ADDRESSING PARAMETER
UNCERTAINTY IN
PROSPECTIVE INVENTORY
MODELING '

Stefany Villacis, Veatriki Papantoni, Urte Brand-Daniels

SETAC Europe 26th LCA Symposium

i DLR



Background and Motivation

Parameter Uncertainty in Prospective LCA ,,Future Energy Technology Concepts*
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Current challenges of Prospective LCA (own source based
on [1])

* TRL: Technological readiness level

* MRL: Manufacturing Readiness Level

*t,.  Current time

*t. .  Future point time when technology reaches maturity
(TRL=9 and MRL= 10)
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pLCI model

Deterministic approach
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Proposed Approach
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Methodology
Framework to generate pLCl an parameter uncertainty data [1]
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Methodology

Does the
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dimension
change with
p-scaling?
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Case Study . . : :
Application of the framework to a Solid Oxide Electrolysis Cell (SOEC) to produce hydrogen in 2040

Production of liquid hydrogen for aviation
Manufactured in DE
2024: TRL-5-6 — 2040: *TRL 9/MRL.: 10

Primary and secondary data collection

Materials of the Electrolyte: 2024-> ceramic, zirconia
2040-> scandia stabilized zirconia

Active area SOEC stack: 2024-> 100 cm?
2040-> ?

Production scale stack: 2024->
2040-> ?

2024-> current DE mix
2040-> future DE mix

*TLR: Technological readiness level
MRL: Manufacturing readiness level
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Case Study
Application of the framework to a Solid Oxide Electrolysis Cell (SOEC) to produce hydrogen in 2040

- . SOEC stack active area

Does the technology’s dimension change with up-scaling?

v
X

Is there sufficient knowledge of the new technology sizes?

Are there experts available? V
SOEC stack active area
I ‘@. I
'&‘ I
Literature review Expert elicitation
Lab and pilot Minimum and maximum values

2
scale data 100 cm 400 cm? 800 cm?2
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Case Study
Application of the framework to a Solid Oxide Electrolysis Cell (SOEC) to produce hydrogen in 2040

Electricity demand for production of

SOEC stack
Is there sufficient knowledge of learning effects for reaching industrial scale? x
Are there experts available? V
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Summary and Conclusions
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