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Physics-Based Inverse Modeling of Battery Degradation
with Bayesian Methods
Micha C. J. Philipp, Yannick Kuhn, Arnulf Latz, and Birger Horstmann*

To further improve lithium-ion batteries, a profound understand-
ing of complex battery processes is crucial. Physical models offer
understanding but are difficult to validate and parameterize.
Therefore, automated machine-learning methods are necessary
to evaluate models with experimental data. Bayesian methods,
e.g., Expectation Propagation þ Bayesian Optimization for
Likelihood-Free Inference (EP-BOLFI), stand out as they capture
uncertainties in models and data while granting meaningful
parameterization. An important topic is prolonging battery life-
time, which is limited by degradation, such as the solid-electrolyte
interphase (SEI) growth. As a case study, EP-BOLFI is applied to
parametrize SEI growth models with synthetic and real

degradation data. EP-BOLFI allows for incorporating human exper-
tise in the form of suitable feature selection, which improves the
parametrization. It is shown that even under impeded conditions,
correct parameterization is achieved with reasonable uncertainty
quantification, needing less computational effort than standard
Markov Chain Monte Carlo methods. Additionally, the physically
reliable summary statistics show if parameters are strongly corre-
lated and not unambiguously identifiable. Further, Bayesian
Alternately Subsampled Quadrature (BASQ) is investigated, which
calculates model probabilities, to confirm electron diffusion as
the best theoretical model to describe SEI growth during
battery storage.

1. Introduction

Lithium-ion batteries (LiBs) are of central importance for the tran-
sition to renewable energy sources, especially for the electrifica-
tion of the transport sector. To meet the high requirements of the
transport sector, such as high energy density and long service life,
an in-depth physical understanding of the complex battery pro-
cesses is essential. The coupling of numerous complicated phys-
icochemical effects makes gaining insights into the behavior of
batteries challenging for the scientific community. However,
the increasing capabilities of machine-learning (ML) algorithms
point to a possible way to tackle this problem.

ML references a broad class of numerical or statistical
algorithms for automatized data analysis, pattern recognition, clas-
sification, and regression. With increased computational power, ML

techniques have become more popular and researched. In battery
research, there are many ML applications,[1] e.g., early prediction of
battery lifetime,[2] material performance,[3] battery state estima-
tion,[4,5] increase in simulation speed,[6] and parameterization of
physics-informed models.[7–11] To make physical conclusions, ana-
lyzing available physical models and comparing them with experi-
mental data utilizing ML methods is inevitable. Since this process is
always accompanied by a lack of information, e.g., model uncer-
tainty or measurement inaccuracies, a consistent uncertainty quan-
tification (UQ) of the obtained results becomes increasingly
important. The most natural incorporation of uncertainty is
achieved by Bayesian algorithms, favoring them over other ML
algorithms for these purposes. The capability of Bayes’ theorem,
updating your prior knowledge with more available evidence,
and the results in multivariate probability distributions make
Bayesian algorithms a unique option in parameterization and
inverse modeling. However, these algorithms usually need many
simulated samples to obtain qualitatively good results,[12–14] imped-
ing the computationally heavy physical models. In this work, we
show that using an improved Bayesian algorithm, Expectation
Propagationþ Bayesian Optimization for Likelihood-Free Inference
(EP-BOLFI),[15] enables a good parameterization for physical
models with UQ, needing orders of magnitude less samples in
contrast to common Markov Chain Monte Carlo (MCMC) meth-
ods. Further, the Bayesian Alternately Subsampled Quadrature
(BASQ) model selection algorithm,[16] based on Bayesian princi-
ples, is applied to identify the prevailing mechanism from a spe-
cific selection. As a case study for these Bayesian algorithms, we
investigate modeling solid-electrolyte interphase (SEI) growth,
which limits the LiB lifetime.

Several degradation mechanisms[17,18] influence the lifetime
of a LiB, e.g., the ongoing parasitic side reactions forming the
SEI.[19] The SEI is crucial for the functionality of the lithium-ion
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battery by preventing direct contact between the electrode and
the electrolyte.[20] However, it does not ideally prevent side reac-
tions as desired. The ongoing SEI growth consumes lithium ions
and leads to capacity and performance losses.[21] Despite long-
lasting research efforts, the fundamental physical processes
involved in the ongoing SEI growth are not fully understood.[22–24]

Several mechanisms proposed in the literature aim to explain the
continued SEI formation.[25–27] One can classify these mechanisms
roughly into two categories: the first predicts that the prevailing
mechanism is solvent diffusion through the SEI, and the second
category postulates the SEI to be blocking for solvent molecules
but considers ongoing electron transport through the SEI by var-
ious effects. These mechanisms can describe the capacity fade
due to ongoing SEI formation but have subtle differences in
the dependence on the operating conditions. These differences
allow the disentangling of SEI growth mechanisms with ML
approaches.

This work presents a workflow for analyzing physically
derived models with advanced Bayesian methods. We apply
these methods to the example of battery aging due to continu-
ous SEI formation. We present the workflow in Figure 1. The
Bayesian algorithms (see Section 2) take the experimental data
and physics-based models (see Section 3) as input and yield a
parameterization with UQ, parameter correlations, and a model
selection criterion as results (see Section 4). We conclude in
Section 5.

2. Bayesian Methods

In Bayesian statistics, the term probability is referred to certainty.
In contrast to the usual frequentist approach, data points are con-
sidered fixed, and the parameters are uncertain. Instead of find-
ing the perfect parameter value, the aim is to estimate the
posterior certainty distribution of a desired parameter set θ, con-
sidering the prior knowledge and the data y. Bayes’ theorem
states that given prior knowledge or assumption P(θ) can be
updated with further knowledge or likelihood PðyjθÞ , to obtain
a posterior distribution PðθjyÞ by

PðθjyÞ ¼ PðyjθÞPðθÞ
PðyÞ (1)

where P(y) is the evidence of the data. In the following subsec-
tions, we introduce the EP-BOLFI and BASQ algorithms, which use
Bayes’ theorem and the Bayesian concept of probability.

2.1. Bayesian Optimization

The algorithm used in this work for Bayesian Optimization is
called EP-BOLFI, developed by Kuhn et al.[15] This algorithm is uti-
lized for inverse modeling and combines two algorithms: EP and
BOLFI. This combination aims to maintain the advantages of
Bayesian inference (BOLFI) while achieving a substantial reduc-
tion in needed simulation samples (by EP) compared to standard
approaches.[15]

EP[28] (see left blue box in Figure 1) introduces the approach of
splitting the data into several features fi, and then propagating
the gained information through every feature fj 6¼i, substantially
reducing the needed simulation samples. The choice of features
is highly flexible and can be adapted to different problems. A triv-
ial example is segmenting the data into different coherent parts
and considering the data points in one single part as one feature.
However, experts can also incorporate physical knowledge about
the system by choosing certain data transformations as features,
e.g., physically motivated fit functions. The feature then consists
of the parameters describing the transformation. A feature can be
thought of as a point in a higher-dimensional space. The resulting
distance between this point for the simulated data and the point
from the experimental data will be used for optimization.
Therefore, it is essential to note that the selected transformations
form the underlying landscape of a loss function in parameter
space. Suitable choices can improve the results regarding noise
stability, convergence speed, resulting uncertainty, and correct
parameter identifiability.

BOLFI[29] (see left blue box in Figure 1) is responsible for fitting
the selected features one by one to the experimental data. Firstly,
different parameter configurations θ are drawn from the prior
belief PðθÞ and simulated. In the second step, the distance
between the selected feature for the simulated data f iðysimðθÞÞ
and the experimental data fi(yexp) is calculated. In the third
step, a Gaussian process is trained on the parameter-distance
pairs (θ, logðkf iðysimðθÞÞ � f iðyexpÞkÞ ). Fourthly, transforming this

Gaussian Process with

PðyjθÞ � Pðlogðkf iðysimðθÞÞ � f iðyexpÞkÞ ≤ εÞ (2)

whereby ε is a certain threshold, yields the likelihood of the spe-
cific feature f i . Fifthly, the product of the likelihood and the prior
(see Equation 1) becomes evaluated by MCMC sampling. The
result is the posterior distribution PðθjyÞ , without the need to
explicitly determine the evidence PðyÞ .

Often, the likelihood is assumed to follow a particular distri-
bution, e.g., a normal distribution. However, this may differ for
coupled battery mechanisms, which can generate a more com-
plex manifold in the parameter space. Therefore, the Gaussian
process is used as a flexible surrogate for the likelihood.

The posterior is reduced to a multivariate normal distribution
for better interpretability and ease in the following use.
Barthelmé et al.[30] proved that in the case of a normal posterior,
the EP procedure will converge to this exact posterior, and the
reduction will not distort the result. A normal posterior is a good
approximation, as identifiable problems tend to have a parabola-
shaped optimum. In the sense of a traceback, the likelihood of
the specific feature can then be calculated backwards from
Equation 1, also as a normal distribution. The subsequent EP step
realizes the propagation of the gained information. The obtained
parameters’ posterior distribution of feature f i enters as the prior
belief for the next feature f iþ1 . Besides, previously gathered infor-
mation for this next feature (f iþ1 ) is removed from the prior.
In this way, the prior belief contains only the information from
the other already simulated features and/or the initial prior.
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By iterating through the selected features (multiple times if
needed), this procedure finally provides the overall posterior
and feature-specific likelihoods as multivariate ellipsoids in hyper-
space, with the most likely parameterization as the means and
the corresponding uncertainty through the covariance matrices.
Since the feature-specific likelihoods become updated during
each iteration, we refer to the final likelihoods of the individual
features as the feature-specific posteriors.

2.2. Bayesian Quadrature

Bayesian Quadrature (BQ) is a method to approximate intracta-
ble integrals. In the algorithm BASQ, see right blue box in
Figure 1) developed by Adachi et al.[16] BQ is used to integrate
the probability distribution Pðyjθ, MÞ of the data y given the
parameters θ and model M over the parameter space of this
model

Figure 1. Simplified visualization of the workflow presented in this work applied to the case study of modeling the continuous growth of the SEI. The
upper row shows the primary input for the algorithms, i.e., the experimental data yexp (see Section 3.3) and the model (e.g., a particular SEI growth mecha-
nism, see Section 3.2). Human-chosen features are input to EP-BOLFI to improve its performance. The orange arrows indicate the input flows. The middle
row shows the two Bayesian algorithms used in this work. EP-BOLFI performs a multidimensional probabilistic fit iteratively (see Section 2.1). BASQ (see
Section 2.2) determines the model posterior distribution and computes the mean model evidence. In the bottom row, the outputs are shown. From
EP-BOLFI, the optimal parameter values and corresponding (co-)variances or correlations are obtained. To improve BASQ’s performance, a preconditioned
parameterization received by EP-BOLFI is helpful as additional input, as indicated by the faint orange arrow. Applying BASQ for different models yields a
model selection criterion, as the “better” model obtains a higher mean model evidence.
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PðyjMÞ ¼
Z

Pðyjθ, MÞdPðθÞ (3)

With Bayes’ theorem, one can relate this to a model
probability

PðMjyÞ ¼ PðyjMÞPðMÞ
PðyÞ (4)

Without further assumptions or information, all models enter
with an equal prior probability PðMÞ and the same normalizing
data evidence PðyÞ , leaving PðyjMÞ to be computed. Comparing
the results for different models yields the Bayes factor

K ¼ PðM1jyÞ
PðM2jyÞ

¼ PðyjM1ÞPðM1ÞPðyÞ
PðyjM2ÞPðM2ÞPðyÞ

¼ PðyjM1Þ
PðyjM2Þ

(5)

Therefore, the model that achieves the highest value for the
mean model evidence PðyjMÞ is considered the “best” model
to describe the data. Note that this quantity itself is a non-
normalized probability, only the comparison to a second model
gives a significant meaning.

Considering the likelihood Pðyjθ, MÞ assigns a probability to a
certain combination of model and parameter by weighting the
distance to the data, this tends to prefer models with more avail-
able parameters to achieve the most accurate results. To avoid
overfitting, we also investigate the effect of adding a penalty term
to the likelihood, penalizing the number of parameters and their
values (see S1, Supporting Information).

3. Theoretical and Experimental Section

3.1. Battery Cell Model

Physics-informed battery models describe multiple coupled phys-
icochemical effects as partial differential equations (PDE). Even
though resolving the physical effects in a battery most accurately
requires a microstructure-resolved 3D description,[31] numerically
solving the system of PDEs in 3D is computationally heavy.
Therefore, a trade-off between physical accuracy and computa-
tion time has to be made. The common reduction in complexity
is reducing the system’s dimensionality by volume-averaging.
Thus, the Doyle–Fuller–Newman (DFN)[32] p2D model has been
developed, which captures accurately most battery effects.
However, it is still computationally challenging, especially for
ML applications requiring thousands of simulations. Further
reduction in complexity by asymptotic analysis of the DFN yields
the Single-Particle Model (SPM) and SPM considering electrolyte
effects (SPMe).[33] In this work, we will use the SPM/SPMe descrip-
tion of a battery.

In the simple SPM picture, all particles in each electrode act
equally, so we only resolve one single particle. At the surface of
this particle the Li ions intercalate or deintercalate and radially
diffuse inside due to concentration gradients. This description
is reasonable in the case of vanishing currents and, therefore,
is used in this work to simulate battery storage. The SPMe
model considers additional effects in the electrolyte, which is

computationally slightly more expensive but more accurate for
small applied currents. In this work, we used the SPMe to simulate
the cycling behavior of the battery cell. The nondimensional ver-
sion of the governing equations of the SPMe, the model param-
eters, and the complementing initial and boundary conditions are
summarized in S2, Supporting Information. The battery simula-
tions were performed with PyBaMM.[34]

Commonly, the system is solved in time by initializing a cer-
tain battery state and giving the battery’s current as input. The
output contains all of the resolved battery states at different posi-
tions in space and time, in this work referred to as the simulated
data ysim . In this picture, we can describe the battery model as a
function g, which takes the applied current profile I and the bat-
tery parameters θ as input so that

ysimðtÞ ¼ gðt,I , θÞ (6)

For the case study pursued in this work (degradation by SEI
formation), the most important simulated output is the battery’s
capacity loss (CL), which occurs due to SEI growth during
battery operation/simulation and is described by the degradation
models. For the parameterization, we assumed to have an already
correct parameterized underlying battery cell and focused on the
parameterization of the degradation models only.

3.2. Degradation Models

In a battery, many degradation effects take place simultaneously.
One of the least understood is the formation of the SEI, which is
considered the dominant degradation process during battery
storage but also contributes to degradation during battery oper-
ation. The circumstances in which multiple theoretical SEI models
exist depict this as an ideal case study to use ML methods to iden-
tify which mechanisms take place and contribute up to which
degree. Therefore, this is the focus of this work.

The SEI is a passivating layer at the negative electrode of a
battery formed by the reduction reactions of electrolyte mole-
cules. This reaction irreversibly consumes Li ions, reducing the
overall capacity and increasing the battery’s internal resistance
over time. To explain the observed growth of the SEI[35] by ongo-
ing reduction, a transport process of the reactants (electrons and
solvent) to the reaction location has to take place. From a multi-
scale perspective, the literature[25–27] proposes the following
transport mechanisms for long-term SEI growth: electron diffu-
sion, electron conduction or migration, and solvent diffusion.
In the following, we introduce these mechanisms briefly.

Electron diffusion (ED)[25,26,36–39] describes a diffusive transport
of the electrons from the electrode through the SEI by hopping
between localized states, e.g., lithium interstitials. At the interface
between SEI and electrolyte these electrons are consumed in SEI
formation reactions. How fast this reaction takes place depends
on local quantities like the onset potential of the SEI formation
reactionΦ0 and the electrical potential. Kolzenberg et al.[26] inves-
tigated a reaction limitation in more detail and showed that this is
important only for the early stages of SEI formation. Hence,
we neglected the influence of the onset potential here and
assumed instantaneous reactions once all reactants arrive at
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the reaction site, i.e., SEI formation reactions instantly consume all
electrons. This leads to a vanishing concentration of electrons at
the interface between SEI and electrolyte and a specific reference
concentration at the electrode, which depends on the state of
charge (SoC). Then, the diffusive transport of electrons that
contribute to the SEI reaction is given by the following electron
current density

jED ¼ ce�De�F
LSEI

expð�η̃SEIÞ (7)

where ce� is the reference concentration, De� is the diffusion con-
stant of electrons through such localized states, F is the Faraday
constant, and LSEI is the thickness of the SEI. η̃SEI is the SEI over-
potential, which describes the amount of electrons available in
the SEI at the electrode–SEI interface. This is given as

η̃SEI ¼
F
RT

ηint þ UðSoCÞ þ μLi;0
F

� �
(8)

where R is the universal gas constant, T is the temperature, μLi;0 is

the standard chemical potential of neutral lithium to lithium
metal, UðSoCÞ is the open-circuit voltage of the anode, and
ηint is the intercalation overpotential. For standard Butler–
Volmer kinetics, this intercalation overpotential is defined by
the following relation to the intercalation current density

jint ¼ 2j0sinh
F

2RT
ηint

� �
(9)

with the exchange current density j0.
Another possible transport mechanism of electrons can occur

due to a gradient in the electrical potential through the SEI.
Combined with Ohms’s law, this leads to a net current of electrons
from the anode to the SEI–electrolyte surface. Depending on the
origin of the gradient in the electrical potential, this can yield dif-
ferent current densities. One possibility, referred to as electron con-
duction (EC),[22,25] assumes that the step in the electrical potential
between electrode and electrolyte follows a constant gradient
over the thickness of the SEI during storage. Its current density
is given by

jEC ¼
κðΦ0 � UðSoCÞÞ

LSEI
(10)

where κ is the electron conductivity of the SEI, andΦ0 is the onset
potential of the SEI formation reaction. The solvent becomes unsta-
ble at this potential and becomes reduced to form SEI compounds.
Note that this only provides a current for SEI formation if
UðSoCÞ < Φ0 . The leading critics of this mechanism address the
conductivity of the SEI, which is considered to be an insulator
in the relevant voltage regime,[40,41] and the assumption of a con-
stant gradient in the electrical potential from the anode to the SEI–
electrolyte interface. The electrical potential drops at the interfaces
between electrode and SEI and between SEI and electrolyte, put-
ting the assumption of a simple constant gradient over the whole
thickness of the SEI into question.[42]

During battery operation, especially charging, the intercala-
tion current of positively charged Li ions causes a change in
the electrical potential at the electrode–SEI interface.[26] The

assumption that this electrical potential drops linearly toward
the SEI–electrolyte interface, referred to as electron migration
(EM), causes the following current density

jEM ¼ ce � De � F2jint
2RTκLiþ;SEI

expð�η̃SEIÞ (11)

where κLiþ;SEI is the lithium-ion conductivity of the SEI.
Solvent diffusion (SD)[43–47] assumes that the continuous

transport of solvent limits the reduction reactions. One assumes
a vanishing concentration of the solvent at the reaction site, again
due to instantaneous reactions, and a constant solvent concen-
tration in the bulk electrolyte. Then, the transport of the solvent is
realized by diffusion, due to concentration gradients, through the
SEI to the electrode reaction surface. Deriving a current density, in
terms of electrons lost to SEI formation, this mechanism yields

jSD ¼ cSDSF
LSEI

(12)

where cS is the concentration of solvent molecules in bulk, and
DS is the diffusion constant of the solvent molecules through the
SEI. The physical credibility behind the process is also highly dis-
cussed, e.g., the solvent molecules have to be able to diffuse
through the SEI pores, even though their reaction should close
those.[48]

Despite decades-long research efforts, the scientific commu-
nity cannot fully explain the SEI growth, suggesting that the SEI is
complex and possibly based on multiple coupled mechanisms.
Single et al.[25] and Köbbing et al.[27] investigated SEI growth
under storage conditions and found that electron diffusion
best describes the SoC-dependent trend in the experimental
data. However, both works need an additional SoC-independent
capacity loss, whose origin is unclear. The SOC-independent
capacity loss is possibly due to an additional SEI growth mecha-
nism, where only solvent diffusion matches this functionality.
Therefore, we modeled SEI growth by combining SoC-dependent
mechanisms (electron diffusion or electron conduction) with
solvent diffusion. With this knowledge, we investigated the
following combinations as SEI models for battery storage.
First, we labeled the combination of electron diffusion and sol-
vent diffusion as the “Best Model” since previous work verified
that it matches the experimental data. Second, we labeled the
combination of electron conduction (with Φ0 ¼ 0.145 V) and sol-
vent diffusion as the “WrongModel” because the parameter value
needed for Φ0 to capture the trends in the experimental data is
unreasonable. Third, we considered the combination of electron
diffusion, electron conduction, and solvent diffusion, which we
labeled the “Overfitted Model” because it has more fit parameters
than needed. For battery cycling, we additionally have to include
electron migration. We labeled the combination of electron dif-
fusion, solvent diffusion, and electron migration as the “Cycling
Model”.

To model such combinations, we combined the derived
current densities ji with i ∈ fED, EC, EM, SDg linearly to a total
SEI current density jSEI ¼

P
ji , in case multiple transport mecha-

nisms occur at a time. This current density was then incorporated
into the battery model by assuming that the overall battery cell
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current density j consists of the intercalation current density jint
and the SEI current density jSEI so that j ¼ jint þ jSEI .

Depending on the meanmolar volume of the formed SEI mol-
ecules, VSEI , the SEI thickness grows in time by

dLSEI
dt

¼ VSEI

F
jSEI (13)

The solutions of this equation for single-transport processes
are shown in S3, Supporting Information. Note that these solu-
tions strongly differ in their SoC dependency.[25]

The proposed SEI growth mechanisms (Equation 7, 10, 11, 12)
depend onmany parameters. Often, two parameters appear as direct
products a ⋅ b , making them indistinguishable for a fitting purpose.
In these cases, we can choose one parameter to be fixed and opti-
mize the other, granting a faster convergence. We showed in
Section 4.1 that when optimizing both parameters simultaneously,
they anticorrelate, as expected. Thus, our approach was perfectly
valid. By fixing one parameter, each mechanism was characterized
by a single parameter. As a consequence, the correlations between
the parameters of the different mechanisms can also be interpreted
as the relations between two different degradationmechanisms. The
parameters of interest are De� , κ , DS , and κLiþ;SEI . To demonstrate
that this does not limit the presented method, we analyzed a model
with nongrouped parameters in S4, Supporting Information.

3.3. Experimental Data

As outlined in the previous section, one characteristic of the the-
oretical SEI degradation mechanisms is their dependence on the
SoC. To investigate this dependence and possibly identify the
actual SEI transport mechanisms, we performed an inverse analysis
of the experimental data obtained by Keil et al.[21] Here, a very brief
outline of the experiment is given. In the experiment, they investi-
gated the capacity loss of lithium-ion batteries with a nickel–
cobalt–aluminum oxide (NCA) cathode. They charged batteries
to different initial SoCs and stored them for 9.5months, performing
check-ups about every two months. As a result, they measured a
clear trend of the capacity loss with time and SoC: the higher the
initial SoC, the higher the capacity loss increasing in time. Notably,
they detected a significant degradation (about 4 %) for 0 % initial
SoC. By measuring the open-circuit voltage U of the graphite
anode, it is possible to perform inverse modeling of the measured
capacity loss with the proposed degradation mechanisms.

3.4. Synthetic Data

To check whether EP-BOLFI and BASQ work as intended, we pro-
duced synthetic data sets for which we know the occurring deg-
radation mechanisms and their correct parameterization.

As a first synthetic dataset, we simulated SEI growth with the
“Best Model” during the experimental storage protocol described
in Section 3.3. Therefore, the synthetic storage data (see crosses
in the lower panel of Figure 2) is uniquely parameterized by the
correct values for De� and DS .

Additionally, we produced a second synthetic dataset to show
the application of the methods on cycling data, which is a

widespread experimental procedure. Further, we used this data-
set to investigate EP-BOLFI’s performance under more difficult
conditions and analyzed the impact of suitable feature choices
on performance and obtained results. We generated the syn-
thetic cycling data (see green line in Figure 7) by simulating
SEI growth with the “Cycling Model” for 500 full cycles with 1C
CC-CV charge and 1C constant discharge. The corresponding
voltage cut-offs were 2.5 V and 4.2 V, with a cut-off current of
C/50. If noise does not exist, this data is uniquely parameterized
with correct values for De� , DS , and κLiþ;SEI . We then applied differ-

ent noise levels to this data for the analysis. To demonstrate that
the presentedmethod is not limited to synthetic data, we included
an analysis of real cycling data[49] in S5, Supporting Information.

4. Results & Discussion

In this section, we show the results of applying the presented
Bayesian methods to perform inverse modeling of the

Figure 2. Exemplary evolution of one parameter’s probability distribution
(top panel) with simulated samples. The dashed line indicates the prior
belief for this parameter. The colored lines represent the sequence of prob-
ability distributions after 520 simulated samples (transparent) up to 2080
samples (opaque). Note that the needed samples to get these results can
be drastically reduced, as shown in Section 4.3. For better comparison, the
probability distributions are normalized to one. The vertical gray line indi-
cates the real parameter value for the synthetic data. In the lower panel,
the corresponding 95% confidence areas of the parameterization are
shown in data space. The crosses refer to the synthetic data points, and
their coloring indicates their featurization into three segments: low SoC,
medium SoC, and high SoC.
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degradation data with SEI growth. In the first subsection, we ana-
lyze storage data with EP-BOLFI and BASQ to verify the methods
and identify the dominant transport mechanism. In the second
subsection, we show the results of using EP-BOLFI to analyze
cycling data, a ubiquitous experimental protocol. We investigate
the impact of noise and the choice of features on the results.
Finally, we compare our method to alternative approaches by
solving the proposed inverse problems with available algorithms.
Although the proposed problems are described by a simple
parameter space, i.e., no local minima, we use EP-BOLFI mainly
with a very high dampening. The dampening slows the conver-
gence and emulates realistic numbers of model evaluations
needed for highly complex problems with multiple local minima.
In the final comparison, we use EP-BOLFI without dampening to
show comparable numbers of model evaluations for simple prob-
lems. We discuss our findings along the way.

4.1. Storage Data

We first present the achieved results for synthetic storage data
(see Section 3.4) to demonstrate the capability and credibility
of the Bayesian methods. Afterwards, the results for real storage
data (see Section 3.3) are shown and discussed.

For the inverse analysis of the storage data with EP-BOLFI,
features and a prior belief of the parameter range are needed.
To enable correct identification of DS (see Equation 12),
which is responsible for the low SoC contribution, and De�

(see Equation 7) or κ (see Equation 10), which are responsible
for the SoC-dependent capacity loss, we choose the features
to split the data into three SoC segments (see colored crosses
in the lower panel). The 95% bounds of the prior belief for the
parameters are chosen two orders of magnitudes around the cor-
rect/guessed value, such that the lower (higher) limit for each of
the corresponding transport mechanisms would cause signifi-
cantly less (more) degradation than observed in the data.

The results of the parameterization of the synthetic storage
data with the “Best Model” are shown in Figure 2. The upper
panel of Figure 2 shows the prior belief and sequential conver-
gence of the probability distribution to the correct value with
increasing knowledge (simulated samples), exemplary for De� .
In the lower panel of Figure 2, the simulations with the parameter
values at the bounds of the sequential 95% areas for De� and DS

are shown. Here, the colored areas refer to the 95% confidence
areas of the joint probability distribution, again at different
states of the algorithm. The more samples are analyzed, the
narrower the confidence areas become around the synthetic
data. Without considering noise, the data is uniquely
parameterized by known values for De� and DS . EP-BOLFI finds
the correct parameterization to describe the synthetic data per-
fectly. The uncertainty vanishes, and the solution converges
within multiple thousand samples, even for a wide prior param-
eter space. Note that the needed samples can be drastically
reduced by ideally adapting EP-BOLFI’s hyperparameters
(e.g., weaker dampening).

Besides the final parameterization, i.e., the means and varian-
ces of the final joint probability distribution, EP-BOLFI also out-
puts the covariances. From these, the Pearson correlation
coefficients ρðX , YÞ , with

ρðX , YÞ ¼ covðX ,YÞ
σXσY

¼
Pn

i¼1ðXi � XÞðYi � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1 ðXi � XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1 ðYi � YÞ2

q (14)

for the optimized parameters X and Y can be calculated. The cor-
relation coefficient measures the linear connection between X
and Y. For parameterization, the correlation between two param-
eters can be understood as to what degree parameter X has to be
modified if Y changes to get a similar quality to fit the trend in the
data. In reverse, the correlation coefficient contains the informa-
tion on whether a specific parameter can be identified indepen-
dently, i.e., has vanishing correlations to other parameters. As we
describe each degradation mechanism with one parameter only,
the correlation coefficient measures how identical or exchange-
able these mechanisms are. Figure 3 shows the correlation coef-
ficients between the parameters De� and DS for the overall
posterior and the specific features obtained in the inverse model-
ing of the synthetic data. In the low SoC feature, the parameters
show a low anti-correlation, as solvent diffusion dominates the
SEI growth. A strong anti-correlation is achieved in the medium
SoC feature, due to an almost equal contribution of electron
diffusion and solvent diffusion. In the high SoC feature, the
anti-correlation is slightly reduced as electron diffusion domi-
nates the SEI growth in this regime. The overall posterior yields

Figure 3. Correlation coefficients between the parameters De� and DS for the inverse modeling of the synthetic storage data with the “Best Model”. The
leftmost panel shows the correlation in the overall posterior. The other panels refer to the feature-specific correlations in the low, medium, and high SoC
features. The color indicates the value of the correlation coefficients.
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an anti-correlation of ρ ¼ �0.68 , which is, in fact, a combination
of the prior correlation and the correlations in the selected fea-
tures. Therefore, the value lies between the others, as expected.
For a more detailed analysis and discussion of feature-specific
correlations, see S6, Supporting Information.

To further investigate whether the obtained correlation val-
ues of the overall posterior reflect the physically expected inter-
play between the degradation mechanisms, we perform inverse
modeling of the synthetic data with the “Overfitted Model”. By
varying the value for Φ0 , the electron conduction mechanism
changes its SoC dependence. Note that experimental measures
reveal that values for Φ0 lie between 0.8 V and 1.5 V.[50] However,
we also use lower values to mimic a similar SoC dependency
as electron diffusion. Figure 4 shows the overall posterior
correlations between De� , DS , and κ for five different Φ0 -values,
decreasing from left to right. ρðDS, κÞ shows a direct anti-correla-
tion for high values of Φ0 . It decreases for Φ0 < 0.5 V and
vanishes for Φ0 ¼ 0.115 V. Simultaneously, the anti-correlation
of De� and κ increases to ρðDe� , κÞ ¼ �0.71 as the onset potential
decreases to Φ0 ¼ 0.2 V. For lower values of Φ0 , ρðDe� , κÞ
decreases or vanishes. The obtained correlation values behave
as expected. For Φ0 ∈ f1.0V, 0.5Vg , electron conduction leads
to almost constant capacity loss over the SoC range, similar to
solvent diffusion. Therefore, a strong anti-correlation is obtained
for ρðDS, κÞ ≈ �1 , meaning these processes behave here very
similarly, and only a weak anti-correlation for ρðDe� , κÞ . This
changes for Φ0 ∈ f0.2V, 0.145Vg because then electron

conduction contributes stronger and only for higher SoC-values,
becoming similar to electron diffusion. For Φ0 ¼ 0.115 V, electron
conduction only contributes to the highest SoC points, resulting
in vanishing overall correlation with the other mechanisms.

Despite the interplay and exchangeability between the phys-
ical processes, the correlation values can also indicate an overpar-
ameterized model. To check if EP-BOLFI can find lumped
parameters, we perform inverse modeling of the synthetic data
with the “Best Model.” Here, we optimize the parameters De� ,
DS , ce� , and cS , where only the product of De� and ce� (see
Equation 7) and DS and cS (see Equation 12) are important.
The resulting correlations are shown in Figure 5. EP-BOLFI finds
a clear anti-correlation between these parameter pairs
(ρðce� ,De� Þ and ρðcS,DSÞ ) in all features, as expected since the
parameters appear as direct products (Table 1).

Figure 4. Correlation coefficients ρ between the parameters De� , DS, and κ for the inverse modeling of the synthetic storage data with the “Overfitted
Model”. The different panels correspond to five different values of the onset potential Φ0 . From left to right, Φ0 decreases, mimicking a transition of the
electron conduction mechanism from SoC-independent (Φ0 ∈ f1.0V, 0.5Vg ) to SoC-dependent (Φ0 ∈ f0.2V, 0.145Vg ) to a vanishing contribution
(Φ0 ¼ 0.115V ). The color indicates the value of the correlation coefficients.

Figure 5. Correlation coefficients ρ between the parameters De� , DS, ce� , and cS for the inverse modeling of the synthetic storage data with the “Best
Model”. The leftmost panel shows the correlations in the overall posterior. The other panels refer to the feature-specific correlations in the low, medium,
and high SoC features. The color indicates the value of the correlation coefficients.

Table 1. Mean model evidence calculated by BASQ for synthetic data and
real storage data with and without penalty (due to a higher number of fit
parameters). The number in bold indicate the model with the highest mean
model evidence.

Models Synt.
data

Synt. dataþ
penalty

Real
data

Real dataþ
penalty

“Best Model” 183.68 178.67 2.14 –9.12

“Wrong Model” –130.19 –144.35 –282.19 –291.42

“Overfitted Model”
(Φ0 ¼ 0.145 V)

187.24 168.34 3.95 –13.13
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Figure 6 shows the results of the inverse modeling of the syn-
thetic (upper panel) and real storage data (lower panel) with dif-
ferent models. The parameterized models “Best Model” (orange)
and “Wrong Model” (blue) are shown with their corresponding
95% confidence intervals after equal sample numbers. In the
upper panel, the final parameterization of the “Overfitted
Model” (with Φ0 ¼ 0.145 V) is visualized by the dashed black line
and coincides with the curve of the “Best Model”. Even though
the correct model perfectly describes the synthetic data, the
“Wrong Model” catches a similar trend in the SoC behavior.
Without a mathematically reliable framework, it is difficult to eval-
uate which of the models fits the data the best. The parameter-
ized models for the real storage data are shown in the lower panel.
Again, both combinations follow the trend in the data reasonably
well, and the corresponding 95% confidence areas include almost
every data point. This demands a suitable model selection crite-
rion that also considers the confidence areas.

Therefore, we use the BASQ algorithm to investigate the mod-
els, and its results are shown in Tab. I. The bold numbers indicate
which model achieved the highest mean model evidence com-
puted by BASQ in the different analyses. BASQ identifies the “Best
Model” as better than the “Wrong Model” for the synthetic and
real data. However, the “Overfitted Model” achieves slightly
higher mean model evidence. As seen before, the best parame-
terization for the “Overfitted Model” and “Best Model” coincides
visually (upper panel of Figure 6), so the higher evidence is
assumed to be due to overfitting. Two options emerge to cope
with the challenge of overparameterization: firstly, consider only
reasonable parameter ranges. This would directly lead to the
deselection of the models “Wrong Model” and “Overfitted
Model” due to the nonphysical values of Φ0 . The second option
is introducing a penalty, which we pursue in this work (see S1,
Supporting Information). This penalty lowers the likelihood of
a certain parameter combination depending on the amount of
parameters used in the model. Thus, a model with more optional

parameters becomes less likely (i.e., achieves lower evidence) if it
does not better fit the data. Then, the mean model evidence
results, including a penalty, identify “Best Model” as the best
model for synthetic data, as expected, and as the best model
for the real storage data. Since solvent diffusion was used in this
work to represent the SoC-independent degradation and explain
the capacity loss at low SoCs, BASQ identifies electron diffusion as
the best transport mechanism to describe the SoC-dependent
characteristics in this storage data.

4.2. Cycling Data

In this subsection, the results for analyzing synthetic cycling data
(see Section 3.4), as a prevalent experimental protocol, with
EP-BOLFI under more difficult conditions (e.g., significantly biased
and uncertain prior belief, and noisy data) are shown. The
obtained uncertainty, its dependence on noise ratio, and chosen
featurization are investigated and discussed.

Again, EP-BOLFI needs features and a prior belief for the
parameters. For featurization, we have chosen a total of two dif-
ferent features. In the first feature, the data is fitted by a power

law function (yðtÞ � αtβ ) to capture the correct contributions of
the degradation mechanisms and thereby grant the proper
trajectory of the capacity loss. Then, the first feature is
f 1 ¼ ½α, β�T . In the second feature, the capacity loss averaged over

the last ten cycles is chosen f 2 ¼ ½CLðtavÞ� to capture an absolute
value of the capacity loss at the end of the cycling. The param-
eters’ prior distributions are biased by setting the means to values
two to eight times larger than the correct values used for the syn-
thetic data (see Table 2). The width of the prior distributions is
chosen such that the 95% confidence bounds are one order of
magnitude lower or higher, respectively, than the mean value.

Figure 7 shows the resulting sequential convergence in the
parameterization of the synthetic cycling data (green line) with
the correct “Cycling Model” for a relatively high noise level

Figure 6. Results from performing inverse modeling of a) synthetic storage data and b) real storage data with the “Best Model” (orange) and “Wrong
Model” (blue). The colored areas show the 95% confidence area of the parameterization. The colored crosses indicate the featurization of the data. The
parameterization of the “Overfitted Model” with Φ0 ¼ 0.145 V (dashed black) is also shown for the synthetic storage data.
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(σ2
noise ¼ 8 ⋅ 10�5Ah2 ). The light blue area indicates the 95% con-

fidence area of the initial prior belief. With increasing knowledge
(simulated samples), the 95% confidence bounds of the joint
probability hyper-ellipsoid in data space (indicated by the colored
areas) become symmetric around the data, and the uncertainty
converges to a reasonable level. More simulated samples do not
decrease the uncertainty significantly as it represents the noise in
the data. E.g., the 95% confidence area after 6800 samples is very
similar to the one after 4752 samples. Table 2 shows the param-
eter values for the simulated synthetic data, the initial prior
means, and the final parameters. Note that these parameter val-
ues depend on other battery parameters and, therefore, should
not be taken as absolute, i.e., a falsely assumed negative elec-
trode surface area can change these parameters by orders of
magnitude. The focus here is to show the correct identification
of the “true” synthetic parameters. EP-BOLFI detects a lower
impact of solvent diffusion as initially guessed and, therefore,
reduces DS to a value that shows an almost vanishing contribu-
tion of solvent diffusion. Equivalently, the value for De� is lowered
to the correct value, which is a more difficult task since De� con-
tributes to both jED (Equation 7) and jEM (Equation 11). This means
De� describes the correct contribution of a square root-like capac-
ity loss and influences additionally the linear capacity loss over

time. A change in De� will affect both. However, κLiþ;SEI affects

the linear aspect only (see Equation 11). Identifying the right com-
bination of De� and κLiþ;SEI represents the correct interplay of a

square root and linear SEI growth regime. The relative error of
the parameters is below 2%, even for this noise level. One can
see that even for a wrong initial guess, a very wide prior (blue
area in Figure 7), and a significant noise level, a valid parameteri-
zation with reasonable uncertainty is found by EP-BOLFI with a
low number of samples.

Table 3 shows the posterior variances for the parameters of
the “Cycling Model”, obtained for the inverse modeling of the
synthetic cycling data with different applied noise levels. The
lower the noise level, the lower the obtained parameter varian-
ces. The UQ of EP-BOLFI indeed captures the noise and uncer-
tainty in the data by the resulting confidence in the parameter
space.

A central aspect of parameterization is how to measure the
distance between data curves, e.g., experimental data and simu-
lated data. The chosen transformations in the features act as such
metrics because they assign each parameter combination a

Table 2. Comparison of parameter values for the inverse modeling of the
synthetic cycling data. The true values correspond to the values used to
produce the synthetic data. The mean prior values indicate the biased
prior belief by placing the mean of the prior parameter distributions to
bad "guessed" values. The final fit values are the means of the overall
posterior distribution obtained after 4752 samples and coincide with the
mean solution plotted in Figure 7. Note that the needed samples to get
these results can be drastically reduced, as shown in Section 4.3.

Parameter True value Mean prior value Final fit value

De� 3.3 ⋅ 10�14 m2

s 7.0 ⋅ 10�14 m2

s 3.36 ⋅ 10�14 m2

s

DS 2.5 ⋅ 10�21 m2

s 8.0 ⋅ 10�21 m2

s 2.53 ⋅ 10�21 m2

s

κLiþ ;SEI 1.0 ⋅ 10�6 S
m 8.0 ⋅ 10�6 S

m 0.99 ⋅ 10�6 S
m

Figure 7. Results from performing inverse modeling of the synthetic data (σ2
noise ¼ 8 ⋅ 10�5Ah2 ) with the correct “Cycling Model”. With an increasing num-

ber of drawn samples, the parameters’ joint probability distribution converges to the correct parameterization (black line) and a reasonable 95% confidence
area (red) considering the noise level. The initial prior is wide (indicated by the blue 95% prior area) and significantly biased (nonsymmetric around the
true values for the parameters).

Table 3. Nondimensional posterior variances of the parameters for the
“cycling model” after 6864 samples, obtained by performing inverse
modeling of the synthetic cycling data with different applied noise
levels. Note that the needed samples to get these results can be
drastically reduced, as shown in Section 4.3. The variances are expressed
in a logarithmic scale, i.e., the standard deviation measures the width of
the distribution in e-folds. This means the upper (lower) bounds of the
kσ-interval of parameter P are given by P� ¼ Pmeanexpð�kσPÞ . Therefore,
comparing the variances shows the relative uncertainty in the specific
parameter, which varies depending on the noise level. The prior belief of
the parameters is equal for the different noise levels and symmetric
around the true parameter values.

Variances σ2
noise ¼ 8 ⋅ 10�6Ah2 σ2

noise ¼ 8 ⋅ 10�5Ah2

σ2
De�

0.01 0.08

σ2
DS

0.24 0.45

σ2
κLiþ ;SEI

0.02 0.13
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Figure 8. Landscape of a 2D parameter space (De� –DS ) for different feature choices (columns) at various noise levels (top row: σ2
noise ¼ 0Ah2 , middle row:

σ2
noise ¼ 8 ⋅ 10�6Ah2 , bottom row: σ2

noise ¼ 8 ⋅ 10�5Ah2 ). The red dots mark the true parameter configuration. In the left column, one power law through the
capacity loss of 500 cycles is considered one feature (f ¼ ½α, β�T ). In the right column, the data points of the 500 cycles without transformation are
considered as one feature (f ¼ ½CLðtCycle1Þ, : : : , CLðtCycle500Þ�T ). The color indicates the value of the loss function, which is given as the relative distance of

the feature applied to the simulated and experimental data: L ¼ log k f i ðysimðθÞÞ
f iðyexpÞ � 1k

� �
.
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certain distance to the optimum (experimental data). Ideally, this
metric can identify the correct parameter combination indepen-
dently of the noise level. Therefore, we investigate a visualization
of these metrics to show the impact of flexible feature choices
due to EP. Figure 8 shows a two-dimensional cross-section of
the landscape in parameter space for different features (columns)
and noise levels (rows) at the correct value for κLiþ;SEI . The left col-

umn shows the results for a more suitable feature transformation
(power law), whereas the right column shows the results for a
basic feature (all data points) as a representative for classical
approaches. The red dots indicate the true parameters. With van-
ishing noise, the landscape of the power law feature (upper left
panel) shows a global minimum for the true parameters.
Considering the data points (upper right panel) after each cycle

as a feature (i.e., f ¼ ½CLðtCycle1Þ, : : : , CLðtCycle500Þ�T ), only a valley of
minima can be identified rather than a global minimum. For
higher noise levels, the data point feature shows a vast and
smeared-out valley of possible parameter combinations and is
therefore considered a bad feature choice. In contrast, the power
law feature maintains a narrow area around the correct param-
eters even for higher noise levels. Choosing certain features can
be interpreted as inputting the visualized landscapes into the
optimization algorithm. Therefore, a reasonable choice of fea-
tures, their combinations, and noise resilience is crucial for correct
parameterization, UQ, and correlations. Furthermore, they
directly impact the convergence speed of the algorithm and
the needed number of simulated samples. So, flexible adaptation
of features through EP is a superior approach for parameteriza-
tion purposes. In comparison, classical approaches, which use the
data points as metric only, face a more challenging parameteri-
zation task. For a more detailed discussion of features, see S7,
Supporting Information.

4.3. Comparison to Alternative Approaches

In this subsection, we compare the performance of different opti-
mization algorithms to EP-BOLFI on analyzing the proposed
inverse problems.

We chose the least-squares optimization algorithm within the
SciPy library[51] for a common standard approach. This method is
similar to a gradient-descent approach and is a local optimizer.
We chose an MCMC algorithm implemented in the pymcmcstat
package[52] for a common Bayesian approach. The functionality of
an MCMC algorithm is based on searching the parameter space
with multiple Markov chains, whereby a singular chain can also
be considered a local optimization. As a metric to assess the per-
formance of an algorithm, we chose the number of model eval-
uations needed to get a reasonably good fit to the data. For the
setup of the algorithms, the initial parameter guess needed for
the least-squares algorithm and the start of the MCMC chain align
with the mean of the prior, which is used in EP-BOLFI. So, the
starting point of all algorithms is equivalent. As the presented
optimization problems are simple, we use EP-BOLFI without
dampening in this section. Usually, the dampening prevents
the algorithm from converging too quickly into local minima,

maintaining its global optimization structure. This is turned off
to obtain a better comparison to the other local optimizers.

Table 4 shows the results of analyzing the real storage
data with the “Best Model” and the noisy synthetic cycling data
with the “Cycling Model” with the different algorithms. In S8,
Supporting Information, we include more details and a visualiza-
tion of the comparison. In the case of the storage data, the least-
squares algorithm performs best and finds a reasonable fit in a few
samples. Also, EP-BOLFI, as a global optimizer, finds the correct
parameter values within the first iteration of 20 samples. The
uncertainty converged within the subsequent 20-40 samples.
The performance of theMCMC algorithm is more difficult to assess.
The chain reached the correct area in parameter space at around
80 samples (see S8, Supporting Information). More samples in this
area have to be simulated so that the chain gives the correct values
for the means of the parameters, even after discarding the burn-in
samples of the chain. In addition to that, we tried different loca-
tions to start the chain. However, these chains did not find the cor-
rect parameter area under 100 samples. For a real MCMC analysis,
multiple different chains should be set up. We noted that at least
80 samples are needed to find a reliable solution.

Regarding the cycling data, the least-squares method finds
the solution with about 38 samples. This optimization problem
is slightly more difficult than the storage case. Depending on
the initial guess of the parameters, we found that the least-
squares algorithm sometimes got stuck in local minima. Either
the correct solution was found within a few samples, as the initial
guess was close, or the optimization got stuck forever in the
wrong area of parameter space. EP-BOLFI found a good solution
after the first iteration of 32 samples, which slightly improved to
the correct solution after two subsequent iterations of 64 samples
(see S8, Supporting Information). After one additional iteration
(128 samples in total), the uncertainty converged and correct cor-
relations emerged. The MCMC algorithm could not find the cor-
rect solution for the cycling data within 200 samples. The chain
got stuck in a wrong parameter combination. Also, other starting
points for the chains were not able to resolve the problem. A cor-
rect MCMC screening would require more chains covering the
parameter space at an appropriate resolution.

5. Conclusion

In this work, we investigate physics-based degradation models
implemented in a full battery cell model with Bayesian ML algo-
rithms. For ML algorithms to be applicable to complex physical
models, the resulting parameterization and UQ must be correct
and precise within the order of thousands of simulated samples.

Table 4. Number of needed model evaluations to obtain a reasonable fit of
the real storage data and noisy synthetic cycling data for different
algorithms. In the case of MCMC simulations, it was not possible to give
a fixed number that reliably indicates the needed model evaluations.

Data Least-squares EP-BOLFI MCMC

Storage 10 20 >80

Cycling 38 32–96 >200
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Moreover, correct ML-based identification of the prevailing deg-
radation model has to be achieved.

For synthetic storage data, the EP-BOLFI algorithm can indeed
find the correct parameterization and a reasonable correspond-
ing uncertainty within a few samples. Further, valuable correla-
tion values between the parameters are obtainable for the
posterior distribution and self-selected features. We show that
these correlations correctly reflect the physical interplay between
different processes and can show relevant processes in the
chosen features.

By analyzing real storage data, we show that SEI growth by
electron conduction and electron diffusion can describe a similar
trend in capacity loss with increasing storage SoC. EP-BOLFI can
parameterize these models with reasonable uncertainty. To iden-
tify the best model for the experimental data, we investigate a
Bayesian model selection criterion. This method consistently
identifies the correct model and favors electron diffusion as
the relevant SEI growth mechanism during battery storage for
the investigated experimental data.

Further, we show that solving an inverse problem with noisy
cycling data is possible for a significantly biased and uncertain
prior belief. We identify the correct contribution and interplay
of multiple SEI growth mechanisms. We visualize the importance
of a suitable choice of features for convergence speed, obtained
uncertainty, noise stability, and correct parameter identifiability.
Further, we find that the resulting uncertainty correctly depends
on the noise level in the data.

By comparing EP-BOLFI to existing standard approaches, we
show that it outperforms commonMCMC algorithms and is about
as fast as gradient-descent methods. It provides further informa-
tion (UQ and parameter correlations) with little additional effort.
In addition, EP-BOLFI is a global optimization algorithm built to
tackle more complex problems as presented here.

To conclude this work, using sample-efficient Bayesian algo-
rithms enables the inverse modeling of real physics-based mod-
els within acceptable computation time. The results contain
correct parameterization with physically reliable UQ and sum-
mary statistics. We show that these methods identify electron dif-
fusion responsible for the SoC-dependent capacity loss during
battery storage. However, for further confirmation, it is of major
importance to analyze all-encompassing experimental data mea-
sured at the most stable conditions and cell chemistries. Only
then can the background of the SoC-independent capacity loss,
the influence of check-ups, and the actual SEI growth mecha-
nisms be identified.

To obtain the needed profound physical understanding of
battery processes, we propose to perform inverse analysis of
developed models with the presented methods to identify the
correct physical process descriptions.
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