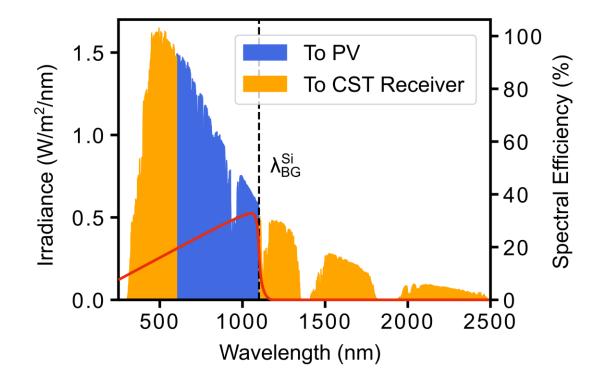
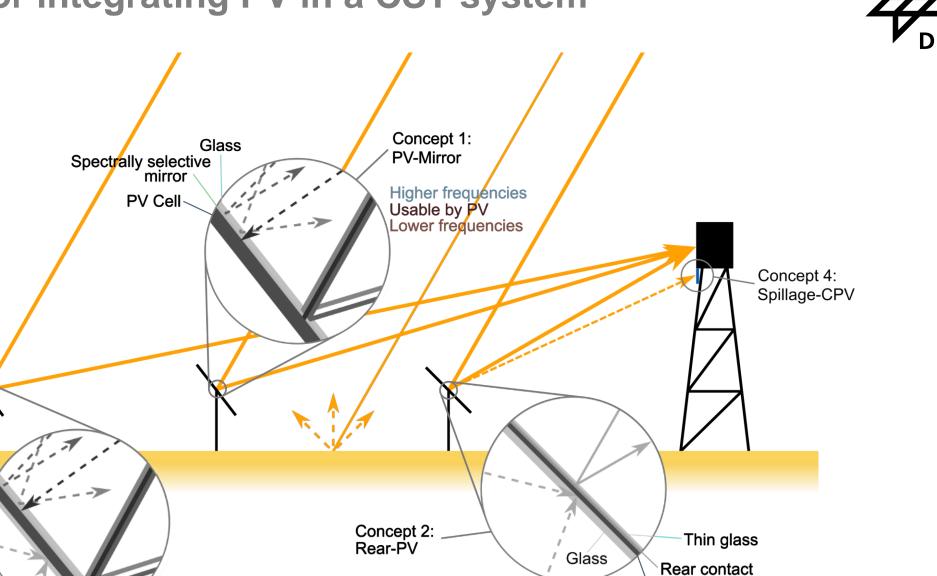
Integrated combination of concentrating solar thermal technologies and photovoltaics - the bifacial PV-Mirror


<u>Moritz Ruhwedel^{1,2}</u>, Florian Sutter¹, Stephan Heise³, Kai Gehrke³, Eckhard Lüpfert¹, Antoine Grosjean⁴, Peter Heller¹, Robert Pitz-Paal^{1,2}

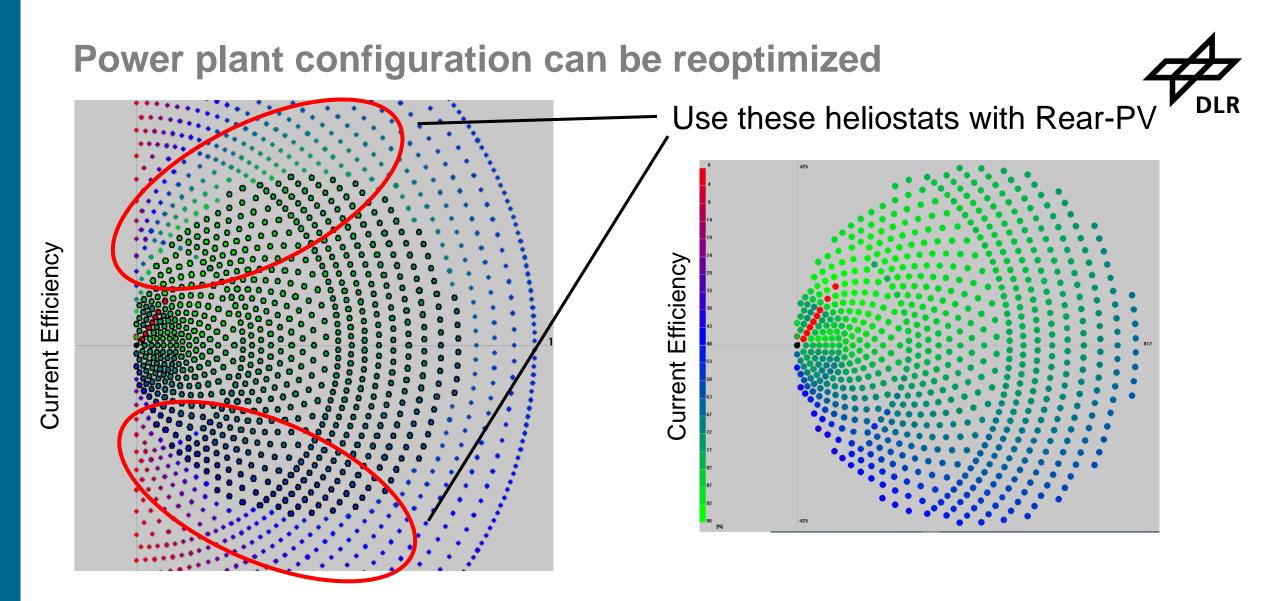
¹ Deutsches Zentrum für Luft- und Raumfahrt e. V., Institute of Solar Research
² RWTH Aachen University, Chair of Solar Technology
³ Deutsches Zentrum für Luft- und Raumfahrt e. V., Institute of Networked Energy Systems
⁴ EPF Ecole d'ingénieurs



Spectral PV conversion efficiency depends on wavelength:

 \rightarrow Hybridization: utilize loss channels \rightarrow increase efficiency \rightarrow decrease cost?

Concepts for integrating PV in a CST system



PV layer system

Concept 3: Bifacial PV-Mirror

Moritz Ruhwedel, Institute of Solar Research, 10.10.2024

Bifacial PV Cell

→ Additional Rear-PV heliostats can increase solar field efficiency

Yield in conventional power plant configuration **Bifacial** Spillage-CPV **PV-Mirror Rear-PV PV-Mirror** 140% 136% 129% 123% 14% 8% Relative Yield¹ Ъ 97% 93% CSP Conventional 102%

36%

Moritz Ruhwedel, Institute of Solar Research, 10.10.2024

CSP

4

36%

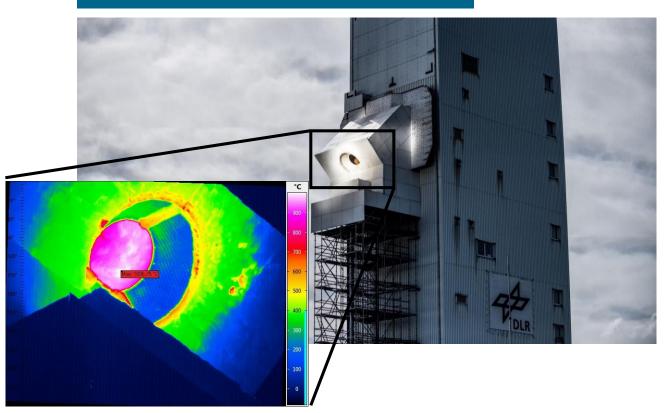
¹Ruhwedel et. al., Integrated Concentrating Solar/Photovoltaic Hybrid Concepts—Technological Discussion, Energy Yield, and Cost Considerations, 2024, Energy Technology

100%

Investment cost in conventional power plant configuration

→ Maintain PV and CST/CSP capacity

Assumptions:


- Additional PV output reduces need for stand-alone PV (883 USD/kW¹)
- Concentrating structure has to be scaled to maintain radiation flux on receiver (576 USD/kW excluding mirrors²)

Investment cost in conventional power plant configuration – Spillage-CPV

CPV modules1:48000 USD/m2Periphery1:308 USD/kWStand-alone PV2:883 USD/kW

→ Break-even for radiation fluxes of \sim 350 kW_{solar}/m²

CentRec® Receiver – over 900 °C

→ Spillage-CPV most interesting in high-temperature receivers

¹Ruhwedel et. al., Integrated Concentrating Solar/Photovoltaic Hybrid Concepts—Technological Discussion, Energy Yield, and Cost Considerations, 2024, Energy Technology ²International Renewable Energy Agency, *Renewable Power Generation Costs in 2021*, 2022 Investment cost in conventional power plant configuration – (Bifacial) PV-Mirror, Rear-PV

Cost of components replacing the mirrors unknown \rightarrow Criterion for cost of them Conventional solar mirrors¹: 17 USD/m²

	PV-Mirror	Rear-PV	Bifacial PV-Mirror
Break-even cost (USD/m ²) ¹	82	44 with a range of 39 to 51	92 with a range of 87 to 97
PV module price (USD/m ²) ¹	Monofa	acial: 78	Bifacial: 87

→ (Bifacial) PV-Mirror might be feasible in conventional power plants, Rear-PV probably not

Moritz Ruhwedel, Institute of Solar Research, 10.10.2024

¹Ruhwedel et. al., Integrated Concentrating Solar/Photovoltaic Hybrid Concepts—Technological Discussion, Energy Yield, and Cost Considerations, 2024, Energy Technology

Finding the ideal power plant configuration for the Bifacial **PV-Mirror**

Model PV under spectrally selective mirror

- HFLCAL
- STRAL

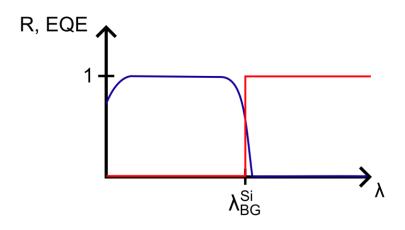
8

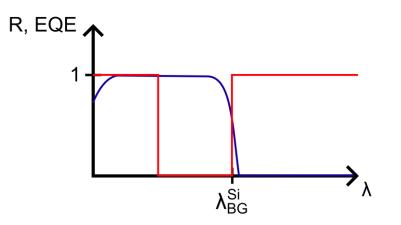
SolTrace

- - e.g. adaption of Slauch et. al. 2019¹
 - \rightarrow Lacks validation

\rightarrow Experimental data of PV under spectrally selective mirror needed

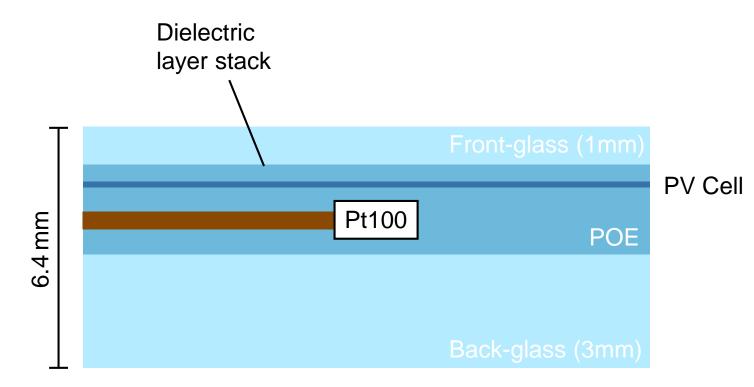
¹Slauch et. al., Spectrally Selective Mirrors with Combined Optical and Thermal Benefit for Photovoltaic Module Thermal Management, 2018, ACS Photonics


Experimental investigation of the Bifacial PV-Mirror


Test prototypes under real-life conditions
Measure PV performance and temperature

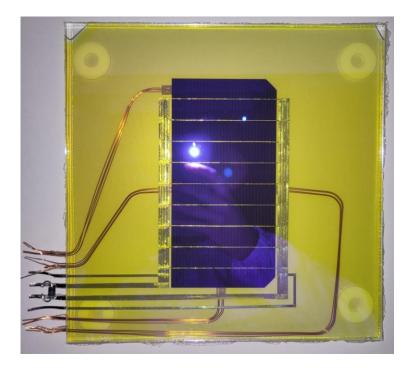
Mirror configurations:

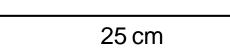
Low reflection



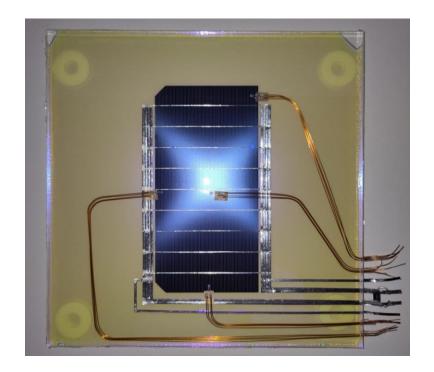
High reflection

Experimental investigation of the Bifacial PV-Mirror – The prototypes


- Glass-glass
- Encapsulant: Polyolefin (POE)
- Cell: 9BB TOPCON 166mm halfcell
- Connected to electronic load



Experimental investigation of the Bifacial PV-Mirror – The prototypes



Front:

Rear:

Moritz Ruhwedel, Institute of Solar Research, 10.10.2024

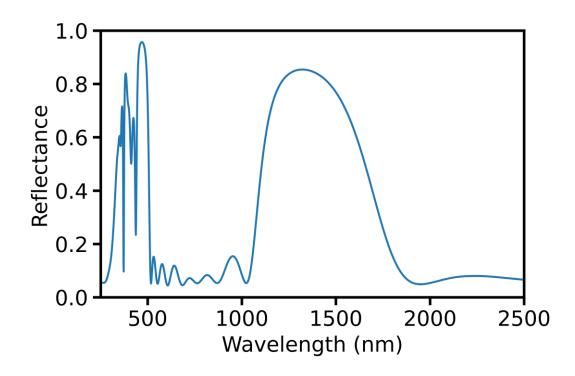
Experimental investigation of the Bifacial PV-Mirror – The spectrally selective layer stack

- SiO₂/TiO₂ stacks
- Optimized for 30° angle of incidence
- 2 configurations optimized from λ/4 stacks
- 1 configuration optimized by Antoine Grosjean using SolPOC¹

Experimental investigation of the Bifacial PV-Mirror – The spectrally selective layer stack

SB reflector (21 layers): Solar reflectance (SolarPACES): 29%

1.0 1.0 0.8-0.8 Reflectance 6.0 Reflectance 0.6 0.4 0.2 0.2 0.0 0.0 500 1000 1500 2000 2500 500 1000 1500 2000 2500 Wavelength (nm) Wavelength (nm)


SB+UV reflector (40 layers):

Solar reflectance (SolarPACES): 57%

Experimental investigation of the Bifacial PV-Mirror – The spectrally selective layer stack

Optimized using SolPOC (10 layers): Solar reflectance (SolarPACES): 30%

- Target transmission window: 500-1100 nm
- Target reflection windows: 280-500 nm and 1100-2500 nm

Experimental investigation of the Bifacial PV-Mirror – Test under solar simulator

Reference module:

 $T_{eq} = 62 \text{ °C}, P_{MPP} = 2.54 \text{ W}$

Module	R (0°)	ΔT (°C)	ΔΡ (W)	Rel. A P
SB	31%	-10	-0.49	-19%
SB+UV	61%	-19	-1.10	-43%
SolPOC	31%	-9	-0.35	-14%

Conclusion

Maybe feasible in conventional CSP

(Bifacial) PV-Mirror, Spillage-CPV

Probably not feasible in conventional CSP Rear-PV → Optimization required to judge feasibility of concepts

Upcoming: Experimental investigation of Bifacial PV-Mirror

Moritz Ruhwedel, Institute of Solar Research, 10.10.2024

Imprint

Topic: Concepts for combining concentrating solar mirrors with PV modules

Date: 2024-10-10

Author: <u>Moritz Ruhwedel</u>, Florian Sutter, Stephan Heise, Kai Gehrke, Eckhard Lüpfert, Antoine Grosjean, Peter Heller, Robert Pitz-Paal

Institute: Institute of Solar Research

Image sources: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated