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MOTIVATION AND CONCEPT
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Motivation: Solar hydrogen potential
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▪ Total solar irradiation potential ~ 6000 times world’s primary energy demand (1).

➢ Sunbelt has great potential for the production and export of renewable energy carriers (green H2 and H2 derivatives).

Focus of work: 

▪ Development of cost-optimized systems for the production of solar fuels with the lowest possible environmental 

impact.

(1) Quaschning 2019



Motivation: DLR Institute of Future Fuels
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Jülich Solar Tower
Multifocal Tower

Heliostat Field

▪ Research for global CO2 neutrality: We develop solutions for cost-efficient hydrogen and fuels production 

on an industrial scale from the raw materials water, CO2 and nitrogen using renewable energies.

▪ Former part of DLR Institute of Solar Research

▪ Locations: Jülich and Cologne, increase to 120 employees

▪ Support for structural change in the Rhenish (coal) region

Synlight ®

Synlight® Solar Simulator 

(„Largest artificial sun“)

▪ Contributions to the decarbonization of energy, 
aviation and transport

▪ Infrastructure and large-scale facilities for process 
development



Motivation: Hydrogen derivatives as an energy carrier

▪ Renewable energy sweet spots with lowest LCOH (levelized cost of hydrogen)

o E.g. Chile, Saudi Arabia, Namibia, Australia

▪ How can we bring the solar energy to places with high energy demand? 

➢ Chemical storage of renewable energy with H2 and H2 derivatives (e.g. ammonia, methanol)

5

souce: picture alliance / Zoonar

3) DNV 2022: Hydrogen forecast to 2050

2) IRENA and METHANOL INSTITUTE 2021



Concept CSP/PV hybrid power plant for electrochemical 
hydrogen and H2 derivatives production
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Electricity produced with solar energy 

Photovoltaics (PV)

▪ Low levelized cost of electricity

▪ Availability depends on solar irradiation

Concentrated Solar Power (CSP)

▪ Thermal storage (low cost)

▪ Flexible electricity production (steam cycle)

➢ Combination of PV and CSP can lead to high electrolyser full load hours with relatively low levelized cost of electricity.

➢ Synergies in hybrid system: E.g. additional electric heater and usage of PV electricity for internal demand of CSP plant

Electrochemical water splitting (AEL) 



CSP/PV hybrid concept cost-optimal operational strategy
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▪ Different possibilities of CSP/PV system design and operation (CSP/PV ratio)

▪ Very low PV costs favors fluctuating concepts like b) or even a) for hydrogen production.

➢ Expectation: Coupling with hydrogen to X process favors more continuous process designs and increases CSP share.

a) Overscaled PV-only system: 

fluctuating H2 production

b) CSP/PV hybrid system: fluctuating 

H2 production with overscaled

electrolysis and PV

c) CSP/PV hybrid system: Continuous 

H2 production

5) Rosenstiel et al (2021) https://doi.org/10.3390/en14123437

https://doi.org/10.3390/en14123437


METHODOLOGY: OPTIMIZATION MODEL
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CSP/PV hybrid concept and optimization variables

9

▪ Which CSP/PV hybrid system design leads to the lowest levelized cost of methanol?

▪ Techno-economic energy system model with 9 optimization variable

▪ Cost-optimal sizing of systems components by minimization of product cost function

min 𝐿𝐶 𝑜𝑓 𝑀𝐸𝑂𝐻 = 𝑓 𝑃𝐶𝑆𝑃,𝑅𝑒𝑐 , 𝑃𝑃𝑉,𝑃𝑒𝑎𝑘 , 𝑃𝐴𝐸𝐿, 𝑃𝑇𝑢𝑟𝑏, P𝐻𝑒𝑎𝑡𝑒𝑟,𝑒𝑙 , C𝑇𝐸𝑆, 𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝐶𝐻2,𝑠𝑡𝑜𝑟 , 𝑃𝑀𝑒𝑂𝐻

Rosenstiel et al (2021) https://doi.org/10.3390/en14123437

▪ Stand-alone system.

▪ CSP and PV yield calculation 

based on correlations and 

assumptions of DLR tool 

Greenius.

▪ The model includes an 

operating strategy for best 

possible utilization of 

fluctuating electricity.

https://doi.org/10.3390/en14123437


CSP/PV hybrid power plant for hydrogen production

10

▪ Advantages of CSP/PV hybridization for hydrogen production shown in previous study (system boundary hydrogen at 

20 bar) (4,5).

▪ Cost reduction outlook scenario: strongly decreasing PV costs and moderately decreasing CSP costs.

▪ Shifting of cost optimum of with lower PV costs to lower electrolyser full load hours (more fluctuating production).

(5) Rosenstiel et al (2021) https://doi.org/10.3390/en14123437

➢ Expectation: Coupling with 
methanol production process 
will favor more continuous 
process designs with higher 
electrolyser full load hours.

https://doi.org/10.3390/en14123437


Methanol production concept
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▪ CO2 hydrogenation at 230 °C and 80 bar. 

𝐶𝑂 + 2𝐻2 → 𝐶𝐻3𝑂𝐻

𝐶𝑂2 + 3𝐻2 → 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂

Methanol synthesis plant

Hydrogen to Methanol efficiency:

𝜂𝐻2−𝑀𝑒𝑂𝐻,𝐿𝐻𝑉 = 81%



Techno-economic process evaluation: methodology
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Weather data source: (Meteonorm 8.0) and Greenius (DLR tool)

Locations:

▪ Almeria, Spain, DNI: 1918 kWh/(m2a)

▪ Tabuk, Saudi-Arabia DNI: 2882 kWh/(m2a)

▪ Process simulation(1h) steps

▪ Optimization with MATLAB™ Patternsearch Global Optimization 

algorithm.

▪ Standard PV, CSP scenario (today)

▪ Outlook scenario:

▪ PV: -55% (760, 340 USD/kW)

▪ CSP approx. – 25 %, higher efficiency

CSP equipment 
Location: Almeria, Spain  

Cost Index: 84 

Location: Ouarzazate, Morocco  

Cost Index: 42 

 
Standard 

scenario 

Outlook  

scenario 

Cost  

reduction 

Standard 

scenario 

Outlook  

scenario 

Cost 

reduction 

Heliostat field (USD/m2) 114.76 83.11 27.6% 87.88 65.27 25.7% 

Tower (103USD/m 78.48 62.78 20.0% 48.24 38.59 20.0% 

Receiver (USD/kWth) 146.57 102.60 30.0% 124.43 87.10 30.0% 

Thermal storage 

(USD/kWh) 
24.93 20.68 17.0% 21.09 17.75 15.8% 

Power Block (USD/kWel) 785.12 708.45 9.8% 693.56 625.62 9.8% 

 

(8) Dersch et al (2020) https://doi.org/10.1063/5.0028883

CSP cost assumptions: Total Sub component cost (8)

Source: https://globalsolaratlas.info/map



ECONOMIC PPROCESS EVALUATION
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Cost-optimized MeOH plant design
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Operational profile

Economic system optimization methanol production:

Regular CSP location: Almeria (Spain)

➢ At excellent solar location very continous electrolyser operation. 

Operational profile

Economic system optimization methanol production, 

Excellent CSP location: Tabuk (Saudi-Arabia)



Cost-optimized MeOH plant design
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Plant design

Economic system optimization methanol production:

Regular CSP location: Almeria (Spain)

Plant design

Economic system optimization methanol production, 

Excellent CSP location: Tabuk (Saudi-Arabia)



Share of electricity provision for E-Methanol production based 
on CSP/PV hybrid power plants
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• Regular CSP site: PV supplies most of the electricity throughout the year.

• At very good CSP sites, 2/3 of the electricity is supplied by the steam turbine.



Methanol production price

Methanol production price depends on: 

▪ Hydrogen price which is a function of CAPEX, LCOE 

and electrolyser full load hours

▪ CO2 price

17

2) IRENA and METHANOL INSTITUTE 2021 METHANOL INSTITUTE July 2024

Fossil-based Methanol market price in the range of 300 to 

600 USD/t.



Methanol production price

18 Price assumption generic CO2 source: 73 USD/t in 2020 (point source), 87 USD/t in 2030 (point 
source+DAC)

▪ The methanol production 

costs with the CSP/PV 

hybrid concept are 

significantly lower than 

with the pure PV concept 

(up to 19 %).

▪ The production costs for 

2030 appear very 

promising compared to 

the current methanol 

market price.



ENVIRONMENTAL ASPECTS
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Environmental process evaluation: 
Global warming potential (GWP100) of PV and CSP electricity 
provision
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CSP evaluation based on publication of Gasa et al 2021 (9) and Gasa et al 2022 (10)

PV LCA evaluation based on Umweltbundesamt 2021 (11) and IEA 2020 (12)

▪ Analysis for 3 locations

▪ Assumption lifetime 20 a

➢ CSP GWP potential up to

56% lower at good solar

locations.



Critical raw material demand for solar electrochemical hydrogen 
production (only electricity)
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▪ Analysis for plant site with high

solar irradiation potential (Tabuk,

Saudi-Arabia)

▪ Production of PV electricity

requires significantly more

critical and strategic raw

materials than CSP electricity

provision.



OUTLOOK
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Summary and Outlook

▪ CSP/PV hybrid power plants with thermal energy storage are a promising approach for the production of renewable 

fuels with solar energy.

▪ Lower PV system costs favor plant concepts with fluctuating hydrogen production (lower electrolyser FLH).

▪ In good solar locations, cost-optimized continuous operating concepts (>8000 electrolyser FLH possible) with a 

high proportion of CSP electricity production (2/3).

▪ Environmental aspects such as life cycle emissions and the need for critical raw materials show further advantages 

of incorporating CSP.

Next steps:

▪ Further sensitivity studies

➢ Electrolyser, PV, CSP system costs +/- 50 %

▪ Include environmental system evaluation based on a LCA analysis

➢ Plant design to minimize CO2 abatement costs

23
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