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Abstract

The analysis of structural flexibility in Launch Vehicles (LVs) and Reusable Launch Vehicles (RLVs) is a vital aspect
during the design and operation of the Guidance, Navigation and Control (GNC) subsystem. This aspect becomes even
more critical as vehicles are currently becoming larger and slender due to conflicting goals: 1) needing larger payloads
deployed into orbit and, at the same time, 2) reducing losses due to shape-induced drag. During its flight across the
atmosphere, several forces acting interact with the vehicle’s structure i.e., those produced by the actuators (Thrust Vector
Control (TVC), Reaction Control System (RCS) and/or fins) or disturbances like the aerodynamic forces created by the
body itself.
Addressing this problem from a Guidance, Navigation and Control (GNC) perspective requires an understanding of struc-
tural mechanics. This requires the usage of mechanical equivalent models that capture the core dynamics of the problem.
The parameters used by practitioners are typically extracted from more accurate, but computationally expensive, methods
like Finite Element Method (FEM) analysis. The high-frequency response of the vehicle is decomposed as the sum of
the harmonic response of = so-called modes. Each mode is characterized by a natural frequency l=8 and a modal shape
Φ 9 , which changes depending on the viewpoint (force application location or measurement unit location). The first and
natural step is to look at the positioning of the frequencies compared to the desired rigid-body bandwidth. Furthermore, in
the frequency domain, the bending modes are translated into resonances with gain amplification and phase shift, which in
terms of the control systems means; correct gain and phase margins in the closed-loop must be guaranteed.
In our investigations, we perform the analysis for a real 40 KN-class vehicle, an Reusable Launch Vehicle (RLV) with a gim-
baling engine, flying a typical Return-to-Launch-Site (RTLS) scenario trajectory and varying mass. First, we present the
mathematical procedure to consolidate the models used for simulation and control design. Secondly, we present the evolu-
tion of the frequencies and modal shapes across the trajectory for the atmospheric ascent phase of the vehicle. Consequently,
we present problem formulation from a control perspective, the = modes are introduced into the state-state representation
from our earlier investigations, and later employed for control synthesis.
In the final part, the closed-loop behavior of the flight control system for the Cooperative Action Leading to Launcher
Innovation for Stage Tossback Operation (CALLISTO) vehicle is validated against the influence of structural flexibility.
The performance of anH∞ synthesized rigid body controller from our earlier investigations, has been extended accordingly,
and is validated. Monte Carlo (MC) simulations are run on the 6-Degrees of Freedom (DoF) simulator for the reference
mission under nominal and uncertain conditions.

1. Introduction
Structural flexibility is a well-known issue in the space

and aeronautics domains [1, 2]. Building larger and
lightweight rockets, that can carry heavier payloads into
orbit, usually makes them much more flexible. This phe-
nomenon has been well studied since the first launch vehi-

cles were developed during the sixties [3–5]. Many testing
campaigns were dedicated to the correct characterization
of the vehicles’ structural properties.

Flexible launch vehicles [4–9] are unique systems be-
cause they are aerodynamically unstable by design, the
center of pressure is forward the center of gravity. The
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mass variation as the propellant consumes complicates
things further, the static and dynamic parameters change,
which introduces larger degrees of uncertainty into the sys-
tem. The parameters used for the description of the high-
frequency dynamics are also affected.

Bending modes have generally low damping, and some
of the lower frequency ones could be dangerously located
next to rigid body control frequency. If not correctly ad-
dressed, they can be excited by the Flight Control System
(FCS) and consequently lead to instability and potential ve-
hicle loss. To avoid this kind of issue, engineers must guar-
antee correct margins at low and high frequencies during
the early design phase, and subsequently validate them us-
ing non-linear simulations. Generally, a design with filters
is necessary to guarantee correct gain and phase.

Bending modes could be either gain or phase-stabilized
[10,11]. For phase stabilization, bending filters are used to
guarantee adequate phase when in proximity with the rigid
body control, while in gain stabilization the bending modes
are attenuated by direct roll-off.

2. Dynamic modeling
The structural dynamics of an elastic vehicle can be

studied using modal analysis. Modal analysis is a sub-
branch of structural mechanics that aims at determining the
natural modal shapes and natural frequencies of an object
during free vibration. Typical models used in structural
dynamics consist of an assembly of springs and masses ar-
ranged in mesh form, connected by = discrete points called
nodes.

For systems with relatively simple dynamics (made of
a single material and regular form), analytical solutions
can be directly computed. Newer methods, however, deal
with the fact that structures are made of a combination
of materials with different densities and their shapes are
non-uniform and complex. Finite Element Method (FEM)
analysis directly applied onto a mesh generated using the
Computer-Aided Design (CAD) model state of the art
within the aerospace industry [12].

Regardless of whether analytical solutions or FEM anal-
ysis is used, the goal is to find the solutions to the differen-
tial equation represented by [13]

S ¥q + Qq = W , (1)
where

• S ∈ R=×= (kg or kg m2 rad−1) is the generalized
mass matrix,

• Q ∈ R=×= (N m−1 or N m rad−1) is the generalized
stiffness matrix,

• q =
[
@1 @2 . . . @=

]> ∈ R=×1 (m or rad) is the
generalized displacements vector (composed of posi-
tion and/or angles variables), and

• W =
[
�1 �2 . . . �=

]> ∈ R=×1 (N or N m) is the
generalized loads vector (composed of forces and/or
torques).

From a mathematical point of view, modal analysis con-
sists of finding the general solution to differential equa-
tion (1), when the Left-Hand Side (LHS) is neglected
(S ¥q + Qq = 0), i.e., the free response without external
excitations is observed. Thus, one can represent it as the
sum of = harmonic responses of the form

q (C) =
=∑

8=1
5
8
_8 sin(ln 8 C + k8), ∀C , (2)

in general, it is easier to interpret this equation when ex-
pressed in exponential form

q (C) =
=∑

8=1
5
8
_8 4

9 (ln 8 C+k8 ) , ∀C , (3)

where

• ln 8 ∈ R is the 8-th natural undamped frequency
(rad s−1),

• q8 ∈ R= is the 8-th modal shape (m or rad),

• _8 ∈ R is the 8-th gain (-), and

• k8 ∈ R is the 8-th phase angle (rad), and

= are known as modes. Overall, only a number of the first
modes is necessary since they build up most of the total
response. Both, the phase and gain are not important since
they depend on the initial conditions (@8 (C0) and ¤@8 (C0)),
thus they are, for most of the cases, neglected. For the
computation of ln 8 and 5

8
, the solution is the result of an

eigenvalue-eigenvector problem of the form

(Sln
2
8
− Q )5

8
= 0, 8 = {1, 2, . . . , =} . (4)

One needs to solve for ln in Eq. (4), i.e., det(S8n
2 −

Q ) = 0. = solutions will be found (i.e., ln 8 =

{ln1, ln2, . . . , ln=}). The second step is then to find the
eigenvector 5

8
that satisfies Eq. (4) for each ln 8 .

Eigenvectors 5
8
∈ R6×1 represent the so-called modal

shape. Each modal shape is composed of a rotational
5r ∈ R3×1 and a translational 5t ∈ R3×1 parts (5

8
=[

5t
>
8

5r
>
8

]
). The = modal shape vectors can be used to
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construct the modal shape matrix � ∈ R6×= for a system
with = modes, i.e.,

� =
[
51 52 . . . 5

=

]
=

[
5t1 5t2 . . . 5t=
5r1 5r2 . . . 5r=

]
(-) ,

(5)
with

5t =
[
qt1 qt2 qt3

]>
,

5r =
[
qr1 qr2 qr3

]>
.

The matrix � matrix is used to convert between modal
and physical coordinates, its columns represent the one
mode. Therefore, it is a common practice to introduce into
the modal equation the mapping q = �( (and its inverse
transformation ( = �−1q) 1. Or, in scalar form:

@ 9 =

=∑
8=1

q[ 9 ,8 ] [ .

The advantage of the modal mapping is that it reduces
the number of computations. Given the fact that vector q
has as units (m or rad), and knowing that eigenvectors are
dimensionless, the units resulting units the modal variables
will also have as units (m or rad).

Recall that the dynamics of a flexible aerospace struc-
ture can be generalized using Eq. (1)

S ¥q + J ¤q + Q q = W , (6)

however, the main difference in this case, is the fact that
the damping matrix (J ∈ R=×=) now has been included for
energy dissipation, this matrix is a function of the structural
damping coefficient Z

8
2, the modal mass<8 and the mode’s

natural frequency ln 8 .
By introducing mapping q = �( and pre-multiplying

Eq. (6) by �> [14], this yields to

�>S�︸   ︷︷   ︸
S[

¥(+�>J�︸   ︷︷   ︸
J[

¤(+�>Q�︸   ︷︷   ︸
Q [

( = �>
W (N or N m) ,

(7)
1Eigenvectors are not orthogonal to each other, i.e., they are linearly

independent. As will be shown in subsequent sections, they are, on the
other hand, orthogonal to the mass and stiffness matrices.

2Finding structural damping of an aerospace structure is still an open
field of research. This is due to the fact that modal analysis does not pro-
vide damping as a solution. Common practices include scaling it in terms
of the mass, or directly selecting a value of 5% or 0.5%, for aeronautics
and space applications, respectively.

which for each mode is represented as

<8 ( ¥[8 + 2Z
8
ln 8 ¤[8 + ln

2
8
[8) = 5>

8
W , 8 = {1, 2, . . . , =} ,

(8)
which demonstrates and interesting property of matrix �,
it diagonalizes matrices S , J and Q as follows

• S[ = �>S� = diag
( [
<1 <2 . . . <=

] )
∈

R=×= (kg or kg m2 rad−1) is the generalized masses
matrix,

• J[ = �>J� =
2 diag

( [
<1 Z 1 ln1 <2 Z 2 ln2 . . . <= Z =

ln=
] )

∈ R=×= (N s m−1 or N m s rad−1) is the generalized
damping matrix,

• Q[ =�>Q� = diag
( [
<1 ln

2
1 <2 ln

2
2 . . . <= ln

2
=

] )
∈ R=×= (N m−1 or N m rad−1) is the generalized
stiffness matrix.

A common practice within the structural dynamics
community is to normalize the modal shape matrix wrt. the
generalized mass matrix S[ -or the stiffness matrix-. This
approach is classically employed within FEM analysis soft-
ware for the retrieval of the results of the modal analysis.
Both sides of Eq. (7) are pre-multiplied by S[

−1 [15–18],
which is equivalent to scale each of the eigenvectors by the
corresponding mass element

5̂
8
=

5
8√
<i

=
5
8√

5>
8
S[5 8

(-) . 8 = {1, 2, . . . , =} , (9)

Therefore the components of the matrices in Eq. (6) can
be rewritten as

• Ŝ[ = �̂
>
S�̂ = I

=×= ∈ R=×= (kg or kg m2 rad−1)
is the unitary modal mass matrix,

• Ĵ[ = �̂
>
J�̂ = 2 `

=×=
n=×= =
2 diag

( [
Z 1 ln1 Z 2 ln2 . . . Z

=
ln=

] )
∈ R=×=

(N s m−1 or N m s rad−1) is the normalized modal
damping matrix, and

• Q̂[ = �̂
>
Q�̂ = 
n

2
=×= =

diag
( [
ln

2
1 ln

2
2 . . . ln

2
=

] )
∈ R=×= (N m−1

or N m rad−1) is the normalized stiffness matrix.

The normalized modal equation [16] can be represented
as
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¥( + ĴB ¤( + Q̂B( = �̂
>
W , (10)

in matrix form, which for each of the modes is represented
as

¥[8 + 2 Z
8
ln 8 ¤[8 + ln

2
8
[8 = 5̂

>
8
W , 8 = {1, 2, . . . , =} .

(11)
The modal coordinates matrix is obtained at different

points, especially at those where the actuators and sensors
are positioned. In a case a RLV (Fig. 1), the most important
points are:

• Thrust Vector Control (TVC) gimbal �̂S,

• Hybrid Navigation System (HNS) �̂N,

• Fins �̂Fi
, with 8 = {1, 2, 3, 4},

• Center of Aerodynamic Pressure (CoAP), and

• Reaction Control System (RCS)’s 8-th thruster.

Since the mass of the vehicle changes as a consequence
of propellant consumption, the modal shapes also change
for the different filling ratios. They can be extracted from
the FEM analysis software, by assuming the liquid as a
solid or by using more complex techniques that also in-
clude Computer Fluid Dynamics (CFD) results in the so-
lution.

2.1 Effect of elasticity on the sensor measurements
Structural flexibility induces parasitic vibrations that af-

fect the sensor’s measurement, depending on the place-
ment of such sensors (accelerators, gyros), the effect prop-
agated to the translational and rotational states of the vehi-
cle. In the case of a launch vehicle, all the sensors are usu-
ally placed in the avionics bay. Care must be taken during
the early design of the structure, such that the sensor’s box
is not placed at a mode’s node, where the relative displace-
ment with regard to the undeformed configuration is zero.
In the specific case of CALLISTO, they are located within
the HNS box which is in the top part of the vehicle [19].
For planar motion, the effect of elasticity can be included
in the state-space representation using the following linear
simplifications

ΘN = Θ −
= 5∑
8=1

qNr2 8 [8︸       ︷︷       ︸
ΘNf

, (12)

¤ΘN = ¤Θ −
= 5∑
8=1

qNr2 8 ¤[8︸       ︷︷       ︸
¤ΘNf

, (13)

xN = x + ℓN −
= 5∑
8=1

qNt1 8 [8︸       ︷︷       ︸
xNf

, (14)

¤xN = ¤x −
= 5∑
8=1

qNt1 8 [8︸       ︷︷       ︸
¤xNf

, (15)

yN = y + ℓNΨ −
= 5∑
8=1

qNt2 8 [8︸       ︷︷       ︸
yNf

, (16)

¤yN = ¤y + ℓN
¤Ψ −

= 5∑
8=1

qNt2 8 [8︸       ︷︷       ︸
¤yNf

, (17)

zN = z − ℓNΘ −
= 5∑
8=1

qNt3 8 [8︸       ︷︷       ︸
zNf

, (18)

¤zN = ¤z − ℓN
¤Θ −

= 5∑
8=1

qNt3 8 [8︸       ︷︷       ︸
¤zNf

. (19)

These equations are quite useful when rewriting the
state-space equations, which shift the output of the states
from the body frame (B) to the Navigation frame (N). They
were used, for instance, when extending the models from
our earlier investigations [20, 21] with the modes needed
for the simulation environment.

2.2 State-space representation
Assume the state-space representation of a generic

6-DoFs dynamical system is defined by

¤xr = Ar xr + Br u , (20)
y = Cr xr + Dr u , (21)
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Fig. 1: Flexible launch vehicle in free-free configuration.

if this model is represented in generalized form, the states
vector is organized as xr =

[
qr ¤qr

]> for =G = =@A + = ¤@A
states. The mapping that converts from the control inputs
u to the generalized loads vector is defined by W = Bmap u
for =D control inputs (we will refer to the columns of this
matrix as Bj, where 9 refers to each of the actuators gen-
erating a generalized force). Note that this approach also
guarantees that the output matrix is structured as follows:

Cr =

[
Cr@ 0

=@A
×= ¤@A

0
= ¤@A ×=@A

Cr ¤@

]
, (22)

Dr =

[
0
=@A

×=D
0
= ¤@A ×=D

]
. (23)

The state-space model from Eq. (21) can be extended
with = 5 flexible modes, regardless of whether they were
extracted from the FEM or analytical computations. The
extended state-space, which includes both the rigid body
and flexible states, is

[
¤xr
¤xf

]
=

[
Ar Ar,f
Af,r Af

] [
xr
xf

]
+
[

Br
Bf

]
u ,

y =
[

Cr Cf
] [

xr
xf

]
+
[
Dr

]
u ,

(24)

where there exist two representations for matrices Af, Bf
and Cf, they are:

• Generalized coordinates representation: as the
name indicates, it uses generalized coordinates for the
construction of the state-space model, this explicitly
requires that the states vector of the rigid body xr is
also expressed in generalized form. The state vector
for the flexible modes is

xf =
[
qf ¤qf

]>
, (25)

with

qf =
[
@1 @2 . . . @= 5

]>
,

¤qf =
[
¤@1 ¤@2 . . . ¤@= 5

]>
.

Note that for the 6-DoF case, there exist 6 variables for
each 8-th mode, thus the length of vector q is 6 × = 5 .

The state-space matrices [22] are defined as

Af =

[
0
= 5 ×= 5

I
= 5 ×= 5

−S −1Q −S −1J

]
, (26)

Bf =

[
0
= 5 ×=D

S −1Bmapj

]
, (27)

9 represents each of the 9-th control inputs, and

Cf =

[
Cr@ 0

=@×= ¤@
0
= ¤@×= 5

Cr ¤@

]
. (28)

• Modal coordinates representation: this second rep-
resentation uses modal coordinates for the definition
of the flexible states vector, each mode has two states
x
[8

=
[
[8 ¤[8

]>, or

xf =
[
x
[1

x
[2

. . . x
[= 5

]>
, (29)

=
[
[1 ¤[1 [2 ¤[2 . . . [= 5

¤[= 5

]>
, (30)
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and the state-space matrices [22] are defined as fol-
lows

Af =


A

[1
02×2 . . . 02×2

02×2 A
[2

. . . 02×2
...

...
. . .

...

02×2 02×2 . . . A
[= 5


, (31)

Bf =


B

[1
B

[2
...

B
[= 5


, (32)

Cf =
[
C

[1
C

[2
. . . C

[= 5

]
, (33)

with

A
[8

=

[
0 1

−ln
2
8

−2Z
8
ln 8

]
,

B
[8

=

[ 01×=D

5̂
8
> Bmapj

]
,

C
[8

=

[
Cr@ 5̂ 8

0
=@×1

0
= ¤@×1 Cr ¤@ 5̂ 8

]
,

note that the modal shapes 5 defined in the C matrices
are always the modal shapes at the measurement unit,
while the ones defined in the B matrices are at the
locations of the 9-th control inputs.

For the coupling matrices Ar,f and Af,r we look at the
values of generalized forces deviation purely due to the ef-
fect of the bending. In general, Af,r8 = [02×=@ ] and

Ar,f8 =

[
0
=@×1 0

=@×1
Af,act8 0

=@×1

]
,

where

Af,act8 =


∑ 9

:=1 q̂ 9 ,81
�map 91

...∑ 9

:=1 q̂ 9 ,8@=
�map 9@=

 .

The full-order matrices are hence expressed as

Ar,f =
[
Ar,f1 Ar,f2 · · · Ar,f= 5

]
, (34)

and

Af,r =


Af,r1
Af,r2

. . .Af,r= 5

 . (35)

The implementation of the state-space models for planar
ascent flight is defined as a function of the state’s vector

Hrhns
=

[
ΘN

¤ΘN xoN
zoN

¤xoN
¤zoN

]> (36)

for the pitch plane. And for the yaw plane as a function of
states

Hrhns
=

[
ΨN

¤ΨN xoN
yoN

¤xoN
¤yoN

]>
. (37)

For the analytical definition of the rigid body matrices,
the reader is referred to references [20,21], the state-space
from those references can be extended using the formula-
tion presented along this section, leading to a model that
can be used for control design and analysis.

3. Application to the CALLISTO mission
The details of the CALLISTO mission can be found

in other references [19–21, 23–26]. For this publication,
we analyze one of the baseline scenarios (the Return-to-
Launch-Site flight), the profile of this mission is depicted
in Fig. 2, where all four phases composing the end-to-end
flight are shown (namely, ascent, boostback, aerodynamic
reentry, and landing). Each of them uses different control
and guidance strategies [20, 21, 23, 24].

The modal parameters of the vehicle were extracted us-
ing FEM analysis, and accordingly depicted in Fig. 3 for
only the first three actual bending modes. Although there
exists data from all the force application points, for the
scope of this publication, only the ones corresponding to
the TVC gimbal and the HNS are computed for a portion of
the ascent flight. All the parameters were also normalized
regarding their maximum value due to proprietary reasons.

The parameters shown in Fig. 3 have been substituted
in the model presented in Eqs. (21), and (24) and all the
parameters derived across Sec. 2.2 for a rigid body with
control inputs vector u =

[
T XH X\ EW

]> for the pitch
plane and u =

[
T XI Xk EW

]> for the yaw plane. The
progression of the open-loop poles and zeros is illustrated
in Fig. 4’s upper plot for a large section of the ascent phase,
here the results only for the pitch plane poles are depicted.
The state-space representation also provides the open-loop
transfers for channels that are important for the vehicle,
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Fig. 2: CALLISTO’S flight phases for Return-to-Launch-
Site (RTLS) scenario.

namely; Θ (�)
XH (�) ,

Θ (�)
X\ (�) ,

z (�)
XH (�) ,

z (�)
X\ (�) ,

Ψ (�)
XI (�) ,

Ψ (�)
Xk (�) ,

y (�)
XI (�)

and y (�)
Xk (�) , just to mention classically analyzed ones in the

domains of launcher’s control. In Fig. 4’s lower plot the
bode chart for the channel Θ (�)

XH (�) for the same segment of
the baseline trajectory as also depicted in Fig. 2. 20 points
were evenly selected and only the first six lower frequency
modes were analyzed.

Since it is also important to know how the uncertain-
ties in the rigid and flexible body deviate from the nom-
inal dynamics, across all the linearization points besides
computing Linear Time-Invariant (LTI) systems (nominal)
the Linear Fractional Transformation (LFT) systems (un-
certain) were also obtained, with the baseline and uncer-
tainty envelope, accordingly.

In the launch vehicle’s ascent control, the most criti-
cal point is the maximum dynamic pressure region, here
referred to as &max, this is the trajectory segment where
the aerodynamic forces are the largest, thus small deviation
from the nominal parameters can produce very large vari-
ations on the dynamics of the system. This pole-zero map
and bode plot is presented for the pitch channel ( Θ (�)

XH (�) ) at
&max on the LFT in Fig. 5. For this analysis, the first 6
modes were selected. Here, one observes the classic aero-
dynamic unstable pole related to the position channel, and
the pair of aerodynamic stable and unstable poles associ-
ated with the attitude channel. Furthermore, the complex

poles linked to the bending modes are all contained within
the LHS of the complex plane, and consequently, also sta-
ble under perturbed conditions. This is confirmed by look-
ing at the bode plot, where the magnitude of the modes is
well below 0 dB. As for the frequency separation, the poles
are well separated from the frequencies of the aerodynamic
poles. In terms of order magnitude, the desired rigid body
Closed-Loop (CL) will be placed more than 1 decade be-
low the lowest frequency mode.

Given the favorable gain of the modes, one could di-
rectly use a low-pass filter to roll them off and correct the
phase of the system. However, a good practice is to filter
at least the first one, aiming at minimizing the interaction
with the rigid body, this is done by directly placing a trans-
fer function of a notch filter of the form

Gfilter,notchnom 8
(�) =

�
2 + F 5 � + l2

5

�
2 + F 5

0 5
� + l2

5

, (38)

directly at the output of the controller, F 5 defines the
width of the filter and 0 5 the attenuation/amplification at
the given frequency l 5 for the nominal case. To han-
dle the uncertainties in the bending parameters, usually,
Gfilter,notchrob 8

(�) is composed of at least three sub-filters to
attenuate the entire range of frequencies produced by pa-
rameters dispersion in the LFT, i.e.,

Gfilter,notchrob 8
(�) =

3∏
9=1

Gfilter,notchnom 8 9
(�) , (39)

where the frequencies are selected: l 581 is the lower fre-
quency observed in the LFT for the 1-st mode, l 582 is
the nominal frequency in the LTI for the first mode, and
l 583 is the maximum frequency observed in the LFT also
for the first mode. For our design 8=1. Note that clas-
sic notch filters do not induce changes in the phase of the
closed-loop system, they mostly operate on the magnitude
of the system. For this reason, to recover the initial 180◦
at low frequencies, second-order low-pass filters are also
employed to correct the phase. These low-pass filters are
basic second-order filters, whose transfer is represented by

Gfilter,low8
(�) =

: 5l
2
5

�
2 + 2Z

5
l 5 + l2

5

. (40)

The final design for the robust design will then have the
form

Gfilter,tot (�) = Gfilter,notchrob
(�) ·

=∏
8=1

Gfilter,low8
(�) . (41)
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Fig. 3: Evolution of the bending parameters across the atmospheric-ascent phase for the first 3 modes.

For the computation of the control gains using H∞ op-
timization, the structure of the controller is preserved as
of [20], the total bending filter (41) is placed directly at
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Fig. 4: Evolution of the stability parameters in open-loop
across the trajectory.
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Fig. 5: Evolution of the stability parameters in open-loop
at &max.

the output of the controller. Since the structure of the filter
is also fixed for all the trajectory design points, the coeffi-
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cients filter transfers can be scheduled as the control gains,
using the non-gravitation velocity as the independent vari-
able for the interpolations in between points. The current
design iterates over a set of = design points across the tra-
jectory (Fig. 2), both under nominal and perturbed condi-
tions. Classic stability margins from control theory are im-
posed into the rigid body, they are 6 dB for the gain margin
and 30◦ for the phase margin, for the high-frequency dy-
namics, 12 dB and 45◦ for the nominal design. For the ro-
bust performance, these values were relaxed. The Nichols
plot of the response of the current nominal system (L(�))
is presented in Fig. 6, the same design procedure was done
for each design point, guaranteeing adequate nominal and
robust margins. Note that also the same design procedure
is repeated both for pitch and yaw planes.

-630 -540 -450 -360 -270 -180  -90    0   90  180  270
-80

-60

-40

-20

0

20

40

60

80

100

120
From: dely  To: delyb

Nichols Chart

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

Fig. 6: Closed-loop Nichols plot for the nominal system at
&max.

For the closure of this publication, the design was tested
in the 6DoF simulator against nominal and perturbed con-
ditions. The simulator includes a high-fidelity model of
the CALLISTO vehicle with all the bending models us-
ing the formulations presented in Sec. 2.2 and the cor-
responding uncertainties for the parameters that are af-
fected. Other models included in the simulation frame-
work include Mass, Centering, Inertia (MCI) variation,
a fully ad-hoc aerodynamic model, actuator models with
non-linearities, the environmental models with the wind
profiles for the launch site, and communication delays be-
tween subsystems and computers. All these parameters are
randomly sampled according to the probability distribution
for = runs. The closed-loop performance of the nominal
6-DoF simulation with nominal wind profile is presented
in Fig. 7 for the ascent phase. As expected from the Open-
Loop (OL) analysis, the modes are well-damped in CL.
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Fig. 7: Shape of the 6 first modes for nominal simulation.

The final part includes 100 runs extracted from a larger
MC under perturbed conditions with randomly sampled
wind profiles. In this instance, the results are shown in Fig.
8. The oscillations’ amplitude is well-bounded for all the
MC runs. It is also evident that there are no couplings with
other effects, such as sloshing, wind, or the engine. As
for compliance with the requirements of attitude/position
tracking and loads minimization, they all fall well within
the design requirements.

Fig. 8: Shape of all the modes for 100 MC runs.

4. Conclusions
In this publication, the modeling and analysis of struc-

tural flexibility has been analyzed for generic Launch Vehi-
cle (LV) and RLVs. We tackled the problem in the classic
fashion tailored for GNC systems.

In the first part, we introduced the computation of
the modal equations that can be used both for simulation
and stability analysis purposes. The process of deriving
the modal coordinates in the two common representations
from structural dynamics was also thoroughly discussed.
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They are: 1) generalized coordinates and 2) modal coordi-
nates. One or the other might be more useful depending on
the application, classically in the launcher domain the lat-
ter is preferred. The process of extending the models that
are typically used for rigid-body analysis (Grigid (�)) with
unstable aerodynamic poles and sets of actuators found in
conventional vehicles like TVC, RCS, or less conventional
like fins cover the full spectrum of modern LVs and RLVs.

The state space representation of the 8-th flexible mode
can be constructed as a standalone state-space system
Gflex (�) and later coupled to the rigid body via the state-
coupling matrices that lead to a full order extended model
suitable for control design purposes.

In the second part, the evolution of the bending parame-
ters for the CALLISTO vehicle has been analyzed in open-
loop for the ascent phase of a RTLS trajectory. The location
of the bending modes frequencies relative to the aerody-
namic poles has been studied at the &max under uncertain
conditions along the reference trajectory for each analysis
point.

The findings from the open-loop analysis defined the fil-
ter architecture used to counteract the effects of flexibility
both in magnitude and phase. The current design uses a
combination of notch and low pass filters to ensure ade-
quate gain and phase margins at low and high frequencies.

In the final part, the design was validated using non-
linear simulations with the high-fidelity simulator for nom-
inal and perturbed conditions using different wind profiles.
The behavior of the modes was, as expected, correctly
damped and showed no couplings with other effects, like
sloshing, wind, or engine dynamics.
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