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Abstract: The maintenance of photovoltaic (PV) power plants is of central importance for their yield.
To reach higher efficiencies in PV parks, it is helpful to detect soiling such as dust deposition and to
apply this information to optimize cleaning strategies. Furthermore, a periodic inspection of the PV
modules with infrared (IR) imagery is of advantage to detect and potentially remove faulty PV mod-
ules. Soiling can be erroneously interpreted as PV module defects and hence spatially resolved soiling
measurements can improve the results of IR-based PV inspection. So far, soiling measurements are
mostly performed only locally in PV fields, thus not supporting the above-mentioned IR inspections.
This study presents a method for measuring the soiling of PV modules at cell resolution using RGB
images taken by aerial drones under sunny conditions. The increase in brightness observed for
soiled cells under evaluation, compared to clean cells, is used to calculate the transmission loss of the
soiling layer. Photos of a clean PV module and a soiled module for which the soiling loss is measured
electrically are used to determine the relation between the brightness increase and the soiling loss.
To achieve this, the irradiance at the time of the image acquisitions and the viewing geometry are
considered. The measurement method has been validated with electrical measurements of the soiling
loss yielding root mean square deviations in the 1% absolute range. The method has the potential to
be applied to entire PV parks in the future.

Keywords: soiling; PV soiling measurement; solar energy; drone-based PV monitoring; image-based
PV-monitoring

1. Introduction

Transforming the global energy system from one based on fossil fuels to one based
on a mix of renewable sources is vital to achieving net zero greenhouse gas emissions by
2050. It is expected that in the new global energy system, solar energy will be one of the
largest contributors of renewable energy sources [1,2]. Among the most advanced solar
technologies is photovoltaic (PV), which in recent years has undergone great deployment,
in many cases large commercial plants. The demand for monitoring PV plants increases
as the globally installed PV capacity grows. One of the reasons for monitoring is soiling.
The potential energy yield of PV power plants is estimated to be reduced by 3% to 4%
due to soiling [3]. This value might increase in the future as more plants are built in dusty
areas such as North Africa and the Near East [3]. Note that the impact of soiling is strongly
dependent on the location and the arid regions typically show higher soiling losses [4].
Additionally, inhomogeneous soiling leads to electrical mismatch effects on the module
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or string level and can even cause hotspots [5]. Inhomogeneous soiling patterns might be
caused by dust accumulations in the lower row of cells of a module or by other soiling types
like bird droppings. In severe cases, these might result in fire in large-scale PV systems [6,7].
Hotspots might be detected in IR monitoring drone flights and be misinterpreted as defects
while their origin is soiling. Furthermore, soiling can accelerate the degradation of the
PV modules, either indirectly by an increased temperature or by direct contact of the
soiling with the encapsulant [8–12]. If the soiling losses of a PV system are known, these
adverse effects can be quantified, and adequate cleaning strategies can be determined.
Therefore, a correct characterization of soiling levels could improve plant performance
(direct losses due to soiling), reduce degradation (e.g., by hotspots), and help to optimize
maintenance actions (cleaning), which contributes to an improvement in the economic
indicators of the plant. Consequently, there is an urgent demand to monitor soiling in
PV power plants [13,14]. Micheli et al. have published a study that combines some of
the above-mentioned aspects [15]. Investigated was a site in Chile. Soiling was observed
over a three-year time period. It was found that within the site itself, the soiling rate can
vary by a factor of 3. Additionally, for the site of interest, the optimized cleaning strategy
was determined to be three times per year, which according to the authors could decrease
the generation costs by 4% compared to a suboptimal cleaning strategy, namely two or
four times per year.

There are various methods to measure soiling. Firstly, soiling can be determined by
electrically measuring PV modules individually as described by Gostein et al. in [16–18].
Thereby, the power or the short circuit current of the soiled module is compared to the
one of a clean reference module. This approach presents an accurate real-time soiling
measurement. However, it is not feasible to electrically measure every module in a PV
plant individually, and keeping the reference module clean is challenging. Consequently,
these methods do not supply information about the soiling status of the entire PV surface.

With the second method used in most PV plants, soiling is measured with commer-
cially available optical soiling sensors that only cover small areas [19,20]. Therefore, many
sensors would be needed to analyze spatially resolved soiling. Soiling levels in PV parks
vary spatially, e.g., depending on the distance from local soiling sources such as roads [21].
Even within a single PV module, the soiling losses vary.

Spatially resolved information can be derived using imaging techniques. Infrared
imaging (IR) has already commonly been used during the monitoring of the operation of
PV plants for fault detection [22–25]. There are also visible imaging (RGB) and electrolu-
minescence (EL) imaging techniques for monitoring the operation of PV facilities [26,27].
Also, there has been research on image-based soiling measurements in the visible spectral
range to consider spatially resolved soiling [28,29]. The images were either captured by
static cameras, for example, surveillance cameras, or by unmanned aerial vehicles (drones).
There are a few publications that describe how dust can be recognized by classical computer
vision methods applied to images captured by static cameras [28,29]. These papers use
histogram methods to distinguish clean from soiled PV modules. Typically, for RGB images
of clean modules, the blue channel shows far greater values than the red and the green
channels. For the case of soiled modules, the average value of these channels comes closer
together. Qasem et al. have analyzed drone images to detect dust [26]. The method is based
on comparing the homogeneity of different images. Li et al. also used drones and were ad-
ditionally able to detect snail trails [30]. The method relies on edge detection. Objects lying
on the modules are detected. By analyzing the rectangularity of the detected areas, different
soiling types can be distinguished. In addition to classical computer vision, Hwang et al.
also applied artificial intelligence (AI) methods to detect dust [31]. The above-mentioned
studies have detected dust without estimating the power loss caused.

Cavieres et al. have applied AI-based algorithms to surveillance camera images to
estimate the range of the power loss of artificially soiled PV modules [32]. Additionally, the
soiling types have been categorized. A similar study has been performed by Mehta et al.
to predict the power loss more accurately [33], giving a discrete value for the soiling loss
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instead of a range. A dataset that contains more than 45,000 images of a soiled PV panel
was created. For each image, the electrical power loss has been measured. With this dataset,
the authors have developed an AI model that is capable of predicting the power loss of a
module just from seeing an image of this module. The approach is very promising and is
mainly limited by the training dataset. All images were captured from the same perspective
from the same camera of the same module. The module was artificially soiled. The
developed model could therefore not simply be applied to any image of a soiled PV module
of a given PV park. The dataset was also published which created a great interest among
scholars. Yang et al. have developed a similar AI model that is also capable of predicting the
soiling loss just from an image of the soiled module [34]. Compared to Mehta et al., the main
advantage is that the training data contained images of a PV module that experienced real
outdoor conditions in Doha. This increases the applicability. However, otherwise, the study
suffers from the same limitations as the work by Mehta et al. The three studies mentioned
above analyze images that were captured by static cameras. Consequently, the scalability
of their methods to commercial-scale power plants is questionable. It is expected to be too
expensive to cover great parts of a PV park with cameras. The dataset used by Mehta et al.
contains only images that were captured from one single perspective. The developed AI
models likely learned features that correspond only to that specific perspective. To be
more generally applicable, the training dataset should already contain labeled images from
various perspectives. It is desirable to be able to analyze drone images captured in a whole
plant. This would result in many different camera perspectives relative to the modules.
Generally speaking, it is also possible to adapt the above-mentioned methods to drone
images. To the best of the authors’ knowledge, there is no dataset publicly available of
soiled PV modules of various perspectives.

This paper presents a new method that is able to detect soiling by dust and other small
particles and quantify its losses. It applies a physical approach that relies on analyzing the
light that is scattered at the dust particles. Based on the literature review presented in this
section, it is possible to highlight the original contributions of this work. To the best of our
knowledge, there is no other method that predicts the soiling losses of PV modules with
cell resolution in a scalable way using drone images. Also, compared to AI approaches,
our new physical approach offers the advantage that there is no need for a large labeled
training dataset. Furthermore, the results are probably easier to interpret as a physical
method does not rely on a black box. On the other hand, if in the future there was an AI
model to be developed, the method presented here could provide training data. The use of
drone images offers the potential to apply the method at the commercial power plant level.
The output is resolved on a cell level which means that electrical mismatch effects within a
module or a string of modules can be considered.

This paper is structured as follows. Section 2 describes the developed method.
Section 3 describes the setup and the data acquisition. The results are presented and dis-
cussed in Section 4. Section 5 summarizes the results achieved and suggests future works.

2. Methods
2.1. Optical Measurement Principle

PV modules are typically quite dark because they should absorb as much light as
possible in order to convert it into electricity. The deposition of particles on their surface
leads to light scattering which makes the modules appear brighter. The method is based on
measuring this brightness increase and converting it to the soiling loss. The reflectance of a
PV module as well as the scattering by the particles both show a strong angular dependence
and have to be considered.

The first step of the method requires isolation of the scattering signal from the signal
that would be found for a clean module (clean background calibration). Images of a
clean module are taken from various perspectives for this purpose. The second step of the
method is the conversion of the brightness increase to the soiling loss (scattering calibration).
This is carried out using images of a soiled module with known soiling loss from various
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perspectives. The soiling loss of this module is obtained by comparing its power output to
that of the cleaned module as described, e.g., in [18,35].

Practically, the measurement is performed in two steps. First, a spiral flight is per-
formed over the two above-mentioned reference modules. Afterwards, other modules can
be evaluated. The soiling loss will be calculated for every image of every cell individually.
For each cell, a filtered average is calculated over all images.

A detailed mathematical derivation of the measurement theory can be found in
Appendix A.

2.2. Consideration of Electrical Mismatch Effects

The power losses a module experiences due to soiling are denoted SL in this paper.
The electrical mismatch losses of a soiled PV module are potentially high and add to the
optical losses. A homogeneous soiling leads to a constant shading of a given factor and
if all circumstances are the same, the module experiences a reduction in electrical power
output very close to this purely optical reduction factor. If, however, the cells are soiled in
an inhomogeneous manner, the overall reduction in power output might be higher due to
electrical mismatch. Mineral dust is in the beginning rather homogeneously deposited on
the module surface. But due to dew, in many cases, dust will accumulate in the lower row
of cells of a module leading to an inhomogeneous soiling pattern. Other soiling types like
bird droppings are typically inhomogeneous. Figure 1 illustrates the difference between
homogeneous and inhomogeneous soiling with mineral dust and bird droppings. The two
cases merge into one another. A clear distinction is not always possible. The current voltage
curve (IV curve) of each cell is different for this case according to their degree of soiling.
The IV curve is an important characteristic of a PV module or cell. The power output is
determined by the product of current and voltage. Therefore, the optimal point on the
IV curve has to be tracked. A maximum power point (MPP) tracker does exactly this. Such
an MPP tracker is either connected to a single module or to a string of modules. The cells
are connected in series. Therefore, the same electrical current passes through all cells. This
leads to some cells being operated outside of their individual MPP.
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Figure 1. Illustrating two different soiling types. Left: two modules next to each other. The left
one is soiled with dust and the right one is cleaned. This soiling is classified as homogeneous. The
accumulation of dust is slightly stronger only in the lower row of cells. Right: Module soiled with
bird droppings. This module is considered to be inhomogeneously soiled.

An electrical model based on the python pvlib by [36,37] has been used to calculate
the electrical mismatch losses. It is based on the single diode model. The single diode
parameters can be estimated according to the module’s data sheet. Every cell is assumed to
have the same properties. The electrical model calculates the power output for the clean
case and the case of the calculated soiling pattern. By dividing the two powers, we obtain
the soiling ratio including mismatch losses. Analysis shows that in all analyzed cases, the
soiling was sufficiently small and sufficiently homogeneous so that significant additional
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losses due to electrical mismatch can be excluded. The electrical losses of a module are
therefore equal to the optical losses arithmetically averaged over all cells for the examples
presented in this paper.

3. Data

Three measurement campaigns have been performed in order analyze different soiling
conditions. The campaigns took place on 8 April 2022, 8 September 2022, and 25 September
2023 with four, three, and one measurement flights, respectively. The first dataset was
recorded to implement the workflow and test the developed methods. Later, more data
were recorded for an enlarged validation at different conditions, in particular, with another
dust type.

3.1. Measurement Setup

The measurements are performed at CIEMAT’s Plataforma Solar de Almería (PSA) on
a PV outdoor test bench (PVot, Figure 2). Among other things, the PVot facility is designed
for soiling experiments. At the time of the first measurement campaign, there were 12 PV
modules, 6 types of modules with 2 modules each. The modules are oriented in the south
direction with an elevation angle of 30 degrees. Every module is connected to its own
microinverter and MPP tracker. The power of every module is recorded. Furthermore,
there are two IV tracers. Additionally, there are reference cells at the test bench to measure
the global tilted irradiance (GTI) in the same plane. The electrical soiling losses can be
determined by comparing the modules’ power outputs to each other or to the GTI as
further explained in Section 3.3.2. Less than 10 m away from the test bench is a meteorology
station which is equipped with a pyrheliometer whose DNI measurement is used for
the evaluations.
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numbers 1 and 4, consist of 72 cells each while the upper two modules, numbers 2 and 3, 

Figure 2. Aerial image of the test bench with 12 modules. Module 1 is clean while the rest were
naturally soiled. The central modules numbered 1 to 4 are used for the experiments. The image was
taken on the 8 April 2022. At the corners of the setup, one can see the photogrammetry targets that
enable the determination of the camera position relative to the modules.

In this measurement campaign, only the four central modules are considered. These
are polycrystalline silicon modules manufactured by Axitec. The lower two modules,
numbers 1 and 4, consist of 72 cells each while the upper two modules, numbers 2 and 3,
have 60 cells each. The nominal powers are 335 W and 280 W. It is assumed that the optical
behavior of all cells of the four modules is the same. Module 1 is chosen to be the clean
reference module for all campaigns and module 2 is the soiled reference module for the
first and the third campaign. In the second campaign, module 4 is chosen as the soiled
reference as module 2 was clean then. Note that the modules are typically soiled with local
dust. However, on the 8 April 2022, module 4 was soiled with a different type of dust, due
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to a sandstorm bringing Saharan dust to Almería. One module was permanently exposed
to outdoor conditions after that while the two other modules were stored indoors directly
after this dust event until the measurement day to avoid influences from further soiling
events and also from natural cleaning. In the third campaign, three modules are soiled
artificially with gypsum.

3.2. Measurement Procedure and Data Acquisition

First, the reference measurement is performed. A spiral flight over the clean and the
soiled reference module is carried out. Both modules are located directly next to each other
so that one flight is sufficient to cover both modules. Afterwards, the measurement flight
is performed where the route of the drone is a straight line over the setup in an east–west
direction. Figure 3 visualizes the flight route used for the calibration flight. The flight starts
in the center, directly above the setup. According to the spiral route, the drone continues to
go further to the outside step by step. At the same time, the drone starts at its maximum
height and decreases the height the further it goes to the outside of the spiral.
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Figure 3. Flight route for the calibration. The points mark the waypoints of the drone. The numbers
in the circles indicate the chronological order of the waypoints. The height of the drone for each
waypoint is shown in the black boxes.

The electrical power of the four modules, the GTI, and the DNI are recorded perma-
nently. Additionally, for modules 2 and 3, the IV curve is traced. These data are recorded
every 10 s. These values are recorded on the measurement day itself and also on a sunny
reference day on which all devices are clean. The comparison to this day allows the
determination of the reference soiling losses (see Section 3.3.2).

The drone captures both raw images and RGB images. Only the raw images are used
for the evaluation. Images are captured every 3 to 5 s. The images contain metadata such
as exposure time, aperture, and ISO. For the flight routes used, one pixel in an image
corresponds to approximately 6 mm in the module plane in reality.

3.3. Data Processing
3.3.1. Image Processing

Figure 4 visualizes the sequence of the image processing. We use a DJI Mavic 2 Pro
(Shenzhen, China) drone for the flights and to capture the images. The images have 5472 by
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3648 pixels. The pixel sensors are based on the CMOS technology. The camera has an
opening viewing angle of 77 degrees. The evaluation only considers raw images. This
ensures that there is a linear relation between irradiance that hits the camera sensor and
the values of the corresponding pixels in the image as we also tested using the exposure
time series for a constant illumination condition. A camera-specific flat field correction is
applied, as mentioned in Appendix A.1. The flat field correction matrix is determined by
taking images of an integrating sphere. The integrating sphere has the same brightness at
every position. The images of the integrating sphere, however, show a greater brightness in
the center. The correction matrix considers the drop of brightness at the images’ edges and
possible pixel-specific variations in the sensitivity for every pixel (m, n). The dependence
of the camera sensitivity on the sensor coordinates can be seen in Equation (1) as the index
(m, n) of εmn. After the flat field correction, this dependence is removed and εmn simplifies
to ε.
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Figure 4. Flow chart of the soiling analysis. The sequence starts with the planning of the flight
route. Raw images are then captured. Linearized RGB images with vignetting correction are then
calculated. These images are then used for the photogrammetry analysis. As a result, the module
can be identified on the images and orthoimages are calculated. In case of a calibration flight, these
images are then used for the calculation of the two calibration functions. In case of a measurement
flight, the soiling losses are calculated.
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Photogrammetry methods are applied to calculate rectified orthographic images as
described in detail in [38]. Input is in particular a coordinate system defined by the
photogrammetry target in the corners of the setup seen in Figure 2. Also, the position of
each module within this coordinate system is given as an input. The photogrammetry
can then calculate the camera position relative to each module for each image. The so-
called orthoimages of each module are cut into individual cells. This is performed by
applying a mask that aligns with the modules’ edges. The position of each module is
given in a reference coordinate system which allows the distinction of all modules. For
each orthoimage, the sun position is calculated from the timestamp. The camera position
relative to the cell is calculated. This information is sufficient to describe the geometry.
The brightness of each cell of each orthoimage is extracted and normalized to the GTI at a
certain timestamp.

Afterwards, the calibrations and the evaluation are performed in the following or-
der. First, the clean reference module is analyzed (see the method from Appendix A.2.1)
followed by the soiled reference module (Appendix A.2.2). Afterwards, it is possible to
analyze all other modules (Appendix A.2.3). For every image of a given cell a soiling loss is
calculated. The final soiling value of a cell is the filtered average over all images to exclude
outliers (see Appendix A.2.3).

3.3.2. Calculation of Electrical Losses for Calibration of cscat and Validation

There are two ways that are used to electrically determine the soiling losses SLre f of the
modules for the calibration and validation in this work. In the first and more accurate way,
the power of the soiled module is compared to the power of the clean module. Additionally,
a normalization factor has to be applied which considers that the modules have different
nominal powers and have aged differently. Therefore, the ratio of powers is normalized by
its value when both modules are clean [16].

Alternatively, the power of the soiled module can also be compared to its expected
power in the clean state calculated using reference cell data [35]. On a day where both
the reference cell and the module are clean, the ratio between module power and the
reference cells PV-matched and temperature-corrected GTI is calculated in a symmetrical
time window of one hour around solar noon. The same ratio is determined for the mea-
surement day where the module is soiled and the reference cell continues to be clean. By
dividing both ratios, and applying a temperature correction for the module power, the
soiling ratio is obtained. The PV module temperature has to be considered as the module
temperature increases as its efficiency decreases. For normal operating temperatures, a
linear dependence between the module temperature and efficiency is valid. The man-
ufacturer states the temperature coefficient in the data sheet, −0.4% per K temperature
increase. The module temperature is measured with a Pt-100 and the module power will
be temperature-corrected to an arbitrarily chosen reference temperature of 40 ◦C for every
timestamp. The corrected power is calculated by considering the measured deviation from
the reference temperature and multiplying the temperature difference with the temperature
coefficient from the data sheet. In the case of determining the soiling loss by comparing
the soiled modules’ powers to the clean module’s power, a temperature correction is not
necessary because it is assumed that the clean and the soiled module have a very similar
temperature and their efficiencies are assumed to have the same temperature dependence.
This way it is indifferent if the modules have a different temperature on the measurement
day and the reference day. As mentioned above, the reference cell data are also temperature
corrected. The short circuit current increases with the temperature. In case of the used
module, the coefficient of the short circuit current increase is 0.04% per Kelvin.

For the first campaign, the soiling losses are determined by comparing to the reference
cell as the power of the clean module was then not recorded continuously. For the following
campaigns, the soiling is determined via the module-to-module comparison method.

For all electrical measurements, data of up to one hour around solar noon are con-
sidered. This is a tradeoff between achieving better statistics because of a large number
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of data points and at the same time ensuring that only low incidence angles are used. In
the morning and in the evening, the sunlight falls on the module at a high incidence angle.
This changes the soiling loss as the soiling layer appears thicker for higher incidence angles.
Additionally, small misalignments of the module planes, which are negligible for nearly
normal incidence, typically show a higher impact in the morning and evening hours. It
has been found that the module and the reference cell are sufficiently in plane so that
a correction for the incidence angle is not necessary when analyzing only data close to
solar noon.

Note that the electrically measured reference soiling loss is an input for the presented
optical method. Therefore, the accuracy of the optical method is limited by the accuracy of
the electrical reference measurement. This is also true for the AI methods mentioned in
the introduction by Mehta et al. [33] and by Yang et al. [34] and will be true for any optical
method that requires a calibration with electrical reference measurements.

A few days after each campaign, all modules are cleaned to perform the above-
mentioned normalization. Appendix B.2 shows the calculation of the electrical reference
loss for all modules and test days.

4. Results and Discussion

All flights performed on the three days are evaluated. As an example, the results of
the first flight of the first campaign are shown here in detail, while the other two days are
presented in Appendix B. Figure 5 shows the cell-resolved soiling of all four modules that
were calculated for the given flight. The lower right module was used as the clean reference
module and the upper right module was used as the soiled reference module.
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Figure 5. Results of the first flight performed on the 8 April 2022. The color marks the calculated
soiling loss. The lower right module (1) was used as the clean calibration module while the upper
right (2) was used as soiled reference module. The upper numbers label the modules. The number in
the middle states the optically measured soiling loss using the drone images while the lower number
is the electrical reference loss.

Figure 6 shows the optically measured soiling loss against the electrically measured
reference soiling loss for every image. In contrast to Figure 5, the optically measured soiling
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loss SLcam in Figure 6 is module resolved and not cell resolved and is not yet averaged over
all images. As can be seen, the calculated module soiling loss is similar for every image
and there are no major outliers.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 40 
 

 

 
Figure 6. Optically calculated soiling loss for every image of every module against the electrically 
measured reference soiling loss. The standard deviations for the soiling loss on module level for 
modules 1 to 4 are 0.14%, 0.22%, 0.20%, and 0.18%, respectively. The results belong to the first flight 
performed on 8 April 2022. 

According to the results, the soiling distribution of each module seems to be roughly 
homogeneous. However, there are a few cells that have a different soiling loss than their 
neighboring cells. In particular, the lower right cell of module 2 and the upper right cell 
of module 3 have a higher soiling loss. This observation in the results corresponds to the 
expectation from the photo shown in Figure 7. One can clearly see that the upper right cell 
of the upper left module is brighter and more soiled than its neighbors. The same applies 
for the lower right cell of the upper right module. 

Figure 6. Optically calculated soiling loss for every image of every module against the electrically
measured reference soiling loss. The standard deviations for the soiling loss on module level for
modules 1 to 4 are 0.14%, 0.22%, 0.20%, and 0.18%, respectively. The results belong to the first flight
performed on 8 April 2022.

According to the results, the soiling distribution of each module seems to be roughly
homogeneous. However, there are a few cells that have a different soiling loss than their
neighboring cells. In particular, the lower right cell of module 2 and the upper right cell
of module 3 have a higher soiling loss. This observation in the results corresponds to the
expectation from the photo shown in Figure 7. One can clearly see that the upper right cell
of the upper left module is brighter and more soiled than its neighbors. The same applies
for the lower right cell of the upper right module.

The calculated soiling loss of the clean module is 0.3% and the soiling loss of the soiled
reference module is 4.8%. These values differ slightly from the electrical reference values
that were used to calibrate the method (0% and 4.2%, respectively). These differences
are explained by the fact that the results shown here were created by evaluating different
images from different perspectives compared to the calibration. The calculated soiling
loss for the upper left module is 4.1% which is close to the electrically measured reference
value of 3.7%. The measured value of the lower left module is 3.1% and differs more from
the electrical reference value of 4.1%. This might be explained by the fact that the upper
modules were soiled with a different soiling type compared to the lower left module.

As mentioned above, the detailed analyses of the other measurement flights of the
first campaign and the analyses of the other campaigns can be found in Appendix B.
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Figure 7. Image of the soiled setup. The module on the lower right was used for the clean calibration
while the upper right module was used as the soiled reference module. Both modules on the left
were used for validation of the method.

Figure 8 summarizes the results of all measurements performed. It shows the optically
measured soiling losses against the electrically measured reference soiling losses. The
values are presented on a module level. The RMSE of the measured soiling loss over all
measurements is 0.93% absolute. The MAE is 0.70% absolute and the MBE is 0.33% absolute.
These three metrics are defined in Equations (1)–(3). With N being the total number of data
points, i identifies each individual data point, xi is the optically measured value, and x̂i is
the electrically measured reference value.

RMSE =

√
∑N

i=1(xi − x̂i)
2

N
(1)

MAE =
∑N

i=1|xi − x̂i|
N

(2)

MBE =
∑N

i=1(xi − x̂i)

N
(3)

The red dot refers to the above-discussed measurement for which the test and soiled
reference modules had a different soiling type. This different soiling type explains the
higher deviations. The blue triangle and the dark red rhombus refer to the third measure-
ment campaign where the modules were soiled artificially with gypsum. The artificial
soiling is not as homogeneous as the natural soiling. Hence, the approximation for the
calibration that all cells of the soiled reference module have the same soiling level is less
adequate and higher deviations can be explained.

One can see that in some cases the method overestimates and in other cases it underesti-
mates the soiling losses. According to [39,40], the uncertainty of the electrical measurements
of the soiling loss is about 1% absolute. This is the same magnitude as the calculated RMSE.
There are not yet enough data to state whether the bias error of the method is systematic
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or not. The method is qualitatively able to distinguish between stronger and less soiled
modules and also stronger and less soiled cells. Additionally, it can give a reasonable
estimation of the absolute soiling value.
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Figure 8. Optically measured soiling losses based on the images plotted against the electrically mea-
sured reference soiling losses for several modules and the three measurement campaigns performed.
For some campaigns and modules, several identical markers are seen referring to different flights
within the same campaign.

There is no obvious benchmark model that could be compared with the proposed
model because of its novelties. The most similar model is probably the AI model by
Yang [34] that calculates the soiling losses from just seeing an image. The authors state
that the relative prediction error is below 10% if the actual soiling loss exceeds 8% absolute.
According to Figure 4 of their paper, this is the case in a minority of the cases. Unfortunately,
the average soiling loss, the RMSE, the MBE, and the MAE are not stated. Figure 4 of the
Yang paper is similar to Figure 8 here. Yang has analyzed a wider range of soiling losses. In
the range up to 8% absolute soiling loss, the deviation between the measurement and the
prediction seem to be comparable to the proposed method. When making this comparison,
one has to be extremely careful and has to keep in mind that both models were tested on
different datasets. Yang et al. used the same camera and the same perspectives for all
images. Additionally, the same modules were used for training and evaluation. All in all,
both methods should be tested under various conditions to allow a fair comparison.

5. Conclusions

This paper presents a new method to optically measure the soiling loss of PV modules
soiled with dust with a high spatial resolution. The method is capable to properly estimate
the soiling losses, with an RMSE of 0.93% absolute in the validations. Individual cells
with a higher soiling can be identified. Also, on the module level, a qualitative distinction
between more and less soiled modules is possible.
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The method’s calibration requires two reference measurements of a clean and a soiled
module. The calibration is performed before every individual measurement. The bright-
nesses of the clean module are extracted from various perspectives and this is also per-
formed for the soiled reference module for which the soiling losses are also determined
electrically. The soiled module is typically brighter as there is more light scattering at the
module’s surface. Conclusions about the scattering behavior of the dust on top of the
module are drawn from the images. After understanding this behavior, it is possible to
evaluate other modules.

As the method is based on analyzing drone images, it could be applied to a larger
scale and could potentially cover entire PV plants. Currently, the method calculates the
soiling loss on a cell level, which allows the consideration of mismatch effects within the
modules. When modules are connected in a series in bigger parks, there are additional
mismatch losses from module to module. These losses can also be considered when
knowing the soiling loss with a spatially high resolution. A combination of this method
with thermography measurements enables the distinction of soiling-based and defect-
based hotspots.

Near-future plans consist of testing the method on a larger scale. In parallel to this
work, another algorithm was developed to also detect other kinds of soiling beyond
dust. These might be inhomogeneous soiling like bird droppings, leaves, or snow. The
two methods are foreseen to be combined in the near future. Simplifying the method’s
calibration is also a goal. Additionally, it is planned to further investigate the properties of
the calibration function. For example, it might be possible to create a calibration that can be
performed once and does not have to be repeated for every measurement campaign. This
could enhance the practicability of the method as there would no longer be the need for
measuring the individual power of one homogeneously soiled module.
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Appendix A

Appendix A.1. Optical Measurement Theory

Figure A1 illustrates the geometry of the measurement. For the diffuse radiation,
only one beam is sketched exemplary, while diffuse radiation is coming from the entire
hemisphere. The reflected and scattered light is indicated with an ellipse because light
scattering takes place in various directions. It has to be noted that the sun vector, the
module normal vector, and the camera vector (drone vector) do not have to be in plane
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in the three-dimensional case. This is a simplification for the illustration. All vectors are
pointing away from the module.
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Figure A1. Sketch to describe the geometry of the measurement method. Shown are the sun position,
a direct sun ray towards the PV module, the drone position, and the module position including its

normal vector −−−−→nmodule . Also, one exemplary ray contributing to the diffuse radiation received that is
received by the module is shown. Additionally, the direct sun reflex is shown together with the reflex
of the diffuse radiation of one exemplary point in the sky.

Appendix A.1.1. Relation of the RGB Values to the Incoming Radiation

The camera mounted on the drone is used as a sensor. The captured images are
interpreted as irradiance maps. Each pixel corresponds to a certain irradiance caused by
radiation coming from a certain direction. The relation between the irradiance and the
pixel’s RGB values is described by the camera equation (Equation (1)) [41,42].

−−−−→
RGBmn = ΓRGB(Mcam ·

∫
Amn

∫ λmax

λmin

texp ·
→

εmn · Eλ

( →
rcam,

→
xobj, tacqui

)
dAdλ) (A1)

−−→rcam is the vector from the object seen in pixel (m, n) to the entrance pupil of the camera.
−−→xobj is the position of the object seen in pixel (m, n) in a global coordinate system.

−−−−→
RGBmn

is a vector containing the three-color channel values of a certain pixel (m, n). ΓRGB is the
camera-specific gamma correction that considers the potentially non-linear response in
terms of irradiance. Mcam is the camera-specific color-mixing matrix, Amn is the pixel

area of the pixel, −→εmn is its color channel-dependent spectral responsivity, and λmin and
λmax are the minimum and the maximum wavelengths of the spectrum that are detected
by the camera. The exposure time of an image is denoted texp. Eλ is the wavelength-
dependent irradiance that is caused by radiation reaching the camera at the time of the
image acquisition tacqui from the specific perspective and object.

Assuming that −→εmn and Eλ are constant over the pixel’s area, we solve the integral
over the pixel area. We also assume that the pixel area is independent of the sensor
coordinates (m, n) so that it is simplified to A. In the following, only the red color channel
is considered, and it is assumed that the matrix elements of Mcam on the main diagonal

are dominant. Accordingly, −→εmn , Mcam, and the vector
−−−−→
RGBmn simplify to εmn, mcam,

and Rmn. Additionally, the gamma correction can be neglected when considering only
linearized images. Furthermore, the variation in the camera’s sensitivity εmn with the
sensor coordinates (m, n) can be removed from using a flat field correction. This will be
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considered before using the images for any evaluations and is described in more detail in
Section 3.3. Hence, εmn simplifies to ε. Accordingly, Rmn is not explicitly dependent on
(m, n) anymore, which is why the index will be neglected from now on. The variation in R

can be expressed using the arguments (−−→rcam ,−−→xobj , tacqui, texp), if all camera settings except
the exposure time are fixed.

R(−−→rcam ,−−→xobj , tacqui, texp) = mcam · A · texp

∫ λmax

λmin

ε · Eλ

(
−−→rcam ,−−→xobj , tacqui

)
dλ (A2)

This relation between the irradiance caused by the radiation received from a certain
object element and the red channel in the corresponding image element will be used to
connect the brightness increase to the incoming solar irradiance and the soiling loss in
the following.

Appendix A.1.2. Contributions to the Camera Signal According to the Interaction at the
Module’s Surface

We first consider an image of a soiled module. The irradiance Esoiled
λ which falls from

the soiled module into the camera can be split into different terms. The subscript λ indicates
the wavelength dependence of the irradiance. The superscript “soiled” indicates that the
irradiance is coming from a soiled module. The first contribution is Esoiled

λ,scat,dir which denotes
the direct irradiance scattered at the soiling layer of the module that hits the camera. On
the other hand, there is Esoiled

λ,re f l that describes the reflected irradiance at the module’s surface
that is hitting the pixel. It consists of both direct and diffuse irradiance and it considers both
specular and diffuse reflection. There is also scattering of the diffuse irradiance towards the
camera, but this term is neglected because the scattered direct irradiance is much greater
than the diffuse irradiance for sunny conditions. We ensure that this assumption is correct
by requiring that the modules are not shaded by clouds during the measurements and by
limiting the evaluation to small incidence angles of the direct irradiance (less than 40◦).

Esoiled
λ = Esoiled

λ,scat,dir + Esoiled
λ,re f l (A3)

In case of a clean module, indicated by the superscript “clean”, the equation simplifies
as follows.

Eclean
λ = Eclean

λ,re f l (A4)

We will show in the following how Eclean
λ,re f l and Esoiled

λ,re f l are related to each other.

Appendix A.1.3. Comparing the Camera Equation for the Clean and Soiled Case

The measurement equation is derived by comparing the camera equation for the clean
and soiled cases of Equation (A2).

Rclean/soiled = mcam · A · texp

∫ λmax

λmin

ε · Eclean/soiled
λ (

−−→rcam ,−−→xobj , tclean/soiled)dλ (A5)

The point in time when the image of the soiled module is captured is denoted tsoiled
and tclean is the acquisition time of the image of the clean module.

These equations can be simplified further by dividing by the constants and the known
exposure time so that these parameters and the red pixel value are combined in one
parameter, respectively Rsoiled,exp.norm or Rclean,exp.norm. This results in the following:

Rclean/soiled,exp,norm =
∫ λmax

λmin

ε · Eclean/soiled
λ (

−−→rcam ,−−→xobj , tclean/soiled)dλ (A6)
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With
Rclean/soiled,exp,norm =

Rclean/soiled
mcam · A · texp

(A7)

Eclean
λ can be written as shown in Equation (3) and simplified using a hereby defined

function cre f l(
−−→rcam ,−−→rsun ):

Rclean,exp,norm(
−−→rcam ,−−→xobj , tclean) =

∫ λmax
λmin

ε · Eclean
λ,scat,dir(

−−→rcam ,−−→xobj , tclean)

dλ = cre f l(
→

rcam,−−→rsun ) · GTI(tclean)
(A8)

On the one hand, Rcl is proportional to the illumination of the module, described
by the global tilted irradiance GTI(tclean) in the plane of the module at the point in time
tclean of capturing the image of the clean module. On the other hand, it is assumed that

all dependencies of the geometry can be summarized in a function cre f l(
−−→rcam ,−−→rsun ). It is

assumed that all cells show the same optical behavior in the clean state so that at the end,

Rcl does not depend on −→xobj anymore. This assumption is acceptable for many PV modules,
but there are also PV modules for which it is not applicable. If different cells, e.g., within a
polycrystalline PV module, look noticeably different, the method will hence most likely
lead to higher deviations. Furthermore, it is assumed that the optical properties of the cells
are described well by a rotational symmetry for cre f l around the module normal vector
−−−→nmodule. Correspondingly, cre f l can also be described by a set of three angles: the angle
between the camera vector and the normal vector αcam, the angle between the sun vector
−→rsun and the normal vector αsun, and the angle between the camera vector and the sun
vector θcam,sun. There are also other combinations of angles that can describe the situation.

For example, the angle θcam,re f lexsun between the camera and the sun reflex vector −−−−−→rsunre f lex
might be suited better than the angle θcam,sun between the camera vector and the sun vector.

For the case of a soiled module, we can use Equation (A1) and cre f l(
−−→rcam ,−−→rsun ) as

explained in the following to obtain Equation (A6).

Rsoiled,exp.norm(
−−→rcam ,−−→xobj , tsoiled)

=
∫ λmax

λmin
ε · Esoiled

λ,scat,dir(
−−→rcam ,−−→xobj , tsoiled)dλ

+
∫ λmax

λmin
ε · Esoiled

λ,re f l(
−−→rcam ,−−→xobj , tsoiled)dλ

= Rscat(
−−→rcam ,−−→xobj , tsoiled) + cre f l(

−−→rcam ,−−→rsun ) · τ(αsun) · τ(αcam) · GTI(tsoiled)

(A9)

Rsoiled consists of two parts. Rscat is defined as the contribution related to the first
integral and corresponds to the scattering at soiling particles. The second summand in the
equation is similar to Equation (A5) for the clean module and can be interpreted as the
brightness without scattering by soiling particles—or in other words, basically, roughly the
brightness one would see if the module was clean. The factors τ(αsun) and τ(αcam) consider
that the reflection signal is attenuated compared to the clean case. τ is the wavelength-
averaged transmittance of the soiling layer. It depends on the angle under which the
radiation falls on the soiling layer, so that two typically different transmittances appear in
the equation. The soiling layer is passed by the reflected light first under the angle αsun and
afterwards under the angle αcam. Under the above assumptions for the properties of the

cells, cre f l(
−−→rcam ,−−→rsun ) is the same for the clean module and the soiled module, as long as

the geometry defined by −−→rcam and −−→rsun is the same.
Equations (A5) and (A6) are then connected to each other—we try to rewrite

Equation (A6) using Rclean,exp,norm from Equation (A5). For this, we consider images of a
clean module element and a soiled module element taken from the same relative position

of the camera to the module element −−→rcam and −−→rsun . Then, we solve Equation (A5) for
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cre f l(
−−→rcam ,−−→rsun ) and substitute the result in Equation (A6). In doing so, we assume that the

transmittances did not change between the two image acquisitions. The resulting equation
links the clean and the soiling images and is the basis for deriving the soiling loss.

Rsoiled,exp,norm(
−−→rcam ,−−→xobj , tsoiled)

= Rscat(
−−→rcam ,−−→xobj , tsoiled) + Rclean,exp,norm(

−−→rcam ,−−→xobj , tclean)

·τ(αsun) · τ(αcam) · GTI(tsoiled)
GTI(tclean)

(A10)

The equation also considers that the clean and soiled images might have been taken
at different times with different illumination situations. This is included in the equation
by the ratio of the global tilted irradiances at the time of the respective image acquisition
(GTI(tsoiled), GTI(tclean)). Equation (A7) can be reformulated to Equation (A8) which more
clearly describes the transmittance of the soiling layer.

τ(αsun) · τ(αcam) =
Rsoiled,exp,norm − Rscat

Rclean,exp,norm
· GTI(tclean)

GTI(tsoiled)
(A11)

In this equation, τ has to be calculated. The transmission τ(α) of the soiling layer
depends on the angle of incidence α. For normal incidence, the value of τ reaches its
maximum τ0. For an oblique incidence, the soiling layer effectively appears thicker and the
soiling losses will increase. In this work, it is assumed that the transmittance is described
by the effective thickness of the soiling layer as in Equation (A9). All viewing angles and
incident angle are limited to small values so that this assumption is expected to hold.

1 − τ(α) = 1−τ0
cos α .

τ(α) = 1 − 1−τ0
cos α

(A12)

There are more complex models in literature to describe the angular dependence
of the soiling on reflecting mirrors, e.g., [43], but we use the described approach for
simplicity. With this assumption, the left side of Equation (A8) only contains the cosines of
the two known angles and the parameter that we want to determine, the transmittance τ0.

The parameters on the right side of Equation (A8) are partly known. Rsoiled,exp.norm
is proportional to the red channel of the soiled module’s image and Rclean,exp,norm to that
of the clean reference module. Rsoiled,exp,norm and Rclean,exp,norm have to be compared for

the same geometry described by the sun position −−→rsun and −−→rcam the camera’s position

relative to the PV cell. Of particular interest is the orientation of −−→rsun and −−→rcam to each
other. For instance, the most important aspect is how close the camera viewing point is to
the direct sun reflex as this might cause over-exposure and direct reflexes. The GTIs are
measured and known. Rscat is unknown for the moment and will be further discussed in
Appendix A.1.4. It depends on the properties of the soiling layer including its transmittance
τ and the illumination and viewing geometry. It should be mentioned that Rsoiled,exp,norm,

Rscat, and Rclean,exp,norm depend on −−→rcam , −−→rsun , and on GTI(tacqui). Rsoiled,exp,norm and Rscat,

additionally, depend on the local soiling τ0(
−−→xobj ). In the following, it is assumed that

τ0(
−−→xobj ) is an average over the area of each cell.

Equation (A8) can be simplified further by normalizing to the GTIs.

τ(αsun) · τ(αcam) =
Rsoiled,GTI,norm − Rscat/GTI(tsoiled)

Rclean,GTI,norm
(A13)

with
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Rclean/soiled,GTI,norm =
Rclean/soiled,exp,norm

GTI(tclean/soiled)
(A14)

Appendix A.1.4. Analyze Different Scattering Pathways

To further understand Equation (A10) and Rscat, we analyze the underlying scattering
pathways. There are multiple scattering pathways possible even if only first-order scattering
is considered. The scattering pathways are sketched in Figure A2. It can be shown by
geometrical considerations that the scattering angles are the same for the cases I, I and I I, I I
as well as for I, I I and I I, I, respectively. The angles are explained in Tables A1 and A2.
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The incident irradiance is scattered in the direction of the module. 
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reflected at the cell’s surface. Then, it is refracted at the glass–air 
surface. When leaving in the direction of the camera, the irradiance 
is transmitted through the soiling layer. 

Figure A2. Sketch to describe the scattering pathways relevant for the measurement method. The
cover glass is shown as a grey surface with the soiling layer on top (dotted brown line) and the
PV cell below (straight blue line). Shown is the direct radiation coming from the sun as a straight
yellow arrow. The black arrow with a straight line shows in which direction the light leaves if it is
scattered (camera direction). The dashed yellow or black arrows show the direction relative to which
the scattering angle is defined. In the lower two subfigures, the yellow dashed arrow corresponds to
the direct sun reflex.

Table A1. Explanation of the different scattering angles and pathways.

Nomenclature Case Description

I, I The incident irradiance is scattered in the direction of the camera without
interacting with the glass cover.

I, I I

The incident irradiance is scattered in the direction of the module. Then, it is
refracted at the air–glass surface. Afterward, the light is reflected at the cell’s
surface. Then, it is refracted at the glass–air surface. When leaving in the
direction of the camera, the irradiance is transmitted through the soiling layer.

I I, I

The incident irradiance is transmitted through the soiling layer. Then, it is
refracted at the air–glass surface. At the cell’s surface, the irradiance is
reflected. Then, it is refracted at the glass–air surface. When leaving the
module, the irradiance is scattered in the direction of the camera.

I I, I I

The incident irradiance is transmitted through the soiling layer. Then, it is
refracted at the air–glass surface. When reaching the cell’s surface, the
irradiance is reflected. Then, it is refracted at the glass–air surface. When
reaching the soiling layer for the second time, the light is scattered in the
direction of the cell. Then, it is again refracted at the air–glass surface.
Afterwards, the light is reflected by the cell surface for a second time. Then, it
is refracted at the glass–air surface Finally, it is transmitted through the soiling
layer in the direction of the camera.
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Table A2. Comparison of the different scattering angles.

Nomenclature Case Description

θI,I(
−−→rcam ,−−→rsun ) = θI I,I I(

−−→rcam ,−−→rsun )
Angle between camera vector and sun vector; the
camera vector is pointing in the direction of the module
and the sun vector is pointing away from the module.

θI,I I(
−−→rcam ,−−→rsun ) = θI I,I(

−−→rcam ,−−→rsun )
Angle between the sun reflex vector and the camera
vector; both vectors are pointing away from the module.

Considering the four pathways, we now formulate an equation describing Lλ,scat,dir,
which is the wavelength-dependent radiance of the direct radiation that is scattered once
by the soiling particles and reaches the sensor.

Lsoiled
λ,scat,dir(

−−→rcam ,−−→rsun )

= Lsoiled
λ,dir (

−−→rsun ) · ω

·[(1 − τ(αsun)) · Pscat(θI,I , λ) + (1 − τ(αcam)) · τ(αsun)
·ρspec · Pscat(θI,I I , λ) + (1 − τ(αsun)) · τ(αcam) · ρspec
·Pscat(θI I,I , λ) + (1 − τ(αcam)) · τ(αsun) · τ(αcam) · ρspec

2

·Pscat(θI I,I I , λ)]

(A15)

Lsoiled
λ,dir is the wavelength-dependent direct radiance falling on the soiled module.

ω is the single scattering albedo, i.e., the ratio of the particles’ scattering coefficient to
their extinction coefficient. ω describes that only a fraction of the radiation that is not
transmitted is scattered. The fraction of the radiation that is not transmitted is described
by the terms (1 − τ) which appear for all four summands. Pscat is the scattering phase
function, describing the probability of a given scattering angle. ρspec is the reflectance of
the cell surface. ω, τ, and ρspec are considered to be spectrally weighted averages over
the wavelength.

When the drone is flying above the modules, the angle θI,I is typically corresponding
to backward or sideward scattering while θI,I I is corresponding to forward scattering.
Scattering is strongly direction dependent and after averaging over wavelengths and
particle sizes, forward scattering is dominant over other scatter directions. We can ensure
that this condition is met by selecting images with a specific geometrical configuration.
For this reason, all terms containing Pscat(θI,I , λ) or Pscat(θI I,I I , λ) are neglected and we
consider the equality of θI,I I and θI I,I leading to Equation (A13).

Lsoiled
λ,scat,dir(

−−→rcam ,−−→rsun )

= Lsoiled
λ,dir (

→
rsun) · ω · ρspec · Pscat(θI,I I , λ)

·[(1 − τ(αcam)) · τ(αsun) + (1 − τ(αsun)) · τ(αcam)]

(A16)

Equation (A13) is also valid for irradiances instead of radiances when introducing an
additional proportionality factor c. We obtain Equation (A14).

Esoiled
λ,scat,dir(

−−→rcam ,−−→rsun )

= c · DNIλ · ω · ρspec · Pscat(θI,I I , λ)
·[(1 − τ(αcam)) · τ(αsun) + (1 − τ(αsun)) · τ(αcam)]

(A17)

The wavelength-dependent irradiance of the scattered direct radiation that hits the
pixel sensor is denoted Esoiled

λ,scat,dir and the wavelength-dependent direct normal irradiance
that hits the module is denoted DNIλ. Coming back to the calculation of Rscat, we can
write the following:
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Rscat =
∫ λmax

λmin
ε · Esoiled

λ,scat,dir(
−−→rcam ,−−→rsun )dλ

=
∫ λmax

λmin
ε · c · ω · ρspec · DNIλ(αsun) · Pscat(θI,I I , λ)

·[(1 − τ(αcam)) · τ(αsun) + (1 − τ(αsun)) · τ(αcam)]dλ

(A18)

c, ω, and ρspec can be combined to a new constant c′.

Rscat =∫ λmax
λmin

c′ · ε · DNIλ(αsun) · Pscat(θI,I I , λ)

·[(1 − τ(αcam)) · τ(αsun) + (1 − τ(αsun)) · τ(αcam)]dλ
= c′ · [(1 − τ(αcam)) · τ(αsun) + (1 − τ(αsun)) · τ(αcam)]

·
∫ λmax

λmin
ε · DNIλ(αsun) · Pscat(θI,I I , λ)dλ

(A19)

In the following step, it is assumed that the remaining integral is proportional to the
DNI multiplied by an integral just over ε and Pscat. The proportionality factor c′ therefore
changes to c′′ .

Rscat = c′′ · [(1 − τ(αcam)) · τ(αsun) + (1 − τ(αsun)) · τ(αcam)] · DNI
·
∫ λmax

λmin
ε · Pscat(θI,I I , λ)dλ

(A20)

In a final step, c′′ and the integral are combined to define the function cscat(
−−→rsun ,−−→rcam ).

Rscat = [(1 − τ(αcam)) · τ(αsun) + (1 − τ(αsun)) · τ(αcam)] · DNI

·cscat(
−−→rsun ,−−→rcam )

(A21)

The empirical scattering function cscat(
−−→rsun ,−−→rcam ) describes the probability of different

scattering directions.
Equations (A10) and (A18) can be combined to isolate the empirical scattering function

cscat(
−−→rsun ,−−→rcam ).

cscat(
−−→rsun ,−−→rcam )

=
Rsoiled,GTI,norm−Rclean,GTI,norm ·τ(αcam)·τ(αsun)

[(1−τ(αcam))·τ(αsun)+(1−τ(αsun))·τ(αcam)]· DNI(tsoiled)
GTI(tsoiled)

(A22)

Equation (A19) can also be solved for τ0, the value of the soiling transmission for α = 0
when using Equation (A9). All results for the soiling loss later on refer to normal incidence
(α = 0).

τ0 = 1 − −b+
√

b2−4·a·d
2·a with

a =
Rclean,GTI,norm−2·cscat(

−→rsun ,−→rcam )· DNI(tsoiled)
GTI(tsoiled)

cos(αcam)·cos(αsun)

b = cos(αcam)+cos(αsun)
cos(αcam)·cos(αsun)

· (cscat(
−−→rsun ,−−→rcam ) · DNI(tsoiled)

GTI(tsoiled)
− Rclean,GTI,norm)

d = Rclean,GTI,norm − Rsoiled,GTI,norm

(A23)

With this set of equations, it is possible to determine the soiling ratio for a given image
as described in the next section. First, images of the clean reference module will be used
to calculate the expected background signal corresponding to a clean PV module for any
geometry (see Appendix A.2.1). Rclean,GTI,norm can then be determined for any camera
position. Afterwards, the images of the soiled reference module are analyzed, and using
the measured τ0 for this reference module, cscat can be determined in dependence of the
geometry (see Appendix A.2.2). Finally, the soiling loss can be measured for a third module
(see Appendix A.2.3).
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Appendix A.2. Calibration Measurements for the Determination of the Background Signal and the
Conversion of the Brightness Increase to Soiling Losses

Before the method is applied to analyze the soiling losses of a PV module with
unknown soiling loss, two calibration measurements are performed with a clean and a
soiled module with known soiling loss.

Appendix A.2.1. Determination of Expected Background Signal Corresponding to a Clean
PV Module

The goal is to determine the expected background signal corresponding to a clean

PV module Rclean,GTI,norm in dependence of the geometry defined by −−→rcam and −−→rsun . Con-
sequently, before the measurement flight, one module is cleaned. Images of this module
are captured from various perspectives, which can be achieved, e.g., using a spiral flight
route. Every cell of the clean module is examined individually. For each image and each

cell, the geometry and the brightness are determined. −−→rcam and −−→rsun are reduced to the
angle between the camera vector and the sun reflex vector θcam,sunre f l (the scattering angle)
and the angle between the camera vector and the module normal vector θcam,panelnorm to
describe the geometry. The idea is to model the expected brightness for a clean module
as a function of these two angles. Afterwards, the clean brightness can be calculated
and subtracted as a background signal for the images of other PV modules that are to be
evaluated. The method requires many images from different perspectives. For example,
assuming 100 reference images and one clean reference module with 60 cells results in
6000 datapoints consisting of the brightness and the two angles mentioned above.

After filtering the data points as described in the previous section, a polynomial fit
of second order is performed to describe Rclean,GTI,norm as a function of θcam,sunre f l and
θcam,panelnorm. Using this fit, the expected brightness of an imaginary clean module under
any geometry can be calculated. The influence of this fit on the calibration is discussed
further and visualized in Appendix B.3.1. Note that the same θcam,sunre f l can be obtained

from various combinations of −−→rcam and −−→rsun . This means in particular that even when the
sun position has changed over time, we can still compare images of the clean modules with
an early timestamp with images of the soiled module with a later timestamp.

Appendix A.2.2. Determination of the Scattering Behavior cscat

The next intermediate goal is to determine cscat in dependence of the geometry defined

by −−→rcam and −−→rsun . Therefore, the scattering calibration is performed after the clean one. It
is required for the evaluation of other modules. One soiled module with known soiling
loss is considered. It should be homogeneously soiled, and the soiling losses have to be
determined using electrical measurements as described in Section 3.3.2. As in the case of
the background signal, many images are captured from various perspectives. In the case
that the clean and soiled reference modules are located directly next to each other, one
flight is sufficient to perform both calibrations. The geometry is used to determine the clean
background signal for each cell and each image. By comparing the actual RGB value of
the soiled cells and the clean background values, the brightness increase is determined.
Considering the geometry, the electrical soiling loss, the irradiances at the image acquisition
times, and the brightness increases enables the calculation of the scattering function cscat
according to Equation (A19) from the previous section. First, discrete values are calculated
for each cell and image. Afterwards, the scattering function is described in dependence
of θcam,sunre f l and θcam,sun, the angle between the camera vector and the sun vector using a
polynomial fit of the second order. The influence of this fit on the calibration is discussed
further and visualized in Appendix B.3.2.
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Appendix A.2.3. Calculation of Soiling Loss

After the calibration Rclean,GTI,norm(θcam,sunre f l , θcam,panelnorm) and cscat(θcam,sunre f l ,
θcam,sun) are known. Now, a flight over the modules for which the soiling loss should
be measured can be performed. In case of this study this was a straight-line flight in east-
west direction over south-facing modules with 30◦ tilt, as this is considered practical for
measurements of large PV fields. Equation (A20) is then used together with the background
signal Rclean,GTI,norm and cscat to determine the soiling loss of each cell of the PV modules as
seen in each image. One soiling loss value is obtained for every cell and each image. Values
for a cell that are deviating by more than two standard deviations from the median for this
cell are excluded to reduce the impact of noise and outliers. Afterwards, the arithmetic
average is again calculated. Finally, one obtains the soiling loss for each cell as an average
of the soiling losses from each image for this cell that remain after the filtering.

Appendix B.

Appendix B.1. Analyses of All Measurements

The analysis of the first flight of the first campaign has been shown in the result section.
Here, the other flights of the first campaign and all other campaigns are shown.

Appendix B.1.1. First Campaign Second Flight

Figure A3 summarizes the results of the second flight of the first campaign. The soiling
of the first validation module is determined with a deviation of 0.1% absolute. The soiling
of the second validation module is determined with a deviation of 1.0% absolute. It should
be noted that the second validation module was soiled with a different soiling type than
the other modules which explains an increased deviation.
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Appendix B.1.2. First Campaign Third Flight

Figure A4 summarizes the results of the third measurement flight of the first campaign.
The soiling of the first validation module is determined with a deviation of 0.1% absolute.
The soiling of the second validation module is determined with a deviation of 1.0% absolute.
It should be noted that the second validation module was soiled with a different soiling
type than the other modules which explains an increased deviation.

Remote Sens. 2024, 16, x FOR PEER REVIEW 25 of 40 
 

 

 
Figure A4. Result plot of the third measurement flight of the first campaign. The lower right module 
was chosen to be the clean reference module while the upper right module was chosen to be the 
soiled reference module. The upper numbers label the modules. The number in the middle states 
the optically measured soiling loss while the lower number is the electrical reference loss. 

Appendix B.1.3. First Campaign Fourth Flight 
Figure A5 summarizes the results of the fourth measurement flight of the first cam-

paign. The soiling of the first validation module is determined with a deviation of 0.4% 
absolute. The lower left module was used as second validation module and it was cleaned 
before the flight. This explains the different soiling loss compared to the other three flights 
of the same campaign. The soiling of the second validation module is determined with a 
deviation of 0.3% absolute. 

Figure A4. Result plot of the third measurement flight of the first campaign. The lower right module
was chosen to be the clean reference module while the upper right module was chosen to be the
soiled reference module. The upper numbers label the modules. The number in the middle states the
optically measured soiling loss while the lower number is the electrical reference loss.

Appendix B.1.3. First Campaign Fourth Flight

Figure A5 summarizes the results of the fourth measurement flight of the first cam-
paign. The soiling of the first validation module is determined with a deviation of 0.4%
absolute. The lower left module was used as second validation module and it was cleaned
before the flight. This explains the different soiling loss compared to the other three flights
of the same campaign. The soiling of the second validation module is determined with a
deviation of 0.3% absolute.

Appendix B.1.4. Second Campaign First Flight

During the second campaign the lower right as well as the upper right module were
both clean. Figure A6 shows the setup during the second campaign.

Figure A7 summarizes the results of the first measurement flight of the second cam-
paign. The soiling of the first validation module is determined with a deviation of 0.5%
absolute. The soiling of the second validation module is determined with a deviation of
0.9% absolute.
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Figure A5. Result plot of the fourth measurement flight of the first campaign. The lower right module
was chosen to be the clean reference module while the upper right module was chosen to be the
soiled reference module. The lower left module was cleaned before the flight which explains the
different soiling loss compared to the other three flights of the same campaign. The upper numbers
label the modules. The number in the middle states the optically measured soiling loss while the
lower number is the electrical reference loss.
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Appendix B.1.5. Second Campaign Second Flight

Figure A8 summarizes the results of the second measurement flight of the second
campaign. The soiling of the first validation module is determined with a deviation of 1.0%
absolute. The soiling of the second validation module is determined with a deviation of
0.4% absolute.
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Figure A8. Result plot of the second measurement flight of the second campaign. The lower right
module was chosen to be the clean reference module while the lower left module was chosen to be
the soiled reference module. The upper numbers label the modules. The number in the middle states
the optically measured soiling loss while the lower number is the electrical reference loss.
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Appendix B.1.6. Second Campaign Third Flight

Figure A9 summarizes the results of the third measurement flight of the second
campaign. The left substring of the upper left module was cleaned before the flight
(two columns of cells cleaned). The soiling of the first validation module is determined
with a deviation of 0.1% absolute. In case of the second validation module, the electrically
and optically measured soiling losses are identical.
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Figure A9. Result plot of the third measurement flight of the second campaign. The lower right
module was chosen to be the clean reference module while the lower left module was chosen to be
the soiled reference module. The left substring of the upper left module was cleaned before the flight
(two columns of cells cleaned). The upper numbers label the modules. The number in the middle
states the optically measured soiling loss while the lower number is the electrical reference loss.

Appendix B.1.7. Third Campaign First Flight

For the third campaign, the modules were artificially soiled with gypsum. The gypsum
was mixed with water and the mixture was then deposited on the module with a towel.
The operating temperature of the module led to a quick drying of the mixture. The artificial
soiling was as homogeneously distributed as possible and was considered to be sufficiently
homogeneous by simple visual inspection. After obtaining the results of this measurement,
the above-mentioned electrical model confirmed that the soiling was homogeneous enough
to neglect additional mismatch losses. Figure A10 shows the artificially soiled setup during
the measurement.

Figure A11 summarizes the results of the first measurement flight of the third cam-
paign. The soiling loss of the first validation module is determined with a deviation of 2.3%
absolute. The soiling of the second validation module is determined with a deviation of
1.7% absolute.

The larger deviations in this case might be explained by the fact that in this experiment,
artificial soiling was used as explained in the discussion of Figure 8.
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Figure A10. The setup during the third campaign. The modules are artificially soiled. The lower
right module was used as a clean reference. The lower left module was used as a soiled reference.
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Figure A11. Result plot of the first measurement flight of the third campaign. The lower right module
was chosen to be the clean reference module while the upper right module was chosen to be the
soiled reference module. In this campaign, the modules were soiled artificially with gypsum. The
artificial soiling was not as homogeneously distributed as was the case for the previous campaigns
with natural soiling. The upper numbers label the modules. The number in the middle states the
optically measured soiling loss while the lower number is the electrical reference loss.

Appendix B.2. Electrical Reference Measurements for All Campaigns

This section summarizes and visualizes the electrical reference measurement of the
soiling loss for all three campaigns.
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Appendix B.2.1. First Campaign

For the first campaign, the electrical reference of the soiling loss was determined
by comparing the modules’ power output with the GTI measured by a reference cell.
Figure A12 shows the ratio of module power to GTI for a reference day on which both
devices were clean. This day is used to calibrate the modules relative to the reference
cell. The GTI, the module temperature, and the wind speed at 10 m height are shown in
Figure A13 for the reference day and the day of the drone-based soiling measurement. The
determined calibration factor is then used to calculate the soiling loss on the measurement
day as shown in Figure A14. Module 1 is not shown in either figure because the module
was cleaned before the measurement and is therefore defined to have a soiling loss of
zero. Note that for the optical calculation of the soiling loss, an angle correction was
applied (see Equation (A9)). The same angle correction should be applied for the electrical
measurements for the sake of consistency. This was carried out in a test run and it was
found that for the electrical measurements, the angle dependence played a neglectable
role as the angle of incidence was very close to zero for the time interval of interest. This
is due to the modules’ inclination of 30◦ and because the electrical measurements took
place around solar noon. Furthermore, the experiments took place in April and September,
which are months in which the sun reaches around 60◦ elevation at solar noon in Almería.
Together with the 30◦ inclination, this leads to nearly perpendicular incidence.

Figure A13 shows in the center the measured module temperature for the measurement
day and the reference day. The temperature is measured at module 3 in both cases. It is
assumed that the temperature is very similar for all four modules since they are of the same
technology, from the same manufacturer, have the same orientation, and experience very
similar operating conditions. Especially, it should be noted that the soiling is not significant
enough to cause a hotspot. The lower two subfigures of Figure A13 show the wind speed
at both days as the wind speed is a key parameter influencing the module temperature.
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Figure A12. Calibration factor for the electrical calculation of the reference soiling loss for the first
campaign measured with clean devices (reference day). The powers of modules 2, 3, and 4 are divided
by the GTI measured by a reference cell. The derived calibration factors are 0.228 m2, 0.2254 m2, and
0.3248 m2 for modules 2, 3, and 4, respectively.
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Figure A13. Upper left: GTI at the measurement day, upper right: GTI at the reference day. Center
left: Module temperature measured at the measurement day. The average temperature in the
chosen time interval is 47.2 ◦C. Center right: Module temperature at the reference day. The average
temperature is 42.9 ◦C. Lower left: Wind speed at the measurement day. Lower right: Wind speed at
the reference day.
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Figure A14. Soiling loss for modules 2, 3, and 4 during the first campaign. The module powers are 
divided by the GTI and then divided by the previously determined calibration factor. The averaged 
soiling losses of modules 2, 3, and 4 are 4.2%, 3.7%, and 4.1%, respectively. Data between 13:22 and 
13:27 were excluded as the reference cell was shaded by the scientists. 
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Figure A14. Soiling loss for modules 2, 3, and 4 during the first campaign. The module powers are
divided by the GTI and then divided by the previously determined calibration factor. The averaged
soiling losses of modules 2, 3, and 4 are 4.2%, 3.7%, and 4.1%, respectively. Data between 13:22 and
13:27 were excluded as the reference cell was shaded by the scientists.

Appendix B.2.2. Second Campaign

For the second campaign, the soiling loss was determined by comparing the powers
of the soiled modules with the power of the clean module. Figure A15 shows the ratio of
powers for the case in which all modules are clean. The powers of modules 2, 3, and 4
are divided by the power of the clean module 1. Thus, the determined calibration factor
is applied to obtain the soiling loss. Figure A16 shows the calculated soiling loss for the
measurement day itself.
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Figure A15. Calibration factors for the electrical calculation of the reference soiling loss for the second
campaign. The powers of modules 2, 3, and 4 are divided by the power of module 1 on a day on
which all modules are clean. The derived calibration factors are 0.681, 0.6666, and 1.0291 for modules
2, 3, and 4, respectively.
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Figure A16. Calculation of the soiling loss for modules 2, 3, and 4 during the second campaign. The
module powers are divided by the power of module 1 and then divided by the previously determined
calibration factor. The calculated soiling losses are 1.25%, 2.09%, and 3.75% for modules 2, 3, and
4, respectively.

Appendix B.2.3. Third Campaign

The soiling loss is determined analogous to the second campaign (see Appendix A.2.2).
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Figure A17. Calibration factors for the electrical calculation of the reference soiling loss for the third
campaign. The powers of modules 2, 3, and 4 are divided by the power of module 1 on a day on
which all modules are clean. The derived calibration factors are 0.6911, 0.6729, and 1.0373 for modules
2, 3, and 4, respectively.
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image. The fact that some cells within a given image show different brightnesses than 
others can be attributed to the fact that some cells are slightly brighter or darker than oth-
ers in reality. Also, the masking of cell in-between spaces cannot be performed perfectly 
so that this space might influence some cells more than others. There is no sharp edge 
between the cell and the in-between space in the images. Rather, there is a continuous 
drop in brightness when one moves from the in-between space towards the cell. 

The relative deviation of 30% observed for some points in Figure A20 might seem 
alarming at first. By analyzing Equation (A20), one can see that it is less dramatic than it 

Figure A18. Calculation of the soiling loss for modules 2, 3, and 4 during the third campaign. The
module powers are divided by the power of module 1 and then divided by the previously determined
calibration factor. The calculated soiling losses are 2.72%, 2.32%, and 2.82% for modules 2, 3, and
4, respectively.

Appendix B.3. Visualization of the Calibration Functions

In this section, the calibration of the clean background signal and the calibration of the
scattering signal are described. As an example, we choose to show the calibrations of the
first flight of the first campaign which correspond to the results shown in Section 4 in the
main part.

Appendix B.3.1. Clean Background Calibration

After performing the calibration flight, one obtains the brightnesses of the cells of the
clean module. The brightnesses are averaged over the cells’ areas and are then normalized
to the exposure time and to the GTI present at the time of capturing the image. These nor-
malized brightnesses are then available for different cells, camera positions, and different
sun positions. Figure A19 visualizes the second-order polynomial fit that is performed to
describe the normalized brightness in terms of θcam,sunre f l and θcam,panelnorm.

Figure A20 shows the relative deviations between the normalized brightnesses that
are used to create the clean background calibration and the brightnesses that would be
expected according to the polynomial function (the fit values are subtracted from the
measured values and divided by the fit values). For every image, we obtain 72 data points
since the clean module has 72 cells. These 72 cells have very similar angles as they are
spatially very close to each other. The deviations between different cells from the same
image are roughly on the same level as deviations for the same cell but from the next image.
The fact that some cells within a given image show different brightnesses than others can
be attributed to the fact that some cells are slightly brighter or darker than others in reality.
Also, the masking of cell in-between spaces cannot be performed perfectly so that this space
might influence some cells more than others. There is no sharp edge between the cell and
the in-between space in the images. Rather, there is a continuous drop in brightness when
one moves from the in-between space towards the cell.

The relative deviation of 30% observed for some points in Figure A20 might seem
alarming at first. By analyzing Equation (A20), one can see that it is less dramatic than it
seems at first glance. The coefficient d depends on the clean calibration value Rclean,GTI,norm
and on Rsoiled,GTI,norm. However, as an example for a soiling loss of 5%, Rsoiled,GTI,norm is
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typically three times bigger than Rclean,GTI,norm so that the relative deviation for d will be
less than 30%. In the equations for a and b, the factor DNI(tsoiled)

GTI(tsoiled)
is relatively close to 1. Both

equations are dominated by cscat which is typically 10 times bigger than Rclean,GTI,norm as
one can extract from Figures A19 and A21, so that the relative deviation for a and b will
be significantly below 30%. Finally, one obtains also that the deviation for τ0 will be less
than 30%.
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Figure A19. Clean background calibration for the first measurement flight of the first campaign. The 
x-axis shows the angle between camera and sun reflex vector 𝛳,௦௨ while the y-axis shows 
the angle between camera vector and panel normal vector 𝛳,. The calibration function 
is a polynomial of second order of the above-mentioned angles. The calibration function gives basi-
cally the expected brightness normalized to GTI and exposure time, which explains the unit. 

Figure A19. Clean background calibration for the first measurement flight of the first campaign. The
x-axis shows the angle between camera and sun reflex vector θcam,sunre f l while the y-axis shows the
angle between camera vector and panel normal vector θcam,panelnorm. The calibration function is a
polynomial of second order of the above-mentioned angles. The calibration function gives basically
the expected brightness normalized to GTI and exposure time, which explains the unit.
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Figure A21. Scattering calibration of the first flight of the first campaign. The x-axis shows the angle
between camera vector and sun reflex vector θcam,sunre f l while the y-axis shows the angle between
camera vector and sun vector θcam,sun. The color bar shows the scattering calibration parameter cscat.

Appendix B.3.2. Scattering Calibration

After performing the calibration flight, one obtains images of the cells of the soiled ref-
erence module from various perspectives. As these perspectives, the soiling loss of this mod-
ule, and the clean background calibration are already known, one can use Equation (A19)
from Appendix A.1.4 to calculate the discrete values of the scattering calibration function
cscat for each cell and image. It is assumed as an approximation that the module is homoge-
neously soiled and that the reference soiling loss on the module level can be used for every
cell. Hence, we obtain a data point for each cell and image. Then, a polynomial fit of the
second order is created to describe the scattering behavior as a function of θcam,sunre f l and
θcam,sun. Figure A21 visualizes this polynomial.

Figure A22 shows the relative differences between the discrete scattering values that
were used to create the fit and the values that would be expected according to the fit itself.
One can see that the fit in general describes the data quite well. On the other hand, it is
observed that on the edge of each of the line shapes’ point groups in the figure, there are
some points with a higher positive deviation. This indicates that for some of the outer cells
in the module, the deviations are higher than for the others. This is explasssined by the
module not being exactly homogeneously soiled as assumed when using the same τ0 for
all cells for the calculation of cscat. Figures 5 and 7 confirm that the lower row of cells in
module 2 is slightly more soiled than the other cells in the module. We must be aware of
this limitation of the method which helps us to understand the found deviations. However,
the relatively low deviations shown in Figure 8 indicate that the homogeneity of the soiling
of the soiled reference modules was low enough for the reported measurement campaigns
to obtain useful results. Also, the electrical data are only available on the module level and
using this soiling loss for each cell is only an estimate of the reference soiling loss on the cell
level. In case the soiling of the soiled reference module is too inhomogeneous, an iterative
determination of cscat could be used.
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