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Abstract. The paper aims at studying dispersion of elastic waves in a sandwich plate with the parameters, characteristic
of aerogel core and hard skin layers, typical for aerospace applications including optimal design of fuselage structural
components. The proposed approach relies on multiparametric analysis, taking into account the effect of strong transverse
inhomogeneity. It is demonstrated that both an additional low-frequency propagating wave and a slowly decaying evanescent
one appear due to a high contrast in geometric and mechanical parameters of the layers. The key findings include the
derivation of two-mode asymptotic expansions of the full dispersion relation at the low-frequency limit, as well as elucidation
of the non-trivial link between long-wave evanescent and propagating modes. A sophisticated composite nature of the
obtained expansions involving various shortened forms is investigated. The range of validity for each of these forms over
frequency and wave-number domains is evaluated. Comparison of asymptotic results with the numerical solution of the full
dispersion relation is presented.
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1. Introduction

Sandwich structures have emerged as a remarkable class of materials extensively employed in the modern
industry, particularly in aircraft design and construction [1–4]. In the simplest case of a three-layered
sandwich plate, they consist of a lightweight core material sandwiched between the two outer layers,
typically composed of high-strength materials. The unique design of sandwich plates offers exceptional
mechanical properties, including high stiffness and strength-to-weight ratios, making them well-suited
for addressing the stringent practical demands, including in particular the implementation for sound
insulation in aircrafts.

Sound insulation is essential for creating a quiet and peaceful cabin environment. Aircraft engines,
airflow, and aerodynamic forces generate noise, which can cause discomfort and fatigue for passengers
and crew. Proper sound insulation materials and techniques help attenuate noise transmission, reducing
the overall noise level inside the cabin [5]. At the same time, vibration insulation is another consideration
in cabin design [6]. Vibrations caused by engine operation, turbulence, and other sources can create
discomfort and adversely affect passenger well-being. Effective insulation materials and structural design
techniques help to suppress unwanted vibrations.

With the aim of revolutionising the aircraft (cabin) design, there has been an increasing interest to-
wards developing aerogel-based solutions for aircraft cabin insulation. Aerogels are extremely lightweight
materials having ultra-low thermal conductivities and sound velocities [7]. While thermal insulation char-
acteristics have been explored for many decades, a significant amount of research is being carried out
recently in understanding their sound insulation characteristics [8], particularly in relation to aircraft
applications where they have shown promising potential [9–11]. Aerogels offer several advantages over
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traditional insulation materials in aeronautics due to their multifunctional nature, which includes hy-
drophobicity.

The recent advancements in developing mechanically durable aerogels with property range varying
from extremely brittle to highly superflexible have been achieved using the methodologies originating
from chemistry and process engineering [12–15]. The stiffness of these materials is very small compared
to that of fuselage, e.g. involving aluminium or carbon fibre-reinforced composites. Thus, this practical
setup clearly manifests the presence of substantial high contrast in stiffness as well as in density. Moreover,
the geometry of aircraft structures of interest also often assumes a considerable contrast in the thickness
of stiff and soft layers.

As an example, in this paper we consider a simplified problem for an elastic sandwich in the form of
an aerogel-based three-layered plate and present asymptotic results for its dispersive behaviour. The high
contrast in thickness, stiffness and density of aluminium skin layers and aerogel core, provides natural
small/large parameters, motivating asymptotic treatment. The two characteristic features related to high
contrast, including extra low-frequency propagating and evanescent modes are studied. These were earlier
observed in [16,17], but the transition of the evanescent waves to the propagating ones have been only
recently analysed for the simplest antiplane shear setup [18].

Specific low eigenfrequencies due to high contrast have been first observed in the 1D problem for
longitudinal vibrations of a three-component strongly inhomogeneous rod [19], being then extended to
multi-component rods [20], multi-span beams [21,22], including random vibrations [23]. Similar man-
ifestation of high contrast emerged in the asymptotic behaviour of the lowest cut-off frequencies for
three-layered plates [16,24]. Dispersion analysis of a plane-strain problem in elasticity in [16] revealed
the possibility of two-mode long-wave low-frequency approximations. The static limit of the latter con-
tains the previously observed degenerate boundary layers for high-contrast sandwich plates [25–27]. It
has become especially clear within the context of antiplane elasticity [17], where in case of antisymmetric
motions of a sandwich plate the evanescent mode originating from the relevant static limit may transfer
into the shear propagating mode at the lowest cut-off frequency.

The present paper deepens the understanding of the evanescent and propagating modes in applica-
tion to an aerogel-based sandwich plate with the special focus on the transition from attenuation to
propagation. The long-wave low-frequency asymptotic expansions of the full dispersion relation in plane
elasticity are derived, taking into consideration the ratios between the contrast parameters including rela-
tive thickness, stiffness and density. These ratios support two-mode approximation of the exact dispersion
curves, along with a number of shortened approximations over the associated sub-domains of the whole
long-wave low-frequency region. The developed framework covers long-wave propagating modes along
with two slowly decaying evanescent ones. It is demonstrated that the lowest cut-off frequency belongs
to the dispersion curve corresponding to the so-called dynamic edge effect [28], governed by the classical
Kirchhoff theory for plate bending. It is also shown that other evanescent mode originates from a slowly
decaying static boundary layer earlier observed in [25,26] for the antiplane shear.

The paper is organised as follows. The problem is formulated in Sect. 2. The asymptotic analysis
for both propagating and evanescent modes is performed in Sect. 3. Numerical illustrations, including
comparison of exact and approximate results, are presented in Sect. 4.

2. Governing equations

Consider a three-layered symmetric elastic plate, composed of isotropic layers, with the core layer of
thickness 2hc and the skin layers of thickness hs, see Fig. 1. Here and below the index ’c’ and ’s’ is
associated with the core and skin layers, respectively. Remark that a number of realistic scenarios involving
aerogels, e.g. see [9–11], may also include extra acoustic layers between core and skin ones. However, for
the sake of simplicity, their presence is not taken into consideration in what follows.
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Fig. 1. A three-layered plate

The governing equations of plane-strain motion are taken in the conventional form

σq
ij,j = ρqu

q
i,tt, i = 1, 2, q = c, s, (1)

where σq
ij are stresses, uq

i are displacements, ρq are volume mass densities. Note that a comma in the
suffix indicates differentiation with respect to appropriate spacial or time variable; summation over the
repeated suffixes is also assumed. The constitutive relations of linear isotropic elasticity are written as

σq
ij = λqu

q
k,kδij + μq(u

q
i,j + uq

j,i), (2)

where λq and μq are the Lamé parameters. The traction-free boundary conditions along the faces x2 =
±(hc + hs) are imposed, together with continuity conditions along the interfaces x2 = ±hc. They are
given by

σs
i2 = 0 at x2 = ±(hc + hs) (3)

and

σc
i2 = σs

i2, uc
i = us

i , at x2 = ±hc, (4)

where i = 1, 2.
The dispersion relation for the antisymmetric modes of the three-layered plate takes a rather sophis-

ticated form, e.g. see [29] and [16]. It is

4K2h3αsβsF4 [F1F2Cβc
Sαc

− 2αcβc(ε − 1)F3Cαc
Sβc

]

+ hαsβsCαs
Cβs

[
4αcβcK

2
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h4F 2
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)
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+ Cβs
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(5)

where

F1 = 2(ε − 1)K2 − εΩ2,

F2 = 2(ε − 1)K2 +
ε(1 − r)

r
Ω2,

F3 = 2(ε − 1)K2 +
ε

r
Ω2,

F4 = β2
s + K2h2,

(6)
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Table 1. Material parameters

Material Density Young’s modulus Poisson’s ratio

kg/m3 Pa

Aluminium 2750 7.17 × 1010 0.331
Aerogel 100 2.26 × 105 0.200

and

α2
c = K2 − κ

2
cΩ2, α2

s = h2

(
K2 − εκ

2
s

r
Ω2

)
,

β2
c = K2 − Ω2, β2

s = h2
(
K2 − ε

r
Ω2

)
.

(7)

In the above Cαq
= cosh(αq), Cβq

= cosh(βq), Sαq
= sinh(αq), Sβq

= sinh(βq), and κq = c2q/c1q with

c21q =
λq + 2μq

ρq
, c22q =

μq

ρq
, q = c, s. (8)

The dimensionless frequency Ω and wave number K are introduced as

Ω =
ωhc

c2c
, K = khc, (9)

together with the dimensionless problem parameters

h =
hs

hc
, ε =

μc

μs
, r =

ρc

ρs
, (10)

expressing the contrast in thickness, stiffness and density of the layers.
In this paper, we analyse an aerogel-based sandwich plate with the material parameters of the layers

given in Table 1, where the characteristics of a super-flexible hybrid silica aerogel are presented. The
thickness of the core layer is 2hc = 0.020 m, while the outer layers are of the thickness hs = 0.002 m.

3. Asymptotic analysis

3.1. Parametric setup

On setting K = 0 in dispersion relation (5), we obtain the equation for cut-off frequencies, given by

tan(Ω) tan
(√

ε

r
h Ω

)
=

√
ε r, (11)

see also a similar equation for the eigenfrequencies of a three-component elastic rod in [19]. It follows
readily from (11) that for the contrast parameters satisfying

r � h � ε−1, (12)

the so-called global low-frequency regime occurs, see [16,20]. This regime supports a polynomial variation
displacements across the thickness of the plate. In this case, we have for the lowest cut-off frequency at
leading order

Ωsh ≈
√

r

h
� 1. (13)

This frequency corresponds to shear motion of the plate, see [16,24].
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Table 2. Asymptotic behaviour of the coefficients in expansion (15)

Terms Order of γi Coefficients Gi

γ1Ω2 γ1 ∼ h11 G1 = − ε40
r30

γ2K4 γ2 ∼ h5 G2 = −4ε30(κ
2
2 − 1)

r20

γ3K2Ω2 γ3 ∼ h4 G3 =
4ε30(κ

2
2 − 1)

r30

γ4K6 γ4 ∼ 1 G4 =
4ε20(κ

2
2 − 1)2

3r20

γ5Ω4 γ5 ∼ h10 G5 =
ε40
r40

γ6K4Ω2 γ6 ∼ h4 G6 =
4ε30(κ

2
1 + 1)(κ2

2 − 1)

3r30

γ7K8 γ7 ∼ 1 G7 =
4ε20(κ

2
1 + 1)(κ2

2 − 1)2

9r20

γ8K2Ω4 γ8 ∼ h4 G8 = −2ε30(3κ
2
1 + 1)(κ2

2 − 1)

3r30

γ9K6Ω2 γ9 ∼ 1 G9 = −2ε20(3κ
2
1 + 1)(κ2

2 − 1)2

9r20

γ10K10 γ10 ∼ 1 G10 =
4ε20(κ

2
1 + 1)(κ2

2 − 1)2

45r20

The studied setup for the aerogel-based sandwich plate, see Table 1, motivates the scaling

h � 1, r ∼ h2, ε ∼ h8, (14)

which is in agreement with conditions (12), implying that Ωsh ∼ √
h in formula (13). Note that scaling

(14) is not unique and there is a room for the choice of the powers of the main small parameter. This sort
of uncertainty is hardly avoidable in applied research. For comparison, an alternative parametric setup
is discussed in the Appendix.

Now, the dispersion relation (5) can be expanded in Taylor series over the long-wave low-frequency
region (K � 1, Ω � 1), resulting in the polynomial equation

γ1Ω2 + γ2K
4 + γ3K

2Ω2 + γ4K
6 + γ5Ω4 + γ6K

4Ω2 + γ7K
8

+ γ8K
2Ω4 + γ9K

6Ω2 + γ10K
10 + ... = 0,

(15)

where the coefficients γi, i = 1, . . . 10, can be found in Appendix A in [16]. Using relations r = r0h
2 and

ε = ε0h
8 (r0 ∼ 1, ε0 ∼ 1), based on scaling (14), the leading order estimations for γi can be presented in

the form γi ≈ Gih
ai (Gi ∼ 1) and ai are constants. These are summarised in the following Table 2.

3.2. Fundamental mode

Analysis of the fundamental mode can be started with the classical Kirchhoff theory for plate bending,
dictating that γ1Ω2 ∼ γ2K

4, e.g. see [30]. This results in relation Ω2 ∼ h−6K4, underlying the following
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Fig. 2. Sub-domains for shortened approximations (16)–(20) of the fundamental mode

estimates in (15)

γ1Ω2 ∼ h5K4, γ6K
4Ω2 ∼ h−2K8,

γ2K
4 ∼ h5K4, γ7K

8 ∼ K8,

γ3K
2Ω2 ∼ h−2K6, γ8K

2Ω4 ∼ h−8K10,

γ4K
6 ∼ K6, γ9K

6Ω2 ∼ h−6K10,

γ5Ω4 ∼ h−2K8, γ10K
10 ∼ K10.

Hence, we have

h6G1Ω2 + G2K
4 = 0, at Ω � h4, K � h7/2. (16)

Next, at Ω ∼ h4 and K ∼ h7/2, we arrive at

h7G1Ω2 + hG2K
4 + G3K

2Ω2 = 0. (17)

Now, consider the sub-domain Ω � h4 and K � h7/2. It can be easily verified that the leading order
terms are γ2K

4 and γ3K
2Ω2. Therefore, Ω2 ∼ hK2, leading to

hG2K
2 + G3Ω2 = 0, at h4 � Ω � h3, h7/2 � K � h5/2. (18)

At Ω ∼ h3 and K ∼ h5/2, we obtain three leading order terms γ2K
4, γ3K

2Ω2 and γ4K
6, implying

h5G2K
2 + h4G3Ω2 + G4K

4 = 0. (19)

Proceeding further, we have

h4G3Ω2 + G4K
4 = 0, at h3 � Ω � 1, h5/2 � K � h. (20)

Finally, the uniform asymptotic expansion for the fundamental mode becomes

h11G1Ω2 + h5G2K
4 + h4G3K

2Ω2 + G4K
6 = 0, (21)

over the domain Ω � 1 and K � h.
The sub-domains corresponding to shortened relations (16)–(20) are displayed in Fig. 2. It is worth

noting that the dispersive behaviour includes quadratic, see (16) and (20), linear (18) and transcendental,
see (17) and (19), approximations.
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Fig. 3. Sub-domains for shortened approximations (24)–(25) for the first shear mode

3.3. First shear harmonic

First, on setting K = 0 in expansion (15), we derive an approximate polynomial equation for the cut-off
frequency. It takes form

hG1Ω2 + G5Ω4 = Ω2(Ω2 − Ω2
sh) = 0, (22)

where Ω2
sh = −hG1/G5 = r0h ∼ h. Now we can estimate the terms in (15) over the vicinity of the cut-off

frequency, where Ω ∼ √
h. Then, we have

γ1Ω2 ∼ h12, γ6K
4Ω2 ∼ h5K4,

γ2K
4 ∼ h5K4, γ7K

8 ∼ K8,

γ3K
2Ω2 ∼ h5K2, γ8K

2Ω4 ∼ h6K2,

γ4K
6 ∼ K6, γ9K

6Ω2 ∼ hK6,

γ5Ω4 ∼ h12, γ10K
10 ∼ K10.

(23)

Assuming in (23) that the term γ3K
2Ω2 is much greater than γ4K

6, we deduce

h7G1 + G3K
2 + h6G5Ω2 = 0, at K � h7/2. (24)

Another near cut-off approximation takes the form

G3K
2 + h6G5Ω2 = 0, at h7/2 � K � h3. (25)

Obviously, the uniform approximation for this mode is given by (24). The diagram, demonstrating the
areas of validity for asymptotic behaviours (24)–(25), is presented in Fig. 3.

3.4. Two-mode approximation for propagating modes

Long-wave low-frequency approximations for fundamental mode (21) and first harmonic (24) can be
combined. As a result, we arrive at the two-mode approximation

h10G5Ω4 + h4(h7G1 + G3K
2)Ω2 + K4(h5G2 + G4K

2) = 0, (26)

valid at K � h and Ω � 1.
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3.5. Slowly decaying evanescent modes

Taking first the static limit, Ω = 0, in expansion (15) and neglecting O(K8) terms, we obtain

K4(h5G2 + G4K
2) = 0. (27)

The fourth-order root, K = 0, always appears in the classical theory for plate bending, while the small
root

K = i

√
3ε0

1 − κ
2
s

h5/2, (28)

is typical of the considered high-contrast setup. It determines the decay rate which is much greater
than the sandwich thickness. Earlier, similar roots were observed for antiplane shear of a three-layered
high-contrast plate, see [25,26].

Next, consider the effect of small frequency (Ω < Ωsh) on the evanescent waves. As might be expected,
the perturbation of the zero root, K = 0, can be found from the dispersion relation similar to that in
the classical plate theory. In this case, we have the same approximation, see (16), as for the related
propagating mode, which is valid at |K| � h7/2 and Ω � h4. This mode is often referred to as the
dynamic edge effect, e.g. see [28]. At |K| ∼ h7/2 and Ω ∼ h4 we also have the same estimate as for the
propagating mode, see (17). Only at Ω � h4, the estimate for this evanescent wave differs from that for
the fundamental propagating mode, given by (18). In this case

h7G1 + G3K
2 = 0, (29)

valid at h4 � Ω � √
h and |K| ∼ h7/2.

Over a vicinity of the cut-off frequency, where Ω ∼ √
h and |K| ∼ h7/2, we now arrive at formula (24)

corresponding to the shear propagating mode. The uniform behaviour of the evanescent mode is

h7G1Ω2 + hG2K
4 + G3K

2Ω2 + h6G5Ω4 = 0. (30)

It is valid over the domain Ω �
√

h and |K| � h7/2.
Next, consider a low-frequency perturbation of the small imaginary root K, see (28). At Ω � h3, it

manifests a quasi-static behaviour, governed by

h5G2 + G4K
2 = 0. (31)

Then, at |K| ∼ h5/2 and Ω ∼ h3, we have

h5G2K
2 + h4G3Ω2 + G4K

4 = 0. (32)

Finally, at h5/2 � |K| � h and h3 � Ω � 1, we derive

h4G3Ω2 + G4K
4 = 0. (33)

The associated uniform asymptotic relation is given by

h5G2K
2 + h4G3Ω2 + G4K

4 = 0, (34)

valid at |K| � h and Ω � 1.
It is remarkable that the two-mode approximation for the slowly decaying evanescent modes takes

the same form (26) as that for the propagating modes. A summary of the asymptotic regimes for the
considered evanescent modes is displayed below in Figs. 4 and 5.
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Fig. 4. Asymptotic behaviour of the evanescent mode related to the dynamic edge effect

Fig. 5. Asymptotic behaviour of the extra evanescent mode due to high contrast

4. Numerical results

The graphical illustrations below contain comparisons of dispersion curves, corresponding to the full
dispersion relation with approximate ones relying on the derived asymptotic expansions. In the figures
below the exact data are shown by solid lines, whereas the asymptotic results are depicted by dashed
lines, with the problem parameters listed in Table 1. Figures 6, 7 and 8 correspond to propagating modes.
In Fig. 6a the fundamental mode calculated from full dispersion relation (5) is presented, along with its
uniform approximation (21). Figure 6b shows the first shear mode, corresponding to dispersion relation
(5) and its approximation (24). Figure 8 demonstrates both fundamental and shear modes together with
two-mode approximation (26). These figures reveal that the chosen high-contrast parameters support
remarkably long shear waves.

Figures 8 and 9 correspond to evanescent waves. Figure 8a illustrates the dynamic edge effect [28],
with the associated dispersion curve first growing from the origin and then decaying towards the cut-
off frequency. Figure 8b demonstrates the extra evanescent wave in a finer scale, see (28) and also [26].
Finally, Fig. 9 shows two-mode approximation (26) for both evanescent waves.

The presented numerical results also indicate that the extra low-frequency shear wave originates from
the classical evanescent wave, corresponding to the dynamic edge effect, in contrast to the antiplane
problem for the same sandwich plate, see [18]. In the latter case, in the absence of dynamic edge effect,
the extra propagating and evanescent waves are related to each other.
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Fig. 6. Exact dispersion relation (5) (solid line) in (a) and (b), uniform asymptotic expansion (21) for the fundamental
mode (dashed line in (a)) and uniform asymptotic expansion (24) for the shear mode (dashed line in (b))

Fig. 7. Exact dispersion relation (5) (solid line) and two-mode asymptotic expansion (26) (dashed line)

5. Conclusion

Dispersion of plane elastic waves in an aerogel-based sandwich plate has been analysed. It has been shown
that both extra low-frequency propagating mode and a slowly decaying evanescent one emerge as a result
of high contrast in problem parameters. Two-mode long-wave low-frequency asymptotic approximation
of the full dispersion relation is derived, appearing to be valid for both propagating and evanescent waves.

It has been demonstrated that the transition from the evanescent modes to the extra propagating one
is different to that for the scalar antiplane case as illustrated in [18]. In the latter case, in the absence
of the dynamic edge effect, extra propagating and evanescent modes are related to each other, while
the analysis in this paper shows that the extra propagating mode originates from the aforementioned
dynamic edge effect.
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Fig. 8. Exact dispersion relation (5) (solid line) in a and b and uniform asymptotic expansion (30) (dashed line in (a)) for
the evanescent mode originated from the dynamic edge effect and uniform asymptotic expansion (34) (dashed line in (b))
for the extra evanescent mode due to high contrast

Fig. 9. Exact dispersion relation (5) (solid line) and two-mode expansion (26) (dashed line) for evanescent modes

A variety of shortened approximate relations have been also formulated for each mode. The diagrams
in Figs. 2, 3, 4 and 5 manifest domains of validity of the aforementioned relations, highlighting their
highly nontrivial composite nature. The full dispersion relation is taken as a natural benchmark for all
the numerical comparisons.

The paper is restricted to the assumption that the aerogel behaviour is governed by linear isotropic
elasticity. This assumption could be justified within the considered frequency range for a diverse range
of aerogels. At the same time, the current setup could be refined, by accounting for microstructure and
dissipative properties. Also, a sandwich of finite length can be potentially considered, using appropriate
boundary conditions arising as a generalisation of the Saint-Venant’s principle, see [17,31]. The developed
procedure may also be extended to functionally graded structures, e.g. see [32], prospective for modelling
a number of aerogel-based composites.
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The consideration in the paper broadens the existing knowledge on the dispersive behaviour of complex
systems, characterised by several parameters. Previous efforts in this area were focussed not only on high-
contrast laminates [16,18], but also on homogeneous shells and beams, see [33,34].
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Appendix

In Sect. 3 we take the scaling of the problem parameters in form (14). In fact, a unique scaling is hardly
possible for real-world applications. In particular, for the scenario in Sect. 3, we could potentially start
from the relations

h � 1, r ∼ h2, ε ∼ h31/4, (35)

which differ from those in (14) in the estimate for parameter ε only. In this case, the first cut-off shear fre-
quency is again Ωsh ∼ √

h. Following similar procedure as in Sect. 3, we arrive at the uniform asymptotic
expansion for the fundamental mode given by

h21/2G1Ω2 + h19/4G2K
4 + h15/4G3K

2Ω2 + G4K
6 = 0, (36)

valid at K � h15/16 and Ω � 1. For the first shear cut-off mode the uniform asymptotic expansion
becomes

h21/2G1 + h15/4G3K
2 + h19/2G5Ω2 = 0, (37)

where K � h23/8 and Ω � 1. Finally, a two-mode approximation may be constructed from the above
two, giving

h21/2G1Ω2 + h19/4G2K
4 + h15/4G3K

2Ω2 + G4K
6 + h19/2G5Ω4 = 0, (38)

K � h15/16, Ω � 1.

http://creativecommons.org/licenses/by/4.0/
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In spite of the difference between formulae (14) and (35), resulting in not entirely identical coefficients
in the related approximations of the full dispersion relation, the dispersion curves presented in Sect. 4 are
also quite suitable for illustrating the asymptotic expansions in the Appendix.
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