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MOTIVATION AND CONCEPT
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Motivation: Solar hydrogen potential
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▪ Total solar irradiation potential ~ 6000 times world’s primary energy demand (1).

➢ Sunbelt has great potential for the production and export of renewable energy carriers (green H2 and H2 derivatives).

Focus of work: 

▪ Development of cost-optimized systems for the production of solar fuels with the lowest possible environmental 

impact.

➢ Consider lifecycle emissions of the applied technologies especially global warming potential (GWP100).

(1) Quaschning 2019



Concept CSP/PV hybrid power plant for electrochemical 
hydrogen and H2 derivatives production
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Electricity produced with solar energy 

Photovoltaics (PV)

▪ Low levelized cost of electricity

▪ Availability depends on solar irradiation

Concentrated Solar Power (CSP)

▪ Thermal storage (low cost)

▪ Flexible electricity production (steam cycle)

➢ Combination of PV and CSP can lead to high electrolyser full load hours with relatively low levelized cost of electricity.

➢ Synergies in hybrid system: E.g. additional electric heater and usage of PV electricity for internal demand of CSP plant

Electrochemical water splitting (AEL) 



CSP/PV hybrid concept cost-optimal operational strategy
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▪ Cost optimization to determine 

operational concept ( plant design)

➢ Expectation: Environmental aspects favor 

continuous hydrogen production concepts

a) Overscaled PV-only system: fluctuating H2 production

b) CSP/PV hybrid system: fluctuating H2 production with overscaled electrolysis and PV

c) CSP/PV hybrid system: Continuous H2 production

4) Rosenstiel et al (2021) https://doi.org/10.3390/en14123437

https://doi.org/10.3390/en14123437


METHODOLOGY
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CSP/PV hybrid energy system model and optimization variables
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▪ Techno-economic energy system model 

with 7 optimization variables

▪ Stand-alone system, system boundary H2

at 20 bar

▪ Previous study: Cost-optimal sizing of 

systems components by minimization of 

LCOH. (global optimization algorithm)

▪ New study: Design system by 

minimization of CO2 abatement costs.

min 𝐿𝑒𝑣𝑒𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑜𝑟min(𝐶𝑂2 𝑎𝑏𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠) =

𝑓 𝑃𝐶𝑆𝑃,𝑅𝑒𝑐 , 𝑃𝑃𝑉,𝑃𝑒𝑎𝑘 , 𝑃𝐴𝐸𝐿 , 𝑃𝑇𝑢𝑟𝑏 , P𝐻𝑒𝑎𝑡𝑒𝑟,𝑒𝑙 , C𝑇𝐸𝑆 , 𝐶𝐵𝑎𝑡𝑡𝑒𝑟𝑦



Techno-economic process evaluation: methodology
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Weather data source: (Meteonorm 8.0) and Greenius (DLR tool)

▪ Freiburg, Germany: DNI: 971 kWh/(m2a)

▪ Almeria, Spain, DNI: 1918 kWh/(m2a)

▪ Ouarzazate, Morocco DNI: 2518 kWh/(m2a)

▪ Tabuk, Saudi-Arabia DNI: 2882 kWh/(m2a)

▪ Process simulation(1h) steps

▪ Study with constant electrolyser Total 

investment cost (TCI): 827 USD/kW

▪ Standard PV, CSP scenario (today)

▪ Outlook scenario:

▪ PV: -55% (760, 340 USD/kW)

▪ CSP approx. – 25 %, higher efficiency

CSP equipment 
Location: Almeria, Spain  

Cost Index: 84 

Location: Ouarzazate, Morocco  

Cost Index: 42 

 
Standard 

scenario 

Outlook  

scenario 

Cost  

reduction 

Standard 

scenario 

Outlook  

scenario 

Cost 

reduction 

Heliostat field (USD/m2) 114.76 83.11 27.6% 87.88 65.27 25.7% 

Tower (103USD/m 78.48 62.78 20.0% 48.24 38.59 20.0% 

Receiver (USD/kWth) 146.57 102.60 30.0% 124.43 87.10 30.0% 

Thermal storage 

(USD/kWh) 
24.93 20.68 17.0% 21.09 17.75 15.8% 

Power Block (USD/kWel) 785.12 708.45 9.8% 693.56 625.62 9.8% 

 

Dersch et al (2020) https://doi.org/10.1063/5.0028883

CSP cost assumptions: Total Sub component cost (7)



CSP/PV hybrid power plant for hydrogen and hydrogen 
derivatives production
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4) Rosenstiel et al (2021) https://doi.org/10.3390/en14123437

▪ Influence of electricity price and electrolyser full load hours on levelized cost of hydrogen (LCOH)

▪ Previous studies showed economical advantages of CSP/PV hybridization for hydrogen production (3,4).

▪ Cost reduction outlook scenario analyzed 

effect of strongly decreasing PV costs and 

moderately decreasing CSP costs.

▪ Cost optimum of CSP/PV plants shifts with 

lower PV costs to lower electrolyser full 

load hours (fluctuating production).

➢ Include environmental aspects in system 

evaluation.

https://doi.org/10.3390/en14123437


Environmental process evaluation methododoly: 
Life Cycle Assessment (LCA) of PV and CSP electricity provision
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▪ LCA with the OpenLCA tool and Ecoinvent database

▪ CSP data based on G.Gasa (2021,2022)

▪ Focus impact category Global Warming Potential (GWP100)

▪ Functional unit: GWP/kWhel

9) Gemma Gasa. 2021

10) Gemma Gasa, 2022



ENVIRONMENTAL PROCESS EVALUATION
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Environmental process evaluation: 
Global warming potential (GWP100) of PV and CSP electricity 
provision
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PV LCA evaluation based on Umweltbundesamt 2021 (11) and IEA 2020 (12)

CSP evaluation based on publication of Gasa et al 2021 (9) and Gasa et al 2022 (10)

▪ Analysis for 3 locations

▪ Assumption lifetime 20 a

➢ CSP GWP potential up to

56% lower at good solar

locations.



Environmental process evaluation: 
Global warming potential (GWP100) of solar powered 
electrochemical hydrogen production
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CO2 abatement costs (CO2,AC) minimization hydrogen production 
(only electricity)
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*Reference process: Hydrogen from steam methane reforming (SMR) : 

2011 kg (CO2eq/ t MeOH) (11)

Price for Hydrogen produced by SMR: 1.5 USD/kg

min 𝐶𝑂2,𝐴𝐶 =

𝑓 𝑃 𝐶𝑆𝑃,𝑅𝑒𝑐 , 𝑃𝑃𝑉,𝑃𝑒𝑎𝑘 , 𝑃𝐴𝐸𝐿 , 𝑃𝑇𝑢𝑟𝑏, P𝐻𝑒𝑎𝑡𝑒𝑟,𝑒𝑙 , C𝑇𝐸𝑆, 𝐶𝐵𝑎𝑡𝑡𝑒𝑟𝑦
𝐶𝑂2,𝐴𝐶 𝑜𝑓 𝐻2 = 

𝐿𝐶𝑂𝐻2,𝑠𝑜𝑙𝑎𝑟−𝐿𝐶𝑂𝐻2,𝑟𝑒𝑓∗

𝐺𝑊𝑃 𝐻2,𝑟𝑒𝑓∗−𝐺𝑊𝑃 𝐻2,𝑠𝑜𝑙𝑎𝑟

Economic system optimization, Almeria (Spain) 2020 Minimization CO2,AC, Almeria 2020

➢ CO2,AC minimization leads to more continuous hydrogen 

production concepts. 



CO2 abatement costs (CO2,AC) minimization hydrogen production 
(only electricity)
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Economic system optimization, Almeria 2020 Minimization CO2,AC, Almeria 2020

➢ Different plant design with consideration of lifecycle emissions of electricity generation. 

➢ Cleaner energy usage in production processes will shift the results of CO2 abatement cost minimization 

(prospective LCA).



Critical raw material demand for solar electrochemical hydrogen 
production (only electricity)
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▪ Analysis for plant site with high

solar irradiation potential (Tabuk,

Saudi-Arabia)

▪ Production of PV electricity

requires more critical and

strategic raw materials.



SUMMARY AND OUTLOOK
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Summary and Outlook

▪ Hydrogen production based on CSP/PV hybrid power plants with thermal energy storage are an economically 

promising approach for the production of green hydrogen.

▪ Environmental aspects of electricity provision should not be neglected.

▪ Focus on global warming potential (GWP100) over lifecycle and critical raw material demand.

▪ Lower PV system costs favor economically plant concepts with fluctuating hydrogen production (lower FLH)

▪ Environmental aspects favor continuous process concepts with a high share of CSP electricity. ( >8000 electrolyzer

FLH possible).

Next steps:

▪ Include more process equipment (e.g. electrolyser system) in environmental system evaluation based on a LCA 

analysis

▪ CSP LCA based on primary data

▪ Include prospective LCA

▪ Study for a great variety of locations, sensitivity analysis

➢ Identification of key performance factors

18
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Thank you for your attention!

Muchas gracias!
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