters are available when considering the seat at component level.
In figure 6.2.18b, a simplified seat CAD model, also implemented using FUGA based on a parametric
description provided by Torenbeek [Tor76], is shown. The model introduces further design variables,
such as seat width or recline, which also have an effect on the perceived comfort of the passenger.
The integration of the detailed design of the component model into the overall design is, however, not
pursued as part of this thesis.

6.2.3.5. Monuments

Monuments are large floor based cabin components, such as galleys and lavatories. Similarly to the
cabin pitch, the availability of lavatories and service trolleys, the latter of which depends on the
available galley space, is indicative of the cabin comfort level.

In FUGA, all monuments are placed in the neighborhood of exit spaces creating exit zones. Similarly
to the seats, the geometry can be provided in terms of a model or dimensions. A system has been
devised to identify positions next to exits using three parameter. First, the exit index specifies next
to which exit pair the monument is placed. The index is zero-based and runs from front to back. As
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(a) Triangle mesh (b) Basic parametric CAD model

Figure 6.2.18.: Seat model types

such, the last exit pair in a configuration with a total of 5 exit pairs would have the index 4, while
the second one would have the index 1. Similarly, an index is given for the lateral position. Going
from left to right in flight direction, each seat block area or aisle between seat block areas is assigned
an index. A twin aisle configuration would therefore have indices running from zero to four, with one
and three indicating aisle positions. Finally, a Boolean parameter specifies whether the monument
is placed in front of (0) or behind the passageway or cross-aisle (1).

Different models for monuments can be provided by the user. To place the model in the fuselage,
the three position indices must be given. If the model, e.g. a lavatory module is used more than once,
multiple sets of indices can be given. If two models are placed in the same position, FUGA will raise
an input error. Otherwise, if the bounding boxes of two models in neighboring positions collide, the
tool will attempt to resolve the collision by moving the monuments outward.

The monument models can furthermore be enriched with metadata. For instance, a lavatory module
may contain multiple separate cabins, which is indicated by the number of lavatories nlav. On the
other hand, the number of full-size trolleys that can be held in a galley can be approximated by
dividing the galley width (FUGA uses the larger of the x and y dimensions of the galley) by a given
full-size trolley width wFST . As a default value, wFST = 0.3m is assumed. The overall number of
trolleys nFST can be computed by summing up the contributions from all galleys.

Based on these numbers, the utilization factors nPAX
nlav

and nPAX
nFST

can be determined, which can be
used as further comfort indicators. As with the passenger number for the seats, typically only the
utilization factors will be provided as a required input in the TLAR, whereas the exact distribution
of the monuments is of secondary concern.

6.2.3.6. Cargo floor

The design of the cargo floor in the cabin rule set is mainly concerned with the placement of the cargo
containers, which in turn influences e.g. the placement of cargo doors as stated in section 6.2.2.6. In
CPACS, cargo containers are considered to be floor-based components similar to seats and monuments.
A notable difference is, however, that no model is given explicitly. Instead the standardized geometry
of the cargo container is indicated via its type as listed in table A.3.3. The type used for the design
is given as a user input.

Compared to seat layout, the only additional difficulty when computing the cargo floor layout is
the presence of the center wing box for low-wing configurations as well as the landing gear bay. Here,
information provided in the center fuselage area description must be taken into account, splitting the
cargo floor into two separate segments. The user can provide an overall number of containers, to be

155



6. A KBE system for the design and geometry generation of aircraft fuselages and cabins

distributed on the cargo floor via the input deck. The distribution between the two floor segments is
then performed automatically, based on the length ratio. Several options are then available for the
longitudinal alignment of the container within the segment, e.g. centered, front or rear. In addition
it is possible to align the containers towards the fuselage center, i.e. towards the rear for the first
segment and towards the front for the second segment.

Similarly to the monuments, a utilization factor for cargo containers can be determined, e.g. npax

Vcargo
,

which can be applied for comfort evaluation. For a more precise utilization factor, additional cargo,
which does not belong to the passengers, could be taken into account as well.

6.2.3.7. Secondary structure

Out of all cabin components supported by FUGA, the secondary structure is the most closely coupled
to the structure. In this thesis, the term secondary structure is applied in a different sense, than in
an industrial context, where it often refers to a subset of ATA-chapter 53, e.g. brackets or fittings.
Instead, the term is used here to refer to the subset of those cabin components, which are mounted
to the walls and ceiling of the cabin. Hence, the secondary structure comprises the sidewall panels,
which in turn include dado panels and cowl panels, the overhead stowage compartments (OHSCs) and
the ceiling panels. Similarly to the seats, the design once again relies on external models to supply
the component geometry.

The architecture of the secondary structure typically depends on the number of aisles. A sidewall
panel is always found at the outermost position, on top of which a OHSC is installed. In a single-
aisle configuration, the two compartments are then connected by a ceiling panel. If more than one
aisle is present, a ceiling panel is usually installed above each aisle, with a two-sided OHSC element
connecting two adjacent ceiling panels.

Determination of component positions Components of the secondary structure are commonly de-
signed to align with the frame distribution. In most cases, the components span multiple frame bays.
For instance, in an Airbus A320 family cabin, as shown in figure 6.2.19, a sidewall panel or ceiling
panel usually spans two frame bays, whereas an OHSC spans four frame bays. Walther et al. [WK+22]
propose a procedure for placing the component models based on the known frame positions and cabin
boundary, which is applied in FUGA and outlined in the following. As a simplification it is assumed
in FUGA that OHSCs, too, span only two frames, which means that a section of sidewall panels,
OHSCs, and ceiling panel can be considered independently.

To start off the design process, the intersection points between the frame planes and the cabin
boundary curve are computed. These points provide the reference for the positioning of the sidewall
panels. Whereas Walther et al. rely exclusively on the bounding boxes of the components and lateral
overlap parameters for the positioning, it is also possible for the user to identify structural attachment
points on the original model in FUGA. Taking the sidewall panel model as an example, four attach-
ment points are given. The two lower attachment points denote connections to the frame and floor
intersection points, whereas the upper two attachment points provide the connection to the OHSC.
In turn, the OHSC provides a pair of connection points connecting to the sidewall panel and another
pair for the ceiling panel etc.

Based on the relative positions of the points, or the axes defined by a pair of points, the corresponding
transformation matrices for the components can be determined. The matrices must determine a scaling
on the one hand, and a translation and possibly a rotation on the other. All of these operations
can be expressed through a single transformation matrix in homogeneous coordinates H, where the
traditional rotation matrix, e.g. in 2D, which describes a rotation by an angle γ and a scaling by a
scaling factor Sglob is expanded by an additional row and column to describe the translation by the
vector

[︁
dx, dy

]︁T :

H =

⎡⎣ Sglob · cos (γ) sin (γ) dx
− sin (γ) Sglob · cos (γ) dy

0 0 1

⎤⎦ . (6.2.21)
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Figure 6.2.19.: Section of OHSC and two sidewall and ceiling panels (cabin mock-up at the DLR
Institute of System Architectures in Aeronautics)

To determine the position of a point after the transformation, the point must also be converted to ho-
mogeneous coordinates, i.e. q =

[︁
x, y, 1

]︁T . The transformed vector in homogeneous coordinates
is then given by

q′ = H · q. (6.2.22)

While the approach is described for the 2D case here for simplicity, it works analogously in 3D.
To determine the transformed coordinates of multiple vectors Q′, an n×ndim+1 matrix Q can also

be multiplied with H, instead of the vector q. To solve equation 6.2.22 for the transformation matrix
H by multiplying from the right by Q−1, n !

= ndim + 1, i.e. the number of points must correspond to
the number of homogeneous coordinate dimensions. In the case of a 3D model, where H is a 4 × 4
matrix, this results in 4 points. The points in Q must furthermore be linearly independent.

Typically, an alignment axis given by a pair of attachment points is given in FUGA to position
e.g. a sidewall panel. To determine the two additional points, the origin of the axis is offset by the
unit vector in z-direction ez, providing an additional point. This ensures that the component stays
upright. Furthermore, the inward facing unit vector must be computed. The direction of the vector is
given by the cross product of the alignment axis and ez. However, the system is not necessarily right
handed, which means the orientation of the vector must be reversed on one side for it to be pointing
inward. Again, the fourth point is given by the sum of the origin and the normalized inward facing
vector.

As the default geometry models for the secondary structure used in FUGA are designed for the
constant mid-section, the problem of positioning the components can be solved as described above
without problems for this part of the fuselage. Difficulties arise in the forward and aft sections, where
the secondary structure needs to follow the curvature of the fuselage. The problem is illustrated
for the sidewall panels by figure 6.2.20. If the attachment points are placed at the frame positions
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along the cabin edge, the paneling will be closed, but the models will overlap going inward. This
problem is amplified if OHSCs are installed at their attachment points. Therefore, another approach
is to determine the axes defined by the attachment points and shift the component position along the
relevant axis, so that the innermost points are at the frame positions. In this way, gaps appear in the
paneling, but no overlap appears.

(a) No gap (b) No overlap

Figure 6.2.20.: Sidewall panel positioning strategies for non-constant fuselage sections (from [WK+22])

Finally, scaling and placing the rectangular ceiling panel in a way that the attachment points are
aligned is impossible if the neighboring components are installed at an angle. A simple solution is
therefore to compute a transformation matrix, which minimizes the distance between the neighboring
attachment points and the ceiling panel attachment points in a least-squares sense.

Adaptation of models in non-cylindrical fuselage segments The example of the ceiling panel shows
that the external models provided are not always well-suited in a specific geometric context during
the design. Therefore, some component design capabilities must be introduced at this point, which
go beyond simple scaling of models. With no parametric CAD component models available, the FFD
method described in section 2.2.3 can be applied instead to manipulate the geometry mesh. In FUGA,
FFD is deployed e.g. to create tapered ceiling panels as shown in figure 6.2.21.

Figure 6.2.21.: Secondary structure segment with deformed ceiling panel and attachment points
marked
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To this end, first a FFD lattice is placed around the undeformed panel based on the bounding box.
Due to the simple nature of the expected deformation, no subdivision of the lattice is required. A
box is a special case of a parallelepiped and can thus be described via its origin p0,bbox and three edge
vectors vu,bbox, vv,bbox, and vw,bbox pointing away from the origin. Based on this description, the local
coordinates ui =

[︁
ui, vi, wi

]︁
of the i-th panel attachment point pattach,i are given by

ui =

⎡⎣ vu,bbox

vv,bbox

vw,bbox

⎤⎦−1

· (pattach,i − p0,bbox) . (6.2.23)

Now a deformation of the lattice points must be found so that p (ui) = ptarget,i, where ptarget,i is the
attachment point on the luggage compartment, corresponding to pattach,i. This can be accomplished
by making the lattice points the control points c of a piecewise polynomial tensor product volume
as described in section 4.1.1.2. In the case of the ceiling panel, due to the simplicity of the intended
tapering deformation, a linear Bézier volume is sufficient to deform the bounding box of the panel.

The new positions of the Bézier volume control points to align the panel attachment points with the
adjacent luggage compartment attachment points are computed by Bézier volume interpolation with
prescribed parameters, which is the three-dimensional variant of bivariate point grid interpolation.
Since the bounding box volume is defined by eight control points, eight pairs of source and target
points must be given. However, as illustrated by figure 6.2.21, only four pairs of attachment points
are given. Therefore it is necessary to introduce an additional constraint. In this case, it is assumed
that the height of the original shape remains unchanged. The assumption can be taken into account
by including copies of the original points, to all of which a small offset in z-direction is applied.

To compute the deformed mesh, the local coordinates of all mesh points in the undeformed FFD
lattice are determined using equation 6.2.23. Then the deformed FFD lattice is evaluated at these
coordinates, providing the updated mesh point positions.

Notably, the resulting deformation of the mesh cannot be expressed using CPACS, e.g. using a
transformation node. Therefore, the deformed mesh must be stored separately from the original mesh
as a new external model with its own entry in the deckElements node.

6.2.3.8. Summary: List of cabin design parameters

In some ways, the rationale behind the choice of design input parameters for the cabin can be compared
to the structural design discussed in section 6.2.2.7. On the one hand, a library of components is
required, which is provided via the donor model in the case of the structure. In the case of the cabin,
such a donor model was not available during early development. Therefore, the component descriptions
are provided via the cabin design input file instead, using the parameters given in table 6.2.2. The
list contains descriptions of seat modules, floor-based components and paneling components, which
are very closely aligned with the CPACS cabin definition proposed by Walther et al. [WH+22a] and
described in section 6.1.3. That said, some additional metadata is given, i.e. the placement axes
for the longitudinal beams in the case of the seat modules and the required relative positions of the
paneling elements including OHSCs, which can be determined via the locations of the attachment
points. Furthermore, each component is given a tag, which serves as an identifier and thus the basis
for the subsequent determination of the component uIDs in CPACS.

In addition to the component descriptions, table 6.2.2 contains the seat block class definitions. As
described in section 6.2.3.4, these classes can be assigned to the individual seat blocks to determine
the type of seat, the seat pitch, and the longitudinal and lateral alignment of the seats. The seat
component tags are used to reference the desired seat model. A class type is given to provide a
descriptor of the intended type of cabin class, e.g. first, business or economy.

Similarly to the CPACS definition, the deck instance can now be specified based on the components
via the parameters listed in table 6.2.3. Four groups of parameters are identified. First, the overall
deck definition parameters give some relevant inputs e.g. for the determination of the cabin origin to
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Table 6.2.2.: Component/class type definitions
Component Parameter/data item Symbol Source

Seat modules

tag - user input deck
number of passengers npax user input deck

model geometry - external model
model scale

[︁
Sx, Sy, Sz

]︁
user input deck

long beam placement axes
[︁
ylong, zlong

]︁
user input deck

Floor element

tag - user input deck
type - user input deck

model geometry (optional) - external model
dimensions

[︁
lfe, wfe, hfe

]︁
user input deck

number e.g. nlav user input deck
trolley width (galley only) wFST user input deck

Paneling
tag - user input deck

model geometry - external model
attachment point locations pattach,i user input deck

Seat block classes

tag - user input deck
class type - user input deck
seat tag - user input deck

seat pitch ∆xseat user input deck

be used e.g. in the cabin space determination described in section 6.2.3.2. Furthermore, the intended
number of passengers and aisles are given, which do not drive the design, but are used in order to
validate the inputs given in the subsequent groups.

Next, the exit definition is given, where the different exit pairs are given via a list of their respective
classifications, e.g. A or C, from front to rear. The boarding flag parameter indicates for each exit,
whether it is meant to be a boarding exit, which will result in increased exit dimensions w.r.t. the min-
imum requirements formulated in the CS-25 (s. table A.3.1). For symmetric single aisle configurations
it is furthermore possible to define the exit position via a cumulative passenger share. This means
that an exit can be defined to lie e.g. behind 50% of all the passengers in the cabin. This substantially
facilitates the layout of the seat blocks.

The monument placement parameters are given next, which reflect the placement strategy described
in section 6.2.3.5. Similarly, the seat block definition parameters are given in correspondence to
section 6.2.3.4. Notably, multiple block instances with the same longitudinal and lateral index can be
given to describe composed seat blocks as shown in figure 6.2.17. If a cumulative passenger share can
be applied, a single composed seat block is sufficient for the entire cabin, otherwise the blocks must
be separated to reflect the exit locations.

It becomes apparent by considering the sources given in tables 6.2.2 and table 6.2.3 that the cabin
design is controlled almost entirely via the user input deck. The only additional input, aside from the
CPACS data set of the base configuration layout, are the external component geometry models. In the
current version of FUGA, the user input deck is provided as a Java Script Object Notation (JSON)
(Java Script Object Notation) file [Ecm17]. The format integrates well with established Python data
structures and can be modified manually with low effort, which makes it interesting for the tool
development phase. That said, for the deployment of FUGA in collaborative tool chains, it would
be desirable to provide the inputs via a toolspecific namespace within CPACS, analogously to the
structural design inputs. Furthermore, it might be expedient to assemble some kind of design template
library, which combines the relevant inputs from the structural donor model and cabin component
library elements. In this way, data from various projects could be collected and leveraged in subsequent
activities.
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Table 6.2.3.: Deck instance definition
Component Parameter/data item Symbol Source

Overall deck

tag - user input deck
vertical floor position zfloor user input deck

cockpit length ∆xcockpit user input deck
number of passengers nPAX user input deck

number of aisles naisles user input deck
aisle width waisle user input deck

Exits
type list - user input deck

approximate cumulative passenger share (optional) nPAX,i,target user input deck
boarding flag - user input deck

Monuments

component tag - user input deck
exit index iexit user input deck

before exit flag - user input deck
width position index iwidth user input deck

Seat blocks

block class - user input deck
lateral index ilat user input deck

longitudinal index ilong user input deck
number of rows nrows,i user input deck
lateral alignment - user input deck

longitudinal alignment - user input deck

6.2.4. Interdisciplinary connections in fuselage design rule sets

Although the design of the OML, the structural layout and the cabin configuration are presented
as separate sets of rules in this chapter, it quickly becomes apparent that no individual task can
be performed adequately without taking into account contributions from the other. Interdisciplinary
connections can be found in any of the three activities, making them mutually reliant.

Several examples can be found in the above rule sets. The most obvious nexus of disciplines is the
cabin space, discussed in section 6.2.3.2. It represents an essential input to the cabin design, both as a
limit for the floor layout and as a reference for the design of the secondary structure. Meanwhile, both
the OML of the fuselage and the structural layout must be considered when building the cabin space.
Contributions from several structural components are required, i.e. frame heights, floor position and
the rear bulkhead position.

Conversely, the design of the structural layout also depends on decisions taken during cabin design.
For instance, the positions of the mainframes depend on the door cutout positions, which are generated
based on the exit layout for the cabin. Another example is given by the longitudinal floor beams, which
are designed using the seat layout as an input.

These connections are also found in the N²-chart illustration of the outside-in design system in
figure 5.2.1. It shows both feed-forward connections from the structural design to the cabin design
and feedback connections in the opposite direction. It can also be seen that the cabin design rule sets
provides outputs only to the cabin model generation rule set, whereas the structural design rule set
only provides outputs to the structural model generation rule set. For the latter, it must, however, be
noted that some of the outputs are provided in an unprocessed form and must thus pass through one
of the CPACS data preparation rule sets, before being fed to the model generation.

When introducing even the hybrid design rule set for modifying the fuselage length, even more
connections are introduced. For conventional configurations, it can make sense to introduce a rule to
align the position of the rear bulkhead with the front spar position of the VTP. In this way, the cabin
space can be manipulated by adapting the change in fuselage length. The position of the rear bulkhead
can, in turn, be prescribed to the required cabin length determined from the floor element positions
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and dimensions. In this way, the OML can be adjusted to fit a prescribed cabin layout exactly.
The automated handling if the interdisciplinary relationships, using the KBE approach implemented

in FUGA, makes it possible to not only assemble separate disciplinary design rule sets, but also to
dynamically combine contributions from disciplines as required. Thus, missing data can be augmented
based on the combined design knowledge from all disciplines involved. This is a key contribution
towards truly multidisciplinary and integrated cabin design as required by working hypothesis 3.
To further illustrate the validity of the hypothesis, two cabin design examples are given in section 7.1.

6.3. Rule sets for architecture modification

The previously discussed rule sets provide multi-fidelity modeling and inside-out and outside-in design
capabilities for conventional passenger transport aircraft. However, as discussed in section 2.1.3,
novel system architectures, which radically deviate from the traditional layout, must be considered
as an alternative to incrementally improved conventional designs to address the current challenges
in aviation. According to working hypothesis 4, this should be reflected in the KBE system by
providing the possibility to include further knowledge or rules to describe architectural patterns that
are new and unanticipated by the original system. To this end, it is proposed in section 5.2.2 to
introduce additional rule sets, leveraging the modular approach to structuring and deploying knowledge
in FUGA, in order to adapt the KBE system to novel architectures, while retaining relevant aspects
of the baseline knowledge.

Two examples for additional rule sets are introduced in the following. On the one hand, a basic
rule set for the geometric design of a fuselage-integrated LH2 tank is proposed in section 6.3.1. The
rule set is intended to be applied for integration studies into existing designs leveraging a hybrid
approach as discussed in section 6.2.1.2. On the other hand, the determination of the cabin space for
an unconventional BWB configuration to enable cabin design is addressed in section 6.3.2.

6.3.1. Cryogenic tank design rules

The introduction of a new large structural component, such as an LH2 storage tank, effects far reaching
changes in the overall architecture of the design. However, as shown by Walther et al. [WH+22b], an
integration into a KBE tool such as FUGA, is feasible using a relatively small set of rules. On the
one hand, the rules must provide a parametric description of the tank, on the other hand a link to
the remaining components of the fuselage is required. The rule set described in the following is an
attempt to combine the two requirements into an intuitive description of the tank. More in-depth
works on tank design have been provided e.g. by Höhne [Höh22] for metallic tanks and byBiermann
[Bie22] for tanks made from CFRP.

The fundamental design of the tank is illustrated by figure 6.3.1. It consists of an inner tank, which
is surrounded by an insulation layer. The inner wall is made from aluminum and must be designed to
withstand the interior pressure of the tank. The outer insulation layer is added to prevent excessive
heat ingress to the LH2, which has an initial temperature of around 21.5K [BC+21]. Typically, the
tank is designed as a Dewar, where the inner vessel is separated from a second outer vessel by a
vacuum to minimize heat ingress by conduction. More detailed examples for different approaches to
designing the insulation are provided by Brewer [Bre91]. However, for the purpose of integrating the
tank into the fuselage, the overall thickness twall is sufficient as a parameter.

In the present rule set, the tank is defined by its outer layer. The inner layers are computed based
on the outer layer as offset surfaces, where the offsets are given by the respective thicknesses. The
innermost layer encloses the available tank volume, which is an important design parameter. The
required fuel volume is usually determined by other aspects of the design, such as the design mission
and the fuel efficiency of the engines. Using OCCT, the volume of the tank can be determined using
the included Gaussian integration method.

The outer surface is described based on a truncated eccentric cone, defined by two circles with
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Figure 6.3.1.: Section view of an LH2 tank with insulation (blue) and wall (gray) (from [WH+22b])

individual centers ccap,1 and ccap,2 and radii rcap,1 and rcap,2. A spherical closing cap with the depth
lcap,1 and lcap,2 closes the shape on either side, as shown in figure 6.3.2a. To achieve a smoother shape,
which is more suited to withstand the interior pressure, the transition between the cone and the caps
is rounded out using a fillet with the radius rfillet. The resulting shape, which is closely related to a
classical torispherical head shape, is displayed in figure 6.3.2b.

(a) Base primitives (b) Fillets applied

Figure 6.3.2.: Tank outer shape modeling steps (from [WH+22b])

To assure its consistency with the overall fuselage design, the parameter values of the tank are
computed based in the space enclosed by the frames, which also provides the basis for the determination
of the cabin space (s. section 6.2.3.2). For a given longitudinal position xi, the center ci and radius ri
are given by the inner circle of the frame space section at that position, as shown in figure 6.3.3.

To determine the longitudinal positions xi, several additional parameters must be taken into account.
First of all, the number of tanks ntanks can be specified by the user, which also determines the total
number of sections. Moreover, the overall space for the placement of the tanks is bounded by the rear
bulkhead and the HTP wing box in forward and backward longitudinal direction respectively, which,
like the frame space, can be determined using rule sets from the fuga.design and fuga.geometry
subpackages. Finally, the lengths of the conic midsections can be computed taking into account the
given cap depths lcap,i.

As a result of this description, the volume of the tank can be modified, by extending the fuselage
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Figure 6.3.3.: Determination of circle parameters from cabin space surface (from [WH+22b])

length using the hybrid OML design rule set described in section 6.2.1.2. As implemented in the rule
set, the deformation will also be applied to the HTP and thus the wingbox, whereas the position of
the bulkhead remains unchanged, if it is defined in absolute coordinates. In this way, the tank volume
can be expressed as a function of the length change of the fuselage ∆lfuselage and the number of tanks
as well as the tank parameters:

Vtanks = Vtanks (∆lfuselage, lcap,1, lcap,2, rcap,1, rcap,2, rfillet, ccap,1, ccap,2, twall, ntanks) . (6.3.1)

This relationship can be exploited to design for a specific tank volume V̂ tanks as described in sec-
tion 7.2.1.

6.3.2. BWB cabin design interfaces

The determination of the cabin design interfaces for a BWB is another example for an adaptation of the
KBE system for novel architectures. The application case is complementary to the tank integration
example discussed in section 6.3.1 for several reasons. On the one hand, the BWB represents a
more radical departure from conventional architecture, than the configuration with the integrated
LH2 tank. This has an effect also on CPACS modeling practice. Almost all publications on BWB
configurations using CPACS, only employ the wing description to define the configuration. This means
that no fuselage OML definition is available, which is, however, required for significant portions of the
baseline design rules. Consequently, a way must be found to provide an equivalent representation.

On the other hand, the structural design of a BWB is, on its own, still a matter of ongoing research,
as discussed in section 2.1.3. Hence, the assembly of a corresponding rule set lies outside the scope of
this thesis. Nevertheless, authors such as Lee [Lee03] and Baan [Baa15] have been able to show detailed
cabin concepts for a BWB, which could be emulated using FUGA. Therefore, the rule set described in
this section is introduced to bypass the structural design by mocking the necessary interfaces to the
cabin design discussed in section 6.2.4 using simplified assumptions instead.

Since no fuselage is available in the model, one of the first steps towards mocking a fuselage structure
design for a BWB is to define the region of the aircraft, which qualifies as the fuselage, i.e. the area
holding the payload. A simple way to accomplish this is to assign boundaries in spanwise direction.
In figure 6.3.4, the solid representation of an example BWB configuration from the AGILE project
as described by Shiva Prakasha et al. [SD+18] is shown, where the fuselage segments are extracted
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from the main wing using a box which models the spanwise limits. The resulting shape can be used
to provide the closed shell and solid representations of the fuselage described in section 6.1.1.

(a) BWB configuration shown in TiGL Viewer (b) Fuselage space determination from spanwise bound-
aries

Figure 6.3.4.: Determination of fuselage space for BWB example

Based on the fuselage shape, the cabin space shape is then to be determined. To this end, a replace-
ment of space enclosed by the frames must be found. A simple approach to accomplish this is to assume
a global frame height and compute an offset surface of the fuselage using the corresponding OCCT
algorithm. With the solid defined by the offset surface available, the cabin space can be determined
by intersecting with a box of cabin boundaries in the same way as described in section 6.2.3.2. A key
difference here is that the floor height and the rear bulkhead position are not given since no structural
layout is provided. Consequently, the values must be provided by the user as inputs. Figure 6.3.5
illustrates the determination of the cabin space for the above example.

Figure 6.3.5.: Cabin space determination for the BWB example

Aside from the determination of the cabin space, all cabin component positioning rules, which rely
on the structural layout are affected. This mainly concerns the secondary structure, as the components
are aligned based on the frame positions. However, since no frame positions are given, the secondary
structure is omitted. Similarly, the placement of the window cutouts is also based on the frames. If
necessary, the distribution can instead be approximated similarly to the frame distribution by providing
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a target window pitch. That said, the omission of the secondary structure would greatly impair the
immersion in an interactive visualization, effectively ruling out such applications of the model. Thus,
the issue of the window cutouts is not pursued further, since the addition of the windows does not
provide a significant contribution to the remaining types of analyses.

Furthermore, no design of the cargo floor is performed, as the available space also relies on structural
details, such as the design of the passenger floor. Due to the unusually high width of the cabin area in
the BWB, it can be assumed that conventional design concepts are not applicable and a substantially
increased amount of support structure will be required.

Despite these omissions, the BWB example nevertheless shows, how the interfaces of the structural
design to the cabin design can be mocked by applying simpler modeling techniques deployed in an
additional rule set. This enables a cabin design for a BWB, even without having a structural design
available. The results of a cabin design applying this rule set are presented and discussed section 7.2.2.
Nevertheless, the lack of a well-grounded structural description naturally compromises the validity of
the cabin layout, which means that fundamental changes to the design will most likely be required,
as more details of the structure become available.

6.4. Discussion

In the preceding sections of this chapter, implementations of different rule sets have been introduced
to assemble a KBE system capable of providing multi-fidelity geometry models of aircraft fuselages
and cabins, augmenting missing design data, as required, through design capabilities, and adapting
to novel architectural requirements. Therefore, this chapter makes a significant contribution towards
validating the research hypothesis of this thesis.

In section 6.1, the implementation of a parametric modeling engine for CPACS using KBE method-
ology is presented. One the one hand, this approach to implementing the parametric modeling engine
ensures consistency between different disciplinary models, since all disciplinary details are derived from
the same basic geometry objects. On the other hand, it also enables fine-grained tailoring of model
fidelity by combining different component models at different levels of detail. This fulfills, to a large
extent, the requirements formulated in working hypothesis 2. However, it is yet to be shown that
the geometry models can be used to derive actual analysis models, enabling analysis of the design. To
this end, two application cases, selected from the analysis methods for the fuselage listed in section 4.2,
are evaluated in section 7.3.

In section 6.2, different sets of design rules are introduced for the OML, fuselage structure and
cabin. The primary motivation is to introduce additional design details, which are missing from the
initial product data set, to enable higher fidelity analysis. Consistency with the existing results is a
key requirement, as formulated in working hypothesis 3. It has already been discussed in chapter 5,
how technical features of the declarative KBE approach, such as cache invalidation, can help enable
consistency. In addition, two fuselage and cabin design synthesis examples are provided in section 7.1
to illustrate, how the rules provided in this section can be deployed to solve actual cabin design
problems, as required by working hypothesis 3.

In section 6.3, two examples for system adaptations for modified architectures are considered in
partial fulfillment of working hypothesis 4. The corresponding necessary changes to the baseline
outside-in design system and the additional required rule sets are introduced. In the following, it
must, however, still be shown that the updated rule sets can be used for design studies in a similar
way as the baseline system. To this end, example studies are provided for both novel architectures
and compared to the conventional reference design in section 7.2.
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In chapter 6 a collection of rules for modeling the geometry of aircraft fuselages and to determine
the necessary design details including structure and cabin has been described. That said, the goal
for implementing these rules is to provide an initial set of consistent configuration details for MDAO
processes, as stated in the research hypothesis. The applicability and effectiveness of the rule sets
to provide the necessary product data at various stages of the MDAO-driven design process is therefore
demonstrated in the following in a series of application studies.

To begin with, the capability to create consistent fuselage structure and cabin layouts at the prelim-
inary design stage in an outside-in or hybrid inside-out/outside-in sense is demonstrated in section 7.1,
in order to confirm working hypothesis 3. First, a single aisle design is discussed in order to estab-
lish a reference case. In a second step, the versatility of the rule sets for conventional configurations
is then showcased by applying the same methods to a twin-aisle and multi-deck configuration.

The extensibility of the design approach via rule sets to support unconventional architectures, as
required by working hypothesis 3, is discussed in the following. Applying the additional rule
sets described in 6.3.1 and 6.3.2 respectively, first an LH2 tank integration study is performed on the
baseline configuration before applying the cabin layout generation capabilities to a BWB configuration.

Finally, the capacity to produce consistent multi-disciplinary analysis models, as described by work-
ing hypothesis 2, is illustrated in section 7.3. The selection of the example cases is based on the
established computational analysis and design methods outlined in section 4.2. On the one hand, the
data generation for a GFEM model for fuselage structure sizing is discussed. On the other hand, a
very detailed model for immersive cabin visualization is considered.

The findings in the different use cases are then discussed in section 7.4

7.1. Fuselage design synthesis

In working hypothesis 3, the need to include design functionality in order to determine compo-
nent modeling parameters and enable the geometric modeling is stated. An overview of the rules
implemented in the fuga.design package is given in section 5.1. The applicability of these rules is
evaluated in this section by applying them to different use cases.

Even though the design and geometry generation are executed concurrently as required by the
graph-based reasoner, the design synthesis can typically be considered the first step in a run of the
KBE application. Consequently, a single-aisle baseline configuration is established first in section 7.1.1.
This baseline will appear again as input in some of the subsequent studies. Furthermore, the synthesis
problem is expanded to a configuration with multiple aisles and passenger decks in section 7.1.2.

7.1.1. Single-aisle baseline

For the single-aisle baseline a stretched variant of the D150 configuration is used. The D150 configura-
tion, a replica of the Airbus A320 configuration, which was initially introduced in the VAMP project
[ZCN12] and has since been used as a reference by many authors including Scherer et al. [SK+13]
and Klimmek et al. [KS+19]. The stretched configuration is designed to carry 240 passengers and is
thus referred to as the D240 configuration in the following. The starting point for the fuselage design
synthesis is an output from the preliminary design synthesizer openAD (cf. table 2.1.1), provided in
CPACS format. A similar configuration has been described e.g. by Wöhler, Walther, and Grimme
[WWG22]. Since the configuration has already been used for illustration in previous chapters, the
visualization of the initial CPACS geometry is already provided in figure 6.1.5. Aside from the OML
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and engine details shown in the figure, the data set also contains a basic wingbox definition and mov-
ables layout. As discussed in section 6.2.2, the wingbox in particular must be taken into account for
the fuselage design.

7.1.1.1. Design inputs

The D240 configuration is meant to seat 240 passengers and perform short to mid-range missions with
a design range around 2000nm. The cabin design roughly corresponds to the high-density variant of
the Airbus A321neo ACF (Airbus Cabin Flex) layout [Alc17]. Table 7.1.1 provides an overview of the
relevant input variables.

Discipline Parameter/data item Symbol Unit Value

OAD Number of passengers nPAX - 240
Design range R nm 2000

Cabin/cargo

Aisle width waisle in 19
Exit layout - - 2×C+, 2×III, 1×C
Class layout - - 30 eco-plus, 210 economy
Seat pitch ∆xseat,eco+ in 29 (eco-plus)

∆xseat,eco in 28 (economy)
Seat type - - economy

Number of galleys ngalleys - 2
Number of lavatories nlavatories - 2
Cargo container type - - LD3-45
Number of containers ncontainer - 11

Structure Frame pitch ∆xfr,nom in 21
Number of stringers nstringer - 87

Table 7.1.1.: List of inputs for the D240 configuration

The overall design is targeted on an efficient realization of the transportation task. As a result, some
compromises in terms of comfort are acceptable, if seating capacity can be improved. Nevertheless, a
two-class layout is adopted, which includes an eco-plus class with 30 seats installed at a slightly higher
seat pitch compared to the the remaining seats in regular economy class. Irrespective of the class the
same seat types are used. The aisle width is set to waisle = 19in. This is in accordance with the aisle
width requirements of the CS-25 given in table A.3.2 as the arm rest, i.e. the widest part of the seat
is located at a height below 25in. Consequently, the 20in width limit for zcab > 25in is not violated.

In keeping with the low comfort requirements only two galleys and lavatories are included respec-
tively, which are placed at both ends of the cabin. The number of lavatories can be translated to a
lavatory utilization factor UF lav = nPAX

nlav
= 120, which is used as a further indicator for the cabin

comfort. The number is high, compared to values from literature [Tor76; Gob15], where a the upper
bound for utilization is commonly found to be around 60. However, the higher value is deemed accept-
able, due to the overall design goal. That said, ongoing developments for a dual rear lavatory could
help reduce the number to UF lav = 80. For the galleys, the utilization factor is commonly computed
based on the number of FSTs. However, with only the number of galleys given, the value cannot be
computed until more details on the galleys are made available.

Due to the high number of passengers, the known exit layout from the A320 or A321 must be adapted
by introducing an additional type C door behind the wing. Furthermore, the rating of the outermost
exits is increased to C+, which requires an additional flight attendant as well as improved lighting
and emergency slides [EAS14]. The changed rating results in a passenger capacity of 65 compared to
the original 55. The double type III over-wing exit is retained. This results in a C+-III-III-C-C+ exit
layout, which can be certified for up to 250 passengers. The mixed-integer exit optimization described
in section 6.2.3.3 confirms that this is an optimal solution for seating 240 passengers in a single-aisle
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layout in terms of length penalty.
It is worth noting that it is also possible to replace the type C exit with an exit of type I. The change

would have no effect on the cabin length, but decrease the exit capacity to 240 passengers. Whereas
this might restrict further increase of the cabin density, it may present a weight saving opportunity,
due to the smaller structural cutout size. Such considerations are, however, not taken into account in
the optimization at this point.

A total of 11 LD3-45 cargo containers, which are used e.g. in the A320 family, are placed in the
cargo floor. Taking into account the information from table A.3.3, this results in an overall cargo
container volume Vcargo = 40.80m3. The container volume utilization then amounts to UF cargo =
nPAX
Vcargo

= 5.88PAX
m3 . Again, this number appears to be very high compared e.g. to Torenbeek, who

assumes a volume utilization of 1.695PAX
m3 . However, it must be noted that Vcargo does not take into

account carry-on luggage, which is the preferred option for many passengers nowadays, especially on
short to mid-range flights.

For the structural design, a maximum frame pitch ∆xfr,nom = 21in and a total of 87 stringers
around the circumference are adopted.

7.1.1.2. Outside-in design

Based on these inputs, first an outside-in design is performed, using the corresponding basic design
system shown in figure 5.2.1. A LOPA, generated from the design outputs in CPACS, is given in
figure 6.1.31.

The illustration shows the floor layout as well as the cabin space and the fuselage outline. Key
structural components are included as well. In this way, the design inputs provided in section 7.1.1.1
can be retraced. The two seating classes are visible, as are the cabin monuments and the exits.

Furthermore, some new details have been added automatically, such as the exit spaces, or the trolleys
in the galleys. The determination of the trolleys is based on the galley dimensions and a standard
trolley width wFST = 0.3m. This information can be used to determine the trolley utilization, to
further quantify the cabin comfort level. Figure 6.1.31 shows a total of 6 trolleys, resulting in a
utilization UF galleys = nPAX

nFST
= 40. Once again, this reflects the overall low comfort level of the

configuration.
Finally, the visualization allows for the evaluation of different space requirements from the CS-25,

such as aisle width and evacuation spaces around the doors. As mentioned in section 6.1.3, these
non-physical geometries can also be exchanged via CPACS, along with the cabin layout.

In figure 7.1.1, a section view of the layout at the longitudinal position x = 12m is shown. The
position lies in the constant section, away from any unusual components such as doors or the center
wingbox, which makes it a suitable reference. Aside from the seats, which are also included in fig-
ure 6.1.31, the secondary structure including sidewall panels, OHSCs and ceiling panels is shown as
well. Differently from the LOPA, more geometric detail is required for an expressive visualization,
especially for concave components, such as the sidewall. Consequently, the mesh representations are
plotted, which introduces a very high level of detail. This allows for the evaluation of the attachment
points as well as the assessments of overlaps. In the case of figure 7.1.1, it can be concluded that all
secondary structure components are properly connected and that no collisions with the seats occur.

Details of the primary structure are also contained in the figure, including stringers, floor beams
and struts. Based on this information, the consistency between the structural design and the cabin
design can be inspected. For instance, with the longitudinal floor beams shown, it can be seen that the
legs of the seats align with the seat rails. For the cargo floors, it can be determined that no collision
occurs between the LD3-45 containers and the components of the floor structure and that sufficient
floor width is available to fit the base area of the container. Since the stringers are plotted as well, it
can furthermore be assessed, whether the gap in the stringers due to the window row aligns with the
window funnel of the sidewall model.

For further assessment of the links between the structure and the cabin, a more detailed 3D geometry
model can be generated, which can be used to derive a cut side view as shown in figure 7.1.2. Once
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Figure 7.1.1.: Section view at x = 12m

again, the components of the secondary cabin structure are shown as well as the floor-based components
and the containers. In addition, the door openings are visible with the exception of the emergency
exits, which are covered by the sidewall panels. This is by design, as the regular sidewall panel
distribution pattern is not typically interrupted for emergency exits. Instead, custom-made sidewall
panel components with appropriate cutouts are used, which are, however not modeled in FUGA.
On the structural side, the frame and stringer distributions are shown as well as the floor structure.
Moreover, additional details are provided including the bulkheads and the wing boxes, but also the
center fuselage area.

Figure 7.1.2.: Cut side view of the detailed D240 geometry model

The side view further highlights the interconnections between the structure distribution, particularly
the frames, with the cabin layout. To begin with, all the cabin door openings are bracketed by a pair
of frames, as are the wing boxes. The bulkheads also lie at frame positions. The stringers run parallel
to the floor in the full cabin region from the first door to the rear bulkhead. In addition, all the
pictured components of the secondary structure are aligned with the frame layout, in correspondence
with the “no gap” positioning strategy described in figure 6.2.20. This strategy is well-suited e.g. for
subsequent interactive visualization.

In contrast, the cargo floor openings are not aligned with the overall structure. They are, however,
aligned with the containers of the container distribution, which in turn respects the boundaries of the
center wing box and the landing gear bay.
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However, figure 7.1.2 also reveals the reliance of the design, especially of the secondary structure,
on the availability of suitable component models. In regular seating areas, the correct component
models for the sidewall panels and the OHSCs are available and thus added to the layout. The same
is not the case in the neighborhood of the doors, where, as a result, no secondary structure can be
placed and the underlying stringers and frames are revealed instead. Unlike the floor monuments,
which can easily be replaced by boxes in CAD, to provide at least a basic representation of the
component, the more complex geometry of the secondary structure requires more detailed CAD-based
component descriptions based on more complex sets of parameters. Whereas a fundamental approach
to address this problem using the graph-based methodology is proposed for the example of a seat in
section 6.2.3.4, it is not pursued further for the secondary structures within this thesis.

Aside from this, there are further issues to be found with the design based on figure 6.1.31. For
instance, the seats in the last row have a decreased width, compared to the other rows. This is
necessary due to the reduced fuselage cross section area in the tail section of the fuselage, which
results in a reduced cabin space. FUGA provides rules to detect the seats for collisions with the cabin
space, including a detailed mesh-based implementation based on the VTK library. The result for a
cabin layout without the slimmer last row is given in figure 7.1.3. As discussed in section 6.2.3, it
is currently not possible to have FUGA update the design automatically, based on this information.
However, a warning can be issued to the user, who can then make the necessary changes in the design
inputs.

Figure 7.1.3.: Mesh-based detection of collisions between seats and cabin geometry

Another problem is the gap in longitudinal direction between the RPB and the rear floor monuments.
This effectively means that the available cabin space is not utilized completely. The problem results
from two main factors: On the one hand, due to a rule from the cabin design rule set, the rear end of
the cabin space is determined by the RPB, which in turn, according to the structural design ruleset,
depends on the wingbox of the VTP, as outlined in section 6.2.2.5. Since the wingbox boundaries are
already provided by openAD, the RPB position is thus determined before the FUGA design process
even begins. On the other hand, the cabin is assembled from front to rear without introducing any
unnecessary gaps. No additional degree of freedom is available to make use of the additional available
space.

It follows that the problem can be resolved by providing an additional degree of freedom either to
the cabin design, or to the fuselage OML design. The latter approach changes the type of problem
from an outside-in to a hybrid design problem, which requires an additional rule set as described in
section 6.2.1.2. The hybrid design problem is discussed in section 7.1.1.3.

Consequently, if the fuselage outline is not to be touched in an outside-in design, an additional cabin
parameter must be introduced to provide the required degree of freedom. Ideally, the additional space
should be used to increase the payload. However, the length of the gap ∆lcabin = 0.3916m is smaller
than the seat pitch, which prohibits the addition of an extra row of seats. Instead, a global factor on
the seat pitch fpitch,glob is selected to utilize the space to the benefit of the passenger comfort. That
said, the outcome is unlikely to to be put into practice, due to the limited number of discrete options
to connect a seat to a seatrail in modern aircraft. Nevertheless, it provides a simple academic example
to explore the capabilities of the FUGA modeling approach.

In order to formulate the design problem, a rule to compute the difference between the available
and the utilized cabin space ∆lcabin is provided by FUGA. The structural design rules and the geo-
metric modeling rules from the fuga.geometry package are employed to determine the rear bulkhead
position and the maximum x-coordinate of all floor element boundaries respectively. Furthermore, the
additional input parameter fpitch,glob is introduced to the cabin design system and applied to the all
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specified class seat pitches during the design.
This enables the formulation of the functional relationship ∆lcabin (fpitch,glob) using FUGA, by ex-

tracting the subgraph between the two nodes from the MCG. Aside from the two nodes themselves,
it contains the intersection of the ancestors of the node representing ∆lcabin and the descendants of
fpitch,glob. These are the dependent variables, which must be re-evaluated for each function call. All
other ancestors of ∆lcabin must be computed only once and do not change if fpitch,glob is changed.

In a practical implementation, this can be accomplished by solving the system once for ∆lcabin using
a default pitch factor e.g. fpitch,glob = 1. Then fpitch,glob is updated, discarding all of its descendants.
In this way, all independent variables are set. A query for ∆lcabin will then automatically assemble
the necessary subgraph and recompute all dependent variables. The above highlights an important
benefit of the graph-based formulation of the KBE system: By extracting the subgraph, only those
rules are reevaluated, which are absolutely necessary for the solution of the problem at hand. All other
data is retained, thus avoiding unnecessary computational overhead, which would typically occur in a
global iteration loop used in tools like PrADO.

Based on this functional relationship, the problem of removing the gap can be approached numeri-
cally, as described in section 5.1.3.3, by formulating the scalar root finding problem:

∆lcabin (fpitch,glob) = 0. (7.1.1)

This type of problem can be solved using e.g. the secant method, which offers the benefits of gradient
descent techniques such as Newton’s method without the need to provide derivatives of the function.
An implementation is provided e.g. by the SciPy package [VG+20].

As shown in figure 7.1.4, the solution of the above problem can also be expressed in XDSM notation,
highlighting the close relationship between the KBE-driven design problem and a Gauss-Seidel MDA
problem as presented in section 2.2 (cf. figure 2.2.2). The previously computed independent variables
xj are provided to the system from the beginning and remain unchanged. Meanwhile, the dependent
variables yi,j are updated for each iteration. Departing from the original specification of XDSM by
Lambe and Martins [LM12], the stacked analysis block is used not to represent analysis blocks, which
are executed in parallel, but simply the evaluation of a set of rules using FUGA. Similarly to Pate,
Gray, and German [PGG13] and Gent [Gen19a], the sequence of the rules as well as their connections
via the dependent variables yi,j in the upper triangular are handled in detail by the graph-based
reasoner, which reduces the complexity of the problem formulation considerably. The output of the
secant method is then the root of the function, i.e. the value f∗pitch,glob, where equation 7.1.1 holds.

f0
pitch,glob

x0,x1 x0,xn x0,xn+1

f∗
pitch,glob

0, n+ 1 → 1:
Secant method

fpitch,glob fpitch,glob fpitch,glob

1:
Rule 1

y1,n y1,n+1

n:
Rule n

yn,n+1

∆lcabin
n+ 1:

Rule n+ 1

Figure 7.1.4.: XDSM representation of the solution to the root finding problem

Solving equation 7.1.1 for the D240 configuration yields the updated layout shown in figure 7.1.5.
While the 2D plot for the updated result suggests that the second to last row has become a risk for
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clash with the cabin bounds, 3D collision analysis reveals that the design is feasible. Visibly, the
gap between the rear bulkhead and the monuments behind the last exit has disappeared. The secant
method shows that a global seat pitch factor f∗pitch,glob = 1.0124 is required to achieve this. The result
corresponds to a seat pitch increase of slightly more than 1% and a gain in leg room per row in the
range of 0.01m.
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Figure 7.1.5.: Updated layout of the D240 for fpitch,glob = 1.0124

The assessment of the effects of these results in terms of passenger comfort is the objective of
subsequent human factors evaluations using e.g. the human model approach. To this end, both designs
could be shared with disciplinary experts in a collaborative workflow, either as CPACS files or in the
form of 3D models, as discussed further in section 7.3.2.

7.1.1.3. Hybrid design

Whereas an adaptation of the seat pitch may be an interesting option for true outside-in use cases,
such as retrofitting scenarios, the choice of pitch in a preliminary design context is typically informed
by experience from airliners and earlier designs and can thus be considered a hard requirement.
Consequently, instead of increasing the seat pitch it is usually more interesting to reduce the length
of the fuselage, in order to reduce the mass of the overall design and improve the efficiency.

To this end the basic outside-in design system is extended using the hybrid loft design rule set
described in section 6.2.1.2, as mentioned in section 7.1.1.2. The new rule set adds the possibility
to manipulate the length of the constant section of the fuselage using a length change parameter
∆lfuselage. As a result, the root finding problem formulated in equation 7.1.1 can be updated to

∆lcabin (∆lfuselage) = 0. (7.1.2)

The solution to this problem is typically trivial, i.e. ∆lfuselage = −∆lcabin (0.), which implies that
a change in fuselage length results in an equivalent change in cabin length. This is a reasonable
assumption, especially for small displacements, since the cabin is not moved sufficiently deep into the
tail section to effect any substantial changes to the layout.

However, a new challenge, which arises from the introduction of the loft design system, is the
presence of cycles in the MCG of the design system. The cycles appear as a result of the necessary
updates of the fuselage geometry. Updates inherently use and change available data, resulting in
system nodes, which eventually reference themselves. This poses a problem to the topological sorting
algorithm used in the graph-based approach approach, since it only works on a DAG. That said, in
principle, cycles in the MCG do not preclude the system solution, unless they are propagated to the
FPG, in which case the determination of the PSG using the topological sorting algorithm will fail.
Consequently, it is possible to perform the analysis if the system is queried in several steps in such a
way that the cycles are broken up, i.e. have clearly defined starting and end points.

As an example, the fuselage positioning node is considered, which contains the distances between
the fuselage profiles that must be modified in order to adjust the fuselage profile positions for the
length update. To resolve the cyclic connectivity graph, the following steps can be taken, which are
shown in figure 7.1.6:
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• Step 0: During the initialization of the system, the positioning values are read from the CPACS
input file and stored in the data repository and stored in the node /cpacs/vehicles/{aircraft}/
model/fuselages/fuselage/positionings/positioning.

• Step 1: A query is made for a the node /fuga/design/initialFuselagePositionings, result-
ing in the creation of a copy of the contents of the positioning node in a separate node.

• Step 2: An update for the value of the node /cpacs/vehicles/{aircraft}/model/fuselages/
fuselage/positionings/positioning is computed, based on the copy of the original posi-
tionings stored in /fuga/design/initialFuselagePositionings and the prescribed fuselage
length change ∆lfuselage, which is provided externally via the /fuga/design/fuselageDeltaX
node. As an intermediate step, the function for the local length change at each position x due
to ∆lfuselage must be determined. As described in section 6.2.1.2, this computation is based
on the boundaries of the constant section of the fuselage. In order to circumvent the caching
mechanism and re-compute the updated contents of the positioning node, its original contents
must be discarded before performing this step.

• Step 3: A query for a downstream node, e.g. /fuga/geometry/fuselageSurfaceLoft, can be
used to retrieve any further desired system outputs based on the updated fuselage data.

/fuga/design/initialFuselagePositionings 

/fuga/design/fuselageDeltaX

/fuga/cpacs/views/fuselageProfileData 

/fuga/cpacs/cpacsTreeSource

/cpacs/vehicles/{aircraft}/model/fuselages/fuselage/positionings/positioning

/fuga/design/componentOffsetFunction 

/fuga/geometry/fuselageSurfaceLoft

/fuga/cpacs/cpacsInputPath

/fuga/design/fuselageConstantSectionXBounds 

/fuga/geometry/fuselageProfiles

Figure 7.1.6.: Solution steps for the cyclic fuselage update system

Based on the figure, it can be determined that there are in fact three cycles in the graph, which are
however resolved simultaneously, by exploiting shared edges.The traversal of the cycle is implemented
by formulating one query (step1 ), which leads into the cycle from a known starting node. A second
query (step 2 ) then leads out of the cycle again and back to the starting node. In this way, the correct
updated profile positionings based on the given ∆lfuselage can be determined.

For the iterative solution of equation 7.1.2 ∆lfuselage is updated by modifying the contents of the
/fuga/design/fuselageDeltaX node. Since the connections of steps 0 and 1 do not lie on the path
between this node and the final downstream node /fuga/geometry/fuselageSurfaceLoft, only steps
2 and 3, including the discarding of the old positioning values, must be repeated during the iteration.

Applying the approach to the D240 confirms the above supposition that ∆lfuselage = −∆lcabin (0.),
with a computed necessary change in fuselage length ∆lfuselage = −0.3916m. Due to the relatively
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small length change compared to the overall fuselage length, the resulting layout in figure 7.1.7 does
not differ substantially from the result with the adapted seat pitch in figure 7.1.5. Once again, the
gap disappears and the 3D collision analysis shows that the second to last row does not collide with
the cabin bound.
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Figure 7.1.7.: Updated layout of the D240 with ∆lfuselage = −0.3916m

Meanwhile, the shortened fuselage holds the promise of gains in efficiency and performance of
the configuration. Similarly to the previous outside-in design example, where a downstream human
factors analysis is necessary to assess the impact of the changed seat pitch, the fuselage length change
determined here can be communicated back to the OAD synthesizer. Here, the overall design can
be updated and the impact on the overall configuration including snowball effects can be assessed.
This step is advisable in real-life design campaigns, as it also ensures the consistency of the overall
design, taking into account factors, which have explicitly been neglected in the outer geometry update
described in section 6.2.1.2. These factors include the wing positioning and empennage scaling, but also
aspects like landing gear placement and rotation capability during takeoff and landing. Once again,
techniques from collaborative MDAO can be leveraged to set up an iteration loop and automate the
exchange.

Another key finding of the hybrid design example is that good system insight is necessary to deter-
mine the evaluation steps to resolve cyclic systems as shown in figure 7.1.6. This step can currently
not be performed automatically, which means the end user must build a script to prescribe the correct
sequence of queries. In this context, the explanation subsystem features described in section 5.1.4 as
well as the possibility to interact with the system via Jupyter Notebooks have proven to be valuable
support tools. Nevertheless, as system complexity grows with more and more rules being included, the
proper documentation of the available knowledge will become essential to avoid an insurmountably
steep learning curve for new users.

7.1.1.4. Knowledge graph exploration analysis

To further investigate the benefit of the KBE methodology for the efficient execution of the design
task, the exploration of the knowledge graph, i.e. an analysis which rules were executed during the
process, is provided for the outside-in design case without seat pitch modification in figure 7.1.8. The
layout and node locations of the graph correspond to the MCG for the outside-in system given in
figure 5.2.2. This means that the nodes are once again arranged according to their topological layers
starting from the top. The ellipses to represent the rule set regions are also retained. The coloring
of the nodes is adapted to reflect the various execution stages of the system. Nodes marked in white
have not been evaluated during the design synthesis, since they do not lie on the path to any of the
the queried nodes.

The execution stages reflect the requests made to the system by the user and are listed in table 7.1.2.
Visibly, the solution of the present design problem requires only two steps. First, the system is
initialized upon instantiation. This step entails the readout of the incoming CPACS data set and the
addition of the corresponding entries to the data repository. As illustrated by figure 5.1.1 initialization
is always the first step preformed. The corresponding rules are thus found predominantly in the
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Figure 7.1.8.: Knowledge graph execution chart for design synthesis
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topmost topological layers, as these entries provide the necessary inputs for the subsequent steps, i.e.
the design synthesis in this example. In addition, some further user-defined control parameters can
be found scattered throughout the system which are also set during the initialization.

Table 7.1.2.: System requests and performance data for design problem
Request ID Description Rule count Timing Cumulative timing

i ti/s
∑︁i

0 ti/s

0 Initialize 120 0.46 0.46
1 Compute design rule set sinks 208 15.33 15.79

The synthesis is then executed by making a query for the union of the sinks of both the structure and
cabin design rule set graphs Vdes,str and Vdes,cab, i.e. Vquery = {v ∈ Vdes,str ∪ Vdes,cab|δ+ (v) = 1}. The
specific queries are also reflected in figure 7.1.8 by the coloring of the node borders. Whereas nodes
that have been requested explicitly by the user are marked in green, intermediate nodes, which have
been called by the reasoner, are marked in red. Nodes, which have been set before starting the query,
e.g. the CPACS input path, are marked in blue. It can be seen that all automatically determined
nodes are eventually followed by a requested node in a subsequent topological layer. This illustrates,
how it can be assured that all rules in the set are evaluated, thus providing all possible parameters,
by querying all the sinks of a rule set.

Visibly the nodes visited during the synthesis step are located mostly in the middle third of the
graph. In contrast, none of the nodes in the last three topological layers have been visited. This is
comprehensible since, as shown by figure 5.2.2, the entries in these layers are all associated with the
subsequent model generation tasks, which have not been requested in this example.

Based on the profiling data, which is also provided in table 7.1.2, it can be seen that almost twice as
many rules were evaluated during the synthesis step compared to the initialization step. Conversely,
the execution time for the synthesis is approximately 30 times higher than for the initialization. This
can be explained, because, on the one hand, the run time of the initialization is mainly determined by
the file input operation of reading the CPACS XML file from disk. On the other hand, the design rule
set requires some computationally expensive geometric operations, e.g. the determination of the frame
curves on the fuselage, which are necessary to determine the cabin space, as discussed in section 6.2.3.2.
Furthermore, hard drive access once again has an impact, as the available external component models
must be read to determine e.g. the bounding box dimensions. Nevertheless, the cumulative run time,
which is in the order of tens of seconds, is sufficiently low to allow for quick creation and exploration of
different design configurations, either in an interactive environment, or in small automated parameter
studies.

7.1.2. Twin-aisle and multi-deck configuration

Building upon the capabilities demonstrated for the reference configuration, the more complex appli-
cation case of the D380 configuration is considered in this section. Based on the Airbus A380 design,
the D380 contains two passenger decks, each with a twin aisle cabin. The configuration has been
selected previously by Walther et al. [WH+22a] to highlight the versatile modeling capabilities of the
updated CPACS cabin description introduced in version 3.4. Expanding on those findings, the goal of
this chapter is to investigate the applicability of the conventional outside-in rule set to different types
of configurations and thus determine the extent of the design space, which can be supported. This
also includes novel cabin concepts. Once again, the starting point for the design is a OAD synthesis
using openAD, as shown in figure 7.1.9, provided as a CPACS data set.

7.1.2.1. Cabin layout

In contrast to the single aisle configuration discussed previously, which is focused on high density,
the cabin layout for the D380 is derived from a configuration presented by Rudolph et al. [RR+21],
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Figure 7.1.9.: D380 geometry as provided by openAD visualized in TiGL

where the design is predominantly concerned with meeting passenger requirements identified via a
design thinking approach [RR+20]. This is achieved through both a more spatial and varied cabin
arrangement as well as the introduction of new types of cabin components. Key features of the cabin
include a central entrance area with a welcome desk and two sets of stairs leading to the second deck
on either side. A bar area is placed in the center region of the second deck between the stairs. The
corresponding component model is shown in figure 7.1.10a. To appeal to individual travelers, a block
of so-called “zig-zag” seats installed at a 45° angle in alternating direction, as shown in figure 7.1.10b,
is furthermore placed in economy class.

(a) Bar area model (b) Zig-zag seat model

Figure 7.1.10.: Novel cabin component models [RR+21]

In order to meet the ensuing space requirements, Rudolph et al. propose a newly designed air-
craft configuration, built from scratch around the cabin. The configuration design is, however, not
substantiated by any kind of preliminary design synthesis or structural layout. In order to enable
the assessment of the economical and ecological footprint of the comfort oriented cabin configuration
using available design and analysis tools, a replica of the configuration is therefore created based on
the D380 configuration using FUGA.

The resulting LOPAs for the main deck and the upper deck are given in figure 7.1.11. The upper
deck is reserved to the business class, whereas the economy class is found in the main deck. Following
the original design from Rudolph et al., a twin-aisle layout with three blocks of three-abreast seat
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modules at a seat pitch ∆xseat,eco = 30in is adopted for most of the economy class, with only the
block of “zig-zag” seats forming an exception. In the business class in the upper deck, a layout of three
double seats with a pitch ∆xseat,biz = 60in is adopted.
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Figure 7.1.11.: LOPA of the adapted innovative cabin for the D380 configuration

The cabin comfort indicators are given in table 7.1.3, both for the individual decks and for the overall
configuration. The computation can be performed analogously to the single-aisle example. A minor
difference is the presence of a detailed component model for the main deck rear galley. Evaluating the
model reveals that it can hold 21 FSTs, which must be taken into account in addition to the other
FSTs visible in the LOPA in figure 7.1.11, which are determined based on the same assumptions as
for the reference configuration. With the upper deck holding the business class, unsurprisingly, the
level of comfort is significantly higher than for the main deck. Nevertheless, the comfort indicator
values for the main deck, too, clearly exceed those for the single aisle configuration. This is expected
for a long range configuration, such as the D380, and even more so for a design driven by passenger
requirements. In fact, the values in table 7.1.3 correspond much better to the reference values from
literature. The only exception is the cargo volume utilization, which is still very high. Once again,
only the volume available in the 13 LD6 cargo containers is considered. For comparison, the original
Airbus A380 can carry 32 LD3 containers [ANA22], which can approximately be understood as half of
an LD6 container (s. also table A.3.3). This means that 6 LD3 containers are missing in the present
layout, which are placed in the middle of the fuselage in the region of the landing gear bay cutout in
the A380 [ANA22]. This type of design is, however, foreseen by neither the design rules for the center
fuselage area nor the underlying CPACS definition and can thus not be generated without profound
modification of the rules sets.

The chosen exit layouts of C-A-A-C-C for the main deck and I-C-C-I-C in the upper deck both
provide sufficient capacity for the given number of passengers. The corresponding free spaces are
shown in figure 7.1.11 as well. In addition to the passageways including assist spaces, which are also
included in the single-aisle layout, CS-25 furthermore requires cross-aisles for twin-aisle cabin layouts.
Depending on the type of exit, the cross-aisles must either overlap with the passageway of the adjacent
exit or be situated in close vicinity thereof. In FUGA, the vague latter formulation is interpreted with
a maximum allowable distance criterion of ∆xexit,CA ≤ 1m. However, for the majority of the exits in
the D380 configuration, the overlap rule applies, with the type I exits in the upper deck providing the
exception.
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Table 7.1.3.: Cabin comfort indicators for the D380 configuration
Deck upper main total
nPAX 193 346 539
nlav 7 8 15
nFST 21 30 51

ncontainer 13
UF lav/

PAX
lavatory 27.57 43.25 35.93

UF galley/
PAX
FST 9.19 11.53 10.57

UF cargo/
PAX
m3 4.63

When creating the replica layout, it needs to be taken into account that the D380 configuration is
designed to be boarded primarily via the lower deck. This introduces a fundamental difference to the
layout shown by Rudolph et al., who place the welcome area in the upper deck. Consequently, the
decks from the reference are swapped in the D380 configuration, i.e. the main entrance area is placed
in the lower deck with stairs leading to the business class and bar area in the upper deck.

Both the bar and the welcome area models as well as the stairs, are represented by “generic” modules.
In the CPACS cabin description, this type makes it possible to reference external models of nondescript
type, which have no additional particular properties associated to them [WH+22a]. In the LOPA plot,
these models can then be represented by their convex boundary polygon instead of their bounding
box, in order to convey a more accurate impression of the component.

The above shows, how the design rules for the floor layout can successfully be translated to the twin
aisle configuration. The same is not the case for the secondary structure as illustrated by figure 7.1.12.
Here, it becomes apparent that the component models of the sidewall panels in particular have been
designed specifically to fit the cross section of the single-aisle fuselage. As a result, the shapes do
not align with the more elliptic cross-section, especially for the narrower upper floor, revealing the
limitations of the approach using “dead” geometry and highlighting the need for a more versatile
parametric component description. Nevertheless, it is also apparent that the more complex secondary
structure arrangement with the additional row of OHSCs in the middle can be represented in principle.

The presence of multiple passenger floors entails some additional complications in the design process.
Initially, the cabin design is performed independently for each deck using two separate design systems
in FUGA. However, it is necessary to subsequently ensure the compatibility of the designs. This
becomes especially apparent when considering the component representing the stairs, which obviously
needs to be at the same position in both layouts. This can be accomplished by synchronizing the
positional data between the two systems, which must be implemented by the design engineer.

7.1.2.2. Structural design

A major problem for the structural design resulting from the separated design approach for the pas-
senger decks is a lack of completeness in the cabin information in either of the two systems, which
results in faulty structural layouts. For instance, each system only considers the exits of the respective
deck, which means the exits from the other deck are not accounted for e.g. when determining the
mainframe positions. This error proliferates as more structural details, e.g. window positions, are de-
termined, which leads to two separate and incompatible structural layouts. The stringer distributions
are affected in a similar way. On the one hand, both rows of windows must be considered to determine
the stringer seed points as described in section 6.2.2.3 to avoid stringers passing through windows.
Furthermore, the vertical extent where parallel stringer planes are placed in the cabin region when
including the cabin constraints into the stringer distribution must be expanded to include both decks.

In order to resolve this issue, a number of key parameters provided by the cabin design, which
are subsequently used in the structural design, must be manipulated before proceeding. As with
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Figure 7.1.12.: Mismatch of upper floor secondary structure and OML

the cabin layout, this requires some intermittent synchronization steps, which are implemented by
partially evaluating the systems for both decks, merging the results and updating the system values.
It follows from the above that the mainframe positions and the stringer seed points on the reference
section are among the most critical inputs for the structural layout generation. Since the mainframe
positions are defined by the passenger door positions, among other things, the corresponding cutout
definitions are first evaluated for both the upper deck and the main deck. Then, the definitions are
combined and fed back to both systems. Based on the combined door cutout data the mainframe
positions can then be computed consistently based on the complete available door data. To proceed
with the computation of further deck details e.g. the window positioning, the cutout data should be
reset, to consider these details separately for each deck. Consistency is maintained nevertheless via
the common frame distribution. The cutout data must be merged again before building the geometry
model.

For the determination of the stringer seed points, the vertical positions of both passenger floors must
be considered. Furthermore, the vertical position and height of both window rows must be known for
the removal. In addition, the z-range for the distribution of parallel planes is given by the position of
the main deck zfloor,main and the cabin height hcabin = zfloor,upper − zfloor,main + hcab,upper for both
decks. The longitudinal extent of the parallel stringer planes is chosen to be from the most forward
door to the rear bulkhead.

The resulting basic structural layout for the D380 configuration is shown in figure 7.1.13. It shows
both passenger floors as well as the cargo floor with the corresponding structural openings. A fourth
set of crossbeams is placed above the upper deck. Whereas the lower two floors have downward facing
support struts, the struts of the uppermost crossbeams point in upward direction. The upper deck
floor is not supported by any struts as to not diminish the space for the main deck cabin. The frame
distribution visibly follows the door cutouts of both decks very well. One exception is the second exit,
where the mainframe distance tolerance criterion is triggered. Whereas the cargo doors are again not
considered in the frame distribution, their size has been updated to reflect the change from LD3-45 to
LD6 type containers (s. table A.3.3). The window cutouts of both floors follow the frame distribution
exactly. The window positions are in turn respected by the stringer distribution, as a stringer is left
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out for each window row. Visible kinks in the stingers at the mainframe before the first main deck
exit and at the RPB also show that the parallel stringer planes have been placed as required.

Figure 7.1.13.: Structural layout for the D380 configuration

In contrast, it can also be observed that some aspects are missing compared to the structural model
of the single-aisle baseline. To begin with, no detailed center fuselage area is shown. This is due to
the much higher angle of attack of the wing root, which causes the center wing box to transgress the
lower boundary of the fuselage. This case is not yet supported by the geometric construction rules
for the center fuselage described in section 6.1.2.3. Nevertheless, the principal information relating to
the center fuselage area is available in the system, e.g. the length of the landing gear bay, which is an
important input for the cargo container distribution.

Another difference is the absence of cockpit window and bulk cargo door cutouts. Since these types
of cutouts cannot be communicated via CPACS at this point, they have been created manually for
the baseline configuration but are not part of the standard design process.

Finally, the structural layout does not take into account the mechanical interconnection of the
two floors e.g. via stairs, which are modeled as cabin components only. No floor cutouts or structural
connections are provided by the model, which are, however essential to a reliable structural assessment.
Thus, additional rules are required to improve the level of detail of the model in this respect. A simple
implementation for the cutouts in the upper floor, where the bounding box of the stair component is
simply subtracted from the floor model using Boolean geometry operations, is used in the following
to provide an enhanced version of the structural model.

7.1.2.3. Full model

Based on this enhanced structural model, the full 3D model of the D380 configuration can be as-
sembled by combining the structural model and the deck component models. The result is shown in
figure 7.1.14. The central entrance area with the main deck welcome desk and the upper deck bar
area is represented in detail due to the inclusion of external models. The stairs leading to the upper
deck are shown as well and align with the floor cutouts. Furthermore, the “zig-zag” seats are visible
in the forward section of the main deck, whereas the detailed galley model is found in the rear.

Figure 7.1.14.: Full fuselage 3D model of the D380 configuration
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Also included in the model are the aforementioned LD6 cargo containers. The distribution of
the containers between forward and aft fuselage aligns with the distribution of the side-by-side LD3
containers in the A380 cargo floor. The gap between the wingbox of the main wing represents the
space for the landing gear bay, which is, however, not modeled explicitly.

7.1.2.4. Discussion

Given the current challenges w.r.t. sustainability of air transportation, the value of a configuration
like the D380, presented in this section, can be presumed to be extremely limited. In fact, Wöhler,
Walther, and Grimme [WWG22] propose a “people mover” aircraft based on the twin-engine Airbus
A350, which is capable of carrying more passengers than the D380 by translating the high density
cabin concept from single-aisle to wide-body configurations.

Nevertheless, the example of the D380 configuration serves to highlight several additional features
of the fuselage design KBE system w.r.t. the single-aisle baseline. To begin with, the flexibility of the
cabin design rule set is showcased, as it can also be used to model configurations with multiple aisles,
taking into account the corresponding certification rules e.g. for cross-aisles. Furthermore, the capacity
to support novel cabin concepts by integrating generic external component models is showcased.

Secondly, the versatility of the structural design capabilities is on display, as well. For example,
the interior structure of the D380 configuration is described using a total of four floor instances,
also including the upper crossbeams. Both of these points serve to further corroborate working
hypothesis 3, by showing that the KBE methodology can indeed be leveraged to provide fuselage
design details for a variety of conventional aircraft configurations.

That said, the example also reveals some shortcomings of the approach. Since the cabin design rule
set was initially intended for configurations with a single passenger and cargo deck, some interventions
of the design engineer are required to produce a consistent layout, e.g. the synchronization of the
stair or mainframe positions between the two systems. This step can currently not be performed
automatically and identification of the necessary parameters requires a profound understanding of the
KBE system, which can not always be expected from a design engineer. This shows that a given
rule set may be handled with relative ease when used within its designated design space, but will
require more and more user intervention and “creative” utilization of the existing capabilities when
approaching the limits of this space. A possible consequence, which must be considered, is that a bias
towards the well-known is introduced, when deploying the tool in design campaigns, putting novel and
unusual concepts at a disadvantage once again. That said, the knowledge captured during studies,
such as the D380, can also inform further developments to permanently expand the scope of both
FUGA and CPACS.

Finally, while the simple inclusion of the novel components highlights the advantages of the applica-
tion of external component geometry models, the example of the secondary structure components also
reveals the risks associated with the approach. It shows that, while the external models are a good
way to add details without complicating the parametric design process, their lack of adaptability, as
exemplified by the sidewall panels and the cross-section, makes them very difficult to rely on when
exploring a broad range of configurations.

A possible path towards overcoming these limitations is the introduction of further knowledge to the
system in the form of additional rule sets. By providing more rules either for parametric component
design, or updating existing design rules, e.g. for the structure, both more details and support for
new product architectures can be added to the system. Applications of the approach for architecture
modification are discussed in section 7.2.

7.2. Architecture modification

The examples in section 7.1 illustrate the capacity of the knowledge-based methodology to produce
consistent fuselage structure and cabin designs for conventional aircraft configurations. However,
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according to working hypothesis 4, the approach should also be easily applicable to novel archi-
tectures. It has been discussed in section 6.3, how this may be accomplished by creating additional
rule sets, which can be used for pinpointed modification of the knowledge-based system to adapt to
different design tasks.

Applying the rule sets introduced in that section, first, the integration of an LH2 tank into the D240
baseline configuration using the rule sets presented in section 7.1.1 is investigated in 7.2.1. Secondly,
the cabin layout generation for a BWB configuration leveraging the rule set proposed in section 6.3.2
is shown in section 7.2.2.

7.2.1. Liquid hydrogen tank integration

As anticipated by figure 5.2.3, the problem of integrating the LH2 tank in the rear fuselage is addressed
using an expanded design system, which is once again based on the baseline outside-in system. Differ-
ent integration options, such as on top of the fuselage or in wing pods, are also fathomable, as outlined
by Silberhorn et al. [SA+19]. The rear integration is selected in this example due to its relatively low
aerodynamic penalty as well as the large effect on the fuselage design compared e.g. to pods.

Two additional aspects must be considered for the rear integration w.r.t. the baseline. On the
one hand, the capability for increasing the available space in the fuselage, which has already been
demonstrated in section 7.1.1.3, is again provided via the fuselage extension rule set described in
section 6.2.1.2. On the other hand, the tank geometry is modeled based on the surrounding structure
using the rule set described in section 6.3.1.

As formulated in equation 6.3.1, this makes it possible to compute the available fuel volume in the
tanks Vtanks based on a change in length of the fuselage ∆lfuselage, a list of detailed tank geometry
parameters, and a given tank count ntanks. However, it is also stated that the required fuel volume
V̂ tanks is typically prescribed prior to the fuselage design. Based on equation 6.3.1 and the simplifying
assumption that all detailed tank geometry parameters be constant, this problem can then be described
by

Vtanks (∆lfuselage) = V̂ tanks. (7.2.1)

In order to determine the necessary change in fuselage length to meet the volume requirement, equation
7.2.1 can be rewritten as a scalar root finding problem, where

g (∆lfuselage) = Vtanks (∆lfuselage)− V̂ tanks = 0. (7.2.2)

Analogously to equation 7.1.2, the problem can be solved numerically by extracting the FUGA sub-
graph representing the relationship Vtanks (∆lfuselage). Differently to the above case, a trivial solution
is not expected, due to the nonlinearity of the relationship between the available volume in the tail
section and the fuselage length change.

In the following, the integration problem is solved for the D240 baseline configuration discussed in
section 7.1.1, as described by Walther et al. [WH+22b]. The target tank volume is set to V̂ tanks = 55m3

for a hypothetical short-range design mission, based on reference data by Brewer [Bre91] and Burschyk
et al. [BC+21]. The analysis is performed for different tank count values ntanks in the range of one
to three. The resulting fuselage layouts are given in figure 7.2.1. Visibly, layouts of the structure and
cabin are included and considered for the tank design, leveraging the design capabilities of the baseline
outside-in system.

Based on the results in figure 7.2.1, figure 7.2.2 provides a breakdown of the volume and length of
the individual tanks. It shows that the accumulated volumes for each tank number amount to the
prescribed 55m3. However, the distribution of the volume among the tanks is biased towards the front,
if multiple tanks are installed. This is due to a design assumption that the length of each individual
tank ∆xtank,i can determined by splitting the available space ∆ltanks between the rear bulkhead and
the HTP box evenly, i.e.

∆xtank,i =
∆ltanks
ntanks

. (7.2.3)
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Figure 7.2.1.: Detailed geometry output for layouts with integrated LH2 tank.

Hence, as the cross-sectional area decreases towards the rear of the fuselage, so does the tank volume.
With the overall volume is fixed, the accumulated lengths vary with the number of tanks used. As

more tanks are added, more space is required by the tank structure due to the additional intermediate
caps. It can thus be concluded that the number of tanks should be kept as low as possible to keep the
fuselage length low. That said, a minimum of two tanks should be installed to comply with redundancy
requirements [NH22].
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Figure 7.2.2.: Comparison of tank volume and length for equal length distribution (from [WH+22b])

Based on said redundancy requirement, it may also be deduced that the goal for the design of
multi-tank layouts should be to achieve an even distribution of the volume among the tanks rather the
length. This case has not been discussed by Walther et al. [WH+22b] and adds further complexity to
the design process. In addition to the root finding problem in equation 7.2.2, a nested optimization
problem is introduced, where the inner bounds between the tanks are shifted to achieve an equal
volume distribution.

To enable the implementation of the optimization, several additional parameters for the tank design
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must be exposed in the knowledge-based system, to enable manipulation of the individual tank lengths.
To begin with the outer bounds of the design space for the tank xtanks,min and xtanks,max, and the
resulting available tank space ∆ltanks = xtanks,max − xtanks,min are determined from the RPB and
the HTP box respectively, based on the length change ∆lfuselage. Notably, the connection between
the rear bulkhead and the VTP front spar is separated and the bulkhead is instead placed directly
at the end of the cabin by overriding the corresponding rule. This provides the boundaries for the
distribution of the individual tank lengths, which are given by the vector ∆xtank of length ntanks and
initialized assuming the equal length distribution given in equation 7.2.3.

The individual tank boundary positions necessary to build the tank volumes can then be computed
from the cumulative sum of ∆xtank and the outer bounds. Since the fuselage length change ∆lfuselage
remains constant throughout each iteration of the scalar root finding problem, this is also true for the
outer tank bounds. Consequently, the individual tank volumes in the vector Vtank can be expressed
as a function of the individual tank length as given by

Vtank,i = Vtank,i(∆xtank,i).

Based on this expression, which can once again be implemented using FUGA by resetting the values
for ∆xtank and making a query for Vtank, the following optimization problem can be formulated, to
determine the tank lengths for equal volumes:

minimize
∆xtank

∆V (∆xtank) =

⌜⃓⃓⎷ntanks∑︂
i=1

(︁
Vtank,i(∆xtank,i)− V̄tank

)︁2
subject to ∆xtank,i ≥ 0, i = 1, . . . , ntanks,

ntanks∑︂
i=1

∆xtank,i = ∆ltanks.

(7.2.4)

For the objective function the ℓ2-norm of the deviations of the individual volumes from the mean
volume V̄tank is selected. This ensures that all resulting volumes are equal. Furthermore, an equality
constraint is introduced to assert that the sum of the individual tank lengths corresponds to the overall
available length ∆ltanks. In addition, a constraint is introduced, which ensures that all lengths are
nonzero.

Similarly to the original root finding problem in section 7.1.1.3, the updated root finding problem
with the nested optimization can be described using XDSM notation, as shown in figure 7.2.3. The
notation illustrates the nested loops very well via the process flow line. The outer loop remains
controlled by the solution for the fuselage length, whereas the inner loop is controlled by the optimizer.
The corresponding rules executed at different stages are also shown. This makes it easy to follow which
rules are executed how often during the overall solution. Clearly, the rules 1 to n as well as the rule n+
m+2 are visited once for every iteration of the root finding problem solution. Thus, the total number of
calls for each rule would be niter,root. Similarly, the optimization is performed once per iteration of the
secant method. However, the rules n+2 to n+m, which are contained within the optimization loop, are
called once for every iteration of the optimization loop. Thus, they are called niter,root · niter,opt times
overall. This highlights the particular need for efficiency of the rules called within the optimization
loop to avoid excessive run times. In this context, the graph-based methodology is helpful to determine
the exact set of rules, which is necessary for the evaluation of the objective function, to help avoid
computational overhead due to unnecessary reevaluations of parameters. That said, if possible, an
especially high standard of efficiency should also be applied to the implementation of rules themselves,
if they participate in the optimization loop. In the example at hand, the tank volume reevaluation
takes a matter of seconds owing to efficient underlying implementations, e.g. of the volume integration,
in OCCT.

The updated breakdown of the volume and length of the individual tanks for the equal volume
design problem is given in figure 7.2.4. In comparison to figure 7.2.2, the requirement that the overall
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Figure 7.2.3.: XDSM representation of the solution to the root finding problem with the nested opti-
mization problem

volume be divided evenly between the tanks is now satisfied. In return, the lengths of the tanks now
increase towards the rear.
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Figure 7.2.4.: Comparison of tank volume and length for equal volume distribution

In figure 7.2.5, the detailed geometry models derived from the integration results for ntanks = 2 for
both design paradigms are given. Both models include the detailed geometry of the structure and the
cabin, including the detailed RPB and the HTP box. The availability of these details of the bounding
components is useful for the assessment of the validity of the designs. Visibly, the tanks are fitted
properly in both cases. The detailed model furthermore provides a way to determine any clashes with
the fuselage structure, as the extruded representations of the stiffeners are available. Comparing the
two models, the observations from figures 7.2.2 and 7.2.4 pertaining to the length distribution are
confirmed.

A noteworthy difference between the two layouts in figure 7.2.5 is the gap in the sidewall panels in
front of the rear cabin wall, which is found in the result equal volume design strategy, but not for its
equal length counterpart. This is caused by a change in the number of frame bays between the two
designs. Whereas for the equal length strategy an even number of bays is returned, the number is
odd for the equal volume approach. The reason for this is the small length difference between the two
designs, which results in a slightly different position of the center wing box. Since the center wing box
is, however, an input to the frame distribution, as described in section 6.2.2.2, even relatively small
changes may have amplified effects further downstream in the design process, as exemplified by the
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(a) Equal length

(b) Equal volume

Figure 7.2.5.: Detailed geometry output for tank integration with ntanks = 2

188



7.2. Architecture modification

different sidewall arrangements.
The above example shows that, as required by working hypothesis 4, the knowledge-based design

system can be adapted with relatively little effort to support novel and and unanticipated design
problems by incorporating additional rule sets. In this case, the additional rule set effects an extension
of an existing system. As evidenced by the cabin and structural layout generation, large parts of the
baseline rule set can still be deployed, whereas the additional rule sets provide the means for targeted
manipulation of the system behavior. This results in design data sets, which can match the very high
level of detail of the baseline configuration. That said, the tank integration use case clearly benefits
from the fact that the basic configuration is still a tube-and-wing configuration, which is an important
condition for the application of many of the baseline rule sets. To investigate a configuration, which
is a more radical departure from the tube-and-wing configuration, the BWB cabin is considered in
section 7.2.2.

Similarly to the findings in section 7.1.1.3 it is also shown that the efficient implementation of such
additional rule sets once again requires deep insight in the available baseline system, not only to avoid
duplicate implementations, which can possibly break consistency, but also to ensure that updated or
overloaded data repository entries, as exemplified by the rear bulkhead position, are returned to the
correct nodes and in the correct format. This further underlines the importance of the explanation
subsystem and rule documentation.

7.2.2. BWB cabin layout

Whereas the modification of the product architecture for the LH2 tank integration in section 7.2.1 is
implemented primarily by extending the knowledge-based system by adding further rules to design
additional components, the system for the BWB cabin design use case predominantly requires mocking
of existing rules. This is supported by the description of the additional design rules for the use case in
section 6.3.2, which essentially serve to mimic necessary structural inputs for the cabin design. The
mocking rules are deployed by overriding the corresponding rules in the conventional design system.

By including the updated rules, the BWB cabin layout generation can be considered an extension
of the twin-aisle design capability demonstrated in section 7.1.2, where the number of aisles is simply
increased further. An additional requirement is the possibility to define empty blocks between aisles
and exits to account for the substantially decreasing fuselage cross-section towards the front.

In the following, the BWB configuration from the AGILE project, used previously for illustration
in section 6.3.2, is again considered. To determine the targeted level of detail, the BWB cabin layouts
created using the Cabin Configurator by Baan [Baa15] and shown in figure 2.1.4 are used as a reference.
As a result, the cabin layout generation is restricted to the floor layout. Any structural details
are bypassed and no paneling is included. The design range for the configuration is specified at
R = 8300nm by Shiva Prakasha et al. [SD+18], which means a cabin layout with a long-range level
of comfort is required.

Figure 7.2.6 shows the LOPA for the AGILE configuration. The single-class layout can provide
seating for 538 passengers. Analogously to the majority of the layouts proposed by Baan, the maximum
number of seats abreast per block is limited to four, which results in seven aisles at the widest part of
the cabin behind the third exit.

A total of 12 lavatories are installed, eight of which are a part of dual lavatory modules. This results
in a lavatory utilization UF lav = 44.833 PAX

lavatory . Furthermore, six galleys, providing space for a total
of 36 FSTs are present, which yields a trolley utilization UF galleys = 14.944 PAX

trolley . These figures are
only slightly inferior to the figures for the economy main deck in the D380 configuration in table 7.1.3
and are therefore consistent with the long-range design mission of the configuration. That said, a very
low seat pitch ∆xseat,eco = 28in is retained, which may be justified e.g. by more compact modern seat
designs with a reduced space requirement.

For the exit layout four type A+ exits are envisaged. Following the example of Liebeck [Lie04],
three pairs of exits are distributed across the forward part of the fuselage, which is not obstructed by
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Figure 7.2.6.: LOPA for AGILE BWB configuration

the wing. In contrast, the rear exit, which is required by CS 25.807(f), is modeled as a virtual exit
and does not lead to a door opening.

The resulting capacity from the exit layout remains beneath the total seating capacity. However,
adding further exits in the forward part will lead to a very uneven distribution of block sizes, with
the forward blocks having approximately 4 rows each, compared to 12 rows in the rear block. This
is aggravated further by the increasing number of lateral blocks toward the rear of the cabin. Thus,
the effectiveness of the additional exit would be severely diminished, since only a small number of
passengers would be able to reach it quickly. Moreover, it is not possible to move back the third exit
pair to improve the distribution of the rows, since it would cause another collision with the wing. To
overcome these limitations, alternatives to the commonly used side exits, such as ventral exits need
to be considered. However, those solutions present entirely new sets of problems e.g. the possibility
to evacuate during a ditching event.

These examples highlight the limitations to the exploitation of the additional available space in a
BWB configuration. Besides, some additional issues could be worth investigating, e.g. whether the
cross-aisle width of 20in is sufficient in an egress event if more than two aisles are present. To this end,
the details provided in figure 7.2.6 could already be sufficient for a basic boarding or egress simulation
as shown in section 4.2.3.3. Furthermore, due to the availability of designated aisles and exit spaces
as well as a more fine-grained control over the floor layout, especially w.r.t the monuments, the design
shown actually surpasses the BWB reference layouts from the Cabin Configurator in terms of fidelity.

To further support this, a 3D view of the layout is given in figure 7.2.7, which provides an even
further increased level of detail. Again, the 3D seat component models can be used in the overall
model. The cabin monuments are once more represented by blocks. The cabin boundary retrieved
from the updated rule set is used to clip the boxes, as in the baseline system. Furthermore, the lower
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plane of the boundary is used to represent the cabin floor.

Figure 7.2.7.: 3D view of the BWB cabin

The cutouts for the exits in the outer surface are also modeled. It becomes apparent, especially for
the exit right in front of the wing root that the intersections result in rather complex shapes. This
might pose a challenge to door design and manufacturing. Furthermore, it becomes clear once again
that it is impossible to realize a pair of side exits at the end of the cabin due to the presence of the
wing, highlighting the need for different solutions to fulfill the certification requirements.

In conclusion, the level of maturity of the BWB cabin design is clearly not on the same level as
for the previous conventional configurations. This is a reflection of the available knowledge in the
aerospace community, where BWB cabin or structural design are still rarely considered in detail,
as shown in section 2.1.3. Similarly, there are still unresolved safety and certification issues, partly
because no OEM has attempted to certify a large passenger BWB to date.

Nonetheless, the example shows that design capabilities for the novel configuration can be imple-
mented by including simplified assumptions as part of an updated rule set. In this case, the detailed
structural design rules could be bypassed to leverage the available cabin design rules described in
section 6.2.3 and provide a cabin layout at a level of detail comparable to the layout presented in
section 7.1.2 for the more conventional long range configuration. In conjunction with the extending
rule sets presented in section 7.2.1, this example illustrates the range of options for adapting the
knowledge-based system to support novel architectures as required by working hypothesis 4.

Comparing the results shown in figures 7.2.5 and 7.2.7 it can, however, be observed that the mocking
approach, unlike the extension approach, may have adverse effects on the level of detail of the resulting
geometry models. In the BWB example this is obvious as all the structural details are omitted. Since
the goal of working hypothesis 4 is to support fundamental decisions on different system architec-
tures, which are informed by disciplinary analysis, the potential loss of fidelity resulting from mocking
rule sets must consequently be considered a risk. Missing critical information e.g. the structural infor-
mation may result in inability to perform some disciplinary analyses, e.g. the structural sizing or mass
estimation, impeding a fair comparison of these aspects of the different architectures. Thus, while the
technique may be useful during design exploration and rule development, an extending rule set, which
does not simply bypass knowledge provided in the baseline system should usually be preferred.
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7.3. Fuselage analysis models

Returning to the D240 baseline design discussed in section 7.1.1, this section is meant to showcase
capabilities enabled by the graph-based methodology implemented in FUGA to provide analysis models
and provide a comparison to the state of the art in the corresponding field as established in section 4.2.
The goal is to show that the approach can be used to create models at a level of detail, which would
allow a disciplinary expert in the field to perform meaningful analyses on the design, to conclusively
prove working hypothesis 2.

From the analysis and design methods listed in section 4.2, the GFEM model for structure sizing pre-
sented in section 4.2.2 and the fuselage model for human factors analysis introduced in section 4.2.3.1
are selected as examples. On the one hand, the selected analyses cover a wide range of geometric
detail, with the GFEM requiring a high degree of abstraction and the human factors model relying
on a high level of geometric detail. On the other hand, the two use cases complement each other very
well in terms of which components are in focus, since the GFEM analysis is primarily driven by the
structure, whereas the human factors analysis is focused on the cabin.

7.3.1. GFEM for fuselage structure sizing

The review of structural model generators for the FEM-driven sizing of fuselage structures in sec-
tion 4.2.2 illustrates a clear trend towards parameter driven model generation based on CPACS since
the first publications appeared on the format. The structural definitions provided by the format are
a good foundation for the description of most of the relevant structural components in GFEMs listed
in table 4.2.1, which, for the most part, adhere to the template provided by PrADO. Out of the tools
listed in the table, PANDORA (formerly TRAFUMO) provides the most complete coverage of the
CPACS structure definition for the fuselage and is therefore selected as the reference in the following.
Applications of PANDORA, which serve as a reference in the following, have been published e.g. by
Scherer et al. [SK+13], who consider the D150 configuration.

As discussed previously, a common weakness of most GFEM generation tools based on CPACS is
the lack of flexible initialization capabilities for structural layouts for a given data set from OAD. As
a result, the sizing capabilities are typically focused on improving individual structural component
properties e.g. skin thicknesses, but do not readily support more fundamental changes in topology.
As shown in section 6.2.2, FUGA is capable of providing modeling capabilities to support this type of
analyses.

Consequently, the possibility to combine the design initialization and geometry generation rules to
generate GFEMs, which are useful for structural sizing application, described in working hypoth-
esis 2, is demonstrated in this section. The single-aisle configuration described in section 7.1.1 is
used as input to the model generation, being the most similar configuration to the D150 configuration
evaluated by Scherer et al.

7.3.1.1. Base structure grid generation from CPACS

To showcase the GFEM generation capabilities of FUGA, the objective in the following is to assemble
an automated process chain, which can provide an FEM analysis solution based on an empty fuselage
surface in CPACS without any structural definitions. This capability was first demonstrated by
Walther and Ciampa [WC18], whose design and model generation tool provides the basis for many
fundamental design capabilities in FUGA. As a result, comparable models can still be provided using
FUGA. Figure 7.3.1 provides an example of a GFEM of the D240 configuration at the level of detail
established by Walther and Ciampa.

Visibly, the model contains only a subset of the components, which are typically accounted for by
reference tools such as PANDORA. Nonetheless, many essential parts are already present, including
most entries from the paneling, frames and floor structure component groups listed in table 4.2.1. The
model components can roughly be divided into three different groups:
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Figure 7.3.1.: Basic fuselage structure FEM mesh after [WC18] (colors indicate element property IDs)

Base grid The frames and stringers are modeled as beam elements whereas the skin panels, which
they surround, are represented by a single shell element. Together, they form the base grid. The
nodes, which are computed by sampling the fuselage surface using vectors defined by the intersection
of the frame and stringer definition planes, as described e.g. by Walther, Petsch, and Kohlgrüber
[WPK17], form the corner points of the skin panels. The individual skin panel elements are grouped
into skin segments, which share common element property IDs.

Floor structure Floor components including crossbeams, struts and longitudinal beams are modeled
using beam elements. In a basic GFEM modeling approach, the vertical positions of the crossbeams
defined in CPACS must be adjusted based on a distance criterion to ensure that the beams align with a
node in the base grid. This is a source of inconsistencies, which is why the position of the crossbeams is
considered during the generation of the stringer distribution in FUGA to keep this correction minimal.

Flat bulkheads Only a simplified flat bulkhead representation is implemented, exclusively using shell
elements. The basic shape is given by a polygon, which is extracted from the base grid at the frame
position of each bulkhead. The meshes are then generated from the polygons using Gmsh [GR09].
Whereas the bulkheads are needed to create a closed pressure vessel in the model, the simplified mod-
eling approach illustrates the need for more advanced geometric modeling capabilities, which have
since been made available through FUGA.

Aside from the bulkheads, another notable simplification is the lack of a center fuselage area, which is
required to realistically model the introduction of the wing loads as stated e.g. by Scherer et al. Once
again, the omission can be attributed to a lack of advanced geometric modeling capabilities.

In order to show that the knowledge-based model generation approach can support the generations
of models, which are equivalent to those provided by PANDORA, it is necessary to introduce these
additional details into the above mesh. This is discussed in the following section.

7.3.1.2. Application of FUGA to integrate of additional model details

To augment this basic model with more detailed component models, which correspond more closely
to the standard set by tools such as PANDORA, the more advanced modeling and design capabilities
provided by FUGA and described in 6.1.2 and 6.2.2 respectively can be leveraged. In total, three
additional entries in the list of components are taken into consideration here: The detailed bulkheads,
the center fuselage area composed of the center wing box and the landing gear bay, and the payload.
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Detailed bulkhead model The bulkheads are an essential part of the model, as they are required to
form a closed pressure vessel. A closed vessel surface is necessary to avoid unrealistic reaction forces
when applying the loads due to the interior pressure. A detailed model, especially of the spherical
rear bulkhead, which is expressly shaped to alleviate pressure loads, can contribute to a more accurate
assessment of the effects of the interior pressure compared to its flat counterpart.

To build the mesh, the geometric rules for the detailed model generation provided by FUGA can be
combined with geometric information gathered from the base grid. In particular, the frame polygons
are required, which also provide the basis for the generation of the flat bulkhead meshes, are now
used to provide the base surface for the subsequent geometry generation in FUGA. Since the meshing
algorithm used is guaranteed to place a node on every corner of the polygon, it can be assured in this
way that the nodes of the base mesh are also present in the component mesh to enable subsequent
node-based connection of the two. The surfaces retrieved from the polygons are used to replace the
base sheets introduced in the description of the bulkhead model generation rules in section 6.1.2.1.

A drawback of this modeling approach is the possibility for hanging node on the polygon edge due
to the substantially lower element size in the bulkhead connector ring compared to the GFEM grid.
In the scope of this study, this is tolerated due to the significantly higher stiffness of the bulkhead
compared to the typical fuselage structure. A possible remedy could be the introduction of RBE2
constraint elements across the polygon edge.

Once the base sheet has been updated, the subsequent geometry generation steps for the detailed
bulkhead with reinforcement curves can be traversed as before. For the example of the spherical RPB,
this yields the geometry model shown in figure 7.3.2a. The multi-fidelity modeling capabilities enabled
by the graph-based system formulation are taken advantage of, as the reinforcements are provided as
curves, omitting the extra step of extruding the cross-section profiles of the reinforcements.

Next, a quadrilateral mesh generation algorithm provided by Gmsh is applied to the new geometry
model, which results in the mesh shown in figure 7.3.2b. Conveniently, Gmsh not only provides the
mesh nodes and cell connectivity as outputs, but also returns the corresponding edge or face indices
for each 1D- or 2D-element respectively, which are represented by the coloring of the elements in the
figure. Having this information available makes it possible to trace each element back to its original
CPACS definition, which enables the proper assignment of element properties according to CPACS.

(a) CAD geometry (FUGA) (b) Quadrilateral mesh (Gmsh)

Figure 7.3.2.: Rear bulkhead model

With the properties assigned, the bulkhead mesh can then be merged with the base mesh with the
common nodes from the base polygon providing the connections. A drawback of this approach is that
the resolution of the bulkhead mesh is substantially higher than that of the base mesh, as points are
added by the mesher on the boundary between the initial polygon points, which are not coupled to the
base mesh. For the purposes of this thesis, this is deemed uncritical, as the stiffness of the bulkhead
is substantially higher than the surrounding base structure. Consequently, the effect of the possible
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deformations is considered minor, compared to the more coarsely resolved but less stiff base grid.

Center fuselage area Whereas the rules from FUGA can be leveraged quite easily for the generation
of the bulkhead model, the situation is slightly more complex for the center fuselage area model.
Fundamentally, the same approach is used as before, i.e. a CAD component in FUGA is mocked using
geometry extracted from the mesh. However, the extraction of the correct geometry is somewhat more
complicated than simply extracting a frame polygon from the mesh.

Since the center fuselage modeling rules are all built upon the fuselage solid model, this is the
geometric component to be mocked. The base grid in the GFEM should, however, only be replaced in
the region of the center fuselage cutouts, retaining the remaining mesh. By converting all mesh nodes
to OCCT vertices, Boolean geometry operations can be applied to determine those nodes, which lie
within the center fuselage cutout volume. The volume is determined as described in section 6.1.2.3.
The elements adjacent to the identified nodes are removed from the GFEM base mesh. Then, the free
edges of the updated mesh, i.e. edges, which are only adjacent to one element, are determined in order
to find the boundary of the cutout. This boundary polygon provides the basis from which to build
the mocked fuselage solid for the center fuselage mesh generation.

To build the closed solid, the boundary polygon is first split in half at the yz-plane, resulting in two
open polygonal wires. The curves are then rearranged to make sure they are in the same order and an
open shell is built using the OCCT section interpolation algorithm. The algorithm is similar to the
skinned surface interpolation shown in section 4.1.1.2, but can operate on B-rep objects such as wires.
In this way, the faces of the center fuselage cutout, which lie inside the fuselage, can be reconstructed.
In addition, the outer surface must be rebuilt in such a way that it fits the edges of the boundary
polygon. To this end, a closing edge is added to each of the two open wires and a filling algorithm
is applied. The filling algorithm is also provided by OCCT and provides similar functionality to the
point cloud approximation, also described in section 4.1.1.2. As such, the algorithm attempts to build
a face from the boundary by fitting a NURBS surface. While the accuracy of the resulting surface
w.r.t. the original surface is reduced significantly, the boundary remains compatible with the free edges
from the base mesh, which means that, like the detailed bulkhead model, the meshed representation
of the center fuselage area will contain shared nodes with the base mesh, which can be used to connect
the two. Combining the faces provided by the filling algorithm with the inner shells yields a closed
shell, which can be converted to a solid.

The newly created solid geometry can now be used to mock the fuselage solid geometry input for
the center fuselage area model generation rules in FUGA. The resulting CAD geometry is shown
in figure 7.3.3a. Visibly, the contributions from the outer surface are limited to the bottom of the
keelbeam and the skin connecting the wingbox to the neighboring stringers. In either case the resulting
patches are small, which means a deviation due to the surface reconstruction can be accepted if it
leads to compatible edge nodes.

The mesh built from the geometry is shown in figure 7.3.3b. As indicated by the cell coloring, the
face indices necessary for mapping the mesh cells to their original CPACS definitions are once again
available.

Payload and cabin masses The capability of FUGA to generate both structural and cabin details
consistently and make them available via CPACS can also be leveraged in the GFEM model generation.
As shown by table 4.2.1 the payload in GFEM models is typically represented by mass points. To this
end, the cabin layout and thus the expected positions of the payload masses as well as major cabin
component masses can be determined by FUGA. Leveraging the multi-fidelity capabilities for data
reduction, a simple approximation of the positions is given by the geometric centers of the bounding
boxes of the component models, as illustrated by figure 7.3.4. A collection of methods for estimating
the mass values has been provided e.g. by Fuchte [Fuc14].

To provide connections to the structure, distributing coupling elements (e.g. RBE3 in Nastran) are
introduced. To determine the structural attachment points, a simple approach, which selects the n
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(a) CAD geometry (FUGA) (b) Quadrilateral mesh (Gmsh)

Figure 7.3.3.: Center fuselage model

Figure 7.3.4.: Cabin mass point determination from component meshes

nearest structural nodes has been implemented. The problem of finding the neighbors can be solved
very efficiently using spatial decomposition trees [MM02; VG+20]. The more difficult issue is to
determine the correct subset of structural nodes, which are eligible for the connection. To this end,
each type of mass node, corresponding to a certain type of cabin component, can be mapped to one
of several node sets. On the one hand, a node set is provided for each separate floor. In this way,
floor-based cabin components, such as seats and monuments, can be linked to the passenger floor,
whereas cargo container masses can be linked to the cargo floor. On the other hand, the base grid
is available as a set as well. This set is used to connect the components of the secondary structure,
such as sidewall panels or OHSCs. The resulting mass modes as well as the corresponding RBE3
connections are shown in figure 7.3.5.

Merging these component models with the basic structural mesh from figure 7.3.1 yields the more
detailed overall fuselage model shown in figure 7.3.6. It shows that, by leveraging the geometric
modeling capabilities of FUGA in combination with a mesh generation tool such as Gmsh, the level of
detail of the model can be increased with relatively little effort to approach the fidelity of state of the
art tools such as PANDORA. That said, several details such as the tailplane attachments or the doors
and windows are not modeled in detail yet. Nevertheless, the doors and windows are already taken
into account in the design of the frame and stringer distribution, and the corresponding elements can
easily be identified and assigned dedicated properties if necessary.

It may be put into question, whether the approach adopted here, i.e. to begin with a very simple
base mesh that is successively augmented by detailed component meshes, is the best possible solution.
Another option could be to assemble a single BRep-model and pass it to Gmsh as a whole. If the
model is built in the correct way, Gmsh will automatically ensure the compatibility of the meshes

196



7.3. Fuselage analysis models

Figure 7.3.5.: Cabin mass points and structural attachments

Figure 7.3.6.: Augmented fuselage structure FEM mesh (colors indicate element property IDs)

of neighboring components, which results in a well-connected and consistent mesh. However, this
approach requires a single mesh generation technique, including control parameters such as element
length, to be applied across the entire model. Meanwhile, the component-wise meshing approach allows
each component mesh to be discretized using the best possible algorithm and settings. Furthermore,
it is currently not possible to build the base grid using Gmsh, as each face is subdivided at least
once. The knowledge-based model generation approach implemented in FUGA also complements this
approach, as it provides fine-grained access to components and fidelity levels, substantially reducing
the effort necessary to build the individual component models.

7.3.1.3. Interfaces for load application

Aside from a suitable mesh, a set of loads to be applied to the model, which covers the entire flight
envelope, is essential to enable reliable structural sizing [KO+16]. Whereas the determination of the
loads themselves is beyond the scope of this thesis, the provision of the proper interfaces to apply
the loads to the mesh is a crucial part of the model generation. Several types of loads are commonly
considered at the GFEM analysis stage. On the one hand, loads due to the flight state, e.g. maneuver
or gust loads, must be taken into account, which are usually the output of an aerodynamic analysis.
Inertial forces, which occur due to the acceleration prescribed by the flight state must be included
as well. On the other hand, the pressure difference between the cabin interior and the surroundings
results in pressure loads, acting on the fuselage shell.
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The flight loads may be supplied in several ways. Commonly in early design, a set of cut loads is
given at a series of discrete points on the load reference axis of the fuselage [KO+16]. An example of
loads for a fictitious test case is given in figure 7.3.7b. For this type of load input, the load application
points must be available in the GFEM and coupled to the structure. Similarly to the cabin masses,
the coupling may be implemented using RBE3-type elements. In a collaborative design process, the
load reference axis points are usually provided by loads experts via CPACS, along with the loads
themselves. However, FUGA also provides simple rules to determine the load reference axis points for
the fuselage and the wings as shown in figure 7.3.7a. The loads process usually includes a simplified
mass model, which means that contributions due to inertia are already accounted for.

Another option is to map the pressure loads from the surface mesh of an aerodynamic simulation
directly to the surface nodes of the structural model. This is typically achieved using mesh-free tech-
niques, where forces on one set of points (the aerodynamic surface mesh points) are interpolated onto
another set of points (the structural mesh points) [BW01; QMM05]. When applying these techniques,
it is critical for the two meshes to be compatible, i.e. to avoid large gaps between the aerodynamic
surface mesh and the structural mesh, which would result in exaggerated forces. Consequently, it
is important that the mapping is performed only between nodes of the aerodynamic surface mesh
and the corresponding wetted surface nodes of the structural mesh. These nodes must therefore be
identified during the model generation by combining the nodes of the base grid with the nodes of the
center fuselage model surfaces, which correspond to the fuselage surface. The node IDs are stored in
a set and can be extracted from the model as shown in figure 7.3.8a. Differently from the cut loads,
the inertial forces are not included in the surface pressure distribution, which means they must be
included separately. Typically, this can be achieved by applying a global acceleration to the model.
To receive correct inertial loads in this way, it is important for the model to accurately represent the
mass distribution of the aircraft. In this context, the capacity to include detailed distributions of cabin
masses provided by FUGA makes a valuable contribution.

In order to properly apply the loads due to interior pressure, the pressurized regions of the fuselage
must furthermore be identified. Unlike the aerodynamic loads, which are applied as discrete force or
moment vectors at the nodes, the interior pressure loads can be applied directly on the shell element
surfaces. Consequently, the pressurized region can be described by a set of shell elements, which
is composed from those elements of the base grid that lie between the two pressure bulkheads, the
bulkhead shells, and the shells generated on the pressurized surfaces of the center fuselage area. The
resulting element set is illustrated in figure 7.3.8b.

The list of load cases covered here is not exhaustive and omits several types of load cases, which are
in fact essential for sizing real aircraft. This includes landing shocks and crash or ditching scenarios.
However, these cases are typically too complex to be assessed reliably using a GFEM, instead requiring
higher fidelity models and nonlinear FEM solvers, as outlined in section 4.2.2.2. Nevertheless, some
of the aspects discussed here may also be of interest for such higher fidelity analyses. Once again, the
availability of detailed cabin masses must be highlighted, which is particularly interesting for crash
simulations, since the high accelerations result in substantial inertial loads, which the floor structure
must be capable of withstanding. More accurate knowledge of the masses therefore results in more
realistic loads.

7.3.1.4. Wing and empennage models

For improved accuracy when modeling the introduction of the wing loads into the fuselage, it is
advisable to take into account the wing structure in detail as well. As shown in section 6.1, some
wing modeling capabilities are provided in FUGA. It is therefore possible to provide wing meshes in
addition to the fuselage mesh using the established structural component mesh generation approach,
based on the wing geometry model. The resulting mesh for the main wing is given in figure 7.3.9.

Visibly, the model contains structural details of the wing including spars and ribs as well as stringers,
which are represented by beam elements. The properties are assigned according to CPACS specifica-
tion. Once again, the forces and moments at the load reference axis points can be introduced at the
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(a) Example placement of load reference axis points

(b) Example cut loads at reference axis points (F/N)

Figure 7.3.7.: Cut load application via load reference axis points
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(a) Wetted surface node set with enclosed elements

(b) Pressure vessel element set

Figure 7.3.8.: Model subsets for load application
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Figure 7.3.9.: Wing mesh view (with backface culling applied)

nearest rib via RBE3 elements. The meshes for the empennage are created analogously.
Rigid coupling (RBE2) elements are used to couple the wings to the fuselage mesh. To this end,

the 150 closest pairs of nodes between the fuselage and respective wing meshes are identified and their
translatory degrees of freedom coupled.

7.3.1.5. Full configuration analysis

Combining the component models described in the previous sections yields a GFEM of the overall
aircraft. Applying the cut loads shown in figure 7.3.7b and a pressure difference ∆p = 60.165Pa, the
model can be solved using the MSC Nastran solver. Differently from Scherer et al. [SK+13], who
apply single point constraints to suppress rigid body motion, inertia relief is applied here. This has
the advantage that reaction forces at the fixation are avoided. The stress and displacement results of
the linear static analysis run of the full model loads are given in figure 7.3.10.

Figure 7.3.10.: Deformation and critical von Mises stresses for full configuration model
(σmises,crit/

N
m2 )
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The results shown are computed using an unsized structure based on imaginary loads. Nonetheless,
the overall response is qualitatively comparable to the analysis results presented by Scherer et al.
[SK+13] for a 2.5g load case, also given in figure 4.2.8. Notable differences occur at the transition of
the center wing box and the keelbeam to the base structure. This could be due to a larger difference
in stiffness resulting from different material thickness assumptions for the keelbeam, or a smoother
transition between the components in the model by Scherer et al. due to the introduction of additional
structural details to the model such as stiffeners for the bulkheads, lateral panels on the landing gear
bay, or triangular panels at the end of the keelbeam. In addition, the deformation of the HTP is
notably larger in figure 7.3.10, which suggests a higher loading and thus a higher bending moment at
the fuselage center. Finally, the assumption of a constant load distribution along the fuselage length
may lead to an exaggerated influence of the forward and aft regions on the bending moment, as well.

To enable a static sizing of the skin panels, the different failure criteria for each stringer bay must
be evaluated to compute utilization factors UF i =

σi
σallow,i

. To this end, the failure criteria for static
strength based on the von Mises stress and single panel buckling after Bruhn [Bru73] are evaluated.
A global yield strength for aluminum Rp0.2 = 441.216MPa is assumed. No safety factors are taken into
account. The resulting critical utilization factors are given in figure 7.3.11. The results corroborate the
previous observation that the loading around the center fuselage area is high compared to the results
presented by Scherer et al., which leads to a large region where UF i > 1. Furthermore, some of the
window elements towards the center of the fuselage with a low aspect ratio due to left-out stringers
have a critically high UF .

Figure 7.3.11.: Critical utilization factor for stress solution

To further support the understanding of the results, it is useful to also analyze, which failure
criterion yielded the critical UF for a given skin panel. This information is provided in figure 7.3.12.
As expected, the lower part of the fuselage is primarily driven by buckling, whereas static strength is
critical in the upper part. That said, buckling is also critical in some of the skin panels in the window
row, which further highlights the adverse effect of the decreased aspect ratio.

The above shows that the GFEMs built from the structure designed and modeled using FUGA can
be used to assess the structure in order to inform sizing decisions. However, as only a single load
case is considered, the available information is not sufficient, to reliably size the fuselage. Instead a
variety of load sets should be available, in order to cover the entire flight envelope of the design. In a
collaborative design process, this information is typically made available by dedicated loads experts.
Thus, it is nevertheless shown that, as required by working hypothesis 2, suitable geometry models
for structural sizing using GFEM can be generated using the KBE-driven approach.
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Figure 7.3.12.: Critical failure criterion for stress solution

7.3.1.6. Knowledge graph exploration analysis

Analogously to section 7.1.1.4, the coverage of the knowledge graph is considered once again based
on the graph chart given in figure 7.3.13. Again, the node positions and layout are retained from the
original outside-in system MCG in figure 5.2.2. Compared to the design process chart in figure 7.3.13
the density of nodes visited in the middle third representing the design rules is reduced. This is because
only those design rules are triggered, which provide details required for the GFEM generation. The
determination of cabin mass points is omitted for this example, since the determination of the mass
values surpasses the capabilities provided by the baseline outside-in system. As a result, only very
few rules on the left side of the graph, which contains the cabin design and model generation rules,
have been evaluated. In contrast, the number of rules evaluated in the bottom right corner, which
represents the structural geometry generation is increased significantly.

Given the staggered nature of the GFEM model generation process described above, more system
evaluation steps are required than in the previous example. They are given in table 7.3.1. Notably,
aside from the mass points, the wing model generation is skipped as well. Since no rib data is available
in the baseline CPACS file, these modeling steps, too, would require additional design rule sets, which
are, however, not included in the baseline outside-in design system considered here.

Table 7.3.1.: System requests and performance data for GFEM problem
Request ID Description Rule count Timing Cumulative timing

i ti/s
∑︁i

0 ti/s

0 Initialize 120 0.46 0.46
1 Build base grid 118 15.11 15.56
2 Build floor grid 19 0.54 16.10
3 Compute center fuselage cutouts 15 1.42 17.53
4 Build detailed bulkhead geometry 7 0.97 18.50
5 Build center fuselage geometry 5 8.46 26.96

The process again begins with the system initialization. The rule count remains unchanged com-
pared to the design example, since the same input data is used. Consequently, the execution time is
very similar as well.

Next, the base grid is built. This is the most time consuming step, since it includes the computation
of the intersection points with the frame and stringer intersection definition vectors and the fuselage
surface. Aside from the evaluation of the Boolean operation itself, this also requires leveraging a
substantial subset of the design rules to determine e.g. the frame and stringer distributions. Further-
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Figure 7.3.13.: Knowledge graph execution chart for GFEM generation
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more, the cross-section or thickness data as well as materials must be determined to provide element
properties. As a result, the base grid building step requires the largest number of rule evaluations,
excluding the initialization. That said, the number of rules evaluated is still substantially lower than
for the design synthesis in table 7.1.2. This shows that only those design rules were evaluated, which
are essential to the task at hand.

Nevertheless, a performance benefit in the subsequent steps can be identified, since a lot of the
necessary input data is already available in the data repository. For instance, the floor grid can be
assembled in the next step based on a ready-made stringer- and frame layout. Since the exit layout
is also known, the determination of the seat positions, which are inputs for the longitudinal beam
definitions, also requires only very few additional rule evaluations.

Even fewer rules are necessary to compute the center fuselage cutouts. In this step it is determined,
which elements to delete from the base grid to subsequently include the detailed center fuselage model.
Despite the lower number of rules involved, this operation is in fact more computationally expensive
than the floor assembly because Boolean geometry operations are again required to determine the
nodes, which lie inside the space of the center fuselage area.

In the two final steps the component geometry models are built based on the updated base shapes. As
such, only very few rules, linked directly to the component model generation, are triggered. However,
since Boolean operations are necessary once again, the operations are comparatively computationally
expensive.

Nevertheless, overall, the determination of the GFEM geometry remains on a similar scale as the
design synthesis in terms of computational cost. Even though fewer rules are evaluated in total,
the overall run time is nonetheless slightly increased, due to the higher share of rules related to
geometry operations, which are more expensive to compute. A further caveat is that neither the mesh
generation for the detailed components nor the FEM solution are included in these times, as they are
not controlled by FUGA rules, but by an overarching control code. Consequently, the mesh generation
run times must still be added to the model generation times given in table 7.3.1. Nevertheless, the
available numbers show that the necessary geometric data and shapes, which can be used as inputs
for optimized mesh generation tools developed by disciplinary experts, can be provided quickly using
the KBE methodology.

7.3.2. Immersive visualization for human factors analysis

In section 7.3.1, it was shown, how the KBE-driven modeling approach can be applied to provide
GFEMs for structural sizing. However, it is furthermore stated in working hypothesis 2 that the
approach should be capable of supporting a variety of disciplinary analyses related to the fuselage.

Human factors analysis using VR is introduced in section 4.2.3.2. The field is of high interest to
many stakeholders, e.g. to rapidly assess customization options, improve customer experience or as
a sales tool. However, in early design phases the exploitation of the potential is constricted due to
high requirements of geometric detail, which can not typically be met at this point of the product
development cycle. Once again, the KBE driven design and modeling approach implemented in FUGA
can be leveraged to make more detailed geometry models available sooner in the development process.

The human factors model is a suitable choice as the second use case to illustrate the disciplinary
model generation capabilities of the knowledge-based approach because it complements the previously
discussed GFEM in many ways. For one, it is a use case that is primarily driven by the cabin, whereas
the GFEM is primarily driven by the structure. Furthermore, the challenge during the generation of
the GFEM model is the effective abstraction of the geometry, i.e. to provide component models at low
levels of fidelity to reduce computational cost. The human factors model, on the other hand, needs
to provide high amounts of detail in order to be sufficiently immersive to get useful responses from
human test subjects or convince potential customers. In this way, the use cases cover two ends of the
spectrum of requirements for multi-fidelity geometry.

The model by Fuchs et al. [FB+21] shown in figure 4.2.10 is used as a reference for an automatically
generated cabin model for VR applications. In this model, textures and animations are integrated via
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hard-coded features of the external component models. Consequently, they are not considered part of
the design process and thus not taken into account in the following. Instead, the goal is to provide
models of the fuselage geometry and cabin layout in such a way that they can be used by experts in
the field to quickly set up their respective analyses. This implies that:

• Models shall be provided as 3D visualization meshes either in a 3D graphics environment or a
video game engine,

• Meshes of the CAD geometry shall be provided, which can be rendered efficiently to not deteri-
orate performance, but are also sufficiently detailed to ensure an immersive user experience,

• Meshes of sub-components shall be traceable to their original CPACS definition e.g. via their
uID, to enable targeted additional manual processing or integration of metadata for interactive
data display as shown by Fuchs et al. [FB+21].

The outcome is a design and visualization pipeline, which can read CPACS inputs and generate meshes
in VTK via FUGA and provide the model to Blender via the Blender Python scripting interface.
Blender, in turn, offers options for manual model processing and enables the export of the model to
the Unity video game engine using the glTF or FBX formats.

7.3.2.1. Visualization mesh generation

As described in section 6.1, a hybrid approach is adopted to describe the fuselage and cabin geometry,
which combines CAD models with triangulated meshes. The overall layout can be assembled from
the triangulated components models which can be retrieved, for cabin components such as seats, by
simply transforming copies of the mesh, as described in section 6.1.3. For CAD-based models, the
Delaunay mesh generation algorithm from OCCT is leveraged.

As discussed in section 4.2.1.2, the requirements for visualization meshes are profoundly different
to FEM analysis meshes. Most obviously, the GFEM mesh is dominated by quadrilateral elements,
whereas the visualization mesh consists exclusively of triangles to allow for efficient rasterization.
Furthermore, the goal of the FEM mesh is to model the structural behavior, whereas the visual-
ization mesh is meant to accurately represent the underlying mathematical surface. Consequently,
visualization meshes are typically coarse where the geometry is flat and refined in curved regions.

The meshing parameters provided by OCCT allow the user to control how closely the mesh should
follow the underlying geometry, where higher accuracy requirements will result in a finer mesh with
more triangles. The parameters include the angular deflection αmesh and linear deflection dmesh of the
mesh as illustrated by figure 7.3.14. They can be specified both on the boundary and in the interior of
a face. Furthermore a minimum triangle edge length is specified to prevent infinitely small triangles.

dmesh amesh

Figure 7.3.14.: Linear and angular deflection (on the boundary) for OCCT meshing algorithm (after
[OCC23b])

The effect of the meshing parameters on the number of faces of the resulting mesh for the example of
the fuselage skin with cutouts is shown in figure 7.3.15. The substantial impact of the parameters on
the number of faces is visible. In particular, very small angular deflections result in very high numbers
of faces and thus in meshes, which are expensive to compute and process. A significant influence of
the linear deflection can only be detected for angular deflections αmesh > 0.5.
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Figure 7.3.15.: Number of faces due to linear and angular deflection

A comparison of two resulting meshes with flat shading applied is given in figure 7.3.16. The first
mesh has a face count of approximately 50.000, which is increased by a factor of 10 for the second
mesh. The finer mesh clearly appears smoother as individual triangles are more difficult to discern,
aside from some artifacts in the lower part of the fuselage. Meanwhile, in the coarser mesh, the
triangular faces can be seen very clearly, resulting in a less credible appearance. The overall shape of
the fuselage is, however, represented quite well, as evidenced by the very similar outline compared to
the finer mesh.

(a) 53854 faces (b) 573812 faces

Figure 7.3.16.: Comparison of shaded meshes with different face counts

Even though the number of 500.000 faces may not appear very high compared to the state of the
art in modern gaming1, it is worth noting that this is only for a single component mesh, i.e. the skin.
The final model will, in addition, contain separate meshes for each structure and cabin component.

1Vehicle models in 2022’s Gran Turismo 7 consist of 500.000 faces compared to 300 faces in the original Gran Turismo
from 1997 [Smi22].
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Consequently, it is advisable to keep poly counts low for all component meshes in order to optimize
performance.

In order to improve the appearance of coarser meshes, different shading techniques have been dis-
cussed in section 4.2.1.2. Common to all of these techniques is that the normal vectors of the surface
must be provided in addition to the node positions and cell connectivity. A common technique to
determine the normals at the mesh points, which is implemented e.g. in the VTK library, is to compute
the average of the adjacent cell normals weighted by the area. This procedure has the drawback that
the accuracy of the normals depends on the mesh resolution, as finer meshes result in more accurate
normals. Since the underlying CAD geometry is known, it is therefore preferable to use the known
uv-coordinates of the mesh nodes on the CAD faces and determine the normal vectors directly from
the geometry. In this way, accurate normals can be obtained independently from the selected meshing
parameters. The resulting normal distribution for the coarse mesh is given in figure 7.3.17a. Applying
Gouraud shading yields the result shown in figure 7.3.17b.

(a) Mesh point normal vectors (b) Gouraud shading applied

Figure 7.3.17.: Normal vectors and shading result (53854 faces)

Visibly, the quality of the visualization surpasses the quality of either of the previous visualizations
using flat shading, including the fine mesh. It can thus be concluded that providing meshes, which
are augmented with normal data, is typically preferable to providing very fine meshes for effective
visualization of CAD data. This is also advantageous, given the high number of separate component
models provided in FUGA, e.g. due to high frame and stringer counts, which can quickly lead to a
high accumulated face count. Consequently, the coarse mesh generation settings have been adopted as
defaults for FUGA, where dmesh = 0.01m and αmesh = 0.5◦. Nevertheless, the possibility to request
higher resolution meshes is retained via optional inputs.

7.3.2.2. Overall visualization mesh in the Blender 3D graphics environment

The outputs of the mesher, including the point normals, can be transferred to a polygonal mesh data
type in VTK. Hierarchical CAD tree structures using e.g. compounds in OCCT, can furthermore be
mapped to a multi-block data structure in VTK. In this way, the hierarchy of the CAD model and
thus the accessibility of individual component sub-models can be retained.

The pool of component types, which should be contained in the mesh can be determined based on
the meshes shown by Fuchs et al. [FB+21] and includes the floor-based components of the cabin, e.g.
seats and monuments, and the secondary structure including sidewalls, OHSCs, and ceiling panels.
Furthermore, elements of the primary structure are contained, including frames and the skin. The
floor is represented by a floor plane. The cabin system details shown by Fuchs et al. are omitted
here, since they exceed the scope of the modeling capabilities of CPACS as of version 3.4. In return,
a model of the full fuselage is assembled, expanding upon the barrel-based models by Fuchs et al. A
realistic depiction of the exterior not only promises an enhanced user experience, but also caters to
applications involving the boarding process as shown by Gopani [Gop21].
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As mentioned before, the need for manual modification of the models often arises during the setup
of human factors analyses. A good example is given by De Crescenzio et al. [DB+19], who manually
apply different sets of textures to a given geometry. Thus, the goal is formulated to provide the
visualization mesh in a 3D graphics environment in such a way that facilitates the modification of
models. Fuchs et al. [FB+21] apply the open source software Blender, which has been introduced in
section 4.2.1.2.

Since FUGA natively provides the mesh in VTK format, an interface between the format and
Blender is required. Two major requirements are the correct transfer of the mesh point normals and
the mesh hierarchy. Out of all formats listed in section 4.2.1.2, the OBJ and glTF formats have been
taken into consideration, based on these requirements. Both provide support for point normals and
interfaces are included out of the box in both VTK and Blender. That said, support for glTF in the
VTK library is currently still under development, whereas OBJ is an established format, which is why
the latter has been selected.

That said, a challenge with either of these formats is the transfer of the model hierarchy. Typically,
the individual component meshes are merged into a single mesh, which can be exchanged as a single
file. However, if the separation of the component models is to be retained, a separate file for each
component mesh must be written. To reflect the hierarchy, the mesh files can be stored in a custom-
built folder structure. This approach requires a customized reader that can explore the folder structure
and reconstruct the hierarchy tree, which may be implemented in Blender using the available Python
scripting interface. Aside from the higher risk of errors due to customized output and input interfaces,
this approach furthermore suffers from poor performance of the export and import operations for the
plain text OBJ files.

A second option is therefore to access the VTK library directly from the Python scripting interface
in Blender. Here, the established VTK multi-block format can be used for data exchange. The format
is capable of storing data in binary form, which accelerates the data export and import operations.
Using the VTK library, the mesh data arrays including any point or cell metadata, such as normals,
can be made available to Blender directly via numpy arrays. Furthermore, the model hierarchy is
contained in the data structure. As such, the only additional step is to traverse the multi-block data
structure and recreate the hierarchy using Blender container types. Consequently, only one additional
interface must be implemented, which significantly reduces the risk of errors.

The overall model as rendered by Blender is shown in figure 7.3.18. It can be seen that the smooth
surface meshes of the CAD-based objects have been retained during the transfer. Furthermore, all
types from the pool of components listed at the beginning in this section can be identified.

Figure 7.3.19 shows the component tree corresponding to the model in figure 7.3.18 in Blender.
The individual components are subdivided into groups and can be identified via their uID, which is
contained in the name. In this way it can be ensured that the components are easily accessible to
Blender users. The model and the hierarchy can be stored and exchanged using e.g. a native Blender
(.blend) file or an FBX file.

7.3.2.3. Interactive model exploration in the Unity video game engine

Having the visualization mesh available in Blender not only makes it possible to manipulate it manu-
ally, but also gives access to several additional exchange formats, which are not supported by the VTK
library. Most prominently, the proprietary FBX format is supported, which is a popular exchange
format for 3D assets in the Unity engine. However, whereas the model can be imported easily into
Unity, some additional steps must be taken in order to prepare the model and its environment for
interactive exploration.

Add user character model to enable interactive movement A user character model must be added
to provide the physics rules for the character movement. This enables the user to move through the
model and explore it from a first-person perspective. Off-the-shelf solutions are available for Unity,
which can simply be imported into the scene (e.g. [Gra22]).
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Figure 7.3.18.: Cut view of the overall configuration model in Blender

Add floor surfaces and colliders The user character model is subjected to gravity, which means it
is necessary to define floor surfaces to walk on and keep the character from falling into infinity. This
typically includes the cabin floor panels, but could also include the ground. To this end, an additional
ground plane can be added to the environment. The vertical position of this plane can be determined
via a FUGA rule based on the model bounds. Instead of a simple plane, an external model, e.g.
of a hangar, could also be imported to represent the environment. The floor panels are available as
individual meshes from the FBX import. Thus, their properties can also be manipulated to let them
support the user model.

By default, the user character will not collide with another object in Unity, unless a mesh collider
component is activated. This step must be completed both for the ground plane and the floor panels.
To enable collisions, e.g. with floor components, the collider can furthermore be activated for the
respective component meshes.

Add lighting Unity does not provide global lighting by default, but instead requires lights to be
placed explicitly in the model. By default, a single directional light source is placed in the scene,
which acts as a “sun” to provide illumination. However, this approach results in closed spaces, such
as the cabin, remaining in the dark. Therefore, additional light sources must be placed in the model
in order to ensure proper illumination of the interior. Once again, FUGA rules can be leveraged to
determine the positions of the light sources, e.g. based on the ceiling panel positions. Blender provides
the possibility to generate light sources automatically via the Python scripting backend and the results
can be shared with Unity via the FBX format.

Figure 7.3.20 provides a collection of impressions from the resulting interactive scene in Unity. In
figure 7.3.20a, a view of the aircraft exterior is provided. Once more, very smooth surfaces can be
achieved by enhancing the relatively coarse mesh from the CAD data with the surface normals at the
mesh points. The available aircraft details, which include the cabin and cockpit windows as well as
the door cutouts and the engine help enhance the realism of the visualization, compared e.g. to the
example given by Gopani [Gop21]. To give the impression of accessibility, the main door components
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Figure 7.3.19.: Model hierarchy in Blender

have been moved to appear open. This is easily accomplished as the individual component meshes are
accessible in Unity as well.

The interior of the fuselage is shown in figures 7.3.20b and 7.3.20c. Unlike the fuselage, the majority
of the cabin components is provided using external meshes in STL format. Consequently, the shading
quality of the surfaces is not optimal as no normal vectors have been provided. Nonetheless, a good
level of detail can be achieved, which closely matches the reference by Fuchs et al. [FB+21]. Aside
from the aforementioned lack of cabin subsystem details, which have not been included in FUGA or
CPACS yet, the main omission is the lack of different material properties and coloring, based on the
component type. This is, however, not a major issue, since the individual component models can be
accessed and manipulated in groups, as shown previously for the floor panels.

Apart from that, all cabin components found in the reference are present, including seats, sidewalls,
OHSCs and ceiling panels. The floor-based monuments are also modeled, albeit as boxes. This means
that, while they can convey a sense of the available space, they do not contribute significantly to an
enhancement of the immersion via details. This simplification is, however, deemed acceptable, as no
monuments are shown at all in the reference.

Nevertheless, this again brings up the issue of availability of detailed cabin component models, which
can be identified as a key enabler for the generation of effective and immersive human factors models.
Closer examination of figure 7.3.20c reveals the lack of suitable panel models around the exit behind
the wing as well as a missing cockpit door. The result in both cases is that the underlying primary
structure is exposed, which is clearly detrimental to the immersion. Thus, more detailed component
models, which cover the entire cabin, must be made available, in order to enable truly immersive
human factors analyses. In this context, including textures in the models should also be taken into
consideration, as their usefulness has already been demonstrated e.g. by De Crescenzio et al. [DB+19]
and Engelmann, Drust, and Hornung [EDH20].

To this end, 3D scanning has recently become an interesting alternative to creating the detailed
component models manually, as exemplified e.g. by Rauscher et al. [RB+21] and Fuchs et al. [FB+22].
Additionally, it is possible to implement a new rule set in FUGA to model different types of components
parametrically as shown for the seats in section 6.2.3.4. While the resulting models in either case will
most likely not match the quality and detail of hand-made meshes, they could be of use to cover the
distance between highly detailed models and bounding box representations.
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(a) Exterior view

(b) Backward view of interior from first row

(c) Forward interior view from rear exit area

Figure 7.3.20.: Views from interactive scene in Unity
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Irrespective of these issues, the above results show that the knowledge-based geometry modeling
methodology can already be applied successfully to orchestrate an available set of component models
in order to assemble a geometric representation of an aircraft fuselage and cabin, which provides a
suitable starting point for the setup of a human factors analysis. They thus further support working
hypothesis 2, confirming that the approach can support the generation of interactive visualization
models in addition to the GFEM shown in section 7.3.1. Whereas further work on the model by
the disciplinary expert might be required to improve the effectiveness of the analysis, the application
of FUGA to provide the foundational model leads to a significantly reduced ambiguity w.r.t. the
overall configuration of the fuselage and cabin geometry and thus substantially reduces the risk of
inconsistencies in a collaborative setting.

7.3.2.4. Knowledge graph exploration analysis

Analogously to the GFEM generation, the coverage of the knowledge graph for the visualization mesh
generation is given in figure 7.3.21. Unlike the GFEM, the process for the visualization mesh is fairly
standardized in FUGA, which means the user only needs to make very few requests for models of
specific subcomponents, as listed in table 7.3.2. Nevertheless, the coverage of the graph is significantly
higher than in all previous examples.

Once again, the profiling data for the initialization remains the same and rules in the first topological
layers are predominantly evaluated. For the first user query, the cabin model is assembled. The rule
count in this step is higher than for any other, since much of the design details, which are not available,
must be determined, triggering rules from the design rule sets. This is visible in figure 7.3.21, where,
in the first step, not only most of the cabin design and modeling rules on the left are evaluated, but
also a large number of structural design and geometry generation rules on the right. The drivers for
the computational cost of the first query are similar to the design problem in section 7.1.1.4, i.e. the
determination of the frame curves and the retrieval of the external models from the hard drive.

Table 7.3.2.: System requests and performance data for visualization mesh problem
Request ID Description Rule count Timing Cumulative timing

i ti/s
∑︁i

0 ti/s

0 Initialize 120 0.46 0.46
1 Build cabin model 161 14.10 14.56
2 Build engine model 16 0.60 15.16
3 Build airframe model 128 432.74 447.90

In contrast, the generation of the engine model is very fast, as it only requires the generation of
a small number of NURBS surfaces, but no Boolean operations. In the outside-in baseline system
used, it is furthermore based exclusively on CPACS inputs without interconnection to the fuselage or
cabin design, which means no design rules must be triggered.

The generation of the airframe geometry model, which includes the computation of the cutouts
for the doors and windows as well as for the center fuselage area, is significantly more demanding in
comparison. The corresponding nodes are found in the bottom right corner of the chart. The coverage
in this area is visibly higher than in the previous examples. Nevertheless a number of nodes are found,
which have not been visited. They represent the multi-fidelity options for stiffener representation and
cutouts. The benefit of these options is highlighted by the associated run times. In particular, the
evaluation of the cutouts on the extruded stringers requires around one third of the overall run time,
which is now in the order of minutes instead of tens of seconds. Furthermore, the determination of the
parametric curves of the stringers on the fuselage surface as well as the extrusion of the cross section
and the application of the center fuselage cutouts each roughly take half a minute. This shows that
the stringers form a critical path, even in a parallelized implementation. Aside from the stringers, the
computation of the cutouts for doors and windows on the fuselage also makes a significant contribution
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Figure 7.3.21.: Knowledge graph execution chart for visualization mesh generation
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to the run time.
The reason for the substantial difference in performance between the frames and the stringers,

despite being modeled using very similar procedures is the different approach to determining the
trajectory curve, i.e. the intersection curve between the definition plane and the fuselage surface,
which provides the basis for the extrusion. For the frames, the result of the intersection is typically
an isoparametric curve, which means that the order and knot vector of the trajectory are the same
as for the circumferential direction of the fuselage surface. In contrast, the stringer curves are not
commonly isoparametric, which means they must be approximated, resulting in more complex curves
with a higher polynomial order and more control points.

The above considerations once again highlight the value of the multi-fidelity geometry modeling ap-
proach, which makes it possible to bypass expensive operations if they are not necessary, as shown e.g.
for the GFEM generation. Given that the stringers may not be essential e.g. for a cabin visualization
model, there is also some potential for accelerating the visualization model generation process.

7.4. Discussion

In the application studies in this chapter the possibilities of the KBE-driven approach are further
investigated. Broadly speaking, two dimensions can be identified, where the D240 baseline design
from section 7.1.1.1 constitutes the origin of both axes.

The first axis, represents the versatility of the design capability. This axis is represented by the
D380 use-case in section 7.1.2 as well as the tank integration and the BWB cabin integration examples
in section 7.2. The D380 layout can be generated based on the same set of rules as the baseline, simply
by manipulating the input parameters. It illustrates the big range of possible configurations, which
can be supported by the baseline rule set, but also highlights that profound knowledge of the system
is necessary to assure a consistent final design, even with two decks present. The example also exposes
weaknesses in the approach of using “dead” external geometry models to represent cabin component
models, which are not sufficiently flexible to adapt to significant changes of the surroundings. The
adaptation of the sidewall panels to the cross-section of the fuselage is an example of this. Neverthe-
less, the two examples show that the approach can fulfill working hypothesis 3, since the missing
structural and cabin data is filled in based on the given CPACS file and design parameters.

The tank integration example represents the next evolutionary step along the first axis. The vast
majority of the design rules of the baseline system remains valid since the fundamental tube-and-wing
configuration is retained, but the system is expanded to support the novel architecture and take into
account the additional requirement of providing storage for a certain fuel volume in the fuselage. The
similarities to the baseline configuration mean that a number of components, including cabin and
primary structure can be designed to a very high level of detail.

This is no longer the case as one travels further along the first axis towards the BWB example from
the AGILE project. The configuration is so substantially different from the D240 baseline that the
structural design rule set is no longer valid. To still be able to provide the necessary inputs to the cabin
design, the relevant interface nodes must therefore be determined using a mocking approach instead.
The implementation of the mocking, which effectively bypasses large segments of the structural design
rule set, results in a loss of detail in the design. Nevertheless, it is possible to provide a floor layout
for the cabin. The two examples show the capability to support changes in product architecture
with minimal changes to the knowledge-based system deployed through additional rule sets. This
aligns with the requirements formulated in working hypothesis 4, showing that the proposed KBE
methodology is also well-suited to support novel architectures.

The first axis is concerned with the design, which is why, geometry dependencies aside, the focus
lies on the design rule sets and the effects of changed system composition and inputs. In contrast,
neither the design inputs nor the system are changed going along the second axis, which is the model
generation axis. Once more departing from the D240 baseline in section 7.1.1.1 geometry models
are derived for a GFEM suitable for structural sizing applications and for a interactive visualization
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model for human factors studies, which are described in 7.3.1 and 7.3.2 respectively. The progression
along this axis is illustrated by a graph exploration analysis in each case, which shows an increasing
coverage of geometric modeling rules as the required level of detail is raised. The growth in coverage
is accompanied by an increase in run time, in particular due to computationally expensive geometry
operations. Conversely, whereas all design rules are executed in the baseline example to fill all possible
CPACS nodes consistently, only the necessary subset of those rules is applied in the subsequent studies.
This is a showcase of the capability of the KBE approach to deploy rules as required based on the
incoming user query.

Based on the geometry assembled from the knowledge-based system, the analysis models are built
automatically and deployed in a basic analysis to showcase the usefulness of the geometry to a dis-
ciplinary expert. The results show that the knowledge-based approach can indeed provide workable
analysis models, thus confirming working hypothesis 2.

In addition to the above, some general observations can be made on how the user is expected to
interact with the system in its current state. As shown by the exploration analyses, the KBE reasoner
is capable of traversing the graph based on a user query if the node lies downstream from a set of
given nodes. If this is not the case, the user can resort to numerical methods to iteratively solve for a
target variable based on a number of input variables. The applicability of this approach is, however
subject to some restrictions. For instance, both variables should ideally be floating point numbers or
arrays, to support traditional root finding and optimization algorithms.

The solution of these kinds of problems, similarly to the resolution of loops in systems, where
the MCG is not a DAG, require the user to carefully advance through the system to avoid loops
in the FPG as well as reset node values based on findings in the iterative process. This introduces
a complexity, which can presumably only be handled by very experienced users. Thus it would be
desirable to introduce certain types of coordinator blocks, similar to the MDA or optimization blocks
from MDAO, to the knowledge-based system, in order to control e.g. the resolution of a loop as shown
in figure 7.1.6.

A second, related topic is the automated combination of rule sets. In FUGA, the user is currently
responsible for finding and combining all necessary rule sets, supported by some helper classes, which
offer pre-configured systems for the most common use-cases. This is acceptable for the number of
rule sets available at this point. However, as more disciplines are added, e.g. to add parametric cabin
component models or on-board systems, an automated solution for system composition based on a
rule set dependency layer could be useful, which selects not only rules, but also eligible rule sets based
on user inputs and queries. This would once again facilitate the application of the system to novice
users.

Finally, the reliance on “dead” external geometry, is clearly identified as a major weakness of the
current implementation. This is particularly drastic for the secondary structure. Whereas in the
baseline configuration, the “damage” is limited to some specialized elements missing in the door neigh-
borhood areas, configurations, which depart from the standard single-aisle cross-section are essentially
not supported. Thus, a larger library of models, or even better a parametric component description
is required.

It is nevertheless shown that the KBE methodology is, in principle, suitable to address all of the
challenges posed by the above applications, confirming the research hypothesis.
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8.1. Conclusion

The main goal of this thesis is to leverage knowledge-based engineering (KBE) techniques for gener-
ating design details and geometry, in order to provide consistent models for computational analysis
of aircraft fuselages. The work is motivated by a gap identified between the level of design details
typically provided by overall preliminary design tools and the level of design details necessary to build
expressive numerical analysis models, which are required to enable end-to-end assessment of a new
design using e.g. multidisciplinary design analysis and optimization (MDAO) techniques.

In the research hypothesis, the need for an integrated consideration of both the design and
the model generation is formulated to enable a generation of design details, which is tailored to the
geometry requirements of the use case, but remains consistent across disciplinary boundaries. Four
working hypotheses are derived, which highlight the different aspects of the overall problem:

Working hypothesis 1: Description of aircraft fuselages and cabins as knowledge graph consisting
of parameters and rules,

Working hypothesis 2: Capability to derive consistent geometry for analysis model generation at
different levels of fidelity,

Working hypothesis 3: Provision of design capability to augment missing details,

Working hypothesis 4: Support for novel product architectures.

The KBE methodology applied here is implemented in the tool FUGA (Fuselage Geometry As-
sembler) using a graph-based approach, where design parameters, given by the Common Parametric
Aircraft Configuration Schema (CPACS), are connected by design and model generation rules to form
a directed knowledge graph. In reference to MDAO nomenclature, this graph is referred to as the
maximal connectivity graph (MCG). Based on the MCG representation of the design and model
generation system, techniques from graph-theory can be deployed to implement an inference engine,
which can quickly determine solution paths based on data available in the system and requests for
additional data made by the user. “Lazy evaluation” of the system, i.e. only evaluating rules if they
are necessary to resolve a user request, results in significant performance benefits. Introducing the
concept of rule sets, the MCG can furthermore be adapted depending on the type of design problem
or aircraft architecture required. Thus, the implementation in FUGA fulfills the requirements stated
in working hypothesis 1.

Applying the KBE methodology, rules to generate geometry models are formulated using state of the
art computer-aided design (CAD) methods. By representing individual steps of the model generation
process using separate rules, intermediate results of the model generation process can be exposed in the
KBE system. This facilitates the provision of part geometry models at multiple levels of fidelity, such as
curve or volume-based representations of stiffeners. The multi-fidelity capabilities, combined with the
lazy system evaluation, not only allow the user to trade geometric detail for improved computational
efficiency of the model generation, but also enable the creation of tailored geometry models for different
disciplinary analysis use cases.

The approach is applied to generate a global finite-element model (GFEM) used for stress analysis
and structure sizing and an immersive visualization mesh to support human factors analysis. The two
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cases are selected due to their substantially different focuses and requirements in terms of geometric
fidelity. Whereas the GFEM is focused on the structural aspects and requires abstraction of the
geometry, the cabin is the focus of the visualization mesh, which furthermore requires very detailed
geometric representations. Profiling of both model generation processes reveals a substantial advantage
in run time for the simplified geometry model as a result of the KBE approach. The analysis models
are furthermore compared to the state of the art, and the fitness to perform relevant analyses in the
field is assessed. Whereas the results of the analyses shown are sufficient to prove the applicability
of the models generated and thus corroborate working hypothesis 2, the validity of the actual
analysis results is compromised by a lack of necessary inputs e.g. loads for the stress analysis or
certain component models for the immersive visualization, which are beyond the scope of this thesis.

That said, the capability to dynamically generate design details is identified as a key enabler to de-
ploy the knowledge-based model generation process, especially in a collaborative MDAO environment,
where the type and completeness of the incoming data may vary between projects. By leveraging the
KBE methodology and a set of design rules, the available information can be analyzed to identify
missing inputs, which are then added to the system. Differently from the geometry modeling rules,
which use CPACS data as an input to generate geometric shapes, the design rules accept CPACS data
and additional simplified design parameters to generate additional CPACS data. To this end, rule
sets to generate structural and cabin design for conventional configurations are presented in depth.
It quickly becomes apparent that the rule sets are inherently interconnected, e.g. via the positions
of the exits, which are determined by the cabin layout and influence the frame positions, or by the
cabin boundary, which is determined by the surrounding frames. Using the KBE approach, these
interconnections can be resolved and a consistent design can be generated.

The versatility of the design rule sets is demonstrated using a short-to-medium range single-aisle
configuration and a twin-aisle multi-deck configuration. It is shown that structure and cabin layouts
can be generated for both configurations. That said, while the single-aisle design can be computed
by evaluating the KBE system as-is, the more complex multi-deck configuration requires significantly
more effort from the user. This is due to the fact that the rules are primarily designed to support
single-deck use cases.

More user intervention may also be necessary to approach certain design problems for the single-aisle
configuration. For instance, the problem of solving for an upstream parameter based on downstream
input parameters must be assessed using iterative numerical techniques, due to the directed nature
of the graph-based system formulation. The problem of eliminating the gap between the galley and
the rear pressure bulkhead in the single-aisle use case by changing the length of the fuselage is one
example for this issue. Whereas the numerical solution must currently be implemented at user level,
it is supported by the KBE system, which facilitates the formulation of the function to be solved and
assures that only those nodes are reevaluated, which are actually affected by a changed input variable.
In many cases this results in very efficient problem formulations, which can be evaluated very quickly,
lowering the computational impact of the iterative solution.

The design capabilities demonstrated fulfill the requirements of working hypothesis 3 and can
be deployed in different ways to either provide a complete consistent design of the cabin and fuselage
or reduce the scope of the design to those aspects required for the analysis model generation at hand.
Either way, designs for different models will remain consistent as long as they share the same rule sets
and problem formulation.

The applicability of the aforementioned rule sets is restricted to conventional tube-and-wing con-
figurations. The need to be able to reflect architectures of unconventional configurations is, however,
described in working hypothesis 4. This capability is essential to address the emerging challenges
in aviation. The graph-based KBE methodology allows for modification of the system behavior by
assembling additional rule sets, which can be integrated in the system to replace or extend existing
rules. To illustrate this capability, two examples are investigated. On the one hand, the conventional
hybrid design system is expanded with design and integration rules for a cryogenic tank to store liquid
hydrogen (LH2) in the fuselage. On the other hand, a rule set is presented, which bypasses large
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parts of the conventional structure design rules in order to enable the design of a cabin for a blended
wing-body (BWB) configuration. In both cases, designs can be generated and evaluated. That said,
the quality of the design strongly depends on the available knowledge about a given configuration. For
instance, the lack of available knowledge on BWB structure layouts means that it is not represented
in the final design. In return, very detailed layouts can be generated for the LH2 configuration, since
the available knowledge base can be applied almost in its entirety.

In summary, the findings on the four working hypotheses corroborate the research hypothesis of
this thesis. Using the aircraft fuselage as an example, it is shown that KBE techniques can support
third-generation MDAO activities by providing consistent augmentation of design details and tailored
geometry models in order to facilitate disciplinary analysis model generation. The modularity of
the graph-based implementation in FUGA furthermore makes the methodology sufficiently flexible to
adapt to new requirements and architectures.

8.2. Perspectives for future research and development

Whereas this thesis successfully provides a proof of concept for the application for KBE-driven fuse-
lage design and multi-model generation for MDAO applications, the road towards fully integrated
end-to-end assessment and design of the aircraft is still very long. Further developments are required
in several fields, which are considered in the following sections. First, possible development trajecto-
ries for the implementation of the KBE system presented in this thesis are discussed in section 8.2.1.
Then, missing disciplines necessary to enable true end-to-end assessment of the fuselage are consid-
ered in section 8.2.2. In section 8.2.3, aspects of improving the knowledge base for unconventional
configurations are listed. Finally, section 8.2.4 provides some insight on the necessary steps towards
deployment of the methodology for large-scale MDAO applications.

8.2.1. KBE system implementation

The need for user intervention to realize certain types of problem formulations has been addressed
on several occasions in this thesis. Cases include the solution of problems using numerical methods
as well as setting up the system for various design tasks. In either case, the user is exposed to the
complexity of the underlying system, which is typically not desirable. Therefore, further automation
to support the aforementioned tasks should be considered.

On the one hand, improved automation of the set up of the solution workflow would be highly
useful. As the close relationship to MDAO has been highlighted several times in this thesis, synergy
effects with recent developments in that field could be exploited. To this end, a more advanced way of
determining the problem solution graph, which takes into account coordinator blocks, e.g. convergers
or optimizers, also known from MDAO [PGG13; Gen19a], could be implemented. The placement of
these blocks could either be performed interactively using a tool such as MDAx [PB+20], which enables
interactive manipulation of MDAO workflows, or automatically. However, the automatic placement
of coordinators in an ad-hoc system, which is instantiated depending on the user query and does not
comply with an established MDAO architecture pattern, is not well-understood at this point.

The second aspect, where user support can be improved is the composition of the overall system.
The most complex design systems discussed in this thesis consist of approximately 10 rule sets. This
order of magnitude can be handled manually quite well. However, as more disciplines and their
corresponding rule sets are included, the dependencies between them become more difficult to trace.
To this end, a rule set dependency meta-graph could be assembled to allow for reasoning on rule
set dependencies. To illustrate, this graph could tell the system that the structural modeling rule
set requires the CPACS rule set to be available. In turn, the structural design rule set requires the
structural modeling rule set. Consequently, all three rule sets would be instantiated if the user requests
the structural design rule set.

In addition to the user experience, the aspect of knowledge integration will grow in importance
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as more disciplinary design and modeling capabilities are made available. The choice to implement
rules using Python functions and the rule protocol is an attempt to make it relatively easy for new
developers to make contributions to the system. However, the effective development of the knowledge
base requires highly qualified personnel, who unite engineering knowledge and coding skills.

Furthermore, over time, the overall understanding of the system and the management of new capa-
bility will become an increasingly complex and critical task. One of the most important points is to
avoid duplication of rules as much as possible, as evaluation of multiple rules, which do very similar
things, will thwart the computational efficiency of the system. Here, active maintenance and quality
control as well as accessible, complete and up-to-date documentation are essential.

8.2.2. Missing disciplinary aspects for end-to-end fuselage assessment

In this thesis, it is attempted to capture the multidisciplinary nature of fuselage design by taking into
account the outer mold line, structural design and cabin design. The combination of these disciplines is
sufficient to illustrate the complexities of fuselage design. However, real fuselage designs are driven by
a multitude of additional factors, which have not been taken into account. To include this knowledge
into the design, additional rule sets must be implemented.

An issue, which has arisen repeatedly in the preceding chapters, is the lack of flexible cabin compo-
nent design. Instead of utilizing dead component geometry models, a proper component design rule
set, as suggested for the seat, could unlock additional design drivers such as the seat width, which
could have an influence on an overall aircraft design level.

Other disciplines have been omitted altogether, such as the design of the electrical and mechanical
systems. An example for integrated geometric systems design is shown e.g. by Fuchs et al. [FH+21]
for the air conditioning system. Another interesting project is the GeneSys framework for parametric
systems design described by Bielsky, Jünemann, and Thielecke [BJT20], which also uses CPACS as a
starting point. Aside from geometric modeling capabilities, functional architecting capabilities are also
in development [KB+22]. Making this knowledge available in the KBE system would add significantly
to the value of the multidisciplinary design process. That said, the integration of system aspects is
held back by limitations of CPACS, which, as of version 3.4, which is used in this thesis, does not
provide sufficient support for geometric description of system components. However, development of
an onboard systems description to be included in a subsequent version is ongoing [DLR21b].

Similarly to onboard systems, industrialization aspects will become increasingly important as grow-
ing demand for aircraft drives production rates at manufacturers. To assess manufacturing aspects,
information such as assembly sequences and utilities are necessary, which are beyond the scope of
CPACS as a product description format. An approach as shown by Markusheska et al. [MS+22] to
use a complementary format to CPACS, which contains the manufacturing process data, could be a
practical solution, which can be integrated in the knowledge-based process with manageable effort.
Since the list of disciplines with possible relevance can easily be continued to include aspects e.g. of
operations, maintenance or life cycle, the idea of complementary formats is promising for providing
the necessary information while managing the complexity of CPACS.

Of course, aside from the design capability, the relevant analysis types must be supported as well,
from the model generation side. Here the range of analyses shown provide a good foundation, where
only a limited amount of detail must be added. A good example of this is provided by Hesse et al.
[HW+23], who successfully adapt FUGA, the KBE system developed in this thesis, to provide high-
resolution FEM models for vibro-acoustics analysis. Based on the examples shown in this thesis, it
can be presumed that boarding and egress simulations will, too, only require very little additional
geometry modeling capability to be implemented. For systems aspects, the effort is likely higher.

Moreover, the automation of the analyses is a factor to be taken into account. To enable distributed
MDAO, the analyses must be set up to run without the need for user interaction. This is possible for
human model simulations, but difficult for human-in-the-loop analyses, as shown by the corresponding
use case in this thesis. Here, identifying key parameters and building a surrogate model of the test
subject response could be an initial solution.
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8.2.3. Improvement of the knowledge base for unconventional configurations

Aside from filling the gaps in disciplinary knowledge for conventional designs, building a reliable
knowledge base for novel configurations is another task that needs further work. For the LH2 con-
figuration, the geometric integration of the tank in the rear fuselage has been demonstrated in this
thesis. However, this is only the proverbial tip of the iceberg when it comes to necessary adaptations
due to the change in propulsion architecture. To begin with, additional rules to provide a preliminary
sizing and mass estimation and check against established requirements for pressure vessels should be
implemented, as shown e.g. by Höhne [Höh22]. The systems to transport the fuel to the consumer, i.e.
the fuel cell stack in an electric configuration or the engine for a direct burn architecture, must be de-
signed to fundamentally different requirements than conventional configurations using kerosene. The
need to provide a possibility to vent every section of pipe in order to release pressure from evaporating
hydrogen is an example for this. A particularly critical component in terms of space allocation is the
so-called capsule, a block of systems installed next to the tank, which contains pumps and heaters
to distribute the fuel. The space and position requirements for the capsule may actually make it a
driver for the fuselage length with an impact at a similar order of magnitude to the tank volume.
Other aspects to be considered are accessibility of the tank for maintenance, which creates a need for
a structural opening, and crash safety [Wee21].

For the BWB configuration, a fundamental investigation of feasible structural concepts is necessary,
to gain a more complete understanding of the boundary conditions to the cabin layout generation
demonstrated in this thesis. Furthermore, concepts must be evaluated w.r.t. egress scenarios and new
exit concepts such as ventral emergency exit doors must be investigated, ideally in collaboration with
certification authorities.

These points illustrate that the development of such novel configurations is an ongoing learning
process for all involved. The benefit of the KBE methodology is that new knowledge can be formalized
as a set of rules to go along with new discoveries. In this way, the knowledge can be stored, exchanged,
and archived.

8.2.4. Deployment for collaborative MDAO

Ultimately, the motivation for the development of the multi-fidelity geometry modeling capabilities has
been to facilitate the deployment of fuselage analysis and design capability to collaborative MDAO
processes. The way to accomplish this is to facilitate the analysis model generation by providing
geometry models tailored to the specific needs of the discipline, while design relationships ensure the
consistency of the model.

To deploy this capability for collaborative MDAO processes, a change in paradigm for setting up
these processes will be necessary. In current workflows, executed e.g. using the Remote Component
Environment (RCE), the disciplinary tools are designed to communicate via CPACS files [CN16;
WCN22]. This means that a tool will receive a CPACS file, build the geometry, possibly using the
TiGL Geometry Library (TiGL), perform the analysis, and then write the results back to a CPACS
file, which is fed back to the process. If the knowledge-based system is made available to the process
instead, disciplinary tool developers could instead make a direct request for the geometry they require
for the model generation, which would not only facilitate their work for model generation, but also
reduce redundant computations of the same geometry components. In turn, the results, e.g. new
skin thicknesses could be fed back directly to the system, triggering the invalidation capabilities.
Logging capability ensures that no information gets lost completely and introduces a traceability and
accountability w.r.t. who is the originator of certain changes. In this way, the tool could take on the
role of a central hub, where the contributions from all collaborators are stored and validated.

An open technical aspect for such a scenario on the side of the KBE tool is how to make it available
to the partners, who will likely interact with it via a network. The most obvious solution for this
is to implement a REST API (representational state transfer application programming interface),
which allows users to retrieve and update design data via a web interface. Python, like most modern
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programming languages, provides a multitude of packages to accomplish this. Instead of passing
around a continuously updated CPACS file, the data would be communicated to and retrieved from
a central web server, implying an evolution from a passive central data model to an active central
data management service. A possible problem with this approach is the ensuing need to adapt all
disciplinary design tools, which often only recently adopted CPACS as a standard. Here, a server-side
data comparison tool, which can identify changes in a CPACS data set and map it to knowledge
repository updates, could be helpful to ease the transition.

The capability of the KBE methodology to support different product architectures also makes it
eligible to support architecture optimization scenarios [BS+21], where a multitude of multidisciplinary
design optimization runs is performed for different architectural solutions to find the optimal solution
to a top level design problem, e.g. to fulfill a given transportation task. In such a scenario, different
design systems could be composed and deployed for each architectural solution. Such a scenario would
also benefit greatly from the aforementioned capability for automated system composition.
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A. Appendix

A.1. FEM stiffness matrix derivation for beam elements

Section 4.2.1.1 provides an overview of the theoretical foundations of the finite element method. An
elementary task in the finite element method is the assembly of the element stiffness matrix. In the
chapter, equation 4.2.2 is provided as a generalized form of the stiffness matrix computation, which is
valid for all element types. To reiterate,

K =

∫︂
V
BTCBdV, (A.1.1)

where B is the strain-displacement matrix and C is the material matrix.
The derivation of the stiffness matrix for a beam element in 2D as described e.g. by Bathe [Bat08] is

provided here as an example. The degrees of freedom of the element consist of the lateral displacements
and the rotations at the end points d = [d1, θ1, d2, θ2]. The strain-displacement vector is given by the
second derivative of the deformation of the beam B = d2d(x)

dx2 , whereas the material law is constant for
isotropic materials C = EI. These relationships are inserted into equation 4.2.2. Since the beam is
a 1D element, the integration is performed only along the length of the element. As a simplification,
the global coordinate x can be replaced by the normalized element coordinate s ∈ [0, 1]:

K = EI

∫︂ x
(e)
2

x
(e)
1

(︃
d2d(x)

dx2

)︃2

dx =
EI

l3

∫︂ 1

0

(︃
d2d(s)

ds2

)︃2

ds. (A.1.2)

The variable l denotes the element length. A cubic Hermite polynomial ansatz is selected for the
displacements v(s):

d1 (s) = 1− 3s2 + 2s3, (A.1.3)

d2 (s) = l ·
(︁
s− 2s2 + s3

)︁
, (A.1.4)

d3 (s) = 3s2 − 2s3, (A.1.5)

d4 (s) = l ·
(︁
−s2 + s3

)︁
. (A.1.6)

Derivation of the polynomials yields the strain-displacement vector

d2d(s)

ds2
=

[︁
−6 + 12s, l · (−4 + 6s) , 6− 12s, l · (−2 + 6s)

]︁
. (A.1.7)

Computing the scalar product and evaluating the integral gives the well-known stiffness matrix for
beam elements

K =
EI

l3

⎡⎢⎢⎣
12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

⎤⎥⎥⎦ . (A.1.8)

A.2. Comparison of skinned surface and bivariate interpolation for two
profile point clouds with equal number of sample points

In this section, the impact of the selected construction method on lofted surfaces is highlighted by
comparing the surfaces generated by the skinned surface algorithm on the one hand and by bivariate
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Figure A.2.1.: Point clouds for two profiles at z = 0 and z =1

interpolation on the other for two profile point clouds. The points along with the intended polygonal
order are given in figure A.2.1.

For the skinned surface algorithm [PT96], both profiles are first interpolated independently to
generate two profile curves. For this particular example, a linear interpolation with k = 1 and
chord length parametrization is selected. Due to the choice of degree, the resulting curves C1 and C2

correspond to the dashed polygons in figure A.2.1 and the control points align with the original sample
points indicated by the markers. Due to the chord length parametrization, both curves have different
knot vectors, which reflect the normalized cumulative chord length at the given control points:

t1 =
[︁
0., 0., 0.194, 0.387, 0.694, 1., 1.

]︁
, (A.2.1)

t2 =
[︁
0., 0., 0.194, 0.5, 0.806, 1., 1.

]︁
. (A.2.2)

Since the two curves do not share the same knot vector, they are incompatible. However, curves are
required to be compatible in order to apply the skinned surface algorithm.

In order to make both curves compatible, first the union of the two knot vectors is formed:

t1∪2 =
[︁
0., 0., 0.194, 0.387, 0.5, 0.694, 0.806, 1., 1.

]︁
. (A.2.3)

The resulting new knot vector contains all knot values of both curve knot vectors at the highest
occurring multiplicity. Now, the missing entries from t1∪2 must be added using knot insertion [PT96]
for each of the original curves. As a result, the number of control points is artificially increased, to
match the increased number of knot positions. In the case of C1 and C2, two knots, and thus two
control points, are added to each curve, resulting in the curves C+

1 and C+
2 shown in figure A.2.2.

The skinned surface algorithm can now be applied to the compatible curves to yield the surface
shown in figure A.2.3. The isoparametric curves in skinning direction, which link the knots of both
curves are clearly visible as discontinuities in the surface. This is because, as a result of the knot
insertion, the isoparametric curve starting e.g. at the second corner point of first point cloud will end
at the first additional knot on C+

2 , which lies on the straight polygon edge. Conversely, the second
corner point of the second point cloud is mapped to an added node on the first curve C+

1 . The
additional kinks thus result from the addition of knots to the respective knot vectors necessary to
make the curves compatible.
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Figure A.2.2.: Compatible curves with additional control points

A different approach is taken in bivariate interpolation. Here, curve interpolation is not performed
for each curve individually but for all curves at once. Again selecting linear interpolation, i.e. k = 1,
and chord length parametrization, the global parameter vector is furthermore chosen to be the mean
of the individual parameter vectors. For the example, the approach yields the knot vector

tinter =
[︁
0., 0., 0.194, 0.443, 0.75, 1., 1.

]︁
. (A.2.4)

Since the length of the knot vector is coupled to the number of control points, selecting a single knot
vector is only possible if the number of sample points is the same in all profile point clouds, allowing
them to be assembled into a 2D point cloud grid.

Applying the bivariate interpolation then yields the surface shown in figure A.2.4. Compared to
figure A.2.3, the surface appears more visually structured and less complex. Visibly, the isoparametric
curves lead from one corner point of one profile exactly to the respective counterpart in the other. In
this way, the number of kinks is minimized, which is also reflected by the shorter knot vector.

At first glance, comparing figures A.2.3 and A.2.4 may lead to the conclusion that bivariate inter-
polation, if applicable, yields the superior surfaces. However, in truth, which algorithm is best largely
depends on the specific application. The example shown here clearly is a comparatively tidy edge
case, where the number of sample points and the degree of the of the interpolation are very low. As a
result, the chosen parametrization settings for the curve interpolation have no effect on the quality of
the resulting profile curve. The result of the averaging approach for the bivariate interpolation is thus
of the same quality as for the individual curve interpolation. This will likely not be the case for higher
order interpolation, as illustrated by figure 4.1.4. For many applications, it could thus be expedient
to interpolate each curve individually. In addition, the phenomenon of the undesirable discontinuities
in the skinned surface is likely to be mitigated as well, as the order of the interpolation increases.

The majority of CPACS data sets provides a sufficiently high resolution of point clouds to make
the effects of the circumferential interpolation secondary. Instead, it is desirable to minimize the
complexity of the surface, i.e. keep the number of control points and knots low, in order to not
impede the performance of subsequent CAD operations. Thus, as stated in section 6.1.1.3, if profiles
are provided with an equal and sufficiently high number of sample points, bivariate interpolation is
selected by default in FUGA when building surface representations of CPACS bodies.
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Figure A.2.3.: Skinned surfaces algorithm output

A.3. Design tables

Several of the design rules for the fuselage described in section 6.2 rely on data and requirements, which
are determined by certification or operation aspects of the aircraft. The corresponding standards and
limitations are stored in design tables, which can be referenced by the design rules. This section
contains a collection of these design tables.

A.3.1. Certification data after CS-25 [EAS21]

In table A.3.1, the transport aircraft exit requirements given by CS 25.807 are listed. First, the door
dimensions are given. The certification type determines the minimum width wdoor and height hdoor
of the door. Furthermore, a maximum allowed corner radius rcorner is given. The passenger capacity
cPAX,exit is listed for a pair of exits, where the smaller of the two is of the given type.

The certification specification also makes requirements w.r.t. spaces adjacent to the exits. To begin
with, a passageway must lead to the exit from the nearest aisle. The minimum required width is
given by wpassageway. For some types of exits assist spaces must furthermore be provisioned next to
the passageways, to allow flight attendants to support passengers in an egress event. The required
number of assist spaces is given by nassist, whereas their width is determined by wassist. If more
than one aisle is present, the exit passageways must be connected via cross-aisles with a minimum
width wxaisle. For certain exits, it is required, for the cross-aisle to overlap completely with the
adjacent passageway, whereas, for others, it is sufficient if the cross-aisle is placed in the vicinity
of the passageway. Whether the latter is the case is indicated by a Boolean value in the “vicinity”
column. For the rule implementation in FUGA, a more specific criterion is required than the ambiguous
formulation of vicinity. Therefore, the maximum allowable longitudinal distance between the bounds
an aisle and a passageway is set to 1m.

Aside from the established exit types given in the certification specifications and acceptable means
of compliance for large aeroplanes (CS-25), the exit types A+ and C+ are also included in table A.3.1.
The plus indicates a proposed recertification of the corresponding CS-25-compliant exits for 10 addi-
tional passengers under the assumption that an additional flight attendant be present to assist during
evacuation.
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Figure A.2.4.: Bivariate interpolation output

Table A.3.1.: Exit requirements after CS 25.807

Type
wdoor

in

hdoor

in

rcorner

in
cPAX,exit

wpassageway

in
nassist

wassist

in

wxaisle

in
vicinity

I 24 48 8 45 20 1 12 20 True
II 20 44 7 40
III 36 35 13 0
IV 19 26 6.3 9
A 42 72 6 110 36 2 False

A+ 120
B 32 75
C 30 48 10 55 20 1

C+ 65 24

Table A.3.2 lists the minimum aisle widths prescribed by CS 25.815. For a passenger number of up
to 10, an even narrower aisle with a width no lower than 9in can be certified pending tests by the
agency, as indicated by the asterisk in table A.3.2. However, since aircraft with less than 10PAX are
not typically within the scope of FUGA, this exception has not yet been implemented.

Table A.3.2.: Aisle width requirements after CS 25.815

nPAX

waisle,min

in
zcab < 25in zcab ≥ 25in

≤ 10 12* 15
11-19 12 20
> 20 15 20
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A.3.2. Operational data

A list of cargo container types based on documents by airlines and OEMs [Boe12; Luf14; ANA22] is
provided in table A.3.3. In general, the cargo containers are box-shaped. The outer dimensions are
given by the height hcontainer, the depth dcontainer, and the overall width wcontainer. Furthermore, it is
possible for a chamfer to be added in a 45 angle on the bottom at one (half) or two sides (full) in width
direction. To determine the shape of the chamfer, the width of the container base wbase is provided
as well as the width shape, which can be either of full or half. A visualization of the container types
listed is given in figure A.3.1.

Table A.3.3.: List of cargo container types and dimensions (assembled from [Boe12; Luf14; ANA22])

Type
Vcontainer

ft3
Vusable

ft3
hcontainer

in

dcontainer

in

wbase

in

wcontainer

in
Width shape IATA

LD3-45 131 120 45 60.4 61.5 96 full AKH
LD2 124 64 47 61.5 half APE
LD3 159 120 61.5 79 AKE
LD1 175 92 AKC
LD4 195 96 96 full AQP
LD8 245 125 AQF
LD11 256 125 ALP
PLA 250 PLA
LD6 316 160 ALF
LD26 470 88 AAF
LD7 495 P1P
P1P 379 125 P1P
LD9 381 AAP
LD29 510 186 AAU
LD39 560 96 AMU
P6P 407 125 P6P

Figure A.3.1.: Visualization of cargo container types listed in table A.3.3
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