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Abstract

The European energy system is undergoing a transformation toward greater adoption
of sustainable energy technologies. Concurrently, it witnesses a significant emergence
of distributed energy resources (DERs), leading to decentralized generation, consump-
tion, and storage of energy. A prominent example of this trend involves households
engaging in self-consumption of electricity generated from rooftop photovoltaic sys-
tems, coupled with home storage systems. The expansion of smart grid infrastructure
has opened up new possibilities for the decentralized organization of DERs in so-called
energy communities (ECs), a concept endorsed by European policy frameworks such
as the Clean Energy Package. However, from an overall system perspective, it remains
unclear whether current market mechanisms and regulatory frameworks provide ade-
quate incentives for the beneficial operation of decentralized energy systems (DESs),
at the scale of a single household or an EC.

This dissertation undertakes a bottom-up assessment of DESs across various regula-
tory and market environments. Current literature reveals a significant gap: techno-
economic analyses of DESs frequently neglect their systemic effects, and overall energy
system studies inadequately model ECs. The overarching contribution of this disserta-
tion lies in bridging these two domains. It provides a holistic systemic evaluation of
DESs, simulating stakeholders’ micro-economic behaviors within ECs, while simultane-
ously capturing emergent macro-level dynamics. The dissertation has methodological
and substantive contributions on both community and overall system levels.

From a methodological standpoint, the thesis presents novel methods for modeling
the aggregation of DERs in ECs. It frames the hierarchical decision-making inter-
dependencies between an aggregator and its users as a Stackelberg energy trading
game. This contribution is further expanded by formulating the resultant game as
bilevel optimization problems. Additionally, the doctoral thesis proposes innovative
techniques and algorithms to efficiently find the Stackelberg equilibrium and derive
the optimal real-time pricing (ORTP) as an internal EC pricing mechanism.

This dissertation further introduces three methods to assess the systemic impacts
of DESs. First, a market alignment indicator is presented, designed to measure the
degree of congruence between DES operations and signals of scarcity or excess from

iii



the wholesale market. Second, the agent-based electricity market model, AMIRIS, is
enhanced to simulate a range of DES business models. Finally, a framework is proposed
for automated bidirectional model-coupling between AMIRIS and the energy system
optimization model, REMix. This coupling method serves to explore the economic
granularity gap arising when households engage in self-consumption under various
pricing and regulatory scenarios.

The methods developed in this dissertation are applied across various case studies,
providing a thorough examination of two closely linked aspects of decentralized energy
system business models in both current and future energy markets: (i) the operation
of distributed energy resources – encompassing home and community energy storage
systems as well as two crucial sector-coupling technologies, namely, heat pumps and
electric vehicles, and (ii) pricing design – which includes static pricing, wholesale
market-based real-time pricing, and community-tailored optimal real-time pricing.
The research highlights the financial advantages of the operation of distributed energy
resources for energy community stakeholders, especially in a future energy market
with a high penetration of renewable energies. What sets these studies apart from
existing research is their evaluation of the implications of optimal real-time pricing,
illuminating the interconnected dynamics between community and wholesale markets.

The thesis findings reveal the inefficiency of time-invariant pricing designs from
the perspectives of both EC actors and the overall system. One study shows that
large-scale penetration of household self-consumption under current tariff structure
significantly increases the required investment in generation and battery capacities.
Real-time pricing schemes can effectively transmit system signals to DESs. This
enhances not only the alignment between the operations of DER and the broader
energy system, improving their cost-efficient integration, but also provides financial
benefits to EC stakeholders. In this context, the proposed ORTP increases community
welfare without notably distorting the wholesale market signals. Moreover, the thesis
highlights the inefficiencies in Germany’s current regulatory frameworks regarding
the static volumetric regulatory charges imposed on consumer prices. These charges,
among other factors, distort the market signals and thereby diminish the effectiveness
of real-time pricing.

In summary, this dissertation introduces robust methodologies for modeling and
analyzing the increasing complexity of energy markets, especially with the emergence
of new small-scale actors. Additionally, its contributions provide valuable insights for
policymakers in devising regulatory frameworks essential to address the emerging
challenges of energy system decentralization.
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Kurzfassung

Das europäische Energiesystem durchläuft gegenwärtig einen Wandel hin zu einer
stärkeren Nutzung nachhaltiger Energietechnologien. Gleichzeitig ist ein deutliches
Aufkommen dezentraler Energieressourcen zu beobachten, die zu einer dezentralen
Erzeugung, einem dezentralen Verbrauch und einer dezentralen Speicherung von
Energie führen. Ein Beispiel hierfür sind Haushalte, die den von Photovoltaikanlagen
erzeugten Strom mit Heimspeichersystemen für den eigenen Verbrauch nutzen. Der
Ausbau der Smart-Grid-Infrastruktur hat neue Möglichkeiten für die Organisation
dezentraler Energieressourcen in so genannten Energiequartiere eröffnet, ein Konzept.
Dies wird zudem durch politische Initiativen wie das „EU Clean Energy Package“
unterstützt. Aus der Perspektive des Gesamtsystems bleibt allerdings unklar, ob die
derzeitigen Marktmechanismen und regulatorischen Rahmenbedingungen geeignete
Anreize für den vorteilhaften Betrieb dezentraler Energiesysteme im Maßstab eines
einzelnen Haushalts oder eines Energiequartiers bieten.

In dieser Dissertation erfolgt eine Bottom-up-Bewertung dezentraler Energiesysteme
unter verschiedenen Regulierungsszenarien und Marktbedingungen. Die derzeitige
Literatur weist eine erhebliche Lücke auf: Technisch-ökonomische Analysen dezen-
traler Energiesysteme vernachlässigen häufig ihre systemischen Auswirkungen und
Gesamtsystemstudien bilden Energiequartiere unzureichend ab. Der übergeordnete
Beitrag dieser Dissertation liegt in der Verbindung dieser beiden Forschungsgebiete. Es
wird eine ganzheitliche systemische Bewertung dezentraler Energiesysteme geliefert,
indem das mikroökonomische Verhalten der Akteure innerhalb von Energiequartieren
simuliert und gleichzeitig die entstehende Dynamik auf der Makroebene erfasst
wird. Somit leistet die Dissertation methodische und inhaltliche Beiträge sowohl
auf quartiers- als auch auf Gesamtsystemebene.

Aus methodologischer Sicht werden in der Dissertation neuartige Methoden zur
Modellierung der Aggregation von dezentralen Energieressourcen in Energiequartiere
präsentiert. Sie stellt die hierarchischen Entscheidungsinterdependenzen zwischen
einem Aggregator und seinen Nutzern als ein Stackelberg-Energiehandelsspiel dar.
Dieser Beitrag wird durch die Formulierung des resultierenden Spiels als zweistufiges
Optimierungsproblem erweitert. Darüber hinaus werden in der Dissertation innovative

v



Techniken und Algorithmen entwickelt, um das Stackelberg-Gleichgewicht effizient zu
finden und die optimalen Echtzeit-Preissetzungsmechanismen als internes Preissystem
für das Energiequartier abzuleiten.

In dieser Dissertation werden außerdem drei Methoden zur Bewertung der systemis-
chen Auswirkungen dezentraler Energiesysteme entwickelt. Erstens wird ein “Market
Alignment Indicator” vorgeschlagen, der den Grad der Übereinstimmung zwischen
dem Betrieb dezentraler Energiesysteme und den Knappheits- oder Überschusssig-
nalen des Großhandelsmarktes messen soll. Zweitens wird das agentenbasierte
Strommarktmodell AMIRIS erweitert, um verschiedene Geschäftsmodelle dezentraler
Energiesysteme einzubeziehen. Schließlich wird ein Framework für die automa-
tisierte bidirektionale Modellkopplung zwischen AMIRIS und dem Energiesystem-
Optimierungsmodell REMix entwickelt. Diese Methode hilft bei der Untersuchung
des “Economic Granularity Gap”, der durch den Eigenverbrauch von Haushalten unter
verschiedenen Preis- und Regulierungsszenarien entsteht.

Die in dieser Dissertation entwickelten Methoden werden in verschiedenen Fallstudien
angewandt und bieten eine gründliche Untersuchung zweier eng miteinander verbun-
dener Aspekte von Geschäftsmodellen für dezentrale Energiesysteme sowohl auf dem
heutigen als auch auf dem zukünftigen Energiemarkt: (i) der Betrieb dezentraler En-
ergieressourcen – dazu gehören Energiespeichersysteme für Haushalte und Quartiere
sowie zwei wichtige Technologien zur Sektorkopplung, nämlich Wärmepumpen und
Elektrofahrzeuge – und (ii) die Preisgestaltung - dazu gehören statische Preise, auf
dem Großhandelsmarkt basierende Echtzeitpreise und auf die Quartier zugeschnittene
optimale Echtzeitpreise. Die Analysen zeigen die finanziellen Vorteile des Betriebs
dezentraler Energieressourcen für die Akteure des Energiequartiers auf, insbeson-
dere in einem zukünftigen Energiemarkt mit einem hohen Anteil an erneuerbaren
Energien. Was diese Studien von der bisherigen Forschung abhebt, ist ihre Bewertung
der Auswirkungen von optimalen Echtzeitpreisen, die die miteinander verknüpfte
Dynamik zwischen Quartiers- und Großhandelsmärkten beleuchtet.

Die Ergebnisse dieser Arbeit zeigen die Ineffizienz zeitinvarianter Preisgestaltungen
sowohl aus der Sicht der Akteure des Energiequartiers als auch des Gesamtsystems
auf. Echtzeit-Preisgestaltungen können effektiv Systemsignale an dezentrale En-
ergiesysteme übermitteln. Dies verbessert nicht nur die Abstimmung zwischen dem
Betrieb dezentraler Energieressourcen und dem Gesamtsystem und damit ihre kosten-
effiziente Integration, sondern bietet auch finanzielle Vorteile für die Akteure des
Energiequartiers. In diesem Zusammenhang erhöht die vorgeschlagene optimale
Echtzeit-Preisgestaltung die Wohlfahrtsindikatoren des Quartiers, ohne die Signale
des Großhandelsmarktes spürbar zu verzerren. Darüber hinaus zeigt die Arbeit die In-
effizienzen des derzeitigen deutschen Regulierungsrahmens hinsichtlich der statischen
volumetrischen Gebühren auf, die den Verbraucherpreisen auferlegt werden. Diese
verzerren unter anderem die Marktsignale und vermindern dadurch die Wirksamkeit
der Echtzeitpreisbildung.
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Zusammenfassend führt diese Dissertation robuste Methoden zur Modellierung und
Analyse der zunehmenden Komplexität der Energiemärkte ein, insbesondere mit
dem Auftreten neuer kleinskaliger Akteure. Darüber hinaus liefern die Beiträge
wertvolle Erkenntnisse für politische Entscheidungsträger bei der Ausarbeitung von
Regulierungsrahmen, die für die Bewältigung der sich abzeichnenden Herausforderun-
gen der Dezentralisierung des Energiesystems unerlässlich sind.
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Chapter 1

Introduction

1.1 Background and motivation

In the past decades, a large portion of the global energy consumption originated
from fossil fuel resources [1]. An unsustainable energy provision, which depletes
natural resources that are concentrated in limited regions of the world and greatly
damages plants, animals and humans [2]. Emissions from the conversion of fossil fuels
(largely made of CO2) alter the radiation balance of the atmosphere, increasing the
risk of climate change [3]. In recent years, the international community has become
increasingly cohesive and has ratified agreements aimed at mitigating the underlying
causes of this anthropogenic shift. One of the central pillars of this agreement is the
commitment of the countries to transform their energy systems to a more sustainable
one [4].

The transition to a sustainable energy system calls for a shift toward renewable
energy sources (RES), such as solar and wind. The energy from RES is commonly
generated in the form of electricity, which can be used to power a wide range of
applications, including transportation, heating, industry, and households [5]. The
electricity produced from RES stands out as significantly more environmentally friendly,
with a notably smaller carbon footprint and other life-cycle assessment1 indicators,
such as eco-toxicity, that are at least as good as, if not better than, those associated
with fossil fuels [7, 8].

One of the obstacles in the widespread adoption of RES technologies was their higher
levelized cost of electricity (LCOE)2 compared to conventional power generation,
which posed a challenge to their cost-effectiveness. To confront this challenge, many

1Life-cycle assessment is a recognized method for quantifying the environmental impacts of products,
processes, and services, facilitating standardized evaluations and the identification of significant
ecological stress points. It comprehensively evaluates the entire environmental burdens and benefits
associated with a product’s life cycle, encompassing stages from raw material extraction to ultimate
disposal [6].

2Defined as the average cost per unit of electricity generated over the lifetime of a power source.
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countries across the globe introduced support schemes that mainly remunerated the
electricity feed-in from RES. These subsidies were often justified by the lack of a level
playing field in energy markets due to the externalities of conventional generation that
were not sufficiently priced [9]. However, the rapid expansion of RES technologies has
resulted in a significant reduction in their costs [10]. In particular, the cost of solar
photovoltaic (PV) modules has decreased at a rate that exceeded the expectations
of many energy scenarios [11]. The reduction in the LCOE of solar PV generation
marked a significant milestone in 2012 in Germany, as small-scale PV power reached
the so-called grid parity1 [13]. Currently the cost of producing a megawatt hour from
mature renewable technologies such as solar and onshore wind in many regions of the
world is equal to, or less than, the cost of production from coal or natural gas [14].

The fluctuating nature of solar and wind energy, as two primary forms of RES, poses a
significant challenge for their large-scale integration into the power grid. These short-
term (daily, weekly) or long-term (seasonal) fluctuations test the system’s efficiency and
supply security from an energy planner’s perspective. With variable renewable energies
contributing more than 80% to the mix, even in an interconnected energy system,
various types and sizes of storage systems become indispensable [15]. Traditional
storage systems, such as pumped storage, stand alongside emerging power-to-gas
technologies as attractive solutions for long-term storage during periods of low solar
radiation and wind speed, scenarios referred to as dark doldrums (Dunkelflaute in
German) [16]. Additionally, battery storage systems (BSSs)2, with their rapid response
times, high efficiency, low self-discharge, and scalable modular structure, are showing
promise in mitigating the short-term intermittency of variable renewable energies
[17]. Among various battery technologies, lithium-ion batteries have taken the lead
as the most mature and widely used solution, owing to their high energy density and
extended cycle life [18]. Alongside other RES technologies, the cost of lithium-ion
BSSs has witnessed a precipitous decline in recent years, a trend projected to persist
into the foreseeable future [19]. Figure 1.1 provides a glimpse into the scenarios and
future projections of battery costs.

As the costs of RES generation and battery storage technologies decline, a growing
number of residential and commercial electricity consumers are generating power
on-site. While the decision to invest in self-consumption may be driven by consumer
preferences [20], strong economic incentives also underlie this trend [21]. Specifically,
the decision of consumers to become “prosumers” by investing in solar PV systems or

1Grid parity is achieved when the cost of generating electricity from RES is equal to or lower than the
price of electricity from the grid [12].

2In this dissertation, the term BSS is used to refer to the battery system, encompassing all its applications.
Specific terminology is employed when the context of the BSS application is central to the discussion:
the term home energy storage (HES) is used to describe the behind-the-meter application of the BSS
when combined with the PV system in a residential setting. Additionally, the term community energy
storage (CES) is used to denote a grid-connected BSS that provides energy services to an energy
community. When referring to the application of the battery system in a car, the term electric vehicle
(EV) is employed.
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Figure 1.1: Scenarios and forecasts for the development of battery costs. Source: [14]

become “prosumagers1” by additionally installing home energy storage (HES) systems,
depends largely on the costs of such investments as well as the retail and feed-in prices
[23].

In Germany, the current regulatory framework for residential and commercial con-
sumers and producers entails time-invariant volumetric retail prices and feed-in tariff
(FiT) for grid consumption and feed-in. While behind-the-meter self-consumption of
electricity is “free of charge”, power consumers are obliged to bear the costs of procure-
ment and sale, as well as grid fees and regulatory-induced charges when utilizing the
grid electricity. Retail electricity prices for German consumers have witnessed a steady
increase in recent years, climbing from 19.46 cents/kWh in 2006 to 38.57 cents/kWh
in 2022 [24]. Until 2021, the escalation in consumer prices was primarily attributed
to the growing RES levies (EEG-Umlage in German). However, since 2021, rising
power procurement costs, largely influenced by increasing conventional fuel prices in
European markets, have further intensified the already high prices [25]. Concurrently,
the declining prices of PV systems have led to a reduction in FiT, decreasing from

1In this thesis, I adopt the naming convention suggested in [22] and refer to an electricity consumer with
generation potential as a prosumer (producer and consumer). A prosumager additionally operates an
energy storage system to increase self-consumption (producer, consumer and storage). I consistently
use these two terms to distinguish between households with PV systems depending on the availability
of BSS. However, there is one exception to this terminology. In the analyses presented in Paper 3, I
use the term “prosumer” to refer to both groups of households.
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an average annual value of 54 cents/kWh in 2006 to 6.7 cents/kWh in 2022 [26].
As depicted in Figure 1.2, alongside these price trends, investments in combined
PV-storage systems have experienced a rapid surge.

Figure 1.2: Development of different electricity retail price components [24], fixed
FiT for small PV systems [26], and newly installed PV-storage systems in
Germany [27].

The transition from an environment characterized by high FiT and low electricity
tariffs to the reverse situation has diminished the incentive to sell PV electricity to the
grid, leading to an increased emphasis on self-consumption of generated electricity.
As the disparity between FiT and retail price continues to widen, coupled with the
ongoing decline in BSS prices, the installation of behind-the-meter HES systems for
higher level of self-consumption becomes increasingly economically attractive [28].
The interplay between these economic factors is illustrated in Figure 1.3. Further
reductions in PV and HES costs will intensify the drivers for self-consumption. Energy
scenarios, as presented in [29] and [30], anticipate that the total installed capacity of
HES systems in Germany will exceed 50 GW by 2035.

While the immediate goal for prosumagers remains the self-consumption of solar
electricity, the future of their interaction with the larger energy system is yet to be
comprehensively defined. With the relentless advance of digitalization in the energy
sector, the potential for the integration of prosumers and prosumagers into a wide array
of market structures is rapidly expanding. These markets can range from peer-to-peer
models with entirely decentralized architecture to more hierarchical prosumer-to-grid
models [33].

Concurrently, the brisk advancement and adoption of sector-coupling technologies
such as electric vehicles (EVs) and heat pumps (HPs), which hold potential for demand
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Figure 1.3: Illustration of incentives for investments in residential PV and battery
systems as a function of FiT, electricity tariffs, and the LCOE and levelized
cost of storage (LCOS). The green arrows show the observed trends in the
past years. Source: own illustration based on references [31] and [32].

response [34], add another layer of possibilities for the decentralized organization of
distributed energy resources (DERs)1. This, in turn, paves the way for the emergence
of decentralized energy systems (DESs)2 that surpass the scope of residential energy
systems and extend to the scale of community energy systems. Within these com-
munity energy systems, the deployment of energy storage technology, often termed
“community energy storage (CES)”, provides an alternative to the conventional HES
associated with the prosumager’s self-consumption business model [35, 36]. Fur-
thermore, community energy systems can act as a platform for the development and
implementation of energy community (EC)3 business models [41]. The growth and ac-

1The term DERs refers to a diverse range of decentralized power generation and storage technologies
located in close proximity to the point of energy consumption.

2The term DES is widely used in literature to refer to an energy system that enables localized generation
and storage of energy. In this thesis, I use this term as a general reference to both residential and
community energy systems.

3The term “energy community” as it appears within this thesis necessitates further clarification due to
its ambiguity and inconsistency across various academic discourses. The conception of “community”
in community-based energy systems literature can often lack precision and uniformity [37]. For
instance, some scholars interpret “community” in relation to social arrangements and governance
mechanisms within energy systems (e.g., [38, 39]). Contrarily, in economics and engineering literature,
there is a noticeable shift toward understanding the community as a geographical entity, a shift that
emphasizes local economic objectives [40]. In alignment with the techno-economic focus of this
thesis, I will adhere to this latter interpretation and will thus primarily consider the community as a
defined location, sidestepping the social dynamics and institutional issues inherent in the broader
definition. Consequently, when discussing the technological framework including the grid, generation,
and storage technologies, I will employ the term “community energy system”. Conversely, “energy
community” will be used when focusing on business models and financial interests of a heterogeneous
set of collective actors. This nuanced usage is intended to differentiate between the technical and
economic aspects and is pertinent to the focus of this thesis, although it’s acknowledged that usage
may vary in other research domains.
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ceptance of these models have been partially stimulated by political drivers, such as the
European Union (EU) Clean Energy Package, which has been instrumental in fostering
ECs through the promotion of community-based initiatives and the empowerment of
energy citizens [42].

Distributed generation and consumption of electricity in regions of the world with
inadequate grid infrastructure can indeed play a vital role in addressing energy poverty
[43]. While this situation is not prevalent in the European energy system, increased
local consumption of electricity in DESs can still have advantages, such as attracting
private investments in clean technologies, reducing transmission and distribution losses,
enhancing system resilience, and offering social benefits like fostering acceptance and
raising awareness of the energy system transition [44]. Despite the benefits of DESs,
their operation without proper coordination can pose challenges to the functionality
of the broader energy system. One such challenge is the increased pressure on the
distribution grid, which may necessitate extensive grid expansion [45]. The challenge
is further intensified by sector coupling, especially with the increased penetration of
EVs and HPs, which can result in a significant surge in power consumption within
the distribution grid, potentially offsetting the benefits of energy-saving measures
[46]. Additionally, a mismatch between the local self-consumption patterns and the
availability of power generated from RES in the energy market can result in inefficient
investments in power generation and storage technologies [47]. Addressing these
challenges and exploring the prerequisites for a market-aligned operation of DESs is
the central focus of this dissertation.

1.2 State of the art, literature gaps, and research questions

As the European energy system transitions towards sustainability, there is a simulta-
neous shift in its centralized paradigm, leading to the decentralization of electricity
production and consumption. This transition is significantly influenced by the growing
trend of self-consumption of solar PV power, among other factors. The decentralization
of the power system brings about significant consequences and challenges. It necessi-
tates substantial engineering, economic, and political efforts to efficiently integrate
DERs into the existing power systems, mitigate the unintended negative impacts of
energy system decentralization, and ensure the smooth operation of physical systems
[48].

In recent years, there has been significant development and application of energy
system models focused on the operation of DESs [49]. The scientific works related
to this field can be broadly categorized into two groups. (i) Studies that primarily
examine the techno-economic operation of DESs, with little or no consideration given
to their impact on the wider energy system. (ii) Research that has a broader systemic
scope but lacks an accurate modeling of the DESs. Recognizing the research gap
between these two domains, this dissertation aims to explore the efficient integration
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of DESs into the broader energy system by addressing the granularity gap1 between
the aforementioned systemic scopes. The overarching objective of the thesis is to
facilitate a more accurate systemic evaluation of DESs by modeling and simulating the
micro-economic behaviors of stakeholders within ECs, while concurrently capturing
the emergent macro-level system behavior using energy system models with broader
scopes.

Adopting a bottom-up approach, the thesis establishes specific research questions and
objectives at two system levels: the community energy system and the overall energy
system. The overarching goal of this thesis is systematically approached by addressing
two guiding questions, each further divided into a methodological and a substantive
research question. In the remainder of this section, I will provide a literature review
that is relevant to each guiding question. Additionally, I will introduce the research
questions and outline their corresponding objectives.

Guiding question A. What operation strategies can intermediary entities employ
to effectively organize DERs in ECs?

The first guiding question is motivated by the growing interest in ECs as a result of
increasing penetration of DERs and the challenges of intermediary entities to organize
these assets. The EC concepts involve coordination of end-users in community energy
systems and emphasize self-consumption and energy sharing [51]. Various business
models within the EC landscape are explored in the literature, each contributing dif-
ferently to policy objectives, such as increasing renewable energy capacity, mobilizing
private capital, and empowering consumers [52].

One facet of research focuses on the business model and regulatory framework de-
sign for ECs. The study in [53] presents 25 emerging options identified through a
morphological analysis of 90 ECs. On a similar note, [41] systematically analyzes
the value proposition offered by ECs, identifying eight community business model
archetypes. The authors of [54] highlight the shift in European countries such as
France, Germany, the Netherlands, and the United Kingdom toward more favorable
regulatory frameworks for collective renewable energy prosumers.

Within this body of literature, a significant number of studies have proposed solutions
that revolve around the fully decentralized organization of EC actors, through mecha-
nisms like peer-to-peer energy trading. In this context, [55] provides an analysis of the
global development of peer-to-peer energy trading, while [56] delves into consumer
behavior within these communities. Addressing structural transitions, [57] examines
the shift from hierarchical power systems to more decentralized models, highlighting
the inherent challenges that need to be addressed to ensure the viability of peer-to-
peer trading in today’s energy market. In response to these challenges, innovative

1The granularity gap in energy system modeling refers to the deficiencies that arise when balancing
the need for a comprehensive system’s perspective with the level of detail or granularity that can
be realistically achieved, due to computational and institutional limitations (e.g., data availability).
This trade-off leads to simplifications in the model, introducing uncertainties and inaccuracies in
representing the real-world system [50].
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solutions have emerged. The authors in [58] use cooperative game theory and propose
an algorithm for stable trading and addressing the challenge of unpredictability and
intermittency of distributed generation. Moreover, the smart community manage-
ment in [59] uses reinforcement learning to derive attractive real-time prices for the
participants. Another example comes from [60], which proposes a co-simulation
methodology for peer-to-peer trading and asserts its compatibility with existing grid
operations.

On the other hand, a different segment of the literature emphasizes a more hierarchical
structure for the EC [61]. Aggregators, defined as “market participants that combine
multiple customer loads or generations for sale, purchase, or auction in any organized
energy market”, recognized by the EU as pivotal players in the energy market, emerge
as key entities in this context [62]. They can contribute to the EC in various ways,
such as by managing local flexibility markets [63], and providing energy savings [64].

In this context, the study in [65] focuses on how an aggregator can effectively manage
DERs under a real-time pricing (RTP) demand response program, thus maximizing
profit despite uncertainties regarding RES generations and customers’ responsiveness.
The research presented in [66] reveals how an aggregator can minimize net costs of
participating in both day-ahead energy and secondary reserve markets by optimizing
prosumagers’ flexibility. Using a two-stage stochastic optimization model, the study
demonstrates the benefits of accounting for uncertainties in renewable generation,
consumption, outdoor temperature, and house occupancy. Authors of [67] introduce
a novel decentralized bilevel stochastic optimization approach. Here, the model
considers multiple energy carriers and storage systems in multi-energy microgrids,
enhancing network flexibility and potentially increasing total profit. The model in [68]
sets up a real-time market platform for an aggregator and the contracted prosumers to
increase the cost-efficiency of the wholesale market participation. The derived bilevel
optimization problem (BIOP) seeks an optimal solution which is beneficial for both
the aggregator and the prosumers.

Current literature on ECs provides substantial insights about their business models,
regulatory conditions, and organizational structures. However, some significant re-
search gaps persist. One is the insufficient development of methodologies for efficiently
capturing the decision-making interdependencies among the EC stakeholders. For
instance, the operation of energy storage systems by the aggregator as well as by users
and the presence of sector-coupling technologies alongside prosumagers are not con-
sidered in the proposed models. This gap aligns with Research Question A.1, focusing
on the modeling and optimization methods for representing the local aggregation of
DERs in ECs. Another gap is the limited exploration of financial benefits for diverse ECs
stakeholders, particularly within the context of the related regulatory frameworks in
Germany. This gap corresponds to Research Question A.2, which seeks to explore the
financial incentives for different actors to engage in EC business models. Addressing
these research gaps could further the development of effective EC strategies and
enhance understanding of the economics of ECs.
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Research question A.1: What modeling and optimization methods can be employed to
represent the local aggregation of DERs in ECs?
The concept of an EC encompasses a diverse array of business models, each character-
ized by distinct market structures, stakeholders, and technologies. In this thesis, the
initial step is to establish a concept that can accommodate various EC use-cases. As the
term “aggregation” in the research question – and also in the title of this dissertation –
suggests, this thesis will primarily focus on ECs with a hierarchical structure.

To comprehend the microeconomic dynamics of such an EC, two fundamental steps
are required. The first step involves the mathematical expression of the (primarily
economic) objectives of the chosen EC stakeholders, along with the corresponding
techno-economic constraints. This encapsulates the optimization problem formulation
for various flexibility options1. The selected flexibility options are CES, HES, EVs,
and HPs. Such formulation portrays the microeconomic behavior of the actors within
a specific business model setting and a given regulatory framework. The second
step involves using advanced mathematical techniques, including game theoretical
methods, to capture the decision-making interdependencies that emerge due to the
conflicting interests of stakeholders engaged in the EC energy trading scheme. Given
the hierarchical structure of the EC, the focus is on the dependencies pertaining to the
operational strategy of the aggregator, and the EC users.

Intuitively, trading prices serve as a critical link between the strategy of the aggregator
and the behavior of the users. In the status-quo market, these prices are frequently
set using predefined rules, such as Time-Of-Use or RTP schemes [70]. However,
endogenous modeling of these prices, which in this thesis is referred to as “optimal
real-time pricing (ORTP)”, constitutes an important step toward understanding the
EC economy. From the techno-economic perspective, such a mechanism allows for
adaptable pricing, which is tailored to the dynamic community needs, resources, and
preferences, each of which is subject to various uncertainties. Moreover, it creates
incentives considering factors, such as cost of energy procurement, market conditions,
grid constraints, and the value of energy services. From the system analytic perspective,
endogenous modeling of the EC market provides a linkage between the operation of
DESs and other segments of the energy system and allows for a holistic assessment of
the future highly interconnected system.

Modeling of the EC’s internal energy trading scheme results in complex BIOPs [71],
which demand novel and sophisticated techniques for resolution. Development of
efficient solving techniques holds significant importance, particularly when considering
the comprehensive scope. This encompasses a temporal scope that extends beyond a
single day and an economic scope that exceeds the boundaries of an EC. This research

1Flexibility options refer to technologies that enhance its ability to adjust and adapt its operation in
response to anticipated or unanticipated changes in energy system behavior. These changes could
include variations in network configuration, generation capacity, or load demand due to factors such
as local climate conditions, user requirements, or network outages [69]. This term is mainly used in
German research circles (Flexibilitätsoptionen in German).
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question is therefore dedicated to developing novel methodologies to model and
simulate the operation of the EC and providing effective algorithms to find the solution
to the resulting energy trading problem. The developed methods and models deliver
the necessary tools for investigating the subsequent research question.

Research question A.2: What are the advantages of EC business models for the stake-
holders involved?
Having examined the methodological aspects of EC modeling, the focus of this research
question shifts toward the techno-economic analysis of different business models1.
While the related studies primarily emphasize the actor-specific financial benefits
associated with these models, they also touch upon the potential technical benefits
they can offer to the physical energy system.

To address this question, the first step involves defining specific EC use-cases2, enabling
model configuration and parameterization. This thesis concentrates on two crucial,
interconnected aspects of EC business models [41] that have been prominently featured
in scientific and political discussions. The first aspect concerns the distributed solar PV
generation and the deployment of flexibility options as main energy resources within
the community. The second aspect examines the pricing mechanism in the EC, along
with its related cost and revenue streams.

Concerning the first aspect, the EC businessmodels centrally feature the cost-minimizing
prosumage operation, which combines the use of PV and HES systems, in addition
to on-site direct power consumption by prosumers. Additionally, the practice of
grid-connected electricity storage within the community energy system using CES is
another key component. Incorporating CES operated by an aggregator provides fur-
ther flexibility, aiming to propose two values to the EC: increasing community welfare
and promoting self-sufficiency [72]. Moreover, the business models incorporate two
pivotal sector-coupling technologies: the bidirectional charging of EV and the flexible
operation of HP coupled with thermal storage (TS), aim to reduce user costs.

In terms of the second aspect, three pricing mechanisms are considered for the EC users.
The ORTP scheme is proposed as the primary pricing mechanism in EC business models
and is benchmarked against the status-quo static pricing (SP) design. Additionally,
the RTP mechanism, which integrates time-variant wholesale market signals [73], is
considered as an alternative pricing scheme. The internal pricing mechanisms, ORTP,
1Throughout this thesis, analysis of EC “business models” is considered as an overarching research
objective in both guiding questions. It is important to mention that the analysis being undertaken
diverges from a traditional comprehensive assessment of all business model components. Such a
comprehensive analysis would involve evaluating their numerous building blocks, including but not
limited to value propositions, customer segments, revenue streams, key activities, and resources.
Given the complex and multifaceted nature of EC business models, and in alignment with the scope
of the thesis (as outlined in Section 1.3), I define and analyze various representative EC “use-cases”
or “scenarios” as proxies for evaluating the EC business models. Hence, a complete business model
analysis extends beyond the confines of this study.

2The consistent usage of this term is lacking across all the papers included. In Papers 1 and 2, there is
a discrepancy, with the term “scenario” and “case” being employed respectively to refer to the same
concept.
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offer two key value propositions: enhancing community welfare and providing grid
relief.

The operation of DERs and pricing mechanisms are influenced by external regulatory
factors. In particular, the regulatory frameworks pertaining to taxes, levies, and
network charges imposed on power consumption from the public grid significantly
contribute the success or failure of the real-world implementation of EC business
models. Implications of these regulatory elements are observed not only in behind-
the-meter self-consumption but also in the usage of grid-connected storage systems,
such as CES. In recent years, the issue of double taxation on storage usage has been
brought to the forefront of political debates [74]. Therefore, one remaining step to
define the EC use-cases is specifying the regulations that affects the operation of DESs.

Upon defining the use-cases, the next objectives encompassed within this research
question are the collection of data and the simulation of various case studies. The
assessment of these simulation results provides the answers to this research question. In
summary, this research question is devoted to exploring the potential techno-economic
benefits of aggregating DERs within the EC under various settings. By pinpointing
promising use-cases from the perspective of the EC stakeholders, I lay the foundation
for probing the system integration of DESs in subsequent research questions.

Guiding question B. What are the broader energy system implications of emerging
ECs?

The second guiding question of this thesis revolves around the influence of DESs
operation on the broader energy system. While receiving increasing attention, the
literature in this area is relatively new and less comprehensive compared to research
dedicated to EC operation. However, various methodologies have been employed
to examine the system-wide impacts of large-scale DES integration under different
market and regulatory conditions. Among these methods, [47] introduces a market
alignment indicator (MAI) to assess the potential systemic effects of prosumagers’ self-
consumption, without explicitly modeling the broader energy system. This indicator
measures the ratio of the welfare generated by HES to that of an benchmark arbitrage
battery.

Research that examines DES integration in a comprehensive systemic context pre-
dominantly employs energy system optimization models (ESOMs), investigating the
optimal energy system operation and design, considering the self-optimizing function
of DESs. These optimization models generally include cost-minimizing DES modules
and a benevolent system planner. The presented studies in [75] and [48] examine the
system contributions of HES in the case of France by 2030. The author of [75] identi-
fies major systemic challenges in the seasonal backup power system related to variable
PV integration and suggests a load management model based on the secondary use of
HES to mitigate these impacts. In a similar study, the author of [48] asserts that solar
PV self-consumption with HES reduces the systemic impacts of PV integration, such
as daily balancing and annual back-up issues, compared to full PV grid injection.
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Furthermore, [31] analyzes the investment decisions of prosumagers and the system
effects of their operations on the German power sector in 2030, taking into account
diverse pricing designs. Their research reveals that when higher fixed annual costs and
lower volumetric costs for grid consumption are implemented, households contribute
more toward non-energy power sector costs. The authors also propose that an hourly
feed-in cap for households can alleviate distribution grid stress without necessarily
causing detrimental effects on the prosumage model. Similarly, [76] studies the system
compatibility of prosumagers’ high self-consumption rate in an energy system with a
significant share of RES. These studies indicate that entirely inflexible HES operation
pursuing individual economic optimum could aggravate RES integration, and increase
CO2 emissions and system costs.

The presented studies in [77, 78] explore the influence of ECs on the European
electricity and heating system through a stochastic programming model. Focusing
on a Norwegian case study, [77] analyzes the cost-effectiveness of decarbonizing
the energy system when the central power system is coordinated with the operation
of building heating systems and electric vehicles’ charging behavior. Their findings
indicate that an efficient coordination can lead to a substantial decrease in average
European electricity costs and a reduction in the expansion of the transmission grid.
Applying the same model, [78] evaluates the impact of flexible ECs on the expansion
of cross-border transmission capacity, and national generation and storage within the
European electricity and heating system. While they emphasize the potential advan-
tages of flexible ECs, they also highlight the conflict of interests between optimizing
EC flexibility for local cost reduction versus broader European cost minimization.
Therefore, the authors underscore the importance of appropriate local price signals
and incentives that mirror the demand for flexibility at a European scale.

The application of agent-based models (ABMs) to simulate the bottom-up integration
of DESs in the energy system while considering emerging market disequilibrium is
relatively niche. The author of [79] explores the impacts of large-scale prosumage of
electricity under varying energy system scenarios on the wholesale market in Germany
by 2035. The study doesn’t find a substantial shift in annual average prices, an outcome
that is explained by the quasi-random correlation between HES operation and market
prices, coupled with the relatively minor scale of the assumed HES capacity. The
study in [80] integrates a prosumager investment model into an electricity market
ABM to assess the long-term (2020-2050) impacts of HES diffusion on the German
electricity market. The findings suggest that from a systemic perspective, the mode
of operation of HES is more important than the amount of storage installed. These
studies, aligned with the previously reviewed study in [31], suggest that regulatory
adjustments, such as lowering the feed-in limit for residential PV, could incentivize a
more system-friendly operation of HES.

The literature reviewed underscores the need for regulatory adjustments and suit-
able incentives for efficient DES and overall energy system coordination. However,
there is still a noticeable gap in the research concerning the systemic impacts of ECs.
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Methodologically, most studies model DES operation in an idealized energy system
using ESOMs, thus failing to provide insights into their systemic effects in a more
‘realistic’ market environment. Furthermore, the complexity of EC business models is
often overlooked. In particular, the role and interests of aggregators as a linking entity
between households and the broader system are neglected. This gap informs Research
Question B.1. Moreover, there is a lack of a comprehensive bottom-up analysis of
system-friendly EC operation. Crucially, while relying on assumptions regarding incen-
tive mechanisms for DES, none of the studies investigate the systemic implications of
EC internal pricing, such as ORTP. In this context, the application of CES also remains
largely unexplored. This literature gap aligns with Research Question B.2.

Research question B.1: How can the potential system-wide impacts of large-scale
integration of self-optimizing ECs be measured and quantified?
The system-friendly operation of DES can be effectively categorized into two main
areas of consideration. The first is grid-coordinated operation, which prioritizes the
synchronization of DERs operations with the physical electricity network. This area
encompasses mechanisms for frequency regulation, voltage control, and reactive
power support, all of which contribute to maintaining grid stability and reliability.
The second area is market-driven operation, which places an emphasis on aligning
DERs operations with market signals. These signals can take various forms, including
but not limited to, price fluctuations and the dynamics of supply and demand. This
research question focuses on the latter category, with the aim of defining suitable
indicators and robust methodologies to assess important systemic impacts.

Assuming an ideal, frictionless, and optimized power system, the extent to which the
operation of ECs aligns with these market price patterns can be considered as a proxy
to evaluate their system-friendly operation. The primary objective here is to extend
the presented approach in [47] and define an indicator capable of measuring the
degree of alignment between EC operation and market signals, along with developing
a methodology to quantify this indicator. A key advantage of this approach lies in
its independence from an overall energy system model for assessing systemic effects,
thereby providing a tool to measure these effects without further modeling effort.

Other objectives of this research question revolve around assessing the overall system
integration of ECs using two large-scale energy system models: an ABM and an ESOM.
In recent years, ABMs have made significant inroads into the realm of energy system
analysis. Although these models have diverse areas of focus, their most significant
applications are arguably found in the modeling of energy markets [81]. AMIRIS is one
such model, developed to analyze and evaluate the effects of energy policy instruments
and their impacts on the actors within the simulation context [82, 83]. AMIRIS models
the decision-making processes of typical actors in the electricity market, considering
the influence of prevailing regulatory frameworks. It employs a merit-order model to
simulate the market clearing process, which in turn allows for price derivation.

A defining characteristic of ABMs is their capacity to incorporate models within the
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model itself. This facilitates the linking and nesting of models, broadening the scope of
simulation and analysis [79]. The second objective of this research question leverages
this intrinsic feature of ABMs and involves the implementation of DES models, as
developed in the context of Research Question A.1, within AMIRIS. Particularly, the
integration of the bilevel optimization model in AMIRIS is an important step to enable
a simultaneous analysis of the interconnected dynamics of EC and wholesale markets.
This implementation process entails the creation of new agent types to represent EC
stakeholders, including an aggregator, and the integration of optimization models
into the AMIRIS infrastructure. Furthermore, it requires establishing an interface to
couple the optimization models that cannot be directly translated into AMIRIS, thereby
ensuring seamless integration and interaction between the different components of
the model.

When employing AMIRIS for this thesis, the model had several limitations. Firstly, the
model was nationally focused, which meant that cross-border electricity trade couldn’t
be endogenously calculated. Secondly, the model did not simulate the competition
between market actors, particularly flexibility operators, making the simultaneous
operation of multiple flexibility operators infeasible. Thirdly, the model did not take
into account investment decisions, focusing only on deriving dispatch strategies.

Coupling an ABM with an ESOM was conducted by [84, 85] for determining the
‘economic efficiency gap’. Such coupling has demonstrated that it enhances the
capabilities of an ABM as well as transfers a more realistic system behavior to ESOM
[50]. In the research presented in [86], authors use this approach by jointly applying
the ABM PowerAce [87] and the optimal power flow optimization model ELMOD
[88] to explore the long-term effects of market splitting in Germany. In this research,
ELMOD provides the perspectives of the regulator and transmission grid operator,
while PowerAce is used for market simulation and creating the companies’ generation
and storage expansion plan. A more pertinent case for this thesis is, however, the
soft-linking between AMIRIS and the ESOM E2M2 [89, 90], as suggested in [84] and
[85], which aims to determine the ‘economic efficiency gap’, i.e. the difference in
system cost arising from non-ideal behavior of players in the market. Torralba-Díaz
et al. [84] propose that a bidirectional coupling of ABM and ESOM represents a
significant avenue for future research, allowing for an investigation of energy system
design.

Against this background, the third objective of this research question is to build upon
this approach by developing an automated bidirectional model-coupling framework
that utilizes the ESOM REMix [91]. On the one hand, this approach offers a sound
starting point for electricity market simulations, addressing the previously mentioned
limitations of AMIRIS. On the other hand, it feeds the resulting DES dispatch from
AMIRIS back into REMix to examine the influence of actor behavior on optimal system
operation and design. This methodology permits the definition and quantification of
the economic granularity gap arising in the context of self-optimizing DES.
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The methodologies developed within the scope of this research question serve as the
foundational framework for addressing the final question of this thesis.

Research question B.2 Under what circumstances do ECs operate aligned with the needs
of the broader energy system?
In the final research question of this thesis, the focus is on studying the large-scale
integration of DESs in the current and future energy systems with a significant share
of power being generated from variable RES. To address this research question, the
previously developed methods and models are employed to simulate the impact of
different EC use-cases on energy system operation and design.

The primary objective of this thesis revolves around the definition of EC use-cases and
collection of related data. Aligned with Research Question A.2, a key focus of these
use-cases is on (i) two important applications of BSSs in the context of EC, namely,
HES and CES as well as (ii) the introduced pricing designs SP, RTP, and ORTP. A
similar objective is to compile relevant data to create future scenarios for the overall
energy system, taking into consideration Germany’s environmental targets for carbon
emission reductions. These data-driven scenarios will be utilized to parameterize the
employed energy system models, providing valuable insights into potential trajectories
of the energy system.

The final objective in the context of this research question extends to conducting
simulations of EC use-cases within the scope of current and future energy systems.
An essential component of this objective is to perform sensitivity analyses, especially
focusing on the impact of regulatory induced charges. This in-depth analysis aims
to assess the effect of political instruments on the efficient system integration of ECs,
allowing for an exploration of viable strategies toward sustainable energy solutions.

Figure 1.4 illustrates the main objectives associated with each research question and
their bottom-up design, contributing to the pursuit of the research aim of the thesis.

In conclusion, the cornerstone contribution of this thesis resides in addressing a
substantial gap observed in the existing research, pertaining to the holistic analysis of
DESs. It pioneers a novel methodological approach, combining hybrid agent-based
modeling approach with bilevel optimization, fundamentally bridging the described
gap. This innovative methodology facilitates a comprehensive evaluation of the system
integration of DESs, while accounting for complex market dynamics such as energy
trading and price formation within ECs. The distinctive structural design of this
modeling approach, as demonstrated in Figure 1.5, underscores the originality of this
dissertation and represents a significant step in advancing the discourse on DES.
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Figure 1.4: Schematic illustration of the bottom-up structure of the research questions
and main objectives to achieve the research aim of this thesis.

Figure 1.5: Model architectures used in the literature for: a) techno-economic evalua-
tion of ECs; b) assessment of systemic effects of DESs; and c) the approach
proposed in this dissertation.
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1.3 Focus and scope

Established approaches for energy system analysis vary widely in their perspectives on
spatial, temporal, technological, and economic dimensions [50]. The following section
outlines the scope and focus of this thesis across these four dimensions. Each dimension
encompasses certain intricacies that play an essential role in the bottom-up analysis
of DERs operation within ECs. The aim by highlighting these aspects is to delineate
the boundaries of the thesis, and present a clear structure, thus helping the reader
gain a more accurate understanding of the methodology and the results. Note that
a comprehensive presentation of the methods will follow in Chapter 2. Additionally,
while I acknowledge some of the research’s limitations here, I will extensively discuss
them in more detail in Chapter 5.

Spatial dimension: The spatial scope of this thesis extends from the micro-level of
individual households, broadening out to include the community or district level,
and finally reaching a national scope. For the purposes of the study, with a “copper
plate” assumption1, communities can also be seen as virtually aggregated households.
Moreover, Germany’s energy system serves as the primary reference point for the
broader energy system discussion. While the adopted model has an Europe and
Maghreb scope in one of the included papers (Paper 3), a European-wide analysis is
not extensively covered, due to the diverse national contexts, policies, regulations,
and data accessibility challenges across countries.

Temporal dimension: Turning to the temporal dimension, an hourly resolution is
employed for both simulations and optimization processes. This timescale is deemed
effective for capturing important dynamics (including fluctuations in market prices
as well as in power demand and supply) and balancing data availability with com-
putational efficiency. The optimization horizon is set to a single day, leveraging the
recurring daily energy patterns, prompt response capabilities, and operational ef-
ficiency potential. For scenarios where a one-day optimization is computationally
impractical, a rolling horizon method is adopted to maintain an overall quasi-optimal
outcome. Simulations run over a yearly timeframe, enabling the analyses to capture
both short-term fluctuations and seasonal variations of RES.

Technological dimension: The technological scope of this thesis is primarily concen-
trated on the power sector. While acknowledging the crucial role of various sectors
such as heat and mobility in a comprehensive energy system analysis, the focus here
is explicitly on technologies and systems related to power generation and distribu-
tion. These include rooftop solar PVs systems, lithium-ion BSSs, and EVs, as well as
HPs combined with TS systems. The overall energy system analyses within AMIRIS
primarily includes conventional and renewable power plants. In these studies, the
operation of sector-coupling technologies and other storage systems like pump storage
are handled within REMix due to model constraints. Moreover, detailed modeling of
1In energy system modeling, the copper plate assumption neglects the constraints of grid infrastructure
by assuming unrestricted power flow between generation and demand sites.
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household appliances as well as distribution and transmission grids are beyond the
scope of this study.

Economic dimension: The economic dimension of this research includes multiple
layers, commencing with the micro-level economics of stakeholders within ECs and
ultimately extending to the macro-level dynamics of the national energy market.

On the deepest layer, the thesis considers the end-consumers: While the models are
adaptable to different power consumers, their principal application within this study
pertains to residential end-users (i.e., individuals and households). When modeling
the microeconomic decision-making of the end-users, many of their behavioral as-
pects, including lifestyle preferences, psychological factors, and social influences are
generally neglected.

Next, in the economic dimension, companies are considered. Within the EC, a
community-owned aggregator manages the power generation and consumption within
the ECs and serves as an interconnection between EC and the wholesale market. There-
fore, the scope of the thesis does not extend to community business models involving
peer-to-peer trading or other decentralized local energy markets. In addition to the
aggregator, large-scale market actors such as power plant operators are considered
as market players. While cost optimization and maximizing financial gains remain
primary objectives for these actors, the strategic bidding behavior of these large-scale
operators is not a focal point of this thesis. All actors in AMIRIS operate under bounded
rationality due to their limited foresight when predicting future prices, generation, and
demands. However, the uncertainty of these factors is, except in Paper 3, neglected.
Moreover, modeling the investment decisions of the actors, both within and outside of
the EC, is beyond the focus of this research.

While shifting to the broader energy market, this thesis focuses on a single energy-only
market. It also assumes that the current market design will remain in place until
2030. Lastly, all macroeconomic topics, such as the job market and energy security, are
beyond the scope of this analysis. The spatial, temporal, technological, and economic
scope covered in this dissertation is schematically illustrated in Figure 1.6.
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Figure 1.6: Schematic illustration of spatial, temporal, technological, and economic
scopes of the energy system models applied in this thesis.

1.4 Approach and structure of this thesis

This thesis is structured around publications that have been either published in or
submitted to peer-reviewed international journals. Each of these papers contains an
extensive explanation and discussion of the methodologies developed and applied to
address the corresponding research questions. Due to their diversity and intertwined
nature, Chapter 2 explains the overarching methodological architecture of this thesis
and provides a concise introduction of the methods used. Chapters 3 and 4 present
four research articles that include a literature review, detailed methodological devel-
opments, and quantitative analysis pertaining to the research questions outlined in
Section 1.2. Chapter 3 primarily focuses on addressing guiding question A, which con-
cerns the operation of community energy systems and the “aggregation of distributed
energy resources”. Despite the partial overlap, Chapter 4 primarily addresses guiding
question B, which relates to the “system integration of decentralized energy systems”.
Lastly, Chapter 5 summarizes the main findings and accomplishments of this thesis,
discusses its limitations, and provides an outlook for future research. Figure 1.7 gives
a schematic illustration of the thesis structure and the core elements of each chapter.

On aggregation of distributed generation and flexibility options (chapter 3): The
initial two articles of this thesis primarily address the functioning of DES within the
context of ECs. Although both Paper 1 and 2 employ a bottom-up approach to model a
smart grid-connected EC, they differ in terms of community setup, modeled actors, and
technologies. They are also distinguished by the mathematical problem formulation
techniques and solution algorithms utilized to address the bidirectional energy trading
problem between the aggregator and the EC users.

Aggregation of households in community energy systems: An analysis from actors’
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Figure 1.7: Overview of the structure of the thesis.
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and market perspectives

by Seyedfarzad Sarfarazi, Marc Deissenroth, Valentin Bertsch
Published in October 2020 in Energies
Paper 1 corresponding to Section 3.1

Within the research presented in Paper 1, the study explores the novel strategies for an
aggregator to effectively manage DERs within community energy systems. The analysis
focuses on the aggregation of various household types, encompassing pure consumers,
prosumers, prosumagers, and flexible consumers with HPs. The aggregator, operating
a CES, employs price incentives and pursues either a cost or self-sufficiency optimiza-
tion. The paper models the interplay between the aggregator and the heterogeneous
households as a 1-leader, n-followers Stackelberg game and introduces an innovative
approach to deal with the resulting energy trading game within the EC context. It
employs genetic algorithms (GAs) to iteratively solve the optimization problems of
both the aggregator and the participating households, facilitating the derivation of
ORTP solution. Moreover, the proposed methodology introduces a MAI as a proxy
for evaluating the system-friendly operation of the ECs. The study defines various
use-cases and includes a thorough analysis of the EC business models from both actor
and system perspectives. Consequently, this article makes noteworthy contributions
toward addressing all research questions outlined in the previous section.

An optimal real-time pricing strategy for aggregating distributed generation and
battery storage systems in energy communities: A stochastic bilevel optimization

approach.

by Seyedfarzad Sarfarazi, Saeed Mohammadi, Dina Khastieva,
Mohammad Reza Hesamzadeh, Valentin Bertsch, Derek Bunn

Published in May 2023 in International Journal of Electrical Power & Energy Systems
Paper 2 corresponding to Section 3.2

Similar to the preceding article, Paper 2 presents a model of an EC managed by a
community-owned aggregator. The model encompasses a generic user representation
that can be parameterized to portray a consumer, a prosumer, a prosumager or an EV.
The aggregator strategically formulates real-time prices to enable bilateral trade with
the users within the EC, accounting for the uncertainties associated with user demand,
generation, and market prices. The hierarchical trading problem in this paper is
formulated as a stochastic BIOP. This paper employs a single-level reduction approach,
involving Karush–Kuhn–Tucker (KKT) optimality condition and strong duality theorem,
to transform the bilevel formulation to a single-level solvable problem. Furthermore,
it introduces a novel modified branch and bound algorithm which applies a quasi-
relaxation technique to efficiently deal with the non-linearity of the problem. To create
the required scenarios for stochastic optimization, the paper proposes a cluster-based
scenario generation algorithm. The analysis entails a comprehensive comparison of
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the outcomes derived from the developed real-time pricing and benchmark pricing
designs, providing valuable insights into their performance. This paper contributes to
answering research questions A.1 and A.2.

On system integration of distributed energy systems (chapter 4): Following the
comprehensive exploration of EC operation in Chapter 3, Chapter 4 builds upon this
foundation and shifts its focus toward investigating the implications of local electricity
generation and consumption on the broader energy system (as per guiding question 2).
This chapter features two publications, namely Papers 3 and 4. Both articles employ
the electricity market model AMIRIS as their core analytical framework. However,
they differ in terms of the specific DES settings considered and the overall system
indicators examined within each study.

Improving energy system design with optimization models by quantifying the
economic granularity gap: The case of prosumer self-consumption in Germany.

by Seyedfarzad Sarfarazi, Shima Sasanpour, Karl-Kiên Cao
Published in December 2023 in Energy Reports

Paper 3 corresponding to Section 4.1

Paper 3 focuses on quantifying the inefficiencies that arise due to self-consumption
with PV-storage systems, introducing the economic granularity gap indicator as a
means of measurement. To derive this indicator, this article proposes an automated
workflow that combines the ESOM REMix with the AMIRIS. The methodology of
the paper involves enhancing AMIRIS through the implementation of prosumager
and aggregator agents. Focusing on the German power sector in 2030, the presented
analysis examines the economic granularity gap resulting from a status-quo prosumage
model, as well as the impact of dynamic tariffs on this gap. The study further explores
the influence of residential self-consumption on both the operation and design of the
overall energy system. This article contributes to the research questions B.1 and B.2.

Integration of energy communities in the electricity market: A hybrid agent-based
modeling and bilevel optimization approach.

by Seyedfarzad Sarfarazi, Shima Sasanpour, Valentin Bertsch
To be published in December 2024 in Energy Reports

Paper 4 corresponding to Section 4.2

The model developments presented in Papers 2 and 3 serve as a robust foundation
for analyzing the system integration of DERs within the electricity market. Paper 4
introduces a novel methodology that combines bilevel optimization and agent-based
modeling, effectively integrating the EC model presented in Paper 2 with the AMIRIS
developments proposed in Paper 3. This hybrid approach enables a comprehensive as-
sessment of the systemic effects of distributed storage systems, specifically focusing on
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behind-the-meter HES and grid-connected CES. Moreover, the presented methodology
improves the EC model by including regulatory induced charges on grid consumption,
thereby facilitating a holistic evaluation of EC integration under various policy regimes.
The study includes simulations in two energy system scenarios. The first scenario
utilizes historic data to parameterize the model, representing the status quo energy
system, while the second scenario represents the German energy system in the year
2030. This paper contributes to answering research questions A.2, B.1, and B.2.
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Chapter 2

Methodological approach

This dissertation has employed a variety of methodologies to accomplish its research
objectives. While these methods are extensively explained and discussed in the
associated papers, given their diversity and complex interconnections, this chapter aims
to provide a succinct overview. Figure 2.1 schematically illustrates the methodologies
used in this thesis.

Figure 2.1: Overview of the methodologies in this thesis.

Following a bottom-up structure that mirrors the guiding research questions, this
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chapter is arranged as follows: Section 2.1 explains the methodologies applied at
the EC level, which includes modeling the behavior of the EC actors and employing
bilevel optimization. Subsequently, Section 2.2 elucidates the three approaches used
to measure the systemic effects of DES integration into the broader energy system.

2.1 Energy community modeling

Developing models of the EC is a crucial step for accurately representing key emerging
business models in this context. The focus of this modeling approach is on capturing
the operational behavior of the actors within the EC. Initially, this behavior is captured
for each stakeholder (as will be discussed in Section 2.1.1). Following this, the
interdependencies between the decision-making of the aggregator and users are
considered. This interaction is modeled as a bilevel problem, a concept that will be
explored in detail in Section 2.1.2.

2.1.1 Modeling actors

In the previous section, key assumptions regarding the community energy system
under investigation are described. The most important of these assumptions is the
hierarchical structure of the actors, meaning that an aggregator acts as an intermediary
entity between the users and the market. Figure 2.2 illustrates the structure, the
modeled actors, and key information flows in the EC. In the following I will briefly
introduce the rationale of each actor. A more comprehensive explanation including
actor-specific mathematical formulations can be found in the publications included
in this thesis. Note that some actors and modeling features explained here might be
found in one paper, while others are implemented in all.

Assuming inelastic electricity demand, an EC consists of two types of inflexible actors.
The first is a traditional power customer or “consumer”, who does not own any DER
and thus meets its electricity demand via the grid. The second is a “prosumer”,
conceptualized as a household that operates a PV system. It directly consumes the
electricity generated, feeding residual generation back into the grid. During periods
of no generation, their electricity demand is met from the grid.

All other EC users own and operate some form of energy storage to minimize their
electricity costs, contingent on the EC sale and purchase prices. A “prosumager” is a
household with a combined PV-HES system. Like prosumers, prosumagers directly
consume the generated solar power and use the HES to optimize their interactions
with the grid. A “flexible consumer” refers to a household that operates a combined
HP-TS system1. An “EV owner” is an actor who uses an EV equipped with a lithium-ion

1It is assumed that TS serves as the only energy storage of the households. In more detailed modeling
methodologies the thermal mass of buildings is considered an energy storage [92].
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Figure 2.2: Structure, information flows, and actors in the considered EC business
model.

BSS. The flexibility of an EV enables smart charging and discharging (vehicle-to-grid)
according to the EC trading prices. A key feature of the EV model is that it considers
the availability of the EV for trading, i.e., connection to the grid.

The “aggregator” is an intermediary entity between the users and the market and
plays a central role in the EC model. The aggregator performs several tasks: it receives
forecasts of upcoming market prices, creates sale and purchase prices for the users
(which could be time-invariant – SP, mirror the pattern of market prices – RTP, or
be tailored dynamic prices for the community – ORTP), may use CES to further
optimize its strategy based on user responses, and trade in the wholesale market. The
aggregator uses price incentives and CES as instruments to pursue two goals. The
first is profit maximization. As mathematically shown in Paper 2, the welfare of the
community (defined as the sum of all costs and revenues in the EC) obtained under
this strategy is equivalent to a scenario where the aggregator’s goal is to maximize
community welfare. The second strategy involves self-sufficiency-driven operation,
where the aggregator seeks to minimize exchange with the market as much as possible.

Table 2.1 provides a summary of the rationale behind the EC actors and specifies the
respective papers where each actor is activated.

To capture the micro-economic behavior of EC actors, various optimization models
have been developed, each with specific objectives as outlined in Table 2.1. These
optimization models possess unique characteristics that correspond to the context of
analysis and the specific actor under consideration. Nevertheless, in the following, I
present a general formulation for both users and the aggregator, aiming to illustrate
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Table 2.1: Summary of the EC actors’ rationale

Actor DER Optimization goal Strategy Paper

Aggregator CES Profit
Self-sufficiency

Storage optimization
Create price incentives 1,2,3,4

Prosumager PV
HES Cost reduction

PV direct consumption
Self-consumption with HES 1,2,3,4

EV owner EV Cost reduction
Smart charging
vehicle to grid 2

Flexible consumer HP
TS Cost reduction Load shifting with TS 1

Prosumer PV - PV direct consumption 1,2,3,4
Consumer - - - 1,2

the interdependencies of decision-making within the EC.

Assuming a prosumager – aggregator interaction shown in 2.3, the objective function
of the cost-driven optimization of user i can be described with (2.1).

Figure 2.3: Virtual power flows in a simplified EC model.

Minimize ci =
∑

t

(e+i t · p
s
t − e−i t · p

p
t ). (2.1)

c in (2.1) is the cost of prosumager i during the optimization period. e+i t and e−i t are
the used and fed-in electricity to the grid by the user at time step t. ps

i t and pp
it are

aggregators sale and purchase prices at this time step. The key constraints to this
optimization problem are:

ai t = (1−δi) · ai(t−1) +η
c
i · z

c
i t −

zd
it

ηd
i

, (2.2)

zc
i t = e+i t + Gi t − Di t − e−i t + zd

it , (2.3)
Ai ≤ ai t ≤ θi, (2.4)

ai0 = Ai0, (2.5)

0≤ zc
i t ≤ Z

c

i , (2.6)

0≤ zd
it ≤ Z

d

i . (2.7)
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In Equation (2.2), the state of charge (ai) of the BSS at time step t is expressed
considering the battery self-discharge rate δi, charge and discharge efficiencies (ηc

i

and ηd
i ), as well as the charged and discharged power (zc

i t and zd
it). Equation (2.3)

presents the power balance for the user-side energy system, where Gi t and Di t are
the power generation and demands in time step t, respectively. In Paper 2, Gi t and
Di t are considered to be subject to uncertainties. Constraint (2.4) ensures that the
state of charge of the BSS remains above a minimal acceptable value (A) and does not
exceed the battery capacity (θi). Equation (2.5) sets the initial state of charge to Ai0.
Lastly, Equations (2.6) and (2.7) limit the amount of charging and discharging power
in each time step, depending on the performance of the battery (Z

c

i and Z
d

i ).

The problem formulated above is a linear optimization problem1. This can be solved
using various commercial solvers. Nonetheless, this thesis also develops and utilizes
a dynamic programming model for storage optimization as explained in Paper 1.
Dynamic programming offers several advantages compared to commercial solvers.
These advantages include its ability to handle complex constraints effectively and to
reduce computational effort through efficient memory usage [95].

The aggregator’s profit maximization objective function can be formulated in a simpli-
fied form as shown in Equation (2.8),

Maximize r =
∑

t

�

Pm
t · (ε

−
t − ε

+
t ) +
∑

i

(e+i t · p
s
t − e−i t · p

p
t )

�

, (2.8)

where r represents the profit of the aggregator, Pm is the forecasted market price, and
ε−t and ε+t represent the traded power in the wholesale market. Depending on the
specific case, the aggregator can operate CES (as discussed in Papers 1 and 4), consider
the restrictions of the distributed grid (Paper 2), and take into account uncertainties
regarding the market prices (Paper 2). Nonetheless, in a simplified scenario, the
optimization is subject to the constraints outlined in Equations (2.9) and (2.10).

P s
t ≤ ps

t ≤ P s
t , (2.9)

P p
t ≤ pp

t ≤ P p
t . (2.10)

In the absence of competition among multiple aggregators, Equations (2.9) and (2.10)
ensure that the internal EC prices remain within an acceptable range. Here, P s

t and

1Depending on the setup, the problem formulation for HES can become complex and non-linear [93].
For instance, it may require the introduction of binary variables to define the status of controllable
uninterruptible appliances [94]. However, in the context of standard prosumager optimization, some
literature, such as [47], uses a binary variable to prevent simultaneous charging and discharging of
the battery. In Paper 2, it is mathematically shown that under certain conditions, relaxing the binary
variable doesn’t impact the results.
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P p
t represent the lower limits and P s

t and P p
t denote the upper limits for the sale and

purchase prices respectively. These limits are determined based on the market price
range during the optimization period.

Examining the objective functions of the users in Equation (2.1) and the aggregator in
Equation (2.8), the interdependencies of their strategies become evident. The users’
strategy depends on the trading prices, and the aggregator’s pricing strategy hinges on
the power usage and grid feed-in of the users. This intertwined relationship precludes
the possibility of solving the problem independently. In the following section, the
concept of bilevel optimization is introduced, illustrating the general approaches
employed in this thesis to address the demonstrated hierarchical problem that arises
in EC modeling.

2.1.2 Bilevel optimization

BIOPs, characterized by the interaction between two decision-making entities – a leader
and a follower – find special significance in economics and energy system modeling.
In these models, the leader, or the upper-level decision maker, optimizes an objective
function subjected to certain constraints, while anticipating the responses of the
follower, who optimizes his/her own objective function based on the decisions imposed
by the leader. This strategic interaction can be modeled as a form of Stackelberg game,
thus making game theory one of the principal applications of bilevel optimization.
However, even when all functions involved are linear, these problems pose significant
computational challenges due to their inherent characteristics, such as nonconvexity,
nondifferentiability, and potential for nonunique optimal solutions for the follower’s
problem, proving them to be NP-hard1[96].

To navigate these challenges, a wide range of methodologies have been developed
and applied [97]. To address these challenges, this thesis adopts two methodologies:
GAs from the category of intelligent heuristic methods (in Paper 1), and a classical
method known as the single-level reduction approach (in Papers 2 and 4).

2.1.2.1 Genetic algorithm

Inspired by natural selection, GAs are search-based optimization methods that employ
operations such as mutation, crossover, and selection to evolve a population of potential
solutions toward an optimal or near-optimal solution. The use of GAs to solve BIOPs
involves encoding the decision variables of both the leader and the follower into a
chromosome representation, and defining a fitness function that quantifies the quality
of a solution.

1In computer science, a problem is considered NP-hard when it is as hard as the most difficult problems
in a class of problems known as NP. This means there’s no known efficient way to find an exact solution,
and verifying a given solution can also be quite difficult.
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Paper 1 models the hierarchical aggregator-household interaction as a 1-leader, n-
followers Stackelberg game and employ GA to solve the resulting bilevel problem.
This game (γ) can be formally defined by its strategic form as:

γ= {(H ∪ R), {Eh}h∈H ,Q, {uh}h∈H , Z} (2.11)

In equation (2.11), (H ∪ R) is the set of actors, where the households in H act as
followers in response to the prices set by the aggregator R as the game leader. {Eh}h∈H

is the set of strategies of households, at time t. This strategy represents the grid usage
and feed-in of households in each time step. Q is the strategy set of the aggregator,
which consists of energy trading prices. {uh}h∈H corresponds to the set of utilities
for each household h at time t and represents the benefits or rewards obtained by
households from their chosen strategies. Z represents a measure of performance
or outcome in the game. It could be the net income of the aggregator or another
relevant metric that characterizes the success of the game, such as the level of EC
self-sufficiency.

One suitable solution for the proposed Stackelberg game γ is the Stackelberg equilib-
rium, in which the leader obtains its optimal prices given the followers’ best responses.
At this equilibrium, neither the leader nor any follower can benefit, in terms of net
income (or level of self-sufficiency), by unilaterally changing their strategy [98]. A set
of strategies (E∗h, q∗(t)) constitutes an Stackelberg equilibrium of this game if and only
if it satisfies the following set of inequalities:

uh(E
∗
h, q∗(t))≥ uh(eh(t), E∗−h, q∗(t)), ∀h ∈ H, ∀eh(t) ∈ Eh,

Z(E∗h, q∗(t))≥ Z(E∗h, q(t)), ∀q(t) ∈Q, (2.12)

where E∗−h = [e
∗
1(t), e∗2(t), .., e∗h−1(t), e∗h+1(t), .., e∗H(t)] and E∗h = [e

∗
h(t), e∗−h(t)]. Therefore,

when all players in (H∪R) are at equilibrium, the aggregator cannot improve its position
by changing its prices from the equilibrium prices q∗(t). Similarly, no household can
reduce its costs by choosing a different grid interaction e∗h(t).

The GA algorithm involves an aggregator-side and user-side optimization, as schemat-
ically shown in Figure 2.4. On the aggregator’s side, the algorithm begins with
population initialization, generating a population of chromosomes that represent
power trading price sets. Each chromosome corresponds to a specific optimization
period. The aggregator decodes the chromosomes to determine the electricity tariff
elements, such as procurement costs, grid charges, and other regulated components.
These prices are then announced to the households.

On the households’ side, the households receive the electricity prices from the aggre-
gator and calculate their own strategies, specifically the grid interactions, based on
the prices. Each household solves the follower’s problem using to minimize the costs.
The households then send back the predicted grid interactions to the aggregator.

The aggregator receives the optimal strategies of the households, including the pre-
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Figure 2.4: Schematic illustration of the aggregator–user interaction in one iteration.

dicted grid interactions. The aggregator optimizes its own strategy by considering
constraints and evaluating its profit or the self-sufficiency level of the EC, depending
on the use-case. From this evaluation, the fitness value for each chromosome can be
derived. After each iteration, new generations of chromosomes are created through
crossover and mutation operations. The process continues until the convergence
condition is met, i.e., when the difference between the average fitness and the best
fitness of the current population is below a specified threshold.

2.1.2.2 Single-level reduction

The GA approach allows for the exploration of the solution space and the convergence
to a near-optimal solutions for complex bilevel problems. However, it does have several
limitations: Due to their stochastic nature, they do not guarantee finding the global
optimal solution and their performance heavily depends on parameter tuning and
problem-specific design. In addition, they may require a significant number of fitness
function evaluations, which can be computationally expensive for complex problems
[99]. To overcome these limitations, a popular approach involves transforming the
bilevel problem into a standard single-level optimization problem. A common strategy
for this transformation involves the KKT conditions, which provide necessary and
sufficient conditions to represent the followers’ problem.

In the context of an energy trading game within an EC, the aggregator’s and users’
problems (expressed in (2.8) and (2.1)) are respectively the upper- and lower-level
problems. The BIOP in this energy trading problem can be formulated in its general
form as follows:

min
x∈X ,y∈Y

f (x , y)

subject to g(x , y)≤ 0,

h(x , y) = 0,

y ∈ argmin
y ′∈Y
{F(x , y ′) : G(x , y ′)≤ 0, H(x , y ′) = 0}, (2.13)
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where f (x , y) is the objective function of the aggregator, g(x , y) and h(x , y) represent
the constraints of the aggregator, and F(x , y) is the objective function of the users.
Here, x could represent the decisions made by the aggregator (e.g., the amount of
energy traded in the market and the price sets for the users), and y could represent
the decisions made by the users (the traded power with the aggregator). X and Y are
the feasible regions for the aggregator’s and the users’ decisions, respectively.

The single-level reduction approach, applied in Paper 2, to transform the bilevel
problem into a single optimization problem involves the following steps:

• Formulate the KKT conditions, including primal and dual feasibility as well as
stationary and complementary slackness conditions [100], for the users’ problem,
treating the prices set by the aggregator as given parameters:

G(x , y)≤ 0, (Primal Feasibility)
H(x , y) = 0, (Primal Feasibility)

µ≥ 0, (Dual Feasibility)
∇y L(x , y,µ,λ) = 0, (Stationary)

µT G(x , y) = 0. (Complementary Slackness) (2.14)

Here, µ and λ are the Lagrange multipliers associated with the inequality con-
straints and equality constraints of the users’ problem, respectively, and L(x , y,µ,λ)
is the Lagrangian of the users’ problem.

• Replace the users’ problem in the original bilevel formulation with its KKT condi-
tions, expressed in equation 2.14.

• Replace the complementary slackness conditions with strong duality conditions. If
the users’ problem is a linear program the strong duality theorem holds and the
optimal value of the lower-level problem is equal to the optimal value of its dual
problem (equation (2.15)), thus eliminating the need for explicit complementary
slackness conditions [101].

F(x , y) = D(µ,λ). (2.15)

This replacement brings multiple advantages. Most importantly, it reduces the
number of constraints in the problem, which can make the problem easier to solve.
Moreover, it can eliminate some binary variables that may have been introduced
to model due to the complementary slackness condition, reducing the size and
complexity of the resulting mixed-integer problem.

• The bilevel problem is now transformed into a single-level optimization problem,
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which includes both the aggregator’s and the users’ decisions:

min
x∈X ,y∈Y,µ≥0,λ

f (x , y)

subject to g(x , y)≤ 0,

h(x , y) = 0,

∇y L(x , y,µ,λ) = 0,

G(x , y)≤ 0,

H(x , y) = 0,

F(x , y) = D(µ,λ). (2.16)

• The single-level problem (equation 2.16) of the energy trading game has non-
linearities due to the multiplication of two variables (e∗i t and p∗t ). To eliminate
the emerged non-linear terms, it can be assumed that one these variables take
discrete values. In the proposed methodology, the internal EC trading prices (p∗t )
are discretized and the Big-M method [102] is applied to force the variable to
adopt discrete values.

After this step, the bilevel problem has been successfully transformed into a problem.
This transformation allows the application of commercial solvers to find the optimal
solution. In this thesis, the mixed-integer linear program (MILP) problem is
solved using CPLEX, which employs a branch-and-bound algorithm, on the GAMS
platform.

The utilization of the Big-M method introduces additional binary variables into the
MILP model, leading to increased computational complexity. Another limitation of
Big-M is that the effectiveness of the solver relies on choosing an appropriate value
for the parameter M. In order to address these drawbacks, an alternative approach is
employed in Paper 2 to deal with the bilinear terms, i.e., (e∗i t and p∗t ). This technique
involves a linear quasi-relaxation approach, which is based on the method introduced
in [103] and further generalized in [104]. As comprehensively described in Paper
2, this methodology transforms the problem into a linear programming problem and
effectively deals with the disjunctive nature of the discretized variables through a
modified branch and bound algorithm.

One drawback of discretization in optimization is that it can lead to a loss of precision
and potentially overlook fine-grained features of the problem’s continuous landscape.
To enhance result precision and approach the global optimum of the original bilevel
problem, the proposed modified branch and bound algorithm is equipped with a
“dynamic partitioning” feature. With this feature, the algorithm doesn’t halt upon
discovering an optimal solution to the discretized problem. Instead, it dynamically
selects a finer solution region around the previous solution and further refines its
discretization. This approach enables a more efficient exploration of the solution
space, allowing for improved proximity to the global optimum without substantially
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increasing the granularity of the entire continuous space. As a result, the computational
efficiency is significantly enhanced.

2.2 Overall system analysis

In this section, I elucidate the developed and applied methodologies to investigate
the potential systemic impacts of ECs on the broader energy system. Section 2.2.1
explains the first approach, which involves defining and quantifying the MAI, as
proposed in Paper 1. The subsequent analyses regarding the system integration of
ECs, as presented in Papers 3 and 4, use agent-based modeling. Details about ABM
AMIRIS and model improvements incorporated in this thesis are covered in Section
2.2.2. Finally, Section 2.2.3 provides an in-depth explanation of the model-coupling
methodology. This approach is designed to evaluate the economic granularity gap
that emerges in case of local self-consumption within the EC.

2.2.1 Market alignment indicator

The idea behind this methodology is that in a perfect power system characterized
by minimal friction and optimal efficiency, wholesale market prices serve as reliable
indicators of energy availability or excess within the system. Therefore, assessing
the degree to which the operation of EC aligns with these market price patterns can
provide valuable insights into their compatibility with the overall system operation. To
achieve this, a MAI is being developed, which aims to estimate the level of agreement
between EC operation and market signals without the need for simulating energy
markets.

The concept of the MAI is first introduced in [47] and has proven to be an effective
tool for assessing how well the operation of PV-storage systems aligns with market
dynamics. In this context, MAI compares the performance of a HES system, denoted
as the achieved welfare WHES, with a benchmark system of the same physical char-
acteristics. This ratio is described in Equation (2.17). The benchmark case in this
study is defined as an arbitrage BSS1, which perfectly follows market signals without
interruption.

MAI =
WHES

Wbenchmark
,

WHES =WPV+HES −WPV . (2.17)

1The traditional concept of arbitrage typically involves buying in one market and selling in another
to exploit price differentials. However, in the context of energy markets, the term “energy arbitrage”
is often, for example in [105] and [106], used in a broader sense to include strategies that take
advantage of price differences within a single market.
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The obtained welfare of the systems (Wx) is generally described as:

Wx =
∑

t

Pm
t · (e

−
t − e+t ) (2.18)

In the realm of evaluating the system integration of prosumagers, the given methodol-
ogy shown to be significantly beneficial. Nevertheless, its constraints surfaced while
engaging with more complex systems that encompass numerous stakeholders and a
variety of technologies. In particular, the issue of selecting an appropriate benchmark
EC arises in this context. For instance, can the operation of sector-coupling technolo-
gies, such as HP, be equated with arbitrage BSS? In intricate use-cases wherein the
stakeholders exhibit a diverse array of “flexibilities”, a rudimentary comparison to an
arbitrage BSS appears to fall short. This raises the need for a more robust comparison
framework within the energy economics landscape.

To address this gap, this thesis enhances the original strategy and proposes a novel
methodology that quantifies the market alignment of heterogeneous ECs. In alignment
with its predecessor, the new methodology also contrasts the performance of an EC
in a specific use-case with a benchmark use-case. However, the benchmark in the
revised methodology diverges from the original conception. The reference point for
the operation of the EC is redefined as a use-case in which an aggregator holds control
over all flexibility options within the community. Consequently, it is equipped with the
capacity to trade effectively within the market. This use-case mirrors the operational
conditions of an arbitrage BSS operator, where the aggregator optimally aligns with
market signals, bounded only by the technical constraints of the EC. The proposed
definition of MAI is formulated as follows:

MAI =
WEC −Wre f

Wbenchmark −Wre f
,

Wx =
∑

t

Pm
t · (ε

−
t − ε

+
t ). (2.19)

In equation (2.19), Wre f denotes the welfare in a reference use-case that utilizes a
status quo pricing structure, devoid of any incentives for flexibility. The benchmark
use-case is constructed using the same game-theoretic model discussed previously. In
this use-case, the objective function of the aggregator simplifies to

Maximize Wbenchmark, (2.20)

while the price limitations encapsulated in equations (2.9) and (2.10) are effectively
relaxed1. Therefore, the aggregator’s prices ps

t and pp
t operate as control signals that

the aggregator employs to optimize its market trading profit.

1That is, an expansive range is selected.
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2.2.2 Agent-based modeling

The introduced MAI can be utilized as a proxy to evaluate the system-friendly operation
of various ECs. A significant drawback of this approach, however, is that it fails
to account for the impact of ECs on market prices. This limitation is particularly
pronounced when the community expands considerably, or when a multitude of small
communities with analogous operational behaviors emerge. Addressing this constraint,
alongside an in-depth analysis of the market integration of DER, particularly in future
markets, necessitates a direct linkage to an energy market model. For this purpose,
this thesis uses the agent-based modeling approach.

Agent-based modeling is a computational methodology that enables the exploration
and understanding of complex systems composed of interacting, autonomous enti-
ties known as “agents” [107]. By modeling agents individually, ABM permits the
examination of simple rules and behaviors, which can range from simple logic to
complex learning algorithms, that can result in complex patterns on the aggregate
level. This unique perspective allows ABM to bridge micro-level interactions to macro-
level outcomes, thereby offering valuable insights into the emergence of system-wide
phenomena [108]. Importantly, ABMs enables the representation of systems in dise-
quilibrium, acknowledging the often unbalanced, transitioning reality of markets, a
feature that conventional equilibrium models do not typically accommodate [79].

Applying ABM to energy system modeling presents promising opportunities to investi-
gate the impacts of individual decisions on overall energy system dynamics. AMIRIS,
developed at the German Aerospace Center (DLR), is one application of ABMs1 in
energy system modeling that captures the decisions of different actors, such as RES
plant operators and traders. By employing a bottom-up modeling approach, AMIRIS
can effectively illustrate the complexities and intricacies of energy systems, offering
valuable insights into the factors that shape the market and the outcomes of policy
decisions [82]. This holistic approach makes AMIRIS an essential tool for exploring
the future of energy systems.

AMIRIS2 enables an endogenous simulation of an Energy-Only-Market with an hourly
resolution. Bids are submitted by market participants, after which the energy exchange
ranks them according to the merit order principle. Every hour, the market reaches a
clearing point where the wholesale market price is identified at the juncture of the
supply and demand curves.

Within AMIRIS, power plants bid their electricity output based on their own marginal
costs. These costs are evaluated by taking into account specific plant parameters like

1Besides AMIRIS, EMLab Generation [108] developed at Delft University of Technology and PowerACE
[87] developed at Karlsruhe Institute of Technology (KIT) are examples of well-established energy
market ABMs.

2AMIRIS is developed in Java using the FAME-core framework [109]. While a significant portion of
AMIRIS is open-source [110], the developments in this thesis are not publicly available at the time of
publishing.
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efficiency and variable costs, in addition to fuel and CO2 prices. Furthermore, certain
policy regimes may provide renewable energy plants with a market premium can
influence the bidding strategy of the RES power plants. AMIRIS is equipped with an
integral forecasting agent, capable of providing predictions regarding upcomingmarket
dynamics to other agents. These forecasts can be flawless or carry a certain degree
of error. The predicted prices are particularly vital for actors possessing some sort of
flexibility, such as operators of storage systems. The reader can refer to [79] for a
more detailed explanation of AMIRIS model mechanics as well as model input/output.

A notable characteristic of ABMs is their ability to encompass “models within models”,
enabling a thorough, multi-layered view of systems. For instance, AMIRIS includes a
merit order bidding model used to simulate the market clearing process and compute
wholesale electricity prices. This thesis capitalizes on this feature and integrates the
developed EC models into AMIRIS. This integration process entails the implementa-
tion of new agents, the adaptation of existing infrastructure to accommodate linear
optimization models, and the creation of the necessary model interface to carry out
the developed bilevel optimization.

Agents: Two new actors are incorporated into AMIRIS. The aggregator serves as the
intermediary entity between the market and the end-users. End-user represents an
abstract agent which, depending on the parameterization, can denote a pure consumer,
a prosumer, a prosumager, or an EC. The information flow among these AMIRIS agents
closely mirrors that of the introduced EC models: The aggregator receives a forecast
of upcoming market events, and subsequently formulates and communicates a set
of purchase and sale prices to the contracted end-users. If they are flexible, the
end-users optimize their strategy and communicate their power consumption or grid
feed-in to the aggregator. Based on the information from the end-users, the aggregator
formulates demand or supply bids for the market. If the aggregator operates a CES,
the bidding strategy is further refined before submission. Figure 2.5 illustrates the
information exchange and virtual power flows between the newly implemented agents
and the rest of AMIRIS.

Optimization models: Altogether, three models are implemented to guide the EC agents
in their operational decision-making. Two of these models are linear optimization
models associated with HES and CES dispatch. For efficient model development, both
models are re-implemented using the built-in dynamic programming module AMIRIS.
While the implemented models are similar to those of EC models, one new feature is
added to the CES optimization model: using a methodology developed in [111], the
storage operators in AMIRIS can account for their market power, when optimizing
their strategy. In this case, the operator is possesses comprehensive information about
the merit-order curve1 and can therefore take into account its influence on the prices.
This feature is also integrated in the CES optimization model.

1Delivering the upcoming orderbook to an agent is part of the perfect foresight assumption. This
approach is of course not applicable in the reality. However, this method can mitigate the model
artifact that results from the perfect foresight of a large storage entity.
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Figure 2.5: Schematic representation of the agents in AMIRIS.

The third model pertains to the EC energy trading BIOP. As explained, this thesis
proposes two approaches to model and solve this problem. The first approach has
a distributed structure and employs a GA to iterate between two problem levels to
find the optimal solution. The second approach merges the two levels into a single,
solvable problem. While the distributed algorithm used in the first approach aligns
more with the logic and structure of the ABM (e.g., each agent solving its own problem),
iterations between agents to find the equilibrium is not compatible with the AMIRIS
infrastructure. Therefore, the second BIOP model is implemented in AMIRIS.

In this scenario, the BIOP model must be incorporated in either the aggregator, or
the end-user agent. The proposed approach chooses the latter and delineates the
two functionalities of the aggregator in the model. Although the aggregator agent
continues to be responsible for market trading activities, it forwards the market price
forecast to the end-user, and the energy trading game is solved within the internal
optimization of this agent1. The implementation of this approach is explained in more
detail in Paper 4.

The use of the AMIRIS model presents several noteworthy limitations, as will be dis-
cussed in Chapter 5. Acknowledgment of these limitations is pivotal to comprehending
one necessity for a model-coupling approach, which I explicate in the subsequent
section.

One prominent drawback of AMIRIS is its constrained national perspective, which

1On a technical note, since the bilevel optimization utilizes a MILP solver that isn’t available in the
JAVA language, an API [112] is employed to facilitate communication between the GAMS model and
AMIRIS.
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lacks the feature of market coupling. Consequently, the model cannot endogenously
calculate cross-border trades, such as power imports and exports with neighboring
countries. Furthermore, AMIRIS’s operation of flexibility operators is dependent
on forecasts provided by a singular forecaster agent. This approach enables the
optimization of only one actor in a feasible manner. The simultaneous responses of
multiple large-scale storage systems to identical price predictions could potentially
induce model artifacts, known as ‘avalanche effects’ [113]. Lastly, AMIRIS falls
short in its inability to model investment decisions made by market actors in various
technologies. As a result, AMIRIS can merely simulate the operation of an existing
energy system, not the transformative processes that lead to its evolution.

2.2.3 Model-coupling

This section details the applied model-coupling methodology used to examine the im-
plications of ECs in the future energy system. This methodology entails the integration
of an ABM with an ESOM. The model-coupling method developed in this dissertation
is based on earlier works by Torralba-Díaz et al. in [84] and [85].

Linking the two large-scale energy system models, as presented in Paper 4, is em-
ployed to launch the ABM simulations (initialization), addressing the previously noted
limitations. The model-coupling demonstrated in Paper 3 is bidirectional (Bidirec-
tional feed-back); the resulting actor behavior from ABM is looped back to ESOM for
subsequent analysis.

Initialization: Unlike ABMs, ESOMs have a long-established trajectory of development
and application. They are often used to investigate the uptake of RES power generation
and the deregulation of power markets from a macro perspective [114]. ESOMs
deliver a comprehensive and aggregated insight into the system’s optimal operation
and investment across diverse energy generation and storage technologies, taking into
account transmission networks and overarching policy constraints. Thus, ESOMs are
frequently employed in designing future energy systems in line with significant policy
targets, such as goals for greenhouse gas mitigation.

REMix, an ESOM designed for the planning of large-scale energy systems that span
multiple countries, is one such model [91]. Its geographic scope encompasses Europe
and Maghreb, and it operates on a temporal scale of one year with an hourly resolution.
The REMix model includes a spectrum of power plant technologies, energy storage
facilities, and power transmission capacities. It also considers electricity demand from
conventional consumers, heat pumps, heat boilers, and electric vehicles.

In Paper 4, REMix establishes the initial conditions for the AMIRIS simulations set
in the year 2030. Given the constraints related to future carbon and fuel prices and
the phasing out of nuclear energy and carbon [29], REMix provides the necessary
parameters concerning generation and storage capacity expansions. Additionally, it
supplies time-series data on net national demand and the dispatch of storage systems.
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This data is foundational in configuring AMIRIS to simulate the detailed behavior and
dynamics of EC within the prescribed system context.

Bidirectional feed-back: While ESOMs provide a basis for designing idealized system
scenarios, discrepancies inevitably arise when comparing these scenarios to the real
world. These discrepancies reveal granularity gaps across several dimensions of
the model, encompassing temporal, spatial, technological scales, and an additional
consideration of the economic scale [50]. Among these dimensions, the economic
granularity gap holds particular significance for this thesis.

Economic granularity gap signifies the discrepancies between the idealized economic
behaviors and decision-making processes assumed in the model and the realities of the
actual economic landscape. This gap arises due to factors such as imperfect market
information, decision-making under uncertainty, and regulatory framework conditions
that may not be accurately captured in the model. Bridging the economic granularity
gap is crucial for ESOMs to achieve a more realistic representation of the energy system
and to formulate effective policy measures.

Considering the strengths of ABMs in modeling microeconomic actor behaviors in
energy markets, model-coupling appears to be a promising solution for addressing
the economic granularity gap [50].Integrating different economic scopes of an ABM
and an ESOM by model-coupling helps address the gap between the idealized model
assumptions and the complex decision-making processes and market dynamics of the
real world. In Paper 3, this approach is deployed to identify the economic granularity
gap for the case of electricity prosumage and assessing various instruments to bridge
this gap, i.e., to make the behavior of prosumagers closer to that of an idealized
system. As will be discussed in Section (5.2), the author considers the model-coupling
approach to be more advantageous than altering the scopes, such as attempting to
model actor behavior in an ESOM or determining optimal system operation and design
using an ABM.

The overall approach for the proposed model-coupling consists of three major phases:
1) Model harmonization 2) Identifying the modeling delta 3) Deriving the economic
granularity gap.

1. Model harmonization: The proposed workflow is initiated by harmonizing both
models. In this phase, the models are configured with an identical set of values for
parameters and time-series to ensures that the results generated by both models
are identical. Specifically, if AMIRIS is configured with a macroeconomic ideal
energy system expansion and system-cost minimizing storage dispatch derived
from REMix, the power system operation of both models becomes congruent, with
no deviation.

2. Modeling delta: In contrast to the harmonization phase, where REMix determines the
operation of all storage technologies, this phase focuses on optimizing the dispatch
of a selected storage technology in both models. While both models aim to minimize
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system costs through storage optimization1, the resulting deviation is attributed to
distinct implementations of storage operation in REMix and AMIRIS. This deviation
is referred to as the modeling delta. If the modeling delta is sufficiently small,
one can infer that the observed deviation in the subsequent application of the
model-coupling setup primarily represents the economic granularity gap rather
than variations resulting from different real-world abstractions of energy storage.

3. Economic granularity gap: In this phase, AMIRIS incorporates stakeholder behavior,
specifically focusing on the use-case of prosumager self-consumption. Instead of
minimizing total system costs, storage units within AMIRIS emulate the behavior
prosumagers within the current market and regulatory conditions in Germany.
Subsequently, REMix is executed for a second time, with the dispatch of the PV-
storage system constrained based on the prosumager behavior modeled by AMIRIS.
This enables the assessment of the impact of prosumagers’ self-consumption patterns
on the optimal system design, including system expansion, thereby capturing
the economic granularity gap. Finally, by subjecting prosumagers to different
implementations of dynamic pricing, options to bridge the existing gap between the
optimal and actual operations are explored. The initial two phases, namely model
harmonization and modeling delta, mirror the suggested preparatory procedures
outlined in [84]. However, the third phase extends beyond the unidirectional
coupling of the twomodels seen in prior studies. Instead, it integrates the behavioral
outcomes of actors back into the ESOM, enabling exploration of deviations in
optimal energy system design attributable to prosumager behavior.

Figure 2.6 delineates the four-step process to derive the economic granularity gap.
This process includes an initial optimization by REMix, translation of REMix results
through the iog2x tool2, subsequent simulation by AMIRIS, and a final round of REMix
optimization, which is adjusted based on AMIRIS results. The integration of necessary
data processing into a streamlined, executable workflow is achieved using the Remote
Component Environment (RCE) software [116].

1In AMIRIS, the optimization for minimizing system costs in storage also relies on perfect forecasts of
market dynamics. Consequently, unlike REMix, the concurrent operation of system-cost minimizing
flexibility options is not achievable within the current framework of AMIRIS.

2iog2x, a Python-based software tool that employs the open-source workflow manager ioproc[115]
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Figure 2.6: Model-coupling workflow for bidirectional coupling of AMIRIS and REMix.
Source: Paper 3.
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Abstract: In decentralized energy systems, electricity generated and flexibility offered by households
can be organized in the form of community energy systems. Business models, which enable
this aggregation at the community level, will impact on the involved actors and the electricity
market. For the case of Germany, in this paper different aggregation scenarios are analyzed from the
perspective of actors and the market. The main components in these scenarios are the Community
Energy Storage (CES) technology, the electricity tariff structure, and the aggregation goal. For this
evaluation, a bottom-up community energy system model is presented, in which the households
and retailer are the key actors. In our model, we distinguish between the households with inflexible
electricity load and the flexible households that own a heat pump or Photovoltaic (PV) storage
systems. By using a game-theoretic approach and modeling the interaction between the retailer and
households as a Stackelberg game, a community real-time pricing structure is derived. To find the
solution of the modeled Stackelberg game, a genetic algorithm is implemented. To analyze the impact
of the aggregation scenarios on the electricity market, a “Market Alignment Indicator” is proposed.
The results show that under the considered regulatory framework, the deployment of a CES can
increase the retailer’s operational profits while improving the alignment of the community energy
system with the signals from the electricity market. Depending on the aggregation goal of the retailer,
the implementation of community real-time pricing could lead to a similar impact. Moreover, such a
tariff structure can lead to financial benefits for flexible households.

Keywords: decentralized energy system; energy community; community energy storage; community
energy system; game-theory; Stackelberg

1. Introduction

The levelized cost of electricity from Photovoltaic (PV) systems has fallen below the electricity
retail price in many countries worldwide, a development that has incentivized the investment in PV
systems for many households [1,2]. Similar to PV systems, battery storage has experienced a significant
reduction in system prices. Several studies indicate that this trend will continue in the next few
years [3,4]. As a result, PV storage systems began to become economically viable for households under
certain support schemes and generation potentials [5,6]. Next to PV-storage systems, heat pumps are
expected to play an important role in the future energy system. In Germany, for example, about 40 to
85% of the heat demand of buildings could be generated by electric heat pumps by 2050 [7]. Such a
high penetration implies a large demand response potential in residential energy systems.
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From a market perspective, current regulatory regimes and business models are unable to
incentivize the prosumers and consumers to adapt their interaction with the electricity grid to
market signals of scarcity or excess (expressed by the wholesale prices for electricity, assuming a
frictionless, optimized power market). Therefore, the electricity feed-in by PV and battery storage
systems, as well as the residential electricity consumption, do not necessarily correspond to the share
of renewable energies in the market at a particular point in time [8,9].

For better integration of the distributed generation and a more efficient deployment of the flexibility
potentials at the residential level, several solutions are presented in the literature and in political
debates. For instance, [10] suggests that regulatory interventions, such as variable feed-in tariffs,
can contribute to a better adaptation of prosumers to wholesale market signals. Pudjianto, Ramsay
and Strbac [11] consider virtual power plants as a way to aggregate the distributed generation. Energy
communities constitute another option that is promoted and supported in several energy and climate
policies, e.g., in the European union clean energy package [12]. According to this document a citizen
energy community is a legal entity with the primary purpose of providing environmental, economic,
or social benefits for shareholders or members of the community or for the local areas in which it
operates [13]. Beyond technical and economic benefits, this cooperation can deliver positive social
impacts such as building consumer engagement and increasing the acceptance of energy transition [14].
These promising benefits have led to an increasing number of established local energy communities in
Europe. A prominent example in this regard is the growth in the number of local energy cooperatives in
Germany, where 869 cooperatives with 183,000 private members have been founded since the year 2006 [15].

Among the core elements of the energy community business models are Community Energy
Storage Systems (CES). According to [16] CES is a subgroup of electricity storage systems that “provides
services based on balancing strategies for an association of prosumers, renewable energy producers
and loads that are connected to the same distribution grid” and “at least one of the following operation
strategies has to be implemented: maximizing self-consumption for all participants, increasing
shareholder’s profits in electricity markets, or optimizing community welfare.” Additionally, CES
may offer several applications for managing power demand and generation supply [17]. In Germany,
the investment in CES is currently hampered due to high investment costs and imposed taxes and
levies on storage operations by current regulatory frameworks [17–20]. Despite these investment
uncertainties, studies have analyzed various aspects of CES business models. By conceptualizing CES
as a complex socio-technical system, Koirala et al. describe CES systems with a three-layer structure
consisting of the physical system, the actor-network, and the external environment (Figure 1) [17].
In [21], Parra et al. review the perspectives of end-users, utilities, and policymakers in CES business
models. According to Arghandeh et al., deployment of CES could improve the reliability of the power
system operation by offering peak shaving and auxiliary grid services [22]. Lombardi and Schwabe [23]
suggests that a sharing economy-based business model may increase the profitability of operating
battery storage systems compared to the case of a single user.
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Next to CES, energy management systems that allow the aggregation of flexibility options via
control or price signals are an important measure in community energy systems. Several studies
have analyzed the implementation of such measures using CES. For example, using cooperative
game theory, authors in [24] analyze the possibility of cooperative investment and operation of CES
by consumers. Mediwaththe et al. propose a competitive energy trading framework, in which the
CES operator sets real-time electricity prices for prosumers in a competitive manner to maximize its
profit [25]. By comparing the results with a benevolent strategy, the authors show that a competitive
CES model gives the best trade-off operating environment. The energy management system in [26]
consists of prosumers and an energy storage system. The authors in [26] implement a stochastic
programming approach for day-ahead planning of electricity trade under uncertainty. The authors
then use a Stackelberg game approach to obtain real-time purchase and sales prices for the prosumers
that lead to an optimized intraday electricity trade for the energy storage operator.

One limitation of game-theoretic approaches in modeling the community energy systems is the
necessary simplification to find the solution of the resulting problem analytically. Examples of these
simplifying assumptions are:

� Neglecting the plurality of actors in the community, i.e., considering a single household type,
for example, prosumers.

� Simplified modeling of electricity market prices or energy demand. For example, [25] assumes
that the unit electricity price of the grid has a variable component, which is proportional to the
total grid load.

� Considering the electricity production costs as the only component of the electricity tariff
and modeling the electricity tariffs modeled without considering the influence of the
regulatory frameworks.

Another limitation of these studies is their mere focus on modeling of the energy management
systems. While they investigate the merits of energy management systems for the actors of a
community energy system (e.g., prosumers or the CES operator), the consequences of the increased
local consumption of electricity for the larger energy system are not studied extensively.

To overcome these shortcomings, this article investigates the research question: “how does
aggregation of the households in a community energy system under different system configurations
impact the actors and the alignment of the community energy system with the signals from the
electricity market?” Our contribution connects two interrelated bodies of literature. On the one hand,
it is embedded in the broader literature on smart grid solutions and CES business models. On the other
hand, it is part of a more specific debate on the merits of decentralized generation and consumption
and the system-level implications of its increasing diffusion. Our main contributions are:

� We propose a bottom-up model to investigate the aggregation of households in a community
energy system. To model the interactions between the actors of the community energy system,
we employ a Stackelberg game approach. Stackelberg games are widely used to model hierarchical
competitions in the energy system such as the one between a retailer and households [25–28].
By integrating a Stackelberg game structure in our model, we implement a real-time pricing tariff
for the community. In contrast to the existing literature, we focus on the heterogeneity of actors
in the community energy system and distinguish between households with an inflexible load
and those with flexibility options, i.e., battery storage and heat pumps. Moreover, we avoid
modeling of electricity market prices. Instead, we use real wholesale market prices and, by taking
the regulatory influences into account, model the end-user prices endogenously.

� We introduce an indicator to evaluate the market alignment of community energy systems.
This indicator can assess the behavior of communities with decentralized generation potential
with respect to the electricity wholesale market. We then use this indicator to evaluate the relative
economic efficiency of an energy community compared to an idealized benchmark case that is
completely aligned with wholesale market price signals.
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The remainder of this paper proceeds as follows. In Section 2, we elaborate on the contributions
mentioned before and explain our analysis procedure. Section 3 describes the input data and the actors’
rationale in the community energy system model. In Section 4, we present the model results. Section 5
concludes and gives a discussion on the implications and limitations of our analysis.

2. Analysis Procedure

In this section, we introduce the general model assumptions, build the aggregation scenarios,
and describe the analysis indicators for the evaluation of the developed scenarios. The definitions of
notations in the subsequent sections are given in Appendix A.

2.1. Community Energy System Structure

We define a community energy system as a part of a local low-voltage distribution grid. Figure 2
gives an overview of the system’s structure. In Section 2.1.1, the actors in the community energy system
and the technologies each actor owns are described. The external environment impacting the community
energy system, i.e., the electricity market and the regulatory framework, is explained in Section 2.1.2.
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2.1.1. Actors and Physical System

Households in a local distribution grid and consequently in a community energy system, own
a variety of different technologies that offer flexibility and generation potential. In this analysis,
depending on the technologies that households own and use, four types of households are modeled.
These household types can be embedded in broader categories of inflexible and flexible households:

• Inflexible households are households that do not operate any storage system and are, therefore
unable to shift their electricity load or feed-in at any time of the day. In this category, we distinguish
between the consumers and prosumers. Consumers are actors, who own neither a PV system
nor a flexibility option. Similar to the consumers, prosumers do not have a flexibility option but
they operate a PV system. Prosumers may generate electricity and cover part of their electricity
demand themselves.
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• Flexible households are actors with load and feed-in shifting potential. These actors are assumed
to be equipped with smart meters, which enable them to receive price signals and manage their
load and feed-in accordingly. We divide these actors into flexible consumers and prosumagers.
Prosumagers are households, who are not only equipped with PV rooftop systems but also own
battery storage systems. Prosumagers can use their battery capacity to shift both their grid
electricity usage and grid feed-in. Flexible consumers are households that own heat pumps and
thermal storage systems, which give them the potential to shift a part of their electricity load.

We assume that households do not seek a behavioral change to shift their energy demand manually.
Therefore, the flexibility in our work implies a flexible interaction with the grid due to the availability
of battery or thermal storage systems. Moreover, we assume that the households are able and willing
to share a forecast of their grid interactions over the next day with the retailer.

The electricity load and feed-in of the local grid is managed by one local retailer. In this regard,
we assume that households are unable to switch to another retailer. Two-way communication
infrastructure in the community allows the retailer to send the hourly price signals to the households
and receive their grid interaction forecasts on an hourly basis. Based on these forecasts, the retailer
decides on the hourly amount of electricity it trades in the wholesale market. The retailer can also be
equipped with a CES. In this case, the CES gives the retailer prominent flexibility for trading with the
households and the wholesale market.

2.1.2. External Environment: Market and Regulations

The retailer in a community energy system could potentially participate in several markets such as
day-ahead, intraday, and reserve markets. In this model, the retailer is only able to trade in the
day-ahead spot market. It is also assumed that the retailer has perfect foresight of the electricity
market prices one day in advance. The used wholesale prices are an exogenous input for the model
(see Section 3.1). Throughout this paper, we refer to the electricity spot market simply as the market.

Induced costs and incentives due to the regulatory framework have a substantial impact on the
profitability of the decentralized business models for the involved actors. As a case study, we look at
Germany and model the regulatory impact on several financial transactions. The policy agent keeps
track of the induced incentives and payments due to the regulation. An overview of the electricity and
financial flows in the community energy system model is given in Figure 3.
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In Germany, taxes, levies, and grid charges make up around 75% of the household electricity
price [29]. Throughout this paper, we refer to these charges as Induced Price Elements by the
Government (IPEG). The consumed electricity by households is always subject to the value-added tax,
which is collected by the retailer and passed completely to the policy agent. The retailer is charged
by a variety of IPEG such as electricity tax (According to German regulations two types of taxes
are imposed on the electricity consumption: electricity tax (Stromsteuer or Ökosteuer) and value
added tax (Umsatzsteuer or Mehrwertsteuer).), levies, and grid charges when purchasing electricity
from the market (Equation (1)). In contrast, the electricity sale in the market is exempted from IPEG.
The modeled community energy system is located in a retailer-owned private grid. Based on this
assumption, the IPEG on the electricity flows inside the community grid are neglected. Consequently,
charging and discharging the CES is exempted from the regulatory induced costs. Regarding the
self-consumption of generated electricity by prosumers and prosumagers, we assume a complete relief
from charges induced by IPEG or value-added tax.

pIPEG = plevies + ptax + pGC (1)

One component of the IPEG is the EEG levy, which aims to support the expansion of electricity
generation from renewable sources. Based on the Renewable Energy Act (Erneuerbare Energie Gesetz,
EEG), the collected EEG levies are distributed among the renewable power plant owners, for example as
a market premium on the per-unit grid electricity feed-in [30]. In the case of PV systems, the electricity
grid feed-in should be put on the market by a so-called direct marketer [30]. The sold electricity by the
direct marketer can be entitled to EEG remunerations under certain conditions (depending on the size
and the technology of the installed plant as well as the commissioning date of the plant). The energy
storage technologies that are used for an intermediary storage of renewable energies are entitled to
receive the EEG privileges [31]. In such cases, this remuneration would be allocated in the form of
a market premium [31]. The value of the market premium is calculated as the difference between
the feed-in tariff and the PV market values (calculated for each technology and can be defined as the
average value of the overall sold generation in Germany in each month [32]) [33]:

pMP(m) = FiT −mvPV(m) (2)

where pMP(m) and mvPV(m) are the monthly market premium and PV market values and FiT is the
feed-in tariff respectively. In the model, the retailer undertakes the role of the direct marketer and
receives the market premium from the policy agent (according to EEG, the feed-in tariff is paid by
transmission grid operator. In this work, we assume that the policy agent undertakes this role.)

2.2. Aggregation Scenarios

The usage of storage technologies by the actors of the community energy system allows a temporal
shift of the households’ aggregated electricity production and usage. The retailer, for example, can use
the CES to store the purchased electricity (from the households or the market) for a later trade. Together
with the households’ storage capabilities, the CES increases the overall available energy storage capacity
of the community energy system and with it, its flexibility.

The components of community energy system business models that are considered to have a
major impact on the interaction between households, CES, and the market, are (i) the electricity tariff
structure and (ii) the retailer’s aggregation goal. In the following, these components and the considered
variations are explained.

(i) Electricity tariff: The electricity tariffs offered by the retailer to the households can influence
the way the already existing storage systems operate. The financial incentives the electricity tariffs
provide could motivate the households to adapt their usage of energy storage systems accordingly.
The electricity tariff (pret

s ), which households have to pay for electricity consumption, depends on the
following three building blocks (these building blocks of the electricity tariffs are model assumptions
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for an exemplary private grid. We therefore, do not consider other taxes and levies that are imposed to
the electricity tariff according to the regulations in Germany):

(1) Electricity procurement charges, which denote the retailer’s average per unit cost of buying
electricity on the market. These charges are part of the retailer’s business model.

(2) Community grid charges (pCGC) as a fixed per-unit component of the electricity tariffs that cover
the costs due to investment and maintenance of the community grid. We assume that these
charges are also part of the business model (in the reality, the grid charges in Germany are a
regulated part of the electricity tariff).

(3) Value-added tax (pVAT) that is collected by the retailer and passed on to the policy agent
(see also Figure 3). pVAT is a regulated component of the electricity tariff and, in contrast to the
other building blocks, it is not part of the business model.

To investigate the effect of different electricity tariffs on the actors’ net income, we construct
three electricity tariffs. The tariffs differ from each other with respect to the electricity procurement
charges the retailer has to pay at the market. The community grid charges and value-added tax remain
untouched. These tariffs are (see also Table 1):

� Static Pricing (SP): The SP tariff structure follows the status quo pricing logic in Germany. Charges
regarding the procurement of the electricity are based on the mean cost of acquiring electricity
from the market, which we assume to be the annual average value of the market prices (pave

M ).
Therefore, this tariff contains no hourly varying component and the electricity prices for the
customers are constant at any time of the day.

� Market Real-Time Pricing (M-RTP): In this tariff, an hourly forecast of the market prices (pM) of
the following day is used as a per-unit charge of acquiring electricity. The electricity prices in this
tariff contain a real-time price component, which represents the market price signals.

� Community Real-Time Pricing (C-RTP): This tariff consists of optimized real-time procurement
charges (pproc,s), determined by the retailer. The values of these elements may be influenced not
only by hourly market prices, but also by the level of local electricity generation and demand in
each hour. These charges may fluctuate between pmin

proc and pmax
proc and adopt values higher or lower

than market prices in each hour. The calculation of variable procurement elements in this tariff is
discussed in Section 3.3.

Table 1. Overview of constructed tariff structures.

Tariff pret
s (t) Real-Time Component

SP pCGC + pVAT + pave
M None

M-RTP pCGC + pVAT + pM(t) pm(t), exogenous model input
C-RTP pCGC + pVAT + pproc,s(t) pproc,s(t), derived endogenously (See Section 3.3)

To purchase the electricity generated by PV systems, the retailer also offers purchase prices to
households. Purchase prices, as opposed to the electricity tariffs, include the price building block
(1) but do not include the community grid charges and the value-added tax, i.e., block (2) and (3).
We assume that the purchase prices are built analogous to the electricity procurement charges of the
corresponding electricity tariff. Therefore, the electricity purchase prices are the average market prices
(pave

M ) and hourly forecast of the market prices (pM) in cases of SP and M-RTP tariffs. If the C-RTP tariff
is chosen, the purchase prices are the retailer’s optimized hourly real-time prices (pproc,s).

(ii) Retailer’s Aggregation Goal: Community energy systems can be set up to serve different
purposes [17]. We distinguish between a goal of maximum profit for the retailer and one that seeks
the maximum self-sufficiency of the community, i.e., the traded amount of electricity with the market
should be minimized. The retailer’s aggregation goal influences the optimization of the CES as well as
the real-time component in the C-RTP tariff.
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Table 2 shows the discussed tariffs, aggregation goals, and the corresponding scenario names.
The Business As Usual (BAU) scenario represents a reference case for a status quo community, in which
no CES is used and in which the households are not exposed to any real-time hourly prices. Apart from
this scenario, we investigate four different community energy system scenarios, in which the retailer
operates a CES.

Table 2. Scenarios.

Scenario Tariff Aggregation Goal

Business As Usual (BAU)—no storage SP None
Static tariff SP Maximum profit

Market signal M-RTP Maximum profit
Community competition C-RTP Maximum profit

Self-sufficiency C-RTP Maximum self-sufficiency

The analysis of these scenarios allows an understanding of the effect of using a CES on the
economic figures of households and retailer. A comparison among the Static tariff, Market signal,
and community competition scenarios gives a clear picture of the role of tariff structures in the net
income of households and retailers (see also Section 2.3). By comparing community competition
and self-sufficiency scenarios, the effect of the aggregation goal on the overall electricity trade of the
community with market or community welfare can be observed, among others. Section 2.3 discusses
the used indicators to evaluate and compare the different scenarios.

2.3. Evaluation Indicators

To answer our research questions, we require indicators that capture the impact of the aggregation
scenarios on actors and the higher-level energy system. In this section, these evaluation indicators
in two categories of actors’ and system perspective are presented. For a better demonstration of the
effects of interest, these indicators are defined in a relative form.

2.3.1. Actor’s Perspective

When analyzing the scenarios from the actor’s perspective, we evaluate the net income of each
actor type, explained in Section 2.1.1. The net income of actor i ∈ I (ui

x) in each hour and for the
simulation period (Ui

x) is calculated by Equations (3) and (4) respectively:

ui
x(t) = ri

x(t) − ci
x(t) (3)

Ui
x =

Tsim∑

t=1

ui
x(t) (4)

where ri
x(t) and ci

x(t) represent revenue and cost of actor i in scenario x at time t. Note that the
net income for consumers and flexible consumers with no source of revenue adopt negative values.
In Section 3, the actors’ specific revenue and cost functions will be described. The net income of actor
i ∈ I in scenario x relative to the BAU scenario for the simulation period is as:

Ui, rel
x =

Ui
x −Ui

BAU

Ui
BAU

× 100 (5)
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Besides the net income of each actor, we investigate the community welfare, defined as the
cumulative net income by all actors in the community energy system. The community welfare for
scenario x (WCom

x ) can be described as:

WCom
x =

∑

i∈I
Ui

x (6)

where Ui
x is the net income of each actor i ∈ I, calculated from Equation (4). The relative community

welfare is then calculated as follows:

WCom, rel
x =

WCom
x −WCom

BAU

WCom
BAU

× 100 (7)

2.3.2. System Perspective

Studying the welfare of the community actors due to CES usage and different tariffs is important
to evaluate the economic feasibility of such energy systems. Additionally, a community energy
system interacts with the higher-level energy system via the retailer and by trading with the
market. As mentioned above, this interaction strongly depends on the retailer’s aggregation goal.
A self-sufficiency aggregation goal minimizes the trade with the market, a maximum profit goal
might enhance the trading activities. In order to value the interaction with the market and thus with
the higher-level system, a Market Alignment Indicator (MAI) is defined. This indicator is based on
market prices, as prices are a good signal for the evaluation of the excess or scarcity of electricity
in the energy system (assuming a frictionless power system and neglecting the grid congestions).
Purchasing electricity from the market at low prices and selling it at higher prices is then in alignment
with the market.

We adopt the definition of the MAI from Klein et al. [10], who defines the MAI as the ratio of the
welfare of operation of PV storage systems over the welfare of a benchmark system with the same
size. In the benchmark system, the battery storage is operated for arbitrage trading (this battery would
follow the market signals without distortion, i.e., store electricity by buying electricity at comparatively
low market price and discharge by selling electricity at high prices [10]), as such a battery would serve
the market perfectly (neglecting grid constraints). Following this definition, the MAI for the energy
communities is described as the contribution of scenario x to the welfare of the retailer (Wret

x ):

MAIx =
Wret

x

Wret
Benchmark

(8)

The retailer’s welfare in scenario x is obtained by calculating the difference of the electricity sold
by the retailer on the market (eret

G→M) and the electricity bought from the market (eret
M→G), multiplied by

the market price in each hour (Equation (9)). Note that in contrast to Uret
x , the cost and revenue streams

in the calculation of Wret
x are reduced to the electricity trade in the market.

Wret
x =

Tsim∑

t=1

(
eret

G→M(t) − eret
M→G(t)

)
× pM(t) (9)

The benchmark scenario is considered to be the case in which the retailer has full control over
not only CES but also other available flexibilities in the community (i.e., PV storage and heat pumps).
The aggregated flexibility potential of the households together with the CES can then be used to trade
in the electricity market. Assuming a frictionless power system and neglecting any grid constraints,
this is the most aligned behavior of the community energy system with the larger energy system.
The retailer’s welfare in the benchmark scenario (Wret

Benchmark) is then calculated from Equation (9).
We described the methodology behind such a benchmark scenario later in Section 3.2.3.
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In Equation (10), the value of MAI relative to the BAU scenario is calculated. A MAI equal to +1
describes a scenario that demonstrates alignment with the market signals as good as the benchmark
scenario, while a MAI value equal to 0 describes a performance as good as the BAU scenario. As there
is no limit to the inefficiency of dispatch from the market perspective, negative values can also occur,
but we did not encounter them in the scenarios under investigation in this analysis.

MAIrel
x =

Wret
x −Wret

BAU

Wret
Benchmark − Wret

BAU

(10)

3. Community Energy System Model

By embedding the described actors, technologies, markets, and regulations in a community energy
system model, the evaluation indicators will be investigated. In this section, first, the used data for
the model parameterization are explained. Subsequently, the actors’ rationale, i.e., actor-specific cost
and revenue functions as well as the optimization problems regarding the scheduling of different
storage technologies, will be described. These optimization problems are formulated in this section
and are explained in further detail in Appendix B. To solve the optimization problems, a dynamic
programming model, which allows a fast computation in comparison to analytical optimization tools,
is used [34]. The implementation of this method is demonstrated in Appendix C. At the end of this
section, the interaction between the retailer and households will be formulated as a Stackelberg game,
and an algorithm to find the Stackelberg equilibrium will be presented.

3.1. Data and Model Parameterization

To demonstrate the effects of interest, a consistent set of time series, comprising PV feed-in, market
prices, and PV market values, of the year 2018 in Germany is used. To calculate the actual electricity
production by PV systems, the share of generated electricity per each kWh installed PV capacity in the
year 2018 in Germany (data is taken from [35]) is scaled up using the peak power and the performance
ratio of the PV systems (See Appendix D). The data source also includes the day-ahead spot market
prices. In Figure A3, the day-ahead spot market prices together with the monthly market values of PV,
which are from [36], is presented. For the calculation of market premium, we adopt the value of FiT for the
PV rooftop systems with the peak power lower than 10 kWp that are commissioned in the year 2017 [37].

For the household electricity demand profile, in this work, the data from [38] is used. The dataset
contains high-resolution measured load profiles of 74 different households. By aggregating these
profiles, a single demand profile with an hourly resolution is generated. Due to smoothing effects,
this aggregation yields roughly the shape of the standard load profile [38]. We use this profile as the
demand profile of an average household and assume that all households in the community have the
same electricity demand profile (a standard load profile can be accepted as a good approximation of
cumulated load profiles even for 100 households [39]). This profile does not consider the additional
electricity demand caused by electric heating, i.e., by heat pumps. The households’ heat demand
profile in the flexible consumers model is from [40,41]. Descriptive statistics of the demand profiles are
provided in Table 3.

Table 3. Descriptive statistics of the households’ demand time series.

Input Parameter Unit Resolution Mean Min Max Total

Electricity demand (lhBD) kWh Hour 0.53 0.19 1.33 4685
Heat demand (lhHD) kWh Hour 2.28 0.12 7.17 19,996

The scale of the community could be as big as a few residential blocks to a large district
and it could contain both residential and industrial units. Moreover, the scale of electricity
generation in the community could vary depending on the number of prosumers and prosumagers.
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In this paper, an illustrative community energy system that consists of 40 residential units is investigated.
The community consists of an equal number of actors from each category introduced in Section 2.1.1:
10 consumers, 10 flexible consumers, 10 prosumers, and 10 prosumagers. The sizing of the different
available technologies in the community energy system depends on numerous economic and
non-economic variables. For example, PV-storage sizing can be over-scaled to increase the degree of
self-sufficiency [42]. We therefore do not consider optimal investment planning within the analysis in
this paper. Instead, the sizing for CES, PV modules, PV storage, heat pump, and thermal storage is
set heuristically. The optimization and simulation periods are set to 24 h and one year respectively.
The assumed values for the model parameterization are given in Table 4.

Table 4. Model parameters.

Parameter Unit Value Source

FiT cent/kWh 12.3 German Solar Association [37]
plevies cent/kWh 7.68 BDEW [29]
pGC cent/kWh 7.3 BDEW [29]
ptaxes cent/kWh 3.71 BDEW [29]
pCGC cent/kWh 18 Model assumption
VAT % 19 Förster et al. [43]
Smax

PV kW 6 Model assumption
PRPV % 84 Khalid et al. [44]
Kpsg

B kWh 6 Model assumption
Smax

HP kW 8 Model assumption
copHP - 3 Forsén et al. [45]
K f cs

TS
kWh 14 Model assumption

Kret
CES kWh 100 Thorman et al. [46]
ηd % 95 Klein et al. [10]
ηc % 95 Klein et al. [10]
E2P - 1 Thorman et al. [46]
CO&M

CES % 1 Klein et al. [10]
rdis % 4 Model assumption
LCES years 20 Model assumption
I0
CES €/kWh 510 and 250 Schick et al. [47]

Topt hours 24 Model assumption
Tsim hours 8760 Model assumption

3.2. Actors’ Rationale

The households in each household category are assumed to be similar. An aggregated
model for each household category represents the cumulative behavior of the respective category.
For the aggregated models of households, the time series for energy consumption and electricity
generation as well as technology sizes are scaled up linearly, see also Appendix D. In the remainder of
this paper, the model descriptions and results for households refer to these aggregated models.

In the rest of this section, the actor’s rationale and actor-specific cost and revenue functions are
explained in more detail.

3.2.1. Inflexible Households

Consumers and prosumers are actors without a load shifting potential. The electricity load of
these households is reduced to their home appliances. The cost function of consumers can be described
by the cost of electricity consumption (ccs

x ):

ccs
x (t) = lcs

BD(t)·pret
s (t) (11)

where lcs
BD(t) and pret

s (t) refer to the electricity load of the consumers and retailer’s electricity tariff at
time t, respectively. Owning a PV system with the specifications mentioned in Table 4, the prosumers’
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electricity demand is partly covered by self-generated electricity. The interaction of prosumers with
the electricity grid can be formulated as:

sps(t) = lps
BD(t) − gps

PV(t) (12)

where sps(t) is the residual load of the prosumers at time t. An electricity generation higher than the
electricity demand in each hour (negative residual load) indicates PV electricity feed-in (eps

PV→G(t)).
The electricity feed-in by prosumers will be remunerated with pret

p (t). In case the electricity generation
cannot cover the demand fully, the residual load will be supplied from the grid (eps

G→D(t)). Note that
the self-consumption of electricity by prosumers is free of charge (see also Section 2.1.2) and therefore
is not considered as a part of the cost function. In summary:

sps(t) =
{

eps
G→D(t) sps(t) ≥ 0

eps
PV→G(t) sps(t) < 0

(13)

rps
x (t) = eps

PV→G(t)· pret
p (t) (14)

cps
x (t) = eps

G→D(t)· pret
s (t) (15)

3.2.2. Flexible Households

Unlike inflexible households, energy storages and smart meters enable flexible consumers and
prosumagers to optimize the grid interactions in response to the electricity price signals. The energy
storage system for flexible consumers is the thermal storage of the heat pump systems. To reduce
their electricity bill, the thermal storage can be deployed to shift the heat pump electricity usage
(e f cs

G→HP) according to the retailer’s price signals. As can be seen in Figure 4, the total electricity

consumption of flexible consumers (e f cs
G→D) is the sum of the heat pump grid usage (e f cs

G→HP) and

the electricity consumption by other appliances as the inflexible part of the electricity demand (l f cs
BD).

The mathematical modeling of the flexible consumers is given in Appendix B.1.
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The electricity cost for flexible consumers is then:

c f cs
x (t) = e f cs

G→D(t)·pret
s (t) (16)

Based on Equation (16), flexible consumers optimize their heat pump dispatch (e f cs
G→HP) to maximize

their net income:

max
tinitial+Topt∑

t=tinitial

u f cs
x (17)

Figure 5 shows the schematic sketch of the prosumagers’ model. The generated
electricity, in this case, is directly used to cover the electricity demand. The residual generation
in each hour can be stored in the battery (epsg

PV→B) or be sold to the retailer (epsg
PV→G). In case the electricity
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demand exceeds the generated amount in each hour, the residual load is covered from the grid (epsg
G→D)

or the stored electricity in the battery (epsg
B→D). The battery system may also be charged from the grid

(epsg
G→B) or sell the stored electricity back to the grid (epsg

B→G). In Appendix B.2, the mathematical model
of prosumagers is explained in more detail. The self-consumption of electricity from PV and the battery
is considered to be free of charges, since it does not involve the community grid. Therefore, the cost
and revenue functions of the prosumagers are reduced to the interactions with the grid:

cpsg
x (t) =

(
epsg

G→D(t) + epsg
G→B(t)

)
·pret

s (t) (18)

rpsg
x (t) =

(
epsg

PV→G(t) + epsg
B→G(t)

)
·pret

p (t) (19)Energies 2020, 13, 5154 13 of 37 
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Similar to flexible consumers, the prosumagers minimize their costs by optimizing the usage of
the PV storage system:

max
tinitial+Topt∑

t=tinitial

upsg
x (20)

3.2.3. Retailer

Besides using a CES, the retailer can adopt different tariff structures and aggregation goals
(see also Table 2). The cost and revenue streams of the retailer depend on its market activities, its
trade with households, as well as charges and rewards due to the regulation. An overview of the
retailer’s cost and revenue streams is already given in Figure 3. The retailer trades the electricity deficit
or surplus in the community in the market and pays the incurred taxes and levies (pIPEG) to the policy
agent. Moreover, the paid VAT as part of the electricity tariff is passed completely to the policy agent.
Furthermore, the retailer is rewarded with the market premium for marketing the fed-in electricity by
households into the community grid. Based on these streams, the cost and revenue function of the
retailer can be summarized as:

cret
x (t) = eret

M→G(t)·(pM(t) + pIPEG) + eP
PV,B→G(t)·pret

p (t) + eH
G→D(t)·pVAT(t) (21)

rret
x (t) = eret

G→M(t)·pM(t) + eH
G→D(t)·pret

s (t) + eP
PV,B→G(t)·pMP(m) (22)
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where eH
G→D(t), eP

PV,B→G(t), refer to the total consumed and fed-in electricity by households at time
t, are calculated by Equations (23) and (24). Moreover, the pVAT(t) in Equation (21) is the collected
value-added tax per kWh sold electricity to households at time t:

eH
G→D(t) =

∑

h∈H
eh

G→D(t) (23)

eP
PV,B→G(t) = epsg

B→G(t) +
∑

p∈P
ep

PV→G(t) (24)

pVAT(t) = pret
s (t).

( VAT
1 + VAT

)
(25)

Note that the pret
s in Equation (22) also contains a component to cover the community grid costs

(pCGC). For simplification, we assume that the community grid infrastructure is already available and
that the incurred costs do not depend on the grid usage. Therefore, the community grid expenses are
not included in the retailer’s cost function.

The profit-maximizing retailer in the BAU, Static tariff, Market signal, and Community competition
scenarios aims to maximize its net income:

max
tinitial+ Topt∑

t=tinitial

uret
x (26)

In contrast, the retailer in the self-sufficiency scenario optimizes its flexibility options so that the
interaction with the higher-level energy system, namely the market, is minimized. The retailer’s goal
in this scenario is formulated as:

a(t) = eret
M→G(t) + eret

G→M(t) (27)

min
tinitial+Topt∑

t=tinitial

a(t) (28)

The households in the community are unable to use the service of other retailers. To avoid an
unattractive outcome for the households in the C-RTP tariff, we add a constraint to this optimization:


uh

No storage ≤ uh
Community competition

uh
No storage ≤ uh

Sel f−su f f iciency
(29)

The constraints in Equation (29) prevent the retailer from offering prices that reduce the net income
of households below the corresponding value in the BAU scenario.

As explained in Section 2.3.2, we define the MAI indicator as the retailer’s welfare with respect to
a benchmark scenario. In this scenario, the retailer controls the flexibility options inside the community
and therefore its cost and revenue streams are reduced to its expenses and incomes from the market
activities:

cret
Benchmark(t) = eret

M→G(t).pM(t) (30)

rret
Benchmark(t) = eret

G→M(t).pM(t) (31)

The retailer maximizes its net income (expressed by Equation (26)) and determines the hourly
traded electricity in the market (eret

M→G(t) and eret
G→M(t)). Using these values, the retailer’s welfare in

the benchmark scenario (Wret
Benchmark) and subsequently the MAI can be calculated.
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3.3. Endogenous Calculation of the Real-Time Pricing Components in the C-RTP Tariff

The retailer in the community energy system acts first to set the electricity prices (electricity
tariff and purchase prices) and then the households adjust their individual grid interactions based on
these prices. The characteristics of Stackelberg games are suitable to model such sequential events.
Therefore, we model the hierarchical interplay between the retailer and the households as a one-leader
and multi-follower Stackelberg game with the structure presented in Figure 6. By solving the resulted
bi-level problem, the real-time pricing components in the C-RTP tariff can be derived endogenously.Energies 2020, 13, 5154 15 of 37 
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Figure 6. Two-level Stackelberg game structure in the C-RTP tariff.

Acting as Stackelberg leader on the upper decision level and anticipating the lower-level reactions
by receiving their grid interaction forecast, the retailer modifies the real-time prices to reach its
aggregation goal, namely profit or self-sufficiency maximization. The households then follow the
leader’s actions to maximize their net income by rescheduling their flexibility. Inflexible households,
which cannot shift their load and feed-in, do not directly take part in the game. In the rest of this
section, the modeling of the Stackelberg game and the algorithm to find the Stackelberg equilibrium
will be presented.

3.3.1. Formulation of the Non-Cooperative Stackelberg Game

We develop a Stackelberg game-theoretic framework to model the C-RTP tariff and analyze the
hierarchical retailer–household electricity trading interactions. This game is formally defined by its
strategic form as:

γ =
{
(H∪R),

{
Eh

}
h∈H, {Q },

{
uh(t)

}
h∈H, Z

}
(32)

This formulation consists of the following elements:

a. (H∪R) is the set of actors, where the households in the set H act as followers in response to the
prices set by the retailer (R) as the game leader.

b.
{
Eh

}
h∈H is the set of strategies of households, at time t, from which they select their strategy.

This strategy represents the grid interaction of households in each time step.
c. Q is the strategy set of the retailer at time t, which consists of electricity tariffs and purchase prices.

d.
{
uh(t)

}
h∈H is the set of households’ utilities at time t as presented.

e. Z in the community competition scenario is the net income of the retailer for trading with users
and the market at time t, uret

Community competition(t), calculated from cost and revenue functions
described in Equations (21) and (22). Z in the self-sufficiency scenario represents the electricity
exchange with the market at time t, a(t), calculated from Equation (27).

One suitable solution for the proposed game is the Stackelberg Equilibrium (SE), in which the
leader obtains its optimal prices given the followers’ best responses. At this equilibrium, neither the
leader nor any follower can benefit, in terms of net income (or the amount of market exchange in the
self-sufficiency scenario), by unilaterally changing their strategy.
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Definition 1. In the Stackelberg game γ, a set of strategies (Eh∗ , q∗(t)) constitutes an SE of this game if and
only if it satisfies the following set of inequalities:

uh
(
Eh∗ , q∗(t)

)
≥ uh

(
eh(t), E−h∗ , q∗(t)

)
, ∀h ∈ H, ∀eh(t) ∈ Eh, ∀t ∈ [1, Tsim] (33)

Z
(
Eh∗ , q∗(t)

)
≥ Z

(
Eh∗ , q(t)

)
, ∀q(t) ∈ Q (34)

where E−h∗ =
[
e1∗ (t), e2∗ (t), .., eh−1∗ (t), eh+1∗ (t), .., eH∗ (t)

]
and Eh∗ =

[
eh∗ (t), e−h∗ (t)

]
.

Therefore, when all players in (H ∪ R) are at SE, the retailer cannot reduce its costs by changing its
prices from the SE price q∗(t). Similarly, no household can improve its net income by choosing a different grid
interaction to eh∗ (t).

3.3.2. Solving the Stackelberg Game

The introduced Stackelberg game model consists of two-stage, sequential decision-making
problems. The common solution concept for such a problem is the sub-game perfect equilibrium.
This equilibrium can be determined using the general method of backward induction. According to
backward induction, we first start from the followers and analyze the households’ strategies to maximize
their utilities, given the retailer’s strategy. Moving backwards, in the next step, we investigate the
retailer’s C-RTP tariff based on the households’ expected grid interactions. To derive the optimal
Stackelberg strategies for this game, an analytical solution both for the followers’ and the leaders’
problems must exist. However, the followers’ problem, which is a sum of separable sub-problems,
as well as the retailer’s problem are non-differentiable. In [48], Meng and Zeng suggest a Genetic
Algorithm (GA) for finding the Stackelberg equilibrium in such a real-time pricing game between
retailer and customers. Similarly, we adopt a GA to solve the retailer’s profit maximization and
self-sufficiency maximization problems in the C-RTP tariff. GAs are good tools for bi-level optimization
problems, although the convergence to the global optimal solution cannot be proved [49].

The GA-based decision-making algorithms for retailers’ and households’ sides are shown in
Algorithms 1 and 2:

Algorithm 1 retailer’s side GA based real-time pricing algorithm

1: Population initialization, i.e., generating a population of L chromosomes randomly; each chromosome
denotes an electricity acquiring price set for the optimization period.
2: for l = 1 to L do
3: The retailer decodes the lth chromosome (representing the pproc,s and pproc,p) and by adding the other
electricity tariff building blocks, i.e., pCGC and pVAT, calculates its strategy Q (pret

s and pret
b ) for the Topt. The

prices are then announced to the households.
4: The retailer receives the optimal strategies of the households including the grid interaction forecasts for the
optimization period:

{
eh∗ (t)

}
.

5: Considering the constraints in Equation (29), at this stage the retailer optimizes the CES using the dynamic
programming model and then, depending on the aggregation goal, evaluates its net-income
( uret

Community competition) or the amount of traded electricity(a) for the optimization period (Topt) as the fitness
value of its strategy based on the chromosome l.
6: end for
7: A new generation of chromosomes is created by using the crossover and mutation operations of the GA.
8: Steps 2–7 are repeated until the convergence condition is reached.
9: The retailer announces the finalized prices to the households at the beginning of the scheduling horizon.

Algorithm 2 Households’ side grid interaction optimization

1: Households receive electricity prices from the retailer.
2: Each household calculates its strategy, i.e., the grid interactions in response to prices, by solving the
followers’ problem using the dynamic programming model.
3: Households send back the predicted grid interactions during the optimization period to the retailer.
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The algorithms are performed for each optimization period (Topt). The algorithm on the retailer’s
side uses the Jenetics java library to generate and evaluate the fitness of the chromosomes [50].
The generated chromosomes in step 3 of Algorithm 1 represent the real-time variable procurement
element (pproc,s and pproc,p) in the C-RTP tariff (as described in Section 2.2). Here, the solution space
is limited to the range [3, 6] cents per kWh. In the benchmark case, this range is expanded to
[−100, 100] cents per kWh to ensure that the retailer achieves full control over the flexibility options.
Moreover, in step 3, the other electricity tariff elements, i.e., community grid charges and value-added
tax, are used to calculate the electricity prices (pret

s and pret
b ) as the retailer’s strategy. After retrieving

the response of the households to these prices, the retailer evaluates the fitness of its strategy (step 5).
To generate a new set of electricity prices, in step 7, the existing chromosomes are altered using the
crossover operation, i.e., the new solutions are produced by combining the chromosome with higher
fitness values (parent chromosomes). In this step, we also use the mutation, to ensure that the entire
search space is explored and the convergence to a local optimum is prevented [50]. The convergence
condition in step 8 is satisfied when the difference between the average fitness and the best fitness of
the current population is less than 0.01%. When this criterion is satisfied, the most profitable prices for
the retailer in the community competition scenario, or the lowest market trade in the self-sufficiency
scenario, for the optimization period are found. Correspondingly, on the follower side, the grid
interaction that maximizes the net income of households is obtained. The process is continued for the
following optimization periods until the end of the simulation (Tsim) is reached. Further details on the
used parameters in the genetic algorithm are given in Table 5.

Table 5. GA parameters; the detailed description of the parameters can be found in [50].

Parameter Value

Population size 60
Offspring fraction 0.2

Mutation 0.6
Single point crossover 1

Population convergence threshold 0.01%

4. Results

In this section, after a short presentation of the electricity prices in different tariffs, the impact
of aggregation scenarios from the actors’ perspective is analyzed. Subsequently, the impact of each
scenario on the higher-level energy system using the developed market alignment indicator is evaluated.
The results presented in this section will be discussed later in Section 5.

The simulation of the electricity tariffs, as described in Section 2.2, for the simulation period of
one year leads to electricity tariffs with the statistical characteristics shown in Table 6. As can be seen,
the mean values of the electricity tariffs over the entire year vary only marginally. The market signal
scenario shows the highest standard deviation, which results from the presence of very high and
very low prices. It can also be seen that both C-RTP tariffs show a similar price range, limited by the
searching space limitations of the genetic algorithm. The duration curves of the electricity tariffs for
the simulation period are shown in Figure 7. A comparison of these prices for one optimization period
(24 h) as well as the seasonal statistics of the electricity tariffs are presented in Appendix E.

Table 6. Scenario-specific statistic values of electricity tariffs.

Scenario Tariff Mean Value [cents] Standard Deviation [-] Price Range 1 [cents]

BAU/Static tariff SP 26.76 0 [26.76, 26.76]
Market signal M-RTP 26.76 2.09 [14.40, 36.68]

Community competition C-RTP 26.83 0.96 [24.99, 28.56]
Self-sufficiency C-RTP 26.58 1.01 [24.99, 28.56]

1 The price range shows the minimum and maximum values of the electricity tariffs during the simulation time.
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4.1. Actor’s Perspective

In Figure 8, the actors’ net income relative to the BAU scenario, calculated from Equation (5),
is shown. The driver of changes in the households’ net income is the electricity tariff. The results show
that in all scenarios under investigation the flexible households (flexible consumers and prosumagers)
profit more from real-time pricing tariffs in comparison to inflexible households. This stems from
the possibility of the flexible households to coordinate their grid usage and feed-in schedule with
the real-time price signals (examples of such behavior for flexible consumers and prosumagers are
demonstrated in Appendices F.1 and F.2). The inflexible households with no load shifting potential,
on the other hand, are unable to take advantage of electricity price fluctuations. This translates to
lower net income for inflexible households. For this reason, the consumers and prosumers in the
market signal scenario are worse off than in the BAU scenario. The community competition and
self-sufficiency scenarios show improvement for all households. This result, especially for the inflexible
households in the community competition scenario, is driven by the predefined constraints in the
C-RTP tariff, i.e., rejecting the prices that reduce the net income of households below the BAU scenario,
see also Equation (29). Due to lower electricity prices, the most financially feasible scenario from the
households’ perspective is the self-sufficiency scenario (see also Table 6).
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Deployment of CES in the static tariff scenario increases the net income of the retailer significantly
(33.3%) in comparison to the BAU scenario. Among the scenario with CES, the self-sufficiency and
the community competition scenarios demonstrate the least and most feasible performance from the
retailer’s perspective respectively. Looking at the retailer’s cost and revenue, presented in Figure 9,
reveals the following:
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� The most prominent change in the retailer’s cost and revenue streams belongs to the imposed costs
due to IPEG. These savings are proportional with reduced electricity imports to the community
energy system (Table 7). The exemption from IPEG inside the community energy system gives the
retailer an incentive to balance the electricity generation and consumption inside the community
and reduce the exchange with the higher-level energy system.

Table 7. Changes in the community energy system’s import and export 1.

Scenario Relative Import (%) Relative Export (%)

Static tariff −9.6 −45.0
Market signal −9.9 −46.3

Community competition −12.4 −53.1
Self-sufficiency −13.0 −59.5

1 Relative electricity import and export refers to the purchased and sold electricity in the market by the retailer
relative to the corresponding values in the BAU scenario.

� The higher level of self-consumption inside the community lowers the retailer’s cost for electricity
acquisition as well as the revenues from selling the electricity in the market. The lower accrued
costs due to acquiring electricity from the market also results from the use of flexibility options
for efficient market trading, i.e., purchasing electricity at lower prices. Besides CES, in the market
signal and community competition scenarios, the flexibility of households is also used for more
efficient electricity acquisition.

� From the retailer’s perspective, the purchase prices offered to the prosumagers did not seem
to have a significant effect on the performance of different scenarios. Similar results were
observed when the range for pproc,p and pproc,s in the C-RTP tariff is expanded to [0, 10] cents/kWh.
The reason for this observation is the high difference between the electricity tariff and purchase
prices in this electricity tariff (due to community grid charges and value-added tax) that makes the
self-consumption using the PV-storage system for the prosumagers more attractive than selling it
to the retailer.
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� The retailer’s revenue from electricity sales to the households in all scenarios that involve real-time
pricing is reduced. These losses can be traced back to the changes in the electricity consumption
of flexible households in response to real-time pricing tariffs. The optimization of real-time prices
by the profit-maximizing retailer in the community competition scenario reduces these revenue
losses in comparison to the market signal scenario. The highest revenue losses appear in the
self-sufficiency scenario, since the real-time prices in this scenario are optimized to minimize the
interaction with the market and the prices are lower on average than in other scenarios (see Table 6).

The additional net income the retailer gains from using the CES should be weighed against the
costs of investment in the battery system. The result of the performed Net Present Value (NPV) analysis
for two different battery module prices is given in Table 8 (see Appendix G for the details of the
NPV calculations). The NPV analysis demonstrates that, depending on the battery module prices,
the operational profits of using CES may justify an investment in the CES.

Table 8. NPV for different aggregation scenarios 1.

Scenario Unit NPV_510 NPV_250

Static tariff € −17,280.1 16,512.9
Market signal € −13,795.8 19,997.2

Community competition € −11,671.7 22,121.4
Self-sufficiency € −27,043.5 6749.5

1 NPV_510 and NPV_250 refer to the NPVs for battery prices of 510 and 250 (€/kWh) respectively.

To analyze the added value of each scenario for the community as a whole, the relative social
welfare of the community energy system in each scenario has been investigated. Defined by Equation
(7), the relative community welfare represents the sum of received utilities for all actors relative to
the BAU scenario. Figure 10 illustrates this value as well as the contributions of the retailer’s and
households’ net income to the changes for all scenarios. The results show that the relative welfare
of the community in the community competition scenario is highest (12.2%), whereas it is lowest in
the static tariff scenario (9.2%). While the inflexible households in the self-sufficiency scenario have
a positive contribution, they have a negative impact on the community welfare in the market signal
scenario. Note that the increase in community welfare happens analogously to lower exchanges in the
market. This is due to the fact that high taxes and levies on the end-user electricity prices (in this case
retailer) means that self-consumption is feasible.
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4.2. System Perspective

In the next step of our analysis, we investigate the performance of the aggregation scenarios from
the perspective of the higher-level energy system. In Figure 11, two indicators are compared: the first
indicator is the relative market alignment indicator, with 1 being aligned as the benchmark case and 0
representing the performance of the BAU case (see Section 2.3.2). Secondly, we compare the relative
exchanged electricity in the market as an indicator of the “degree of self-sufficiency”.
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As explained in Section 2.3.2, the electricity load and feed-in of the community energy system
in scenarios with higher MAI values are more aligned with signals from the market. The value of
MAI in our analysis encompasses two competing effects. On the one hand, more efficient market
participation by the retailer increases its welfare and consequently the MAI indicator. On the other
hand, a greater degree of self-consumption in the community reduces the overall exchange with the
market. Thus, the MAI indicator of a completely self-sufficient community will adopt a negative value.
According to the results depicted in Figure 11, the implementation of CES, despite lower electricity
exchange in the market, increases the market alignment of the community energy system with the
market. This implies that more efficient trade in the electricity market outweighs the effect of increased
self-consumption on the MAI. The low MAI value in the self-sufficiency scenario can be partially
explained, therefore, by the lower trade in the market resulting from the focus on self-consumption
within the community under this scenario. However, the disproportional reduction in the MAI value in
comparison to the community competition scenario indicates inefficiency in the dispatch of flexibility
options in the self-sufficiency-oriented scenario. A comparison among static tariff, market signal,
and community competition scenarios show that the aggregation of flexibility options using real-time
pricing signals simultaneously increases MAI and the self-consumption inside the community.

The higher rate of self-consumption in the community energy system reduces the electricity import
from the public grid. Since the IPEG are paid on a per-unit basis, the collected taxes, levies, and grid
charges by the policy agent are reduced. As can be seen in Table 9, the highest decrease belongs to the
self-sufficiency scenario, which also has the lowest electricity import during the simulation period.
From the perspective of the policy agent, the simulation results yield a deficit in the earnings from the
IPEG with no significant changes in its payments.
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Table 9. Collected EEG levy and grid charges by the policy agent relative to the BAU scenario.

Scenario Grid Charges (€) EEG Levy (€)

Static tariff −1202.51 −1120.15
Market signal −1242.57 −1157.46

Community competition −1551.29 −1445.03
Self-sufficiency −1628.25 −1516.72

5. Discussion and Conclusions

Aggregation of the distributed generation and the flexibility offered by households in the
community energy systems can offer opportunities and challenges to the future energy system.
To investigate these impacts from the actors’ and market perspectives, in this paper a bottom-up model
of a community energy system is presented. We carried out an analysis for the case of Germany and a
community energy system located in a private grid. The developed model is used to study various
scenarios for the aggregation of electricity load and generation in a community energy system. Next to
Community Energy Storage (CES) technology, electricity tariff structure and aggregation goals are
the main components in these scenarios. By considering static and Real-Time Pricing (RTP) tariffs,
three tariff structures, each of which contain a set of hourly tariffs and purchase prices, are constructed.
In the case of the RTP tariff, we distinguished between the Market RTP (M-RTP) and Community
RTP (C-RTP) tariffs. While the M-RTP contains uninterrupted signals from the market as the real-time
element of the tariff, the hourly varying component in the C-RTP is the optimal price determined
by the retailer. To obtain the optimal prices in the C-RTP, the interactions between the retailer and
households are modeled as a Stackelberg game. The second component in the studied scenarios is
the retailer’s aggregation goal. Here we differentiate between the retailer’s profit maximization and
community self-sufficiency maximization as the goal of the aggregation. In order to assess the impact
of community energy systems on the market prices, we defined the Market Alignment Indicator (MAI).
The value of this indicator shows how close the operation of a community energy system resembles
the behavior of a benchmark community energy system, which operates in complete alignment with
the market signals.

5.1. Policy Interpretation

The analysis above shows that the usage of a storage system in a community, which is located in a
private grid, can have a major impact on the operational profit of the retailer. The gained additional
profit may justify an investment in CES. At the same time, in all studied scenarios in which CES is used,
the value of MAI for the community energy system is increased. The usage of CES for the aggregation
of households can absorb the electricity load and feed-in peaks that are misaligned with the market
signals. Analog to higher MAI values, in the scenarios using a CES, the amount of exchanged electricity
in the market drops. The greater level of self-consumption that also lead to higher community welfare
can be traced back to high end-user prices due to the regulations in Germany and the implemented
exemptions from taxes and levies in the community grid. For a community energy system that uses the
public grid, however, the self-consumption on the community level is charged by grid charges, taxes,
and levies. The regulations for the self-consumption of generated electricity by households in Germany
are currently limited to the behind-the-meter self-consumption in residential buildings. An example
of such regulations is the German tenant electricity law (Mieterstromgesetz), which promotes the
consumption of generated electricity from PV rooftop systems by several consumers in a building [51].
According to the regulations in Germany, a CES that is connected to a public grid, similar to other
storage systems, is considered to be an end consumer when charging. Therefore, the stored electricity
is charged with taxes, levies, and grid charges [52]. This regulatory burden on CES in many pilot
projects such as [46] is indicated as the main source of unprofitability.
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In case the aggregation goal of the retailer is profit maximization, the analysis of MAI demonstrates
that both RTP tariffs improve the alignment of the community energy system with the signals from
the market. The perfect alignment of the households’ flexibility options with market signals due to
other distortions such as the constant community grid charges that do not reflect the market price
fluctuations is not achieved. The authors in [10] have shown that in the case of a PV storage system,
even by implementing fixed network charges, time-varying feed-in tariffs and the combination of both a
complete alignment with market signals is not possible. The low MAI value in a self-sufficiency-oriented
scenario depicts one source of inefficiency in terms of exchange with the higher-level energy system.
Such inefficiency can be justified, for instance, if the reduced exchange with the higher-level energy
system lessens the required grid expansion. Otherwise, the self-consumption can lead to the loss of the
potential efficiency gain from balancing supply and demand over a larger area by using the existing
grid infrastructure [53].

From the actors’ perspective, real-time tariffs bring financial benefits to flexible households.
Analogous to these benefits, the M-RTP tariff imposes extra costs on inflexible households. Although the
debate on the fairness of dynamic prices is part of a bigger discussion [54], we want to point out that
the implementation of novel tariff schemes may have negative impacts on the inflexible electricity
consumers, who are not able or are unwilling to shift their load. Among the studied tariffs in this paper,
the C-RTP tariff yields the highest profit for the retailer, without increasing the costs of any household.
Despite these promising results, the implementation of such tariffs requires the communication
infrastructure that is currently not available in Germany. For instance, households need be equipped
with smart meter gateways (a device that automatically communicates measurements from connected
smart meters to external market participants, and it allows them to send incentives or commands
for load adjustments to local control boxes such as energy management systems [55]), which can
measure and transfer data to the retailer. According to the German Metering Point Operation Law
(“Messstellenbetriebsgesetz”), the roll-out of smart meter gateways in Germany will follow a step-wise
plan, which ultimately obliges the consumers with consumption over 6000 kWh/year or for prosumers
with renewable peak feed-in above 7 kW to install these devices [56]. The profitability of real-time tariffs
for flexible households, however, can be an incentive for the voluntary investment in such devices.

The monetary benefits of RTP tariffs for the prosumagers imply that future business models
may incentivize the investment in PV storage systems even more. Since the costs of energy system
infrastructure is paid by consumers on a per unit basis, by becoming prosumager, the household
contributes less to maintaining the system, while still benefiting the security supply by being connected
to the grid. This can raise distributional problems, since the increase in the number of prosumagers
may lead to higher costs for households who cannot invest in self-sufficiency [57]. Moreover, this will
lead to a spiral because there is more incentive to invest in self-sufficiency [6]. The self-consumption in
a community energy system using a private grid (such as the one studied in this work) can lead to
a similar problem, since the retailer always has access to the public grid. As observed in the results,
such a community energy system not only results in lower payment for maintenance costs on the
public grid, but also contributes less to the existing support schemes, for example by paying the EEG
levy. To tackle these issues, several solutions, such as capacity price components, are introduced in the
literature [58,59].

5.2. Limitations and Outlook

Our model-based analysis incorporates a trade-off between the level of details and the
comprehensiveness of the model. In our modeling approach, we focused on actors’ plurality in
the community energy system and modeled various types of households. A general assumption of our
modeling approach is the perfect foresight of all the actors. The households have a perfect estimation
of their energy demand and generation one day ahead. It is assumed that households are able and
willing to share these forecasts with the retailer. Correspondingly, the retailer has exact knowledge

66



Energies 2020, 13, 5154 24 of 37

of the market prices of the following day. How the uncertainties in the prediction of these data will
impact the performance of different aggregation scenarios should be a topic of further research.

In our model, we assumed the households of each type to be similar, meaning the electricity
demand and generation profiles and the technologies they use are similar. For a small community,
the aggregation of the resulting identical behaviors may lead to unrealistic patterns, e.g., electricity
peaks. When modeling the households’ electricity consumption, we considered their electricity
demand to be inelastic in response to price signals. Thereby, we drew our focus merely to load-shifting
potentials due to flexibility options. Moreover, we simplified the dispatch optimization problems of
heat pumps and PV storage systems in our model. For instance, we assumed that heat pumps are set to
keep the room temperature constant. Here we neglect the building energy losses and gains depending
on weather conditions and building isolation. Moreover, in the case of prosumers and prosumagers,
we assumed that the generated electricity from PV rooftop systems covers preliminary the electricity
demand of the household. According to the current regulatory framework in Germany, this is a valid
assumption since this behind-the-meter consumption of generated electricity by small PV systems
is not charged with taxes, levies and other charges and is, therefore, “free”. A more complex model
such as the one offered in [10] can, however, offer more exploration potential when analyzing the PV
storage system response to different electricity tariffs. The main reason behind reducing the complexity
of the optimization models was the high computation load that a combination of the implemented
genetic algorithm and these optimization processes would otherwise produce. Last but not least,
the sizing of PV systems, PV storage systems, as well as heat pumps and thermal storage systems,
are set heuristically.

When modeling the retailer, the main limitation of our work is dismissing other costs and
revenue streams that may have a major impact on the overall feasibility of the aggregation scenarios.
We reduced our analysis to the CES that is located in a private grid. Hence, the imposed charges on
CES operations as a decisive cost stream are disregarded in our analysis. Apart from this, additional
revenues from participation in other markets such as reserve markets or incentives for offering ancillary
grid services can boost the profitability and consequently the community welfare that a CES can
produce. A comprehensive feasibility study of CES business models that takes these costs and revenue
streams into account can be the subject of future studies. Moreover, the optimal sizing and technology
of the CES systems, similar to the approach used in [60], should be explored in subsequent researches.
Such a study should include an investigation into the impact of alternative community setups, i.e.,
the number of each household category in the community, on the optimal CES sizing.

One important constraint of our approach in presenting MAI is that it neglects the influence of
community energy systems on the prices. The value of MAI is therefore only properly defined if the
impact of the electricity exchange with the market does not have a significant impact on prices [10].
To address this weakness, coupling the community energy system model with an electricity market
model can be suggested for further research works. In doing so, the performance of MAI as a proxy
for the “system-friendliness” of the community energy systems by investigating the indicators of
the larger system (e.g., system costs or CO2 emissions of the electricity sector) can be examined.
Another limitation of the MAI is that it does not consider the grid, especially the distribution grid [10].
For instance, the contribution of the community energy systems to alleviate stress on the distribution
grid cannot be the current approach.

In this paper, we distinguished between different electricity tariffs by varying the price component
that covers the retailer’s electricity procurement costs. In this context, we suggest that the
modifications of these tariffs that take alternative regulations into account should be studied further.
For example, the introduction of capacity-based price components offered in the literature (for instance
in [59]) can contribute to debates about the distribution effects of increasing self-consumption.
Moreover, by increasing the number of community energy systems, the impact of different tariffs on
the larger systems should be examined. Such a study could contribute, for example, to the discussion
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about a potential overreaction of flexibility options when they are exposed to the signals from the
market (also called “avalanche effect” [61]).

We modeled the hierarchical interplay between the retailer and the households as a one-leader
and multi-follower Stackelberg game. This approach is widely used in the literature to model the
energy management systems in energy communities and microgrids [25,27,28,62]. While Stackelberg
games fit the characteristic of the investigated community energy system very well, other methods,
such as double auction, can also be used to model the community energy market [63]. In our model,
we assumed that households are obliged to trade with one retailer (implying an imperfect competition).
In the absence of competition, we used an exogenous constraint (Equation (29)) to limit the negative
impacts on consumer welfare and efficiency losses. The expansion of this model to a multi-leader
and multi-follower (such as the model in [64]) can tackle this limitation of our work in neglecting the
competition among different retailers. Moreover, we did not consider any collusive behavior among
the households in our lower-level problem. To the best of our knowledge, such behavior among
German households is not a real concern.

Last but not least, we acknowledge the limitations of the genetic algorithm in searching for the
Stackelberg equilibrium. The main drawback of our approach is the uncertainty regarding the optimality
of the solution and the possibility of a convergence with a local optimum. Parameterization of the
genetic algorithm in this work was based on a heuristic approach and incorporated a trade-off between
the fitness of the utility function and the required computation time. This approach, however, allowed
us to cope with the non-linearities in the game-theoretic modeling. We wish to emphasize that the
analytical approaches in modeling the actors’ decision-making behavior can deliver solid results for
many research questions in the energy system analysis. In bottom-up modeling of the actors’ behavior
in the energy system, however, actors’ rationales are not always reducible to functions, which can
be solved with conventional optimization tools. Therefore, the applications of artificial intelligence,
such as evolutionary algorithms and machine learning, in solving game-theoretic problems in the
energy system analysis should be followed in future works.
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Appendix A. Table of Notation

Table A1. Table of notation.

Parameter Meaning

I Set of actors: retailer (ret), consumers (cs), flexible consumers ( f cs), prosumers
(ps) and prosumagers (psg)

H Set of households: consumers, flexible consumers, prosumers and prosumagers
P Set of households with generation potential: prosumers and prosumagers
R Retailer

Nh Number of households in the category h ∈ H
lhBD(t) Base electricity demand of the households h ∈ H at time t [kWh]

l f cs
HD(t) Heat demand of the flexible consumers at time t [kWh]

gp
PV(t) Electricity generation of the households p ∈ P at time t [kWh]
sp(t) Residual load of the households p ∈ P at time t [kWh]

ei
G→∂(t)

Electricity flow by actor i ∈ I at time t from grid to ∂ with ∂={Demand: D, Heat
pump: HP, Battery: B, Electricity market: M} [kWh]

ei
∂→G(t)

Grid feed-in by actor i ∈ I from at time t from ∂ with ∂={Battery: B, PV systems:
PV, Electricity market: M} [kWh]
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Table A1. Cont.

Parameter Meaning

e f cs
HP→TS(t) Energy inflow from heat pumps to thermal storage systems at time t [kWh]

eP
PV,B→G(t) Total grid feed-in by all prosumers and prosumagers at time t [kWh]
eH

G→D(t) Total grid usage by all households at time t [kWh]
ri

x(t) Revenue of actor i ∈ I in the scenario x at time t [cents]
ci

x(t) Costs of actor i ∈ I in the scenario x at time t [cents]
ui

x(t) Net income of actor i ∈ I in the scenario x at time t [cents]
Ui

x Net income of actor i ∈ I in the scenario x for the simulation period [cents]

Ui,rel
x

Net income of actor i ∈ I in the scenario x relative to BAU scenario for the
simulation period [-]

a(t) Amount of traded electricity in the market by the retailer at time t [kWh]
Smax

PV Peak power of PV system [kW]
PRPV Performance ratio of PV system [-]
Kpsg

B Battery storage capacity in PV storage systems [kWh]
Smax

HP Peak power of heat pump [kW]
copHP Heat pump COP [-]
K f cs

TS
Thermal storage capacity in the heat pump systems [kWh]

Kret
CES CES capacity [kWh]
ηd Battery discharge efficiency in CES and PV storage systems [-]
ηc Battery charge efficiency in CES and PV storage systems [-]

E2P Battery energy to power ratio in CES and PV storage systems [-]

CO&M
CES

CES operation and maintenance costs expressed as a ratio of initial investment
costs [%]

I0
CES CES-specific investment cost [€/kWh]
rdis Discount rate [%]

LCES Battery lifetime [years]
FiT Feed-in tariff [cents/kWh]

plevies EEG and other support levies [cents/kWh]
pGC Public grid charges [cents/kWh]

pCGC Community grid charges [cents/kWh]
ptaxes Electricity tax [cents/kWh]
pVAT Value added tax [cents/kWh]
VAT Value added tax [%]
pave

m Annual mean value of market prices [cents/kWh]
pm(t) Market price in time t [cents/kWh]

pMP(m) Market premium in the month m [cents/kWh]
mvPV(m) Market value of PV electricity in the month m [cents/kWh]

pret
s (t) Retailer’s electricity tariff in time t [cents/kWh]

pret
p (t) Retailer’s electricity purchase price in time t [cents/kWh]

pproc,s(t) Electricity procurement price component in pret
s (t) [cents/kWh]

pproc,p(t) Electricity procurement price component in pret
p (t) [cents/kWh]

Wret
x Welfare of retailer in the scenario x for the simulation period [cents]

Wcom
x Welfare of community in the scenario x for the simulation period [cents]

Wcom,rel
x

Welfare of community in the scenario x for the simulation period relative to BAU
scenario [cents]

MAIrel
x Market alignment indicator for scenario x relative to BAU scenario [-]

MAIx Market alignment indicator for scenario x [-]
Topt Optimization period [Hours]
Tsim Simulation period [Hours]
Eh Strategy set of households h ∈ H in time t
Q Strategy set of the retailer in time t
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Appendix B. Dispatch Optimization

The following section describes the constraints to the flexible consumers, prosumagers and CES
dispatch optimization models. The equations are to be seen as complementary to the formulations of
utility functions in Section 3.2.

Appendix B.1. Constraints for Flexible Consumers’ Optimization Model

The optimization problem of flexible consumers is performed for every optimization period until
the whole simulation period is covered. For an optimization period starting at tinitial, the problem
described in Equation (17) subjects to the following constraints:

0 ≤ e f cs
G→HP(t) ≤ SMax

HP (A1)

e f cs
HP→TS(t) = e f cs

G→HP(t).copHP (A2)

e f cs
charge(t) = e f cs

HP→TS(t) − l f cs
HD(t) (A3)

e f cs
TS (t) =



e f cs
TS,initial

e f cs
TS (t− 1) + e f cs

charge(t)

e f cs
TS, f inal

t = tinitial
tinitial < t < tinitial + Topt

t = tinitial + Topt

(A4)

0 ≤ e f cs
TS (t) ≤ K f cs

TS (A5)

where e f cs
G→HP(t) is the heat pump input electricity load at the time t that is limited by the constraint

in Equation (A1). The value of copHP in Equation (A2) is assumed to be independent of the ambient
temperature and therefore constant during the whole simulation time. In the calculation of e f cs

charge(t),
which represents the changes in the thermal storage energy content, the storage energy losses are
neglected (Equation (A3)). e f cs

TS (t) in Equation (A4) denotes the energy content of the thermal storage

that is considered to be e f cs
TS,initial and e f cs

TS, f inal at the beginning and end of each optimization period.

In our simulation, we assumed e f cs
TS,initial and e f cs

TS, f inal to be 0. The energy content of the thermal storage
always adopts a positive value and cannot exceed the maximum storage capacity. This constraint is
described in Equation (A5).

Appendix B.2. Constraints for Prosumagers Optimization Model

Similar to the case of flexible consumers, here we explain the constraints to the optimization
problem described in Equation (20) for the optimization period starting at tinitial. In the prosumagers’
model, we assumed that the generated electricity is preliminary used to cover the electricity demand.
The residual load of the prosumagers (spsg), calculated from Equation (A6), can adopt positive and
negative values indicating deficit and excess of electricity, respectively. In case of deficit, the remaining
electricity demand is supplied from the grid (epsg

G→D) and/or from the battery (epsg
B→D). Correspondingly,

the electricity excess is fed-in to the grid (epsg
PV→G) and/or stored in the battery. To this end, the complexity

of the prosumagers model is reduced. The first assumption is the direct consumption of generated
solar energy and the definition of residual load and generation. If the residual load is positive, the load
will be covered by the grid and/or battery storage. In summary:

spsg(t) = lpsg
BD(t) − gpsg

PV (t) (A6)

spsg(t) =
{

∂(t).epsg
G→D(t) + (1− ∂(t))·epsg

B→D(t)
−∂(t).epsg

PV→G(t) − (1− ∂(t))·e
psg
PV→B(t)

spsg(t) > 0
spsg(t) ≤ 0

(A7)
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where the variable ∂(t) in Equation (A7), which adopts discrete values between 0 and 1, defines the
portion of the residual load that is covered from or fed-in to the grid at time t. In this optimization,
the ∂ can adopt a value from {0, 0.1, 0.2, ..., 0.9, 1}. For each value of ∂, the battery storage is optimized
using the following constraints:

epsg
charge(t) = epsg

G→B + epsg
PV→B − epsg

B→D − epsg
B→G (A8)

epsg
B (t) =



epsg
B,initial

epsg
B (t− 1) + epsg

charge(t).η

epsg
B, f inal

t = tinitial
tinitial < t < tinitial + Topt

t = tinitial + Topt

(A9)

η =


ηc epsg

charge(t) ≥ 0
1
ηd

epsg
charge(t) < 0

(A10)

∣∣∣∣epsg
charge(t)

∣∣∣∣ ≤ Kpsg
B . E2P (A11)

0 ≤ epsg
B (t) ≤ Kpsg

B (A12)

where epsg
charge(t) in Equation (A8) is the energy flow to/from battery at time t. Equation (A9) describes

the dependency of the energy content of the battery (epsg
B ) to the corresponding value in the last time

step and the amount of charged or discharged energy in each time step. The battery is assumed to
be empty at the beginning and the end of the optimization period, i.e., epsg

B,initial and epsg
B, f inal is set to 0.

The battery losses are taken into account by a charge or a discharge efficiency, ηc and ηd respectively.
The amount of charged or discharged electricity in each time step cannot exceed the power rating of
the battery calculated in Equation (A11). Last but not least, the energy content of the battery is always
positive and is limited by the battery capacity (Kpsg

B ), as indicated in Equation (12).

Appendix B.3. Constraints for Community Energy Storage Optimization Model

The optimization problems in the Equations (26) and (28) involve finding the optimal dispatch of
CES. This model for an optimization period starting at tinitial has the following constraints:

eret
charge(t) = eP

PV,B→G(t) + eret
M→G(t) − eH

G→D(t) − eret
G→M(t) (A13)

eret
CES(t) =



eret
CES,initial t = tinitial

eret
charge(t− 1) + eret

charge(t)·η
eret

CES, f inal t = tinitial + Topt
tinitial < t < tinitial + Topt (A14)

η =


ηc eret

charge(t) ≥ 0
1
ηd

eret
charge(t) < 0

(A15)

∣∣∣∣eret
charge(t)

∣∣∣∣ ≤ Kret
CES·E2P (A16)

0 ≤ eret
CES(t) ≤ Kret

CES (A17)

where eret
charge(t) in Equation (A13) denotes the energy input or output from the CES, which is the sum

of the traded electricity with households and in the market. The rest of the constraints are analogous to
the prosumagers’ optimization model (Equations (A9) to (A12)).

71



Energies 2020, 13, 5154 29 of 37

Appendix C. Dynamic Programming Model

In order to solve the optimization problem of flexible consumers, prosumagers, and CES, we adopt
the Bellman theory of optimality and use the dynamic programming approach. This approach is
widely used in finding the optimal storage charging strategies ([34] as an example). According to this
theory, “an optimal policy must only contain optimal sub-policies” [65]. In the case of storage charging,
the optimal and sub-optimal policies refer to the optimal charging strategy for the whole optimization
period and any other smaller given period, respectively.

For the implementation of this model, as shown in Figure A1, we divide the solution space in each
time step to discrete states, each of which represents the state of charge of the storage, as expressed in
the Equations (A4), (A9), and (A14). These states in each time step are defined by the optimization
constraints, such as storage capacity and energy-to-power ratio. For the sake of simplification, the states
in Figure A1 are limited to SOCMin and SOCMax. The possible strategies that connect each of the two
states represent a charging or discharging strategy during one time step.

To find the optimal strategy, two calculation steps are required. In the first step, moving backwards
from the last time step (Topt), the optimal sub-strategy and cost of that strategy is calculated and
recorded for all the states in each time step. An example of such a calculation is shown in Figure A1,
where the cost of the optimal sub-strategy for the state SOCMax in the time step Topt − 2 is calculated
(costSOCMax

Topt−2
). After this calculation is done for all the time steps, we move forward from the first time

step and the initial state of the storage and use the recorded strategies to determine the optimal strategy
for the whole optimization period.
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Figure A1. Schematic sketch of the dynamic programming model and an exemplary calculation of the
cost of the optimal sub-strategy (costSOCMax

Topt−2
) for the state SOCMax in the time step Topt − 2.

Appendix D. Preparation of the Model’s Input Data

In this paper, the households in each category are modeled as a single aggregated household.
Therefore, we scale up the input time series and technologies for each household model linearly.
Considering the lsBD to be the standard demand profile for each household, the aggregated base
electricity demand of all the households in the category h ∈ H at time t is calculated by Equation (A18).
Similarly, as shown in Equation (A19), the heat demand of the flexible consumers’ model is obtained
by a linear scale-up of the heat demand of a single household (lsHD):

lhBD(t) = Nh × lsBD(t) (A18)

l f cs
HD(t) = N f cs × lsHD(t) (A19)
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The actual electricity generation of the households in the category p ∈ P is determined using the
following equation:

gp
PV(t) = Np × gs

PV(t) × SMax
PV × PRPV (A20)

where gs
PV is the share of generated electricity per kWh installed PV capacity in the year 2018 in

Germany. SMax
PV and PRPV are the peak power and performance ratio of PV systems, respectively.

The rest of the parameters, i.e., the peak power of the heat pump as well as the capacity of the
thermal storage and PV storage systems are also multiplied by the number of households available in
each category.Energies 2020, 13, 5154 30 of 37 
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Figure A2. Share of total PV electricity generation to installed PV capacity in Germany in the year 2018
(own presentation based on the data from [35]).

In Figure A3, the day-ahead spot market prices for the year 2018 [35] together with the monthly
market values of PV, which are from [36], is presented.
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Figure A3. Day-ahead spot market prices and market values for the year 2018 (own presentation based
on the data from [35,36]).

Appendix E. Electricity Prices in Different Tariffs

Figure A4 presents the electricity tariffs in the investigated scenarios for an exemplary 24 h.
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The mean value and standard deviation of the electricity tariffs in different seasons are presented
in Tables A2 and A3, respectively. Since the electricity prices in the BAU scenario do not change
over time, the statistics for the BAU scenario are not presented. In comparison with the community
competition and self-sufficiency scenarios, the mean value and standard deviation of the electricity
prices in the market signal scenario show a strong seasonality. This seasonality, which reflects the
characteristics of the market prices, among others, results from the changes in the availability of
renewable energy resources such as wind and sun.

Table A2. Mean values of electricity tariffs during different seasons.

Scenario Jan–Mar Apr–Jun Jul–Sep Oct-Dec

Market signal 25.85 25.77 27.80 27.66
Community
competition 26.86 26.84 26.82 26.83

Self-sufficiency 26.60 26.58 26.61 26.59

Table A3. Standard deviation of electricity retail prices during different seasons.

Scenario Jan–Mar Apr–Jun Jul–Sep Oct–Dec

Market signal 1.98 1.81 1.48 2.19
Community
competition 0.92 0.95 1.04 0.90

Self-sufficiency 0.98 1.00 1.03 1.01

Appendix F. Exemplary Dispatch Optimization Results

Appendix F.1. 48 h Flexible Consumers’ Schedule in Response to M-RTP Tariff

In the following, a closer observation of flexible consumer’s behavior in reaction to real-time
pricing signals is given. Figure A5 shows the optimization results for flexible consumers during the
first two days of January in response to the M-RTP tariff. It can be seen that as the heat pump shifts the
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load to the hours with low electricity prices, the total households’ electricity load is lower when peak
prices occur. Note that the plotted data are aggregated for 10 flexible consumers.Energies 2020, 13, 5154 32 of 37 
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The sub-figure C demonstrates that the residual generation of the prosumagers is not fed into the 
grid but is rather stored in the battery (see for example Fri 12:00). Note that according to the 
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generation may be sold to the grid or stored in the battery. 

Figure A5. Flexible consumers’ response to the M-RTP tariff for the first 48 h in January. (A) Flexible
consumers’ heat demand and electricity load; (B) state of charge of the thermal storage and
electricity tariffs.

Appendix F.2. 48 h Prosumagers’ Schedule in Response to M-RTP Tariff

Figure A6 shows the prosumagers’ optimization results of the first two days of January in response
to the M-RTP tariff. The battery dispatch results, depicted in sub-figure B, shows that the battery during
these two days did not sell electricity to the grid. When the electricity tariffs were low, the battery was
used to buy electricity for later use. This can be seen clearly, for instance, on Sat 4:00. The sub-figure C
demonstrates that the residual generation of the prosumagers is not fed into the grid but is rather
stored in the battery (see for example Fri 12:00). Note that according to the optimization assumption,
the generated electricity is first used to cover the load, and the residual generation may be sold to the
grid or stored in the battery.
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Appendix G. NPV Calculations

For the NPV calculations, the initial investment in CES can be formulated as:

C0 = ICES × (1 + VAT) (A21)

ICES = Kret
CES × I0

CES (A22)

where ICES is derived from the battery module price multiplied by the size of the CES. In this calculation,
we neglect the scaling effect that accounts for the lower specific cost for larger battery systems. Since in
retailer’s costs and revenue streams, the operation and maintenance costs of the CES are not taken into
account, we obtain the retailer’s net profit for the scenario x from the following equation:

Fret
x = Uret

x − ICES ×CO&M
CES (A23)
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The operation and maintenance costs in this equation are considered to be a percentage (CO&M
CES ) of

the initial investment costs. The NPV for the scenario x is then calculated as follows:

NPVx = −C0 +

LCES∑

y=1

Fret
x −Uret

BAU

100× (1 + rdis)
y (A24)

where rdis is the discount rate and LCES is the battery lifetime that assumed to be the project lifetime.
To isolate the effect of CES in the cash flows, in the NPV calculations the retailer’s net income in the
BAU scenario is subtracted from Fret

x . The amount of cash flows are divided into 100 to convert the
units from cents to euros.
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A B S T R A C T

The expansion of distributed electricity generation and the increasing capacity of installed battery storage
systems at the community level have posed challenges to efficient technical and economic operation of the
power systems. With advances in smart-grid infrastructure, many innovative demand response business models
have sought to tackle these challenges, while creating financial benefits for the participating actors. In this
context, we propose an optimal real-time pricing (ORTP) approach for the aggregation of distributed energy
resources within energy communities. We formulate the interaction between a community-owned profit-
maximizing aggregator and the users (consumers with electricity generation and storage potential, known
as ‘‘prosumagers’’, and electric vehicles) as a stochastic bilevel disjunctive program. To solve the problem
efficiently, we offer a novel solution algorithm, which applies a linear quasi-relaxation approach and an
innovative dynamic partitioning technique. We introduce benchmark tariffs and solution algorithms and assess
the performance of the proposed pricing strategy and solution algorithm in four case studies. Our results show
that the ORTP strategy increases community welfare while providing useful grid services. Furthermore, our
findings reveal the superior computational efficiency of our proposed solution algorithm in comparison to
benchmark algorithms.

1. Introduction

1.1. Motivation

The lower levelized cost of electricity from photovoltaic (PV) sys-
tems compared to residential retail tariffs has incentivized households
in many countries to invest in rooftop PV systems [2]. Similarly,
developments in battery storage systems (BSSs) are making them eco-
nomically viable for use by electricity consumers. Thus, a combination
of home energy storage (HES) and rooftop PV systems has been shown
to be profitable under various regulatory schemes, leading to the

∗ Corresponding author.
E-mail address: Seyedfarzad.sarfarazi@dlr.de (S. Sarfarazi).

1 This research is financed by the German Aerospace Center (DLR) basic-funding project SoGuR.
2 This work was financially supported by the Swedish Energy Agency (Energimyndigheten) under Grant 3233. The required computation is performed by

computing resources from the Swedish National Infrastructure for Computing (SNIC) at PDC center for high performance computing at KTH Royal Institute of
Technology which was supported by the Swedish Research Council under Grant 2018-05973.

3 In this paper, we adopt the naming convention suggested in [1] and refer to an electricity consumer with generation potential as a prosumer (producer and
consumer). A prosumager additionally operates an energy storage system to increase self-consumption (producer, consumer and storage).

emergence of so-called ‘‘prosumagers’’ (consumers with electricity gen-
eration and storage potential3) as new market actors [3]. Furthermore,
improved charging infrastructures and policy support measures have
made electric vehicles (EVs) more competitive for mobility and intro-
duced them into the mix of distributed energy resources (DERs) [4].
However, this growth of DERs poses significant challenges for the
electricity system; For economic efficiency, end-user activities should
be aligned with market signals [5] and provide system benefits [6].

With the expansion of smart-grid infrastructure, several innovative
demand response (DR) business models are seeking to meet these
challenges. Ideally, the focus of these business models should be the

https://doi.org/10.1016/j.ijepes.2022.108770
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Nomenclature

Parameters

𝛤 S, 𝛤B Aggregator’s sale and purchase margin in
benchmark tariffs

𝜃B𝑖 Battery capacity of user 𝑖
𝑀B, 𝑀S Sufficiently large constants
𝑃Q
𝑖 Marginal operational cost of

charging/discharging the BSS for user
𝑖

𝜂𝐶𝑖 , 𝜂
D
𝑖 Battery charge and discharge efficiencies for

user 𝑖
𝑊 𝑡 Maximum available line capacity behind

the PCC in 𝑡
CW Community welfare
𝐶 ′ Total cost of all users
𝐺𝑖𝑡𝑣, 𝐿𝑖𝑡𝑣 Electricity generation and load of user 𝑖 in

𝑣 and 𝑡
𝑁 Last discrete step
𝑃M
𝑡𝑣 Wholesale electricity market price in 𝑡 and

𝑣
𝑍

C
𝑖 , 𝑍

D
𝑖 Battery charge and discharge power limits

for user 𝑖
𝐺𝑖, 𝐿𝑖 Nominal power limits for user 𝑖
𝑃B, 𝑃

B
Aggregator’s purchase price limits

𝑃 S, 𝑃
S

Aggregator’s sale price limits
𝜇𝑐 , 𝜎𝑐 Mean value and standard deviation of data

in cluster 𝑐
𝑇 Last optimization step
𝐶𝑖𝑣 Cost of user 𝑖 in 𝑣
𝑃 S, 𝑃B Aggregator’s discrete sale and purchase

prices
𝜙𝑣 Probability of scenario 𝑣
𝛬𝑖 Battery self-discharge rate for user 𝑖
𝑈𝑖𝑡 Battery availability of user 𝑖 in 𝑡
𝐴𝑖, 𝐴𝑖 Battery state of charge limits for user 𝑖
𝐻X
𝑡 ,𝐻

X
𝑡 , 𝑝

X⋆
𝑡
, 𝑝X⋆𝑡 Intermediary parameters of the MBB algo-

rithm in 𝑡
𝑆X Size of each discrete step in the MBB

algorithm
LB Problem’s lower bound in the MBB algo-

rithm

Sets

𝜒 Set of user’s decision variables in (1)
𝜉 Set of decision variables in (9)
𝜚 Set of decision variables in (15)
 Set of clusters in k-method
𝛶 Set of user-specific model parameters

Indices

𝑐 Cluster in the scenario generation algorithm
𝑘 Discretization step
X Trade direction: Sale or purchase in 𝑡

provision of incentives that are compatible with the needs of the sys-
tem. The most common DR schemes instruct consumers to change their
consumption patterns upon request or according to a contractual agree-
ment [7]. However, a lack of customer privacy and system scalability

𝑡 Optimization time
𝑣 Scenario index
𝑖 User index

Variables

𝑟 Aggregator’s total profit
𝑟𝑖𝑡𝑣 Aggregator’s profit considering user 𝑖 in 𝑣

and 𝑡
𝛼, 𝛽, 𝜆, 𝛾, 𝜏, 𝜐, 𝜇 Lagrangian dual variables
𝜓𝑖𝑡𝑣 Binary variable for user 𝑖 to avoid simul-

taneous charge and discharge in 𝑣 and
𝑡

𝑏S𝑡𝑣𝑘, 𝑏
B
𝑡𝑣𝑘 Binary variables in the MILP formulation for

𝑡, 𝑣 and 𝑘
𝑧C𝑖𝑡𝑣, 𝑧

D
𝑖𝑡𝑣 Charged and discharged power for user 𝑖 in

𝑣 and 𝑡
ℎX𝑖𝑡𝑘𝑣 Continuous variables in the MILP formula-

tion
𝑑B𝑡 , 𝑑S𝑡 Spanning variables in 𝑡
𝜋S𝑖𝑡𝑣, 𝜋

B
𝑖𝑡𝑣 Bilinear terms after single level reduction

for user 𝑖 in 𝑣 and 𝑡
𝑐𝑖𝑡𝑣 Cost of user 𝑖 in 𝑣 and 𝑡
𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣 Grid usage and feed-in of the user 𝑖 in 𝑡 and

𝑣
𝑒S(0)𝑖𝑡𝑣 , 𝑒

S(1)
𝑖𝑡𝑣 , 𝑒

B(0)
𝑖𝑡𝑣 , 𝑒B(1)𝑖𝑡𝑣 Non-negative intermediary variables in the

quasi-relaxed formulation for user 𝑖 in 𝑣 and
𝑡

𝑝S𝑡 , 𝑝
B
𝑡 Aggregator’s sale and purchase prices

𝑠 Silhouette value in the k-mean clustering
method

𝑎𝑖𝑡𝑣 Battery state of charge for user 𝑖 in 𝑡 and 𝑣
𝑝X
𝑡
, 𝑝X𝑡 Dynamic lower and upper bounds of aggre-

gator sale prices in 𝑡

are major drawbacks of these directive approaches [8]. Alternatively, in
price-based schemes, consumers are exposed to time-varying prices that
reflect the cost of electricity and grid conditions. Furthermore, these
price-based schemes do not suffer from the same privacy and scalability
issues [7]. Real-time pricing (RTP) is perhaps the best-known example
of this approach [9]. Although RTP can increase the alignment of BSS
dispatch with wholesale market signals [5], it does not usually reflect
the local level of generation and the constraints of the grid; achieving
this requires more comprehensively specified optimal real-time pricing
(ORTP).

This paper considers an energy community (EC) that is not isolated
from the wholesale market and is managed by a community-owned
aggregator (real-world examples of such ECs can be found in [10] and
[11]). We have developed a methodology for the aggregator to set
ORTP and show how this can improve the EC’s welfare in comparison
to an RTP strategy. The economic profitability of ORTP is subjected to
many uncertainties associated with wholesale electricity prices as well
as the power demand and supply. Therefore, such local aggregators
operate under conditions of bounded rationality. Therefore, we also
provide a solution for the aggregator to deal with its limited knowledge
regarding the market prices, the level of local power generation, and
users’ electricity demands.

In the remainder of this section, we provide an overview of the
background research in this context and thereby identify the research
gap to which we contribute.
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Table 1
Drawbacks of the reviewed single-level DR studies compared to the chosen bilevel approach.

Approach Examples Focus Drawbacks

Single user optimization [15,16,24] Detailed modeling of the user-side
reaction to dynamic prices

• Lack of energy-sharing potential
• Ignores the aggregator-side

strategy

User coordination [17] Coordination of multiple users
in reaction to external prices

• Interests of the higher-level
actors are neglected

Local power markets [20–22] Distributed trading of electricity • Internal prices do not reflect the
state of the larger energy system

Retailer-side strategy [12–14] Creating dynamic prices for users • Simplified modeling of the user-side
strategy

• Internal prices do not reflect the state
of DERs

1.2. Background research and contributions

The contributions of this paper can be broadly embedded into two
bodies of literature: On the one hand, we contribute to the research
area of modeling price-based DR measures for end users in energy
communities. In Section 1.2.1, we provide an overview of relevant
publications and highlight the novelties of our proposed model. On
the other hand, our methodology contributes by proposing a relaxation
technique and an algorithm to solve the resulting bilevel optimization
problem. In Section 1.2.2, we review the common approaches to solving
the bilevel problems that emerge in modeling the hierarchical interac-
tions between an aggregator and users and show the advantages of our
proposed approach.

We summarize contributions of this paper in Section 1.2.3.

1.2.1. Price-based DR in energy communities
Residential DR programs in the context of the smart-grid have been

extensively studied in recent years [7,9]. A significant fraction of this
body of literature has examined efficient dynamic pricing strategies for
electricity consumers [12]. Considering consumer adoption barriers,
the authors of [13] designed and analyzed dynamic tariffs that can
provide considerable cost savings for households. Similarly, the authors
of [14] proposed a day-ahead and real-time pricing strategy for a smart-
home community to benefit the consumers while reducing their power
peak-to-average ratio.

A growing body of literature has focused on the demand-side im-
plementation of DR measures and studied optimization strategies for
individual users. For example, the authors of [15] proposed a schedul-
ing optimization model for smart-home appliances to reduce the peak
load value and electricity cost. The price-based DR presented in [16]
is implemented through control algorithms for different types resi-
dential consumer appliances. With a broader perspective, the authors
of [17] suggested an autonomous and distributed demand-side energy-
management system for efficient coordination of multiple users in
reaction to external dynamic prices. The demand-side management
design in [18] includes a group of passive consumers and active users
with DERs.

DR has also been studied in the context of peer-to-peer markets
with little or no interaction with a central energy system [19]. For
example, in [20] a two-stage energy sharing strategy for a building
cluster with distributed transaction was proposed. Considering a similar
setup, buildings in [21] can directly share their energy supplies and
demands within the community. The authors of [22] used an agent-
based model to study the implementation of DR measures in a local
energy market that is not isolated from the public grid.

Although all the works noted above offer beneficial features for both
the users and the grid, they generally fail to take the (often conflicting)
interests of the actors of the higher-level energy system (e.g., retailers)
into account. In this regard, the hierarchical nature of different decision
levels can be captured using bilevel optimization models [23]. Table 1
summarizes the reviewed single-level solutions and compares them
with the bilevel approach chosen in this work.

There is an extensive body of research that applies game-theoretic
frameworks or bilevel optimization models, in which the users follow
the pricing strategy of the aggregator [25,26]. However, many of
the existing models do not consider the load-shifting potential that
results from storage systems such as BSSs. For example, in an uncertain
environment, the EV aggregator in [27] offers selling prices to the
EV owners. In a similar setup, the decision-making variables of the
DR clients in [28] choose the most competitive aggregator. Without
load-shifting potential, the EV owners switch to rival aggregators to
minimize their energy procurement costs. In other models, users must
adapt their preferred electricity demand under strong pricing incen-
tives. For example, in the models of [29] and Yu and Hong [30],
users adjust the amount of electricity they consume based on a sat-
isfaction function. In the time-and-level-of-use scheme studied in [31],
consumers must book an energy capacity within each optimization time
frame. In the pricing process, the electricity consumption of the con-
sumers is unknown to both the supplier and the consumer themselves.
The proposed two-stage optimization model presented in [32] consists
of a real-time optimization stage, in which the microgrid operator
generates separate buy and sell RTPs, and the prosumers decide on the
amount of their hourly electricity consumption. Alternatively, in our
context, because users may own a BSS, they are not required to reshape
their desired demand profiles.

Among the studies that have considered load-shifting with BSSs,
in the model of [33] a competitive community energy storage (CES)
operator trades with the grid and offers RTP to trade with users. The
users in this model decide on the electricity they trade with the grid
and the CES operator. From a social planner’s perspective, the retailer
in [34] interacts with a CES operator and provides RTP for users to
minimize their total costs. In these studies, user-owned energy storage
systems are neglected. The aggregator in [35] also operates a CES
and can adopt either a profit-maximizing or self-sufficiency-maximizing
strategy. With full knowledge of market prices, electricity generation,
and power demand, the aggregator generates buy and sell RTPs for
the users in the EC to elicit a desired load and feed-in pattern. The
presented model of the interplay between users with BSSs and a social-
welfare-optimizing aggregator in [36] can be effectively used to size the
EC. The aggregator agent in [37] provides sale prices for self-optimizing
EVs for optimal bidding in the day-ahead reserve market.

None of the above formulations have considered uncertain input
parameters, and do not include a more generally applicable scenario-
generation algorithm. In our bilevel optimization model, we take these
three sources of uncertainty into account. The stochastic bilevel frame-
work presented in [28,38] determines the optimal involvement in
the wholesale market and its trading with the wind-generation units
while anticipating the reaction of the EVs and responsive loads. The
authors of this work showed that the implemented regret-based bidding
strategy is effective for hedging the risks of uncertainties. However, the
presented model, unlike our model, does not consider bilateral trading
with the clients and does not take prosumagers into account. Herein, we
take the EC grid restrictions into account and include a novel scenario-
generation approach for stochastic optimization. Table 2 compares the
existing bilevel models in comparison to our model.
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Table 2
Comparative overview of the bilevel RTP models in the literature.

Papers BSS
optimization

User-owned
BSS

Prosumager EV EC grid
restrictions

Bi-directional
trading

Uncertain
parameters

[29,30,39–43] ✗ ✗ ✗ ✗ ✗ ✗ ✗

[31] ✗ ✗ ✗ ✗ ✗ ✗ ✓

[32–34,44,45] ✓ ✗ ✗ ✗ ✗ ✗ ✗

[28] ✗ ✗ ✗ ✗ ✗ ✗ ✓

[27] ✗ ✗ ✗ ✓ ✗ ✗ ✓

[38] ✓ ✓ ✗ ✓ ✗ ✗ ✓

[36] ✓ ✓ ✓ ✗ ✗ ✓ ✗

[37] ✓ ✓ ✗ ✓ ✗ ✗ ✗

[46] ✓ ✓ ✗ ✗ ✗ ✗ ✗

[35] ✓ ✓ ✓ ✗ ✗ ✓ ✗

This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓

1.2.2. Solution to DR bilevel problems
Bilevel optimization is widely used to solve consumer’s DR prob-

lems arising in the power sector [23]. Bilevel problems are generally
hard to solve; even linear bilevel problems are shown to be NP-hard
problems [47]. Different approaches have been used to solve bilevel
optimization problems in the literature.

Several studies have used heuristics algorithms [48]. For example,
the bilevel problem in the modeled energy-sharing solution in [49] is
solved with a closed-loop iterative algorithm based on the Brouwer
fixed-point-theorem. Moreover, the authors of [35,42,43,50] used ge-
netic algorithms to iterate between the upper- and lower-level problems
and search for the optimal solution. However, heuristic algorithms have
the drawback that they cannot guarantee that the global solution is
actually found [51].

If the lower-level problem is modeled as a differentiable function,
one can derive the optimal solution mathematically and replace it in
the upper-level problem. This leads to a single-level problem, which
is solvable using commercial solvers. This approach has been used
extensively in the context of DR modeling. For example, in [29,32,41]
the utility of consumers is modeled in a logarithmic relationship with
consumed energy. To model the objectives of the users, the authors
of [33,34,44,46] employed quadratic cost functions as strictly convex
and increasing functions of demand. Although this method can be used
to solve bilevel problems to their global optimum in an efficient man-
ner, the required underlying assumptions for the problem formulation
make it impractical for many real-world applications [35].

Another common approach to solving bilevel problems is using
mathematical techniques such as the Karush–Kuhn–Tucker (KKT) op-
timality conditions to transform the problem into an equivalent math-
ematical program with equilibrium constraints that is solvable with
commercial solvers [52]. Under certain conditions, the emerging com-
plementary slackness constraints can be replaced by the strong duality
condition to eliminate the bilinear terms. These two approaches for
single-level reduction are employed in [53] to solve the microgrid
investment and operation planning bilevel problem. Among the liter-
ature reviewed in Section 1.2.1, the authors of [27,28,36,38] used this
methodology. In many cases, the resulting single-level problem con-
tains many binary variables and requires a high computational effort
to solve [54]. In this paper, we propose a quasi-relaxation technique
and an innovative solution algorithm to eliminate the binary variables
that appear in the single-level reduction process and correspondingly
solve the problem efficiently.

1.2.3. Contributions
Against this background, this paper makes the following research

contributions:
1. We propose a bilevel stochastic nonlinear programming model to
find the buy–sell ORTP for a community-owned profit-maximizing
aggregator that manages for users (including prosumagers and EVs)
in a smart EC. We show that the profit-maximizing operation also
maximizes the welfare of the EC. In two transformation steps, we derive

a stochastic disjunctive program from the original bilevel stochastic
nonlinear program. To enable this transformation, we first apply a
single-level reduction technique using KKT optimality and strong du-
ality conditions and then discretize the aggregator’s prices. We use a
multi-parameter cluster-based (MPCB) scenario-generation approach to
produce the required representative scenarios for the key uncertainties
in the stochastic optimization problem.
2. We provide an efficient solution to the reformulated disjunctive
program. We apply a linear quasi-relaxation approach to eliminate
the nonlinear terms and propose a novel modified branch-and-bound
(MBB) algorithm that imposes the relaxed constraint. Moreover, we
extend the algorithm used in [54] and [55] by employing a dynamic
partitioning approach, which disentangles the optimization results from
the disjunctive parameters and reduces the computational effort needed
to solve the problem.
3. We present a comprehensive analysis, regarding the effectiveness of
the proposed ORTP scheme and solution algorithm. For this analysis,
we compare the ORTP tariff with two benchmark tariffs: average
pricing and RTP. Moreover, we demonstrate the superior computational
performance of the proposed MBB algorithm in comparison with the
branch-and-bound algorithm suggested in [54] and a standard mixed-
integer linear programming (MILP) formulation that is used extensively
in the literature. We parameterize the model with real data, examine
several case studies, and evaluate the effectiveness of the proposed
ORTP strategy against two benchmark tariffs.

The remainder of this paper is organized as follows. The method-
ology is described in Section 2, where we present our EC model
and the proposed bilevel problem. In this section, we reformulate the
mathematical problem into a quasi-relaxed stochastic disjunctive pro-
gram and describe the developed MBB algorithm to solve the resulting
problem. Section 2 also contains the definitions of the benchmark
models and tariffs used to assess the results as well as a description of
the data used in our analysis. This section ends with the explanation
of the developed MPCB scenario-generation algorithm and the used
data in the case studies. In Section 3, we introduce four case studies
and demonstrate the performance of the ORTP tariff and the MBB
algorithm. In Section 4, we compare the results of the case studies
with those of the benchmark cases. The limitations of our methodology
and the transferability of our results to real-world cases are critically
discussed in 5. Section 6 concludes.

2. Methodology

2.1. Model structure

ECs represent multifaceted sociotechnical systems that, depending
on their context and purpose, can have numerous definitions and
diverse forms [56]. The bottom-up model developed in this work
adopts the following definition: ‘‘An EC is a group of electricity users
(whether with or without DERs) that are connected to the same distribution
network. Each user is metered separately and operates under a contract
with a community-owned aggregator. The aggregator manages the electricity
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Fig. 1. Schematic illustration of the modeled energy community.

demand and generation of the EC by trading within the community and in
the electricity market’’. Note that in our definition, we do not consider
the possibility of collective self-consumption or virtual sharing of the
electricity in the EC. The EC modeled according to this definition is
schematically illustrated in Fig. 1.

The EC aggregator is an agent that maximizes its profit (𝑟) by op-
timizing its hourly trading in the day-ahead electricity market (hence-
forth referred to as the market) and with the users in the EC, while
considering the predicted EC grid limitations over the next day. For
this optimization, the aggregator receives a forecast of the upcoming
market prices (𝑃M) and the maximum available line capacity behind
the point of common coupling (PCC) (𝑊 𝑡). It also sets the real-time sell
and buy prices (𝑝S, 𝑝B) to trade with the users within the community.
To isolate the effects of the ORTP, we consider a case in which the
aggregator does not operate a BSS. Therefore, the aggregator’s demand
and supply bids to the market correspond to the EC’s residual load and
generation, respectively.

Users within the EC can be parameterized as consumers, prosumers,
prosumagers, or EVs. For the case of a prosumager, the user’s model and
the interaction with the aggregator is schematically shown in Fig. 2.
Users with BSS optimize their interactions with the EC grid, i.e., their
power consumption and feed-in (𝑒S, 𝑒B) to minimize their costs (𝐶). We
assume that the users are equipped with the processing and controlling
systems required for this optimization. Since the user’s bidirectional
grid interaction is measured with a single smart meter, the actual
interaction with the grid is unidirectional in each time step (𝑒S = 0
if 𝑒B > 0 and vice versa).4 Moreover, the considered metering scheme
allows a behind-the-meter consumption of the self-generated electricity.
Due to the near-zero marginal cost of the rooftop PV systems, we
assume that the electricity generated by the users is primarily used to
cover their electricity demand. If the electricity generated by the user
(𝐺) is less than demand (𝐿), the difference must be covered by the
BSS or from the grid. Similarly, if the electricity generation exceeds the
demand, the user will feed the residual generation into the BSS or sell
to the grid. We also assume that the electricity consumption of the users
is price inelastic, and the only source of flexibility is the load-shifting
potential with the BSS. The parameter 𝛬𝑖 considers the self-discharge
rate, while 𝜂𝐶𝑖 and 𝜂D𝑖 account for charge and discharge efficiency of
the BSS. The state of charge (SOC) of the BSS (modeled as 𝑎) has an
initial value of 𝐴𝑖 and is limited by its lower and upper limits (𝐴𝑖, 𝐴𝑖).
By adding an availability factor (𝑈𝑖𝑡), we take into account the inability

4 Note that the metering scheme in our model differs from the gross-
metering scheme, in which the electricity consumption and generation are
metered separately. Furthermore, unlike net-metering schemes, the users
cannot consume the electricity fed into the grid at a later time free of charge.

Fig. 2. Schematic overview of the prosumager’s model.

or unwillingness of the users to charge their BSSs. This is particularly
important in the case of EVs, as these users may not be connected to
the grid during the whole day.

The interplay between the aggregator and users within this model
structure leads to a hierarchical decision-making formulation, specified
as a bilevel program, in which the aggregator’s and users’ optimizations
are the upper- and lower-level problems, respectively.

2.2. Bilevel program

The stochastic bilevel programming model is formulated in (1), in
which the indices 𝑖, 𝑡, and 𝑣 refer to each user, optimization time, and
probabilistic scenario, respectively:

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

𝑟 =
∑
𝑖,𝑡,𝑣

𝜙𝑣 (𝑃M
𝑡𝑣 (𝑒

B
𝑖𝑡𝑣−𝑒

S
𝑖𝑡𝑣)+𝑝

S
𝑡 𝑒

S
𝑖𝑡𝑣−𝑝

B
𝑡 𝑒

B
𝑖𝑡𝑣)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑟𝑖𝑡𝑣

(1a)

subject to: 𝑃 S ≤ 𝑝S𝑡 ≤ 𝑃
S
, 𝑃 B ≤ 𝑝B𝑡 ≤ 𝑃

B
, (1b)

−𝑊 𝑡 ≤ ∑
𝑖
(𝑒S𝑖𝑡𝑣−𝑒

B
𝑖𝑡𝑣) ≤ 𝑊 𝑡, (1c)

where 𝑒S𝑖𝑡𝑣, 𝑒
B
𝑖𝑡𝑣 ∈

argmin
𝜒

𝐶𝑖𝑣 =
∑
𝑡
(𝑝S𝑡 𝑒

S
𝑖𝑡𝑣−𝑝

B
𝑡 𝑒

B
𝑖𝑡𝑣+𝑃

Q
𝑖 (𝑧C𝑖𝑡𝑣+𝑧

D
𝑖𝑡𝑣)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑐𝑖𝑡𝑣

), (1d)

subject to: 𝑎𝑖𝑡𝑣 = 𝛬𝑖𝑎𝑖(𝑡−1)𝑣+
𝜂𝐶𝑖 𝑧

C
𝑖𝑡𝑣

𝜃B𝑖
−
𝑧D𝑖𝑡𝑣
𝜂D𝑖 𝜃

B
𝑖

∶ (𝜆𝑎𝑖𝑡𝑣), (1e)

𝑧C𝑖𝑡𝑣 = 𝑒S𝑖𝑡𝑣−𝑒
B
𝑖𝑡𝑣+𝐺𝑖𝑡𝑣−𝐿𝑖𝑡𝑣+𝑧

D
𝑖𝑡𝑣 ∶ (𝜆𝑧𝑖𝑡𝑣), (1f)

𝐴𝑖 ≤ 𝑎𝑖𝑡𝑣 ≤ 𝐴𝑖 ∶
(
𝜏 𝑖𝑡𝑣, 𝜏𝑖𝑡𝑣

)
, (1g)

𝑎𝑖𝑡𝑣 = 𝐴𝑖 ∶
(
𝛼𝑎𝑖0𝑣

)
, 𝑡 = 0, (1h)

0 ≤ 𝑒B𝑖𝑡𝑣 ≤ 𝐺𝑖 ∶ (𝜇
𝑖𝑡𝑣
, 𝜇𝑖𝑡𝑣), (1i)

0 ≤ 𝑒S𝑖𝑡𝑣 ≤ 𝐿𝑖 ∶
(
𝜐𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣

)
, (1j)

0 ≤ 𝑧C𝑖𝑡𝑣 ≤ 𝑈𝑖𝑡𝑍
C
𝑖 𝜓𝑖𝑡𝑣 ∶ (𝛽

𝑖𝑡𝑣
, 𝛽𝑖𝑡𝑣), (1k)

0 ≤ 𝑧D𝑖𝑡𝑣 ≤ 𝑈𝑖𝑡𝑍
D
𝑖 (1−𝜓𝑖𝑡𝑣) ∶ (𝛾

𝑖𝑡𝑣
, 𝛾 𝑖𝑡𝑣). (1l)

where 𝜒 in (1d) is the set of the user’s decision variables 𝜒 =
{𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣, 𝑎𝑖𝑡𝑣, 𝑧

C
𝑖𝑡𝑣, 𝑧

D
𝑖𝑡𝑣}. The symbols in parentheses (i.e., 𝜆𝑎𝑖𝑡𝑣, 𝜆

𝑧
𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣,

𝛽
𝑖𝑡𝑣

, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜏𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝛼
𝑎
𝑖0𝑣, 𝜐𝑖𝑡𝑣, and 𝜐𝑖𝑡𝑣) are the

Lagrangian dual variables of the corresponding constraint in the lower-
level problem. Eq. (1a) represents the utility function of the aggregator
and 𝜙𝑣 is the probability of each scenario. Eq. (1b) sets bounds to ensure
that the aggregator’s prices in the EC are no worse than those of the
public grid (𝑃 S, 𝑃

S
, 𝑃B, and 𝑃

B
are the lower and upper limits for the

aggregator’s sell and buy prices). We make these assumptions in the
absence of competition among different aggregators and retailers. The
total power imported/exported through the line that connects the EC
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to the PCC is limited in Eq. (1c), where 𝑊 𝑡
5 is the maximum available

capacity of this line at time 𝑡. The user’s objective in Eq. (1d) is to
minimize the total operation costs for the given optimization period
(𝑇 ). Therefore, the lower-level objective is unique for each pair of 𝑖
and 𝑣. The parameter 𝑃Q

𝑖 is a strictly positive value representing the
marginal operation cost of the BSS. Eq. (1e) describes the SOC of the
BSS, which depends on the SOC in the previous time step, the self-
discharge rate (𝛬𝑖), and the charged and discharged amount (𝑧C𝑖𝑡𝑣 and
𝑧D𝑖𝑡𝑣). The constraint in (1f) guarantees that the incoming and outgoing
power flows for each user and time step are balanced. Constraint (1g)
makes sure that the SOC of the BSS stays within an acceptable range.
Eqs. (1i) and (1j) consider the users’ nominal power constraints (𝐿𝑖
and 𝐺𝑖). The battery charge and discharge in each step are limited by
the maximum allowed power constraints (𝑍

C
𝑖 , 𝑍

D
𝑖 ), the availability of

the battery, and the binary variable 𝜓𝑖𝑡𝑣, which prevents simultaneous
charging and discharging of the BSS. In the proposed stochastic model,
the aggregator considers the uncertainty of market prices as well as
the users’ electricity generation and load when deciding the hourly
sell and buy prices. To cope with these uncertainties and achieve the
best solution, the aggregator must solve the bilevel problem for various
scenarios. This means that, for a set of scenarios and for each step, a
unique solution (𝑝S𝑡 and 𝑝B𝑡 ) is delivered to the users. The problem of
the users also incorporates uncertainties regarding their demand and
generation.

Note that the fact that the aggregator maximizes its profit does
not compromise its fiduciary obligation to the EC, since the welfare
of the EC is, in this case, maximized (see Proposition 1). The actual
redistribution of the aggregator’s profit among the EC users can be
done in several ways to reflect their respective interests, but these
considerations are subsidiary and outside the scope of this analysis.

Proposition 1. Solving (1) is equivalent to maximizing the community
welfare (CW):

⎧
⎪⎪⎨⎪⎪⎩

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

𝑟(𝑝S𝑡 , 𝑝
B
𝑡 )

s.t. (1a), (1b)
where 𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣 ∈

argmin𝐶𝑖𝑣(𝜒)
𝜒

s.t. (1e)–(1l)

⎫
⎪⎪⎬⎪⎪⎭

≡

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

∑
𝑖𝑡𝑣 𝜙𝑣

(
𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝

B
𝑡 ) − 𝐶𝑖𝑣(𝜒)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=CW

)

s.t. (1a), (1b)
where 𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣 ∈

argmin𝐶𝑖𝑣(𝜒)
𝜒

s.t. (1e)–(1l)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(2)

Proof. Proof of this proposition is given in Appendix A.1.

2.3. Proposed stochastic disjunctive program

We solve the bilevel program in (1) by reformulating the problem
into a single-level problem. To be able to represent the lower-level
problem, which is currently a MILP problem, by the KKT optimal-
ity conditions (which are necessary and sufficient), we propose an
equivalent relaxed linear programming (LP) formulation of (1). Using
Proposition 2, we can omit the binary variables in the constraints (1k)
and (1l) in the formulation of the lower-level problem.

Proposition 2. If we drop the binary variables 𝜓𝑖𝑡𝑣 from the MILP model,
the optimal solution of the resulting relaxed LP model and its original MILP
model are the same.

5 Availability of the line capacity (𝑊 𝑡) can vary due to power-system
operation issues such as a line outage at time 𝑡.

Proof. We assume that the binary variable 𝜓𝑖𝑡𝑣, (1k), and (1l) do
not exist and the BSS unit can charge and discharge simultaneously,
i.e., 𝑧C𝑖𝑡𝑣 > 0 and 𝑧D𝑖𝑡𝑣 > 0. Therefore, (1) is an LP problem in this case
and the KKT optimality conditions hold. Based on this assumption, the
Lagrangian multipliers 𝛽

𝑖𝑡𝑣
and 𝛾

𝑖𝑡𝑣
are equal to zero. The stationary

conditions of the relaxed LP problem are written in (3):

𝑝S𝑡 +𝜆
𝑧
𝑖𝑡𝑣+𝜐𝑖𝑡𝑣−𝜐𝑖𝑡𝑣 = 0 ∶ 𝑒S𝑖𝑡𝑣, (3a)

−𝑝B𝑡 −𝜆
𝑧
𝑖𝑡𝑣+𝜇𝑖𝑡𝑣−𝜇𝑖𝑡𝑣 = 0 ∶ 𝑒B𝑖𝑡𝑣, (3b)

−𝜆𝑎𝑖𝑡𝑣+𝛬𝑖𝜆
𝑎
𝑖(𝑡+1)𝑣−𝜏 𝑖𝑡𝑣+𝜏 𝑖𝑡𝑣 = 0 ∶ 𝑎𝑖𝑡𝑣, (3c)

𝛬𝑖𝜆
𝑎
𝑖1𝑣−𝛼

𝑎
𝑖0𝑣 = 0 ∶ 𝑎𝑖𝑡𝑣, 𝑡 = 0, (3d)

𝑃Q
𝑖 −𝜆𝑎𝑖𝑡𝑣∕𝜂

D
𝑖 𝜃

B
𝑖 +𝜆

𝑧
𝑖𝑡𝑣−𝛾 𝑖𝑡𝑣+𝛾 𝑖𝑡𝑣 = 0 ∶ 𝑧D𝑖𝑡𝑣, (3e)

𝑃Q
𝑖 +𝜂𝐶𝑖 𝜆

𝑎
𝑖𝑡𝑣∕𝜃

B
𝑖 −𝜆

𝑧
𝑖𝑡𝑣−𝛽𝑖𝑡𝑣+𝛽𝑖𝑡𝑣 = 0 ∶ 𝑧C𝑖𝑡𝑣. (3f)

From (3e) and (3f) we can derive:

𝜆𝑎𝑖𝑡𝑣∕𝜃
B
𝑖

(3e)
= 𝜂D𝑖 (𝑃

Q
𝑖 +𝜆𝑧𝑖𝑡𝑣−𝛾 𝑖𝑡𝑣+𝛾 𝑖𝑡𝑣)

(3f)
= (−𝑃Q

𝑖 +𝜆𝑧𝑖𝑡𝑣+𝛽𝑖𝑡𝑣−𝛽𝑖𝑡𝑣)∕𝜂
𝐶
𝑖 , (4)

Based on our assumptions of 𝑧C𝑖𝑡𝑣 > 0 and 𝑧D𝑖𝑡𝑣 > 0, the terms 𝛽
𝑖𝑡𝑣

= 0
and 𝛾

𝑖𝑡𝑣
= 0 can be omitted from (4). Therefore,

( 1
𝜂𝐶𝑖

−𝜂D𝑖 )𝜆
𝑧
𝑖𝑡𝑣 = (𝜂D𝑖 𝛾 𝑖𝑡𝑣 +

1
𝜂𝐶𝑖
𝛽𝑖𝑡𝑣) + ( 1

𝜂𝐶𝑖
+𝜂D𝑖 )𝑃

Q
𝑖 . (5)

While the right-hand side of (5) is strictly positive (𝑃Q
𝑖 , 𝜂𝐶𝑖 , 𝜂D𝑖 > 0

and 𝛽𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣 ≥ 0) its left-hand side is negative (𝜆𝑧𝑖𝑡𝑣 < 0 and 1
𝜂𝐶𝑖

−𝜂D𝑖 ≥
0). From this contradiction, one can conclude that the assumption of
simultaneous charge and discharge of the BSS (𝑧C𝑖𝑡𝑣 > 0 and 𝑧D𝑖𝑡𝑣 > 0)
cannot hold.6 □

Thus, the dual feasibility conditions of the LP formulation can be
described as:

𝛽
𝑖𝑡𝑣
, 𝛽𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜏𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣 ≥ 0. (6)

The complementary slackness conditions for the lower-level problem
result in several nonlinear terms but, according to [57], the comple-
mentary slackness conditions can be replaced with the strong duality
condition. The strong duality condition for the lower-level problem can
be formulated as:

−
∑
𝑡
(𝑝S𝑡 𝑒

S
𝑖𝑡𝑣−𝑝

B
𝑡 𝑒

B
𝑖𝑡𝑣+𝑃

Q
𝑖 (𝑧C𝑖𝑡𝑣+𝑧

D
𝑖𝑡𝑣)) = −𝛼𝑎𝑖0𝑣𝐴𝑖+

∑
𝑡
(𝜏𝑖𝑡𝑣𝐴𝑖−𝜏 𝑖𝑡𝑣𝐴𝑖+𝜇𝑖𝑡𝑣𝐺𝑖+𝜐𝑖𝑡𝑣𝐿𝑖−𝜆

𝑧
𝑖𝑡𝑣(𝐺𝑖𝑡𝑣−𝐿𝑖𝑡𝑣)

+𝑈𝑖𝑡𝛽𝑖𝑡𝑣𝑍
C
𝑖 +𝑈𝑖𝑡𝛾 𝑖𝑡𝑣𝑍

D
𝑖 ). (7)

The bilinear terms 𝑝S𝑡 𝑒
S
𝑖𝑡𝑣 and 𝑝B𝑡 𝑒B𝑖𝑡𝑣 in the strong duality constraint and

the upper-level problem make the reformulated problem a nonlinear
programming (NLP) problem. We denote these bilinear terms 𝜋S𝑖𝑡𝑣 and
𝜋B𝑖𝑡𝑣, respectively. To eliminate the nonlinearity, we introduce discrete
electricity sell and buy prices that can take values from a feasible set
of prices 𝑝X𝑡 ∈ {𝑃X

1𝑡 ,… , 𝑃X
𝑘𝑡 ,… , 𝑃X

𝑛𝑡 }. Accordingly, we formulate the
bilinear terms in the following disjunctive form:

𝑝X𝑡 𝑒
X
𝑖𝑡𝑣 =

𝑛⋁
𝑘=1

𝑃X
𝑘𝑡𝑒

X
𝑖𝑡𝑣, (8)

where the disjunction is represented by the disjunction (OR) operator⋁. To shorten the expressions in (8) and throughout this paper, the

6 Although we have proved Proposition 2 analytically, the proposition
statement is also intuitive. It is not economical for a BSS with charging and
discharging efficiencies less than 100% to charge and discharge at the same
time.
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superscript X represents both sell and buy variables and parameters (in-
stead of the superscripts S and B). The original program can therefore
be rewritten as a stochastic disjunctive program:

Maximize
𝜉

𝑟 =
∑
𝑣,𝑖,𝑡≠0

𝜙𝑣(𝑃M
𝑡𝑣 (𝑒

B
𝑖𝑡𝑣−𝑒

S
𝑖𝑡𝑣)+

𝑁⋁
𝑘=1

𝑃 S
𝑘 𝑒

S
𝑖𝑡𝑣−

𝑁⋁
𝑘=1

𝑃B
𝑘 𝑒

B
𝑖𝑡𝑣)

Subject to: (1b), (1c), (1e)–(1l), (3), (6),

(7) rewritten with (8). (9)

where 𝜉 is the set of decision variables. 𝜉 = {𝑝S𝑡 , 𝑝B𝑡 , 𝑒S𝑖𝑡𝑣, 𝑒
B
𝑖𝑡𝑣, 𝑎𝑖𝑡𝑣,

𝑧C𝑖𝑡𝑣, 𝑧
D
𝑖𝑡𝑣, 𝜆

𝑎
𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣}. Using

a binary expansion approach, the disjunctive problem in (9) can be
reformulated as a MILP problem. The MILP formulation (presented later
in Section 2.5) contains many binary variables, which leads to a high
computational effort. Moreover, the performance of the solver depends
on the right choice of 𝑀X. To improve these shortcomings, authors
of [48] suggest an alternative approach to deal with bilinear terms.
Similar to [54], we adopt a linear quasi-relaxation to transform this
problem to an LP problem and deal with the disjunctive nature of 𝑝X𝑡
in our solution algorithm.

To this end, instead of formulating the electricity sell and buy prices
as a convex combination of discrete values, we use only their lower and
upper bounds. By introducing a continuous variable 𝑑X𝑡 , we rewrite 𝑝X𝑡
as:

𝑝X𝑡 = 𝑝X
𝑡
𝑑X𝑡 +𝑝

X
𝑡 (1 − 𝑑

X
𝑡 ), 0 ≤ 𝑑X𝑡 ≤ 1. (10)

Therefore, the aggregator’s 𝑝X𝑡 always adopts a value between 𝑝X
𝑡

and
𝑝X𝑡 . Then, the disjunctive constraints can be enforced by:
𝑁⋁
𝑘=1

[
𝑝X
𝑡
𝑑X𝑡 +𝑝

X
𝑡 (1 − 𝑑

X
𝑡 ) = 𝑃X

𝑘𝑡

]
. (11)

To perform the quasi-relaxation method, we rewrite 𝑒X𝑖𝑡𝑣, which ap-
pears in the bilinear term 𝜋X𝑖𝑡𝑣, as the summation of two non-negative
variables:

𝑒X𝑖𝑡𝑣 = 𝑒X(0)𝑖𝑡𝑣 +𝑒X(1)𝑖𝑡𝑣 . (12)

Therefore, the bilinear term 𝜋X𝑖𝑡𝑣 can be formulated as:

𝜋X𝑖𝑡𝑣 = (𝑒X(0)𝑖𝑡𝑣 +𝑒X(1)𝑖𝑡𝑣 )
[
𝑝X
𝑡
𝑑X𝑡 +𝑝

X
𝑡 (1 − 𝑑

X
𝑡 )
]
. (13)

We solve the formulated disjunctive program using an MBB algo-
rithm, which branches on the ranges of sell and buy prices instead
of branching on binary variables. To obtain the upper bound of the
objective value, we apply quasi-relaxation of the problem and drop the
disjunctive constraint (11) and replace (13) with (14):

𝜋X𝑖𝑡𝑣 = 𝑒X(0)𝑖𝑡𝑣 𝑝X
𝑡
+𝑒X(1)𝑖𝑡𝑣 𝑝X𝑡 , (14a)

0 ≤ 𝑒X(0)𝑖𝑡𝑣 ≤𝑀X𝑑X𝑡 , (14b)

0 ≤ 𝑒X(1)𝑖𝑡𝑣 ≤𝑀X(1−𝑑X𝑡 ), (14c)

0 ≤ 𝑑X𝑡 ≤ 1. (14d)

As a result, the disjunctive program (9) can be reformulated in the
following quasi-relaxed form:

SDPQ: Maximize
𝜚

𝑟 =
∑
𝑣,𝑖,𝑡

𝜙𝑣(𝑃M
𝑡𝑣 (𝑒

B
𝑖𝑡𝑣−𝑒

S
𝑖𝑡𝑣)+𝜋

S
𝑖𝑡𝑣−𝜋

B
𝑖𝑡𝑣)

subject to: (1b), (1c), (1e)–(1l), (3), (6),

(7) rewritten with 𝜋X𝑖𝑡𝑣 from (14), (12). (15)

where 𝜚 = {𝑝S𝑡 , 𝑝B𝑡 , 𝑒S𝑖𝑡𝑣, 𝑒
S(0)
𝑖𝑡𝑣 , 𝑒S(1)𝑖𝑡𝑣 , 𝑒B𝑖𝑡𝑣, 𝑒

B(0)
𝑖𝑡𝑣 , 𝑒B(1)𝑖𝑡𝑣 , 𝑎𝑖𝑡, 𝑧C𝑖𝑡𝑣, 𝑧

D
𝑖𝑡𝑣, 𝑑

S
𝑡 , 𝑑B𝑡 ,

𝜆𝑎𝑖𝑡𝑣, 𝜏 𝑖𝑡𝑣, 𝜏𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜇𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝜐𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣, 𝛽𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣, 𝛾 𝑖𝑡𝑣} is the set of decision
variables. For simplicity, we will refer to the quasi-relaxed formulation
of the stochastic disjunctive program in (15) as SDPQ.

2.4. MBB solution algorithm

We now explain the different steps of the MBB algorithm in solv-
ing the SDPQ. Having imposed the dropped constraint in the quasi-
relaxation, we partition the disjunctive steps dynamically to find the
solution of (1) efficiently. The dynamic partitioning feature addresses
the limitation of the disjunctive formulation in having a fixed number
of discrete steps.
Fig. 3 illustrates the different steps of the algorithm in detail.
Initialization: The algorithm starts by initializing the parameters 𝑝X

𝑡
,

𝑝X𝑡 , 𝐻X
𝑡 , and 𝐻X

𝑡 as well as the algorithm hyperparameters LB and 𝑆X:

𝑝X
𝑡
←←← 𝑃X

1𝑡 , 𝑝
X
𝑡 ←←← 𝑃X

𝑛𝑡 , (16a)

𝐻X
𝑡 ←←← 𝑃X, 𝐻

X
𝑡 ←←← 𝑃

X
, (16b)

LB ←←← −∞, 𝑆X ←←← (𝑃
X
−𝑃X)∕(|𝑘|−1), (16c)

𝑃X
𝑘𝑡 = 𝐻X

𝑡 +𝑘(𝐻
X
𝑡 −𝐻

X
𝑡 )∕|𝑘|. (16d)

where 𝐻X
𝑡 and 𝐻

X
𝑡 are intermediary lower and upper levels of dis-

junctive values in each time step, and 𝑆X is the disjunction step size
and LB is the lower bound of the solution that represents the best
solution so far. In (16d), the disjunctive values 𝑃X

𝑘𝑡 for each time step
are calculated.
Solving SDPQ and generating new branches: In each iteration (itr
in short), the algorithm solves the quasi-relaxed formulation of the
problem (SDPQ) in (15). If the problem is infeasible or the upper bound
of the objective function (𝑟) is less than LB, the nodes are fathomed.
For the cases with 𝑟 higher than LB (𝑟 ≥ LB), the algorithm checks the
condition (17) to make sure that the result of the SDPQ is identical to
(1) and the relaxed constraint in (11) is imposed.

𝑑X𝑡 ∈ {0, 1} ∨ 𝑝X
𝑡
= 𝑝X𝑡 . (17)

If condition (17) is valid for all the optimization time steps, the node
is fathomed, 𝐿𝐵 is updated (𝐿𝐵 ←←← 𝑟), and the values of 𝑝X

𝑡
and 𝑝X𝑡

are stored in intermediary parameters 𝑝X⋆
𝑡

and 𝑝X⋆𝑡 . The results with
𝑑X𝑡 ∉ {0, 1}, 𝑝X

𝑡
≠ 𝑝X𝑡 indicate that 𝑝X𝑡 is not discrete (i.e., 𝑝X𝑡 ∉

{𝑃X
1𝑡 ,… , 𝑃X

𝑘𝑡 ,… , 𝑃X
𝑛𝑡 }) and therefore does not satisfy constraint (11). In

these cases, we keep the nodes active and generate new branches.
According to (18a), the algorithm finds the closest disjunctive value
and generates two new branches on either side of the 𝑝X𝑡 (18b):

𝑃X
𝑘𝑡 ≤ 𝑝X

𝑡
𝑑X𝑡 +𝑝

X
𝑡 (1 − 𝑑

X
𝑡 ), (18a)

𝑝X𝑡 = 𝑃X
𝑘𝑡 and 𝑝X

𝑡
= 𝑃X

(𝑘+1)𝑡. (18b)

After creating new branches, the algorithm evaluates all the nodes
and selects the one with the largest LB as the next node to assess.
We chose this branching method as it creates fewer sub-problems and,
therefore, reduces the computational time required [58]. The next node
is evaluated by repeating this step.
Dynamic partitioning: Each optimization ‘‘round’’ is terminated when
all the created nodes have been investigated. Once there are no branches
left to solve, if LB is equal to its initial value (i.e., −∞), the problem
is infeasible. If not (i.e., the algorithm has found at least one solution
to the problem), we discretize the solution range further to search for
values that may lie between the first disjunctive steps and we start a
new round of optimization. Changes in the solution range (𝑝X

𝑡
to 𝑝X𝑡 ) are

schematically visualized in Fig. 4. To perform the dynamic partitioning,
we update 𝐻

X
𝑡 and 𝐻X

𝑡 with the lower and upper values of the best
solution:

𝐻
X
𝑡 ←←← 𝑝X⋆𝑡 ,𝐻X

𝑡 ←←← 𝑝X⋆
𝑡

(19)

If 𝑝X
𝑡

and 𝑝X𝑡 have adopted the same value (𝑝X
𝑡

= 𝑝X𝑡 ), at least one of
them is moved by the size of one step 𝑆X:

If 𝑝X
𝑡
= 𝑝X𝑡 = 𝑃X then 𝐻

X
𝑡 ←←← 𝑝X

𝑡
+𝑆X, (20a)
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Fig. 3. Our proposed modified branch-and-bound (MBB) algorithm.

Else if 𝑝X
𝑡
= 𝑝X𝑡 = 𝑃

X
then 𝐻X

𝑡 ←←← 𝑝X𝑡 −𝑆
X, (20b)

Else {𝐻
X
𝑡 ←←← 𝑝X

𝑡
+𝑆X and 𝐻X

𝑡 ←←← 𝑝X𝑡 −𝑆
X} (20c)

Finally, we update the values of 𝑝X
𝑡

and 𝑝X𝑡 once more, set the LB to
−∞, update the disjunctive values according to (16d), and solve the
problem again.

𝑝X𝑡 ←←← 𝐻
X
𝑡 , 𝑝

X
𝑡
←←← 𝐻X

𝑡 (21)

If the solution (LB) is improved, the algorithm continues. Otherwise,
the optimal solution is reported.

2.5. Benchmark models

To assess the performance of the proposed MBB algorithm, we solve
the bilevel program with two alternative algorithms, as described in
Sections 2.5.1 and 2.5.2.

2.5.1. MILP
To reformulate the disjunctive problem in (9) as a MILP problem, we

use a binary expansion approach. For the disjunctive term ⋁𝑛
𝑘=1𝑃

X
𝑘𝑡𝑒

X
𝑖𝑡𝑣,

we introduce binary variables ∑𝑁
𝑘=1𝑏

X
𝑡𝑣𝑘 = 1 and rewrite the disjunctive

constraints as:

−𝑀X𝑏X𝑡𝑣𝑘 ≤ ℎX𝑖𝑡𝑘𝑣 ≤𝑀X𝑏X𝑡𝑣𝑘,∀𝑖𝑡𝑣𝑘, (22a)

−𝑀X(1 − 𝑏X𝑡𝑣𝑘) ≤ ℎX𝑖𝑡𝑘𝑣 − 𝑃
X
𝑘𝑡𝑒

S
𝑖𝑡𝑣 ≤𝑀X(1 − 𝑏X𝑡𝑣𝑘),∀𝑖𝑡𝑣𝑘, (22b)

Fig. 4. Change of the solution range (𝑝X𝑡 to 𝑝X
𝑡
) in our proposed MBB algorithm. Itr

X1, X2 and X3 respectively refer to the iterations with the best solutions in the first,
second, and third rounds of optimization.

where 𝑀X is a sufficiently large number, and ℎX𝑖𝑡𝑘𝑣 are continuous
variables that are enforced to take the values of the binary terms for a
single step 𝑘. The disjunctive term and the prices can then be written
as:

𝑁⋁
𝑘=1

𝑃X
𝑘𝑡𝑒

X
𝑖𝑡𝑣 =

𝑁∑
𝑘=1

ℎX𝑖𝑡𝑘𝑣, (23a)
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𝑝X𝑡 =
𝑁∑
𝑘=1

𝑃X
𝑘𝑡𝑏

X
𝑡𝑣𝑘. (23b)

The disjunctive problem in (9) together with additional constraints
derived in (22) and (23) can be solved using standard commercial MILP
solvers and branch-and-bound algorithms.

2.5.2. Special branch-and-bound (SBB) algorithm
To demonstrate the improvements resulting from the MBB algo-

rithm, we also solve SDPQ using the SBB algorithm proposed in [54].

2.6. Benchmark tariffs

As shown in Proposition 1, we expect that the competition between
the aggregator and users in the proposed ORTP strategy increases the
CW of the EC, defined as CW = 𝑟 − 𝐶 ′, where 𝐶 ′ =

∑
𝑖𝑡𝑣 𝜙𝑣𝐶𝑖𝑣 is the

total cost of users. Note that, in the calculation of CW, the terms with
𝑝X𝑡 are eliminated. Therefore, CW =

∑
𝑖𝑡𝑣 𝜙𝑣𝑃

M
𝑡𝑣 (𝑒

S
𝑖𝑡𝑣 − 𝑒

B
𝑖𝑡𝑣)+𝑃

Q
𝑖 (𝑧C𝑖𝑡𝑣+𝑧

D
𝑖𝑡𝑣).

To validate our hypothesis regarding the impact of competition on the
CW, we compare the resulting CW values from the ORTP with those
gained from the two benchmarks.

• Average pricing (AP) uses the mean value of the market prices during
the simulated period to calculate 𝑝X𝑡 . Therefore, the tariff does not
contain any real-time element and the price is constant over time,
similar to the retail price in many countries:

𝑝X𝑡 = (
𝑇∑
𝑡
𝑃M
𝑡𝑣 )∕|𝑡| + 𝛤X. (24)

• Real-time pricing (RTP) includes the market price signals in 𝑝X𝑡 :

𝑝X𝑡 = 𝑃M
𝑡𝑣 + 𝛤X. (25)

While the aggregator’s margin in the ORTP is optimized and may
change in real time, the parameters 𝛤X in Eqs. (24) and (25) are
exogenous model assumptions that do not vary over time. We assume
that 𝛤 S = −𝛤B, and this is set at 0.5 ¢/kWh. Since, in the calculation of
CW, the terms with 𝑝X𝑡 are eliminated, the choice of 𝛤X does not have
any impact on the community’s welfare.

2.7. Data and model parameterization

For the household demand profiles, we use the data from [59]. This
dataset contains high-resolution measured load profiles of 74 different
German households. Data regarding the load and availability profiles
of EVs were obtained using the open-source tool VencoPy [60], based
on the mobility data available in [61]. The translation of the mobility
data into the EV electrical demand and charging availability profiles for
this analysis is described in Appendix A.2. The electricity generation
profile of the PV systems is scaled based on the share of generated
electricity from the installed PV capacity in 2018 in Germany (PV
capacity data was collected from [62]). For 𝑃M

𝑡𝑣 , we use the day-
ahead electricity market prices for Germany in [62]. The aggregator’s
maximum (minimum) sell price 𝑃

S
(𝑃 S) is 8 (3) ¢/kWh, while the

maximum (minimum) buy price 𝑃
B

(𝑃B) is 7 (2) ¢/kWh. The marginal
cost of charging and discharging the battery (𝑃Q

𝑖 ) is 1 ¢/kWh. The SOC
of the BSSs cannot drop below 0 or exceed a maximum value of 1
(0 ≤ 𝐴𝑖 ≤ 1). For the user-specific model parameters (𝛶 ), we assume
the values listed in Table 3. The big-M parameters (𝑀S and 𝑀B) in the
MILP and LP formulations are set to 100000. Other parameters will be
introduced for each case study in the next section.

Fig. 5. Silhouette values for different numbers of clusters.

2.8. MPCB scenario generation

The uncertain attributes in SDPQ are the market price, demand and
PV generation of each user. Since these attributes vary continuously
over time and with temperature, wind speed, cloud cover, etc., the
aggregator needs to take their associated uncertainties into account.
One approach to generating the required scenarios for the optimization
is the so-called direct-sampling method, which samples directly from
the historical data. Using this approach, if we increase the size of the
sample, the distribution of the scenarios will converge to the actual dis-
tribution of the data. However, performing the optimization for many
scenarios requires excessive computational resources and is impractical.
To provide a practical number of scenarios that are representative of
the historical data, we propose the following MPCB scenario-generation
algorithm:
Step 1: The time series for all attributes is specified according to year,
month, week, day of the week and hour of the day. Then, the data
for all attributes are scaled to the range [−1,1] so that we can use
the Euclidean distance to compare similarities between different data
points. The vector of attributes x has a probability distribution function
𝑓 (x).
Step 2: The data for the attributes are divided into |{}|7 clusters. We
employ the well-known k-means method to group the dim(x) data into
clusters. To decide on the suitable number of clusters, we perform
a sensitivity analysis by applying the k-means method for different
numbers of clusters and choose a value of || that demonstrates the
highest silhouette value. The silhouette value 𝑠(𝐩) is calculated in (26),
in which 𝑑(𝐩) is the average Euclidean distance between point 𝐩 and
all the points in its cluster. In this equation, 𝑑′(𝐩) is the smallest
average Euclidean distance between point 𝐩 and all the points in other
clusters [63]. A larger average silhouette value, i.e., ∑

𝐩 𝑠(𝐩)∕dim(x),
indicates better cohesion within and separation between the clusters.

𝑠(𝐩) =
⎧⎪⎨⎪⎩

1−𝑑(𝐩)∕𝑑′(𝐩), if 𝑑(𝐩) < 𝑑′(𝐩)
0, if 𝑑(𝐩) = 𝑑′(𝐩)
𝑑′(𝐩)∕𝑑(𝐩)−1, if 𝑑(𝐩) > 𝑑′(𝐩)

(26a)

−1 ≤ 𝑠(𝐩) ≤ 1 (26b)

The average silhouette values for different numbers of clusters are
plotted in Fig. 5. We select |{}| = 4, which results in the highest
silhouette value, as the optimal number of clusters for the k-means
clustering. Moreover, we only retain the attributes that improve the
silhouette value. These attributes are the hour of day, day of the week,
market prices, load, and solar generation profiles.

7 The expression |{𝑄}| is used for cardinality of the set {𝑄}.
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Table 3
Users’ technical parameters.

𝛶 𝜃B𝑖 𝜂𝐶𝑖 𝜂D𝑖 𝛬𝑖 𝑍
C
𝑖 𝑍

D
𝑖 𝐺𝑖 𝐿𝑖 𝑃Q

𝑖 𝜃PV𝑖 BSS
[−] [kWh] [−] [−] [−] [kW] [kW] [kW] [kW] [¢/kWh] [kW] [−]

1 20 1 1 1 20 20 20 20 1 20 HES
2 0.01a 0 0.01a 0 0 0 20 20 0 0 ✗

3 10 0.95 0.95 0.99 10 10 20 20 1 10 HES
4 6 0.90 0.90 1 6 6 20 20 1 7 HES
5 50 0.98 0.98 1 50 50 11 11 1 0 EV

aUser 2 does not own a BSS. To avoid division by zero, a very small number is chosen for its 𝜃B𝑖 and 𝜂D𝑖 .

Fig. 6. Illustrative representation of the scenario-generation algorithm.

Step 3: The mean (𝜇𝑐) and standard deviation (𝜎𝑐) of the data in each
cluster 𝑐 ∈  are calculated as:

𝜇𝑐 = 𝐸(x) = ∫ x𝑓 (x)d𝑥 (27a)

𝜎𝑐 =
√
𝐸((x − 𝜇𝑐 )2) =

√

∫ (x−𝜇𝑐 )2𝑓 (x)d𝑥. (27b)

We then use these values are to generate scenarios in each cluster
separately. Using the calculated means and standard deviations for each
cluster, we generate a vector of random numbers y with a normal
distribution:

y = [y𝑐 ] and 𝑔(y𝑐 ) ≡ 𝑁(𝜇𝑐 , 𝜎𝑐 ). (28)

Here, 𝑁(𝜇𝑐 , 𝜎𝑐 ) is a normal distribution function with a mean value
of 𝜇𝑐 and a standard deviation of 𝜎𝑐 . The data within each cluster
show significantly higher cohesion compared to the alternative of not
using these clusters, e.g., direct sampling. Fig. 6 shows a simplified
representation of the scenario-generation algorithm for three clusters
(|{}| = 3) in two dimensions. Note that, depending on the number
of attributes, the actual number of dimensions dim(x) could be greater
than 2.

Fig. 7 shows a comparison of the means and standard deviations of
the actual data (described in Section 2.7) with the scenarios generated
by the direct-sampling and the MPCB approaches. It can be seen that
the distribution of the generated scenarios using the MPCB algorithm
for all attributes are closer to the actual data when compared to the
direct-sampling approach.

3. Case studies

In this section, we consider four case studies to demonstrate the per-
formance of the methodology. The first three are illustrative examples
to show how the algorithm and pricing work. The fourth is a larger-
scale example to demonstrate computational scalability. Table 4 gives
an overview of the model setups of the different case studies.

Table 4
Overview of model setups in the case studies.

Case study 𝑇 𝑖 𝑣 𝛶 Demonstration goal

I 2 1 1 1 Convergence of the solution algorithm
II 4 1 1 1 Determination of ORTP
III 4 2 1 1,2 Internal balance of load and generation
IV 8 5 9 1,2,3,4,5 Large-scale stochastic optimization

3.1. Case study I

In the first example, we consider a single prosumager (𝑖 = 1),
parameterized with 𝛶 = 1, an optimization period of 2 h (𝑡 ∈ {1, 2}),
one scenario with probability of 1 (|{𝑣}| = 1, 𝜙𝑣 = 1), and three
discretization steps (𝑘 = 3). The prosumager has a constant demand of 5
kWh (𝐿𝑖𝑡𝑣|(𝑡=1) = 𝐿𝑖𝑡𝑣|(𝑡=2) = 5 kWh), and the power generation is 7 kWh
and 3 kWh in the first and second time steps, respectively (𝐺𝑖𝑡𝑣|(𝑡=1) = 7
kWh, 𝐺𝑖𝑡𝑣|(𝑡=2) = 3 kWh). The market price changes from 0 ¢/kWh in
𝑡 = 1 to 8 ¢/kWh in 𝑡 = 2 (𝑃M

𝑡𝑣 |𝑡=1 = 0 ¢/kWh, 𝑃M
𝑡𝑣 |𝑡=2 = 8 ¢/kWh).

The BSS is available all the time (𝑈𝑖𝑡 = 1). The discrete options for
sell and buy prices are 𝑝S𝑡 ∈ {3, 5.5, 8} and 𝑝B𝑡 ∈ {2, 4.5, 7}, respectively.
Detailed results for the performance of the proposed solution algorithm
are shown in Table 5.

The proposed MBB algorithm changes 𝑝S
𝑡
, 𝑝S𝑡 , 𝑝B𝑡 , and 𝑝B𝑡 at each

iteration. In iterations 1 to 7, condition (17) is not satisfied (status A).
Iteration 8 is the first iteration in which all solutions are discrete for all
time periods (status B: condition (17) is fulfilled). Since 𝑟 ≥ LB and all
the solutions are discrete, LB is updated for the first time from −1000
to −14 in iteration 9. Similarly, 𝑝X

𝑡
and 𝑝X𝑡 are changed until better

solutions are found in iterations 25, 48, and 53 and the lower bound
updates to 72 (LB=72). After 56 iterations, the algorithm has checked
all the branches and this round is ended (status C). Therefore, the
highest profit for the aggregator with the current discretization steps is
72 (𝑟 = 72 ¢). Thus, if we use the SBB algorithm proposed in [54] with
fixed discrete steps, the optimal solution will be 72 in iteration 53, and
the algorithm will stop after iteration 56. In contrast, in the proposed
MBB algorithm, we modify the discrete steps inside the algorithm to
find a solution that is closer to the global optimal point. In iteration
57, we apply the dynamic partitioning technique and start a new round
in our algorithm (status D). Based on the best discrete result of the last
round, the new discrete options for sale and purchase prices in the new
round are 𝑝B1 ∈ {2, 3.25, 4.5}, 𝑝B2 ∈ {4.5, 5.75, 7}, 𝑝S1 ∈ {3, 4.25, 5.5}, and
𝑝S2 ∈ {5.5, 6.75, 8}.

As the choices are changed, the LB is initialized again with −1000.
Then, 𝑝X

𝑡
and 𝑝X𝑡 are changed until a better discrete solution is found

at iterations 71, 83, and 84 with the aggregator’s profit 𝑟 and LB
equal to 0, 94, and 94.5. Round 2 of the algorithm is finished after
iteration 92. After this, the discrete options are updated once more:
𝑝B1 ∈ {2, 3.25, 4.5}, 𝑝B2 ∈ {5.75, 6.375, 7}, 𝑝S1 ∈ {3, 4.25, 5.5} and 𝑝S2 ∈
{6.75, 7.375, 8}. In round 3, the lower bound of the problem updates
twice, in iteration 99 and 101, to 0 and 105.75, respectively. Fig. 8
shows the transformation of the solution range for the purchase price
(𝑝B𝑡 ) in the time step 𝑡 = 2 in iterations 53, 84, and 101. The remaining

91



International Journal of Electrical Power and Energy Systems 147 (2023) 108770

11

S. Sarfarazi et al.

Fig. 7. Comparison of means and standard deviations between MPCB scenario generation, direct sampling, and actual data (sources: [59,62]). Mean values are illustrated with
continuous lines. Standard deviations are shown with dashed lines as confidence intervals.

Fig. 8. Change of solution range (𝑝B𝑡 to 𝑝B
𝑡
) in Case I for 𝑡 = 2.

options for 𝑝X
𝑡

and 𝑝X𝑡 are investigated until iteration 104, after which
the MBB algorithm for this problem is ended. To reach this objective
value with the SBB algorithm, a larger number of discretization steps
(𝑘) and correspondingly more iterations are required.

3.2. Case study II

In the second example, the bilevel problem for a simple setup with
one prosumager (𝑖 = 1), parameterized with 𝛶 = 1, is solved. For a time
period of 4 h (𝑇 = 4) and a single scenario, the model results, electricity
prices, and prosumager’s grid interactions, as well as the input time
series, 𝑃M, 𝐺𝑖𝑡𝑣|(𝛶=1), and 𝐿𝑖𝑡𝑣|(𝛶=1), are shown in Fig. 9.

In time steps 𝑡 = 3 and 4, the prosumager uses its generation to cover
its load. Note that in our model, the self-consumption of electricity
by prosumagers is considered to be free of charge. Therefore, it is
profitable for the users to use the generated electricity mainly to cover
the own load in most cases. Since the storage is full in this hour,
the residual generation at 𝑡 = 4 is fed into the grid. As the highest
market price occurs at 𝑡 = 4 (𝑃M

𝑡𝑣 |(𝑡=4) = 9 ¢/kWh), the aggregator
increases the purchase price to 𝑝B𝑡 |(𝑡=4) = 5.75 ¢/kWh and incentivizes
the prosumager to discharge the storage. The prosumager completely

Fig. 9. Optimization results for Case study II. A: Aggregator’s and market prices. B:
Prosumager’s electricity demand and generation, as well as grid usage and feed-in. C:
Battery SOC of the prosumager.

discharges the BSS in this time step and feeds 20 kWh into the grid
(𝑒B𝑖𝑡𝑣|(𝑡=4) = 𝐺𝑖 = 20 kWh).

3.3. Case study III

In Case study III, we demonstrate how the ORTP reacts to market
prices, limited available line capacity, and the availability of local
generation and storage. Two users with the technical specifications
of 𝛶 = 1 and 2 (see Table 3) are considered. User 2 (𝛶 = 2) does
not have a PV system or BSS. Therefore, this user does not have
electricity generation and cannot have a flexible interaction with the
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Table 5
Detailed results of Case I.

Iteration 𝑡 𝑟 LB 𝑝S𝑡 𝑝B𝑡 𝑝S
𝑡

𝑝S𝑡 𝑝B
𝑡

𝑝B𝑡 Round Status
[−] [ℎ] [¢] [¢] * * * * * * [-]

1 3 2 3 8 2 71 2 108 −1000 4 2.0005 3 8 2 7 1 A

1 3 2 3 8 2 72 2 106 −1000 3 2.0006 3 3 2 7 1 A

1 6 6 3 8 2 73 2 108 −1000 8 2.0005 5.5 8 2 7 1 A

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟖 𝟐 𝟑 𝟖 𝟐 𝟐𝟖 𝟐 −𝟏𝟒 −𝟏𝟎𝟎𝟎 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐 1 B

1 7.9990 4.5002 3 8 4.5 79 2 55.6 −14 3 2 3 3 2 2 1 A

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐𝟓𝟑 𝟐 𝟕𝟐 𝟔𝟗 𝟖 𝟕 𝟖 𝟖 𝟕 𝟕 1 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 5.5 4.5 5.5 5.5 4.5 4.556 2 −14 72 5.5 4.5 5.5 5.5 2 4.5 1 C

1 5.4995 4.5 3 5.5 2 4.557 2 108 −1000 6.9996 6.9996 5.5 8 4.5 7 2 D

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐𝟕𝟏 𝟐 𝟎 −𝟏𝟎𝟎𝟎 𝟓.𝟓 𝟒.𝟓 𝟓.𝟓 𝟖 𝟒.𝟓 𝟒.𝟓 2 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐𝟖𝟑 𝟐 𝟗𝟒 𝟎 𝟓.𝟓 𝟓.𝟕𝟓 𝟓.𝟓 𝟓.𝟓 𝟓.𝟕𝟓 𝟕 2 B

𝟏 𝟑 𝟐 𝟑 𝟑 𝟐 𝟐𝟖𝟒 𝟐 𝟗𝟒.𝟓 𝟗𝟒 𝟔.𝟕𝟓 𝟓.𝟕𝟓 𝟔.𝟕𝟓 𝟖 𝟓.𝟕𝟓 𝟕 2 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 5.5 4.5 5.5 5.5 3.25 4.592 2 0 94.5 6.75 5.75 6.75 6.75 4.5 5.75 2 C

1 5.4999 4.5 3 5.5 2 4.593 2 108 −1000 8 7 6.75 8 5.75 7 3 D

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟓.𝟓 𝟒.𝟓 𝟓.𝟓 𝟓.𝟓 𝟐 𝟒.𝟓𝟗𝟗 𝟐 𝟎 −𝟏𝟎𝟎𝟎 𝟖 𝟕 𝟖 𝟖 𝟓.𝟕𝟓 𝟕 3 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝟏 𝟒.𝟐𝟓 𝟐 𝟑 𝟒.𝟐𝟓 𝟐 𝟑.𝟐𝟓𝟏𝟎𝟏 𝟐 𝟏𝟎𝟓.𝟕𝟓 𝟎 𝟔.𝟕𝟓 𝟔.𝟑𝟕𝟓 𝟔.𝟕𝟓 𝟖 𝟔.𝟑𝟕𝟓 𝟕 3 B

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 3 3 3 3 2 3.25104 2 94.5 105.75 8 5.75 6.75 8 5.75 5.75 3 C

*: [¢/kWh]. A: (17) is not fulfilled. B: (17) is fulfilled. LB will be updated. C: All branches are checked. End of
this round. D: Dynamic partitioning is applied. Beginning of a new round. Highlighted solution : Best solution
in this round.

grid. Moreover, we assume that the available line capacity is limited
(𝑊 |(𝑡=1,2,4) = 20 kWh and 𝑊 |(𝑡=3) = 0.6 kWh). The optimization results
and the input series for Case III are presented in Fig. 10. As a result
of a low market price at 𝑡 = 2, the aggregator offers a low sale price
to the users. However, due to the restricted available line capacity,
user 1 cannot charge the BSS completely (𝑒S𝑖𝑡𝑣|(𝑡=2) = 17.526 kWh,
𝑎𝑖𝑡𝑣|(𝑡=2) = 0.78). In hour 3 (𝑡 = 3), user 1 feeds enough electricity into
the community grid to cover the load of user 2 and therefore the load
and generation of the EC can be balanced locally in this hour. At 𝑡 = 4,
the market price reaches its highest value (𝑃M

𝑡𝑣 |(𝑡=4) = 8.9). Therefore,

the aggregator increases the purchase price to 𝑝B𝑡 |(𝑡=5) = 5 ¢/kWh and
user 1 is encouraged to discharge its battery completely.

3.4. Case study IV

In Case study IV, we increase the problem size and analyze an
EC with a larger number of users and a longer optimization period
compared to the previous illustrative examples. Five users (|{𝑖}| =
5) and eight optimization periods (i.e., |{𝑡}| = 8) are considered.
These users are relatively diverse and adopt the parameters shown
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Fig. 10. Optimization results for Case study III. A: Aggregator’s and market prices. B:
Users’ electricity demand and generation, as well as grid usage and feed-in. C: Battery
SOC of the prosumager.

in Table 3. For this case, we study the sensitivity of the aggregator’s
expected profit to the scenarios. In a simulation experiment, we vary
the number of scenarios (|{𝑣}|) from 1 (indicating a deterministic
solution) to 50 and solve the SDPQ over 7000 times.8 We use the MPCB
scenario-generation algorithm (introduced in Section 2.8) to provide
the required scenarios for this experiment. Note that every scenario is
unique and used only once in this analysis. Moreover, as a simplifying
assumption, we consider a uniform probability of occurrence for all the
scenarios (𝜙𝑣 = 1∕|{𝑣}|,∀𝑣).

The results of this experiment are presented in Fig. 11. Each box
plot in this figure displays the distribution of the aggregator’s profit
(objective value of the optimization problem in SDPQ) for a fixed
number of scenarios. In this case, the fluctuation of the profit stems
from the variance of the underlying time series in each of the generated
scenarios. The trend of the median values indicates that, with an
increasing number of scenarios, the aggregator’s expected profit tends
to drop. We observed that solving the SDPQ with a higher number
of scenarios, e.g., larger than 100, the median value falls below 100
¢. In the formulated stochastic problem, regardless of the number of
scenarios, the aggregator chooses a single set of prices for the users
(see also (1a)). With an increasing number of scenarios, these prices
are less tailored to each individual scenario and therefore the overall
efficiency of the ORTP drops. Moreover, the aggregator’s profit is more
sensitive to the scenarios when the number of scenarios is lower. For
instance, in the deterministic solution, i.e., |{𝑣}| = 1, the profit of the
aggregator varies between 104 and 382 ¢ (267% change) depending
on the selected scenario. This range is reduced to 121 and 174 ¢ (43%
change), when the number of scenarios is 47. Due to the considered
uniform probability of scenarios, the impact of extreme scenarios re-
duces when the number of scenarios increases. This leads to a smaller
spread of profit in the cases simulated with high numbers of scenarios.

Due to computational limitations, for the comparative analysis in
Section 4, we solved the SDPQ with nine scenarios (|{𝑣}| = 9). In

8 These cases are optimized using high performance computer Tegner PDC
with 24 computational nodes and 32 threads [64].

Section 4.2, we present a sensitivity analysis and elaborate on the de-
pendency of the computational efforts to solve the formulated problem
on the numbers of users, optimization time steps, and scenarios.

4. Comparison of results

4.1. CW comparison

The results regarding the aggregator’s profit, users’ total costs, and
the CW of the EC for the proposed ORTP tariff together with those de-
rived from AP and RTP schemes are presented in Table 6 (the contents
of this table are plotted in Appendix A.3). With the implementation
of the ORTP, the CW of the EC has the highest value relative to the
two other tariff strategies. In the setup in which only one flexible user
interacts with the aggregator (Case study I), the RTP tariff performs as
well as the ORTP tariff. In more complicated setups with multiple users,
the ORTP tariff outperforms the RTP tariff. The AP tariff, the current
pricing strategy for many small-scale electricity users in Germany,
demonstrates the lowest CW value. This tariff does not contain any
real-time signals relating to the scarcity or surplus of electricity (in
the market or the EC). Note that we did not monetize the achieved
grid relief by the ORTP in Case study III. In such a case, we would
expect that the achieved CW in the ORTP tariff would outperform the
benchmark tariffs by an even higher margin.

In all case studies, the aggregator’s profit reveals the highest and
lowest values for the ORTP and AP versions, respectively. However,
the aggregator’s profit in the benchmarks depends on the choice of
the aggregator’s margin. (𝛤X). Larger 𝛤X values will lead to greater
profits for the aggregator, which come at higher costs for the users.
This will be a policy decision for the EC stakeholders as the aggregator’s
profit increases the EC’s assets; these may be redistributed to users or
invested.

4.2. Computational comparison

Table 7 compares the performance of the MBB algorithm and the
benchmark algorithms introduced in Section 2.5 for the four case stud-
ies (the contents of this table are plotted in Appendix A.3). The model
statistics and the number of discretization steps (𝑘) in different cases
under investigation are given in 8. We carried out the optimization
for both the MILP and LP models on GAMS 25.1.3 platform using the
CPLEX 12.8 solver. The case studies I–IV are optimized on a laptop with
Intel Core i7-8650U CPU running at 1.90 GHz with eight nodes and
16 threads. Note that our algorithm does not use parallel computation
and therefore, even though multiple processors were available, all the
calculations were carried out on a single CPU node.

The optimal solution of SDPQ (the profit of the aggregator) depends
substantially on the level of discretization (𝑘); a larger number of
discretization steps will converge closer to the optimal solution of the
original problem in (1).

The results in Table 7 clearly show that the MBB algorithm outper-
forms the SBB algorithm (from [54]) and the MILP model, as it is able
to reach a better objective value with fewer iterations and less com-
putation time. These improvements increase in more complex cases.
For example, in Case study IV, the MBB algorithm converges to an
objective value, which is respectively 9.2% and 11% higher than those
from the SBB algorithm and MILP model with 83.1% and 91.8% less
solver execution time. This indicates the efficient performance of our
proposed MBB algorithm, especially for solving large-scale problems.

A convergence plot of the proposed MBB and the benchmark SBB
algorithms for Case study III is presented in Fig. 12. Starting with a
lower value 𝑘, the MBB algorithm converges to the objective value
of 76.49 after 768 iterations for the first time. After this step, the
discretized prices are dynamically modified, and LB is set back to
−∞. After five more rounds, the algorithm converges to the objective
value of 123.25 in iteration 2189. In contrast, with 𝑘 = 5, the SBB
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Fig. 11. Sensitivity analysis of the impact of the number of scenarios on the aggregator’s profit in Case study IV. Box plots show the distribution of profit with the corresponding
quartiles (25%, 50%, 75%).

Fig. 12. Convergence plot of the benchmark SBB and MBB algorithms for Case study III. The LB values lower than zero are not shown in the figure.

Table 6
Comparison of aggregator’s profit, users’ costs and CW under different tariff strategies.
Tariff Case study I Case study II Case study III Case study IV

𝑟 [¢] 𝐶 ′ [¢] CW [¢] 𝑟 [¢] 𝐶 ′ [¢] CW [¢] 𝑟 [¢] 𝐶 ′ [¢] CW [¢] 𝑟 [¢] 𝐶 ′ [¢] CW [¢]

ORTP 105.7 1.7 104 93.36 −13.31 106.67 99.6 52.3 47.3 181.1 −2.7 183.8
AP −14 2 −16 12.59 −0.67 13.26 4.3 199.9 −195.6 23.5 −31.3 54.8
RTP 18 −86 104 22.45 −84.22 106.67 28.4 338.6 −310.2 50.2 −56.1 106.3

Table 7
Comparison of the computational performance.
Case Number of iterations [–] Nodes explored [–] CPU time [s] Profit (𝑟) [¢]

MILP SBB MBB MILP SBB MBB MILP SBB MBB MILP SBB MBB

I 1226 306 104 203 296 102 5.12 0.69 0.37 105.75 105.75 105.75
II 70439 5959 1701 19945 5610 1608 35.39 18.22 5.85 93.36 91.17 102.34
III 876382 8586 2188 141848 7761 2138 347.2 26.83 6.9 99.55 99.55 123.25
IV 50227324 41254 6086 190145 30058 4021 10935 5270 924.3 181.08 184.18 201.14
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Fig. 13. Sensitivity analysis regarding the impact of optimization time steps, number of users, and scenarios on the computation time. The numbers on the 𝑥-axis indicate the
increased value of the parameters under study relative to the reference case.

Table 8
Model statistics.

Case Bin. Con. Const. |𝑘|𝑀𝐼𝐿𝑃 |𝑘|𝑆𝐵𝐵 |𝑘|𝑀𝐵𝐵

I 38 115 198 9 9 3
II 44 163 264 5 5 3
III 48 277 495 5 5 3
IV 819 8799 16035 4 4 3

Bin.: Number of binary variables. Con.: Number of continuous variables. Const.: Number
of constraints.

algorithm, achieves the optimal value of 99.55 after 8587 iterations.
This shows that a significant efficiency improvement is made by the
MBB algorithm. Note that each round of optimization is finished, when
the termination criteria (see Section 2.4) are fulfilled.

To assess the sensitivity of the computation effort to three key model
parameters, i.e., number of optimization time-steps, users, and sce-
narios, we perform another simulation experiment. The starting point
of our sensitivity analysis is a reference case, which is parameterized
identically to Case III (i.e., with five time steps, one scenario, and two
users). In three parallel analyses (one for each parameter), we increase
the parameters and carry out more than 600 simulations with unique
scenarios. The required CPU time for the simulated cases is presented
in Fig. 13.9 The 𝑥-axis in Fig. 13 shows the increased number of time
steps, scenarios, and users (with the maximum value of 14) in each
analysis.

The computation time of the reference case (black box in Fig. 13)
varies between 0.6 and 1297 s. This fluctuation indicates a strong de-
pendency of the computation effort to the input time series (electricity
demand, generation, and market prices). The findings of the simulation
experiment reveal that the required computation time rises significantly
when prolonging the optimization period. Simulations with 19 time
steps (14 steps more than REF) require an average computation time

9 For this simulation experiment, we used the processor AMD EPYC
2.25 GHz and 16 GB memory from the recent KTH Dardel system [65].

of 4370 s. In contrast, optimizing the formulated problem with a
larger number of users does not increase the needed solution time
substantially. When increasing the number of scenarios, we observed
that stochastic optimizations with larger |{𝑣}| were solved faster than
deterministic optimizations. For instance, the maximum recorded com-
putation time for the cases with 13 and 15 scenarios (12 and 14
scenarios more than REF) is 226 and 259 s. These findings indicate that
the proposed model scalable with respect to the number of scenarios
and users in the EC. In contrast, increasing the optimization period
above 14 time steps seem to have a strong impact on the required
computation effort.

5. Discussion of limitations and implications for external validity

The results of our analysis demonstrate that the implementation
of DR in ECs with the help of smart real-time pricing strategies can
potentially lead to technical and economic benefits. Our evaluation did
not assess the practical implementation of this pricing strategy. The
following are pointers to future research needs.

Concerning the economic benefits of the proposed pricing strategy, a
question arises about how the generated welfare is redistributed among
the stakeholders; i.e., what are the financial incentives for the users
to participate in this business model, rather than switching to another
retailer. In this regard, the absence of competition among aggregators is
a limitation of our model that should be addressed in future research.
Moreover, the observed actor behavior in this analysis could be dis-
torted by the addition of regulatory-induced charges to the electricity
consumer price.10 Expensive electricity consumer prices generally

10 These regulatory-induced charges do not contain any time-varying signal
and comprised more than 70% of the end-user electricity price in Germany in
the year 2021.
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incentivize a higher level of behind-the-meter self-consumption for the
prosumagers [66]. Because we neglected the impact of these consumer-
price components, future research should assess the adaptability of such
real-time pricing schemes in different regulatory environments.

With an efficient operation, ECs can support the power network
and enhance the integration of renewable energies. In this paper, we
demonstrated that the ORTP strategy can incentivize an operation that
contributes to power-grid relief. Quantifying the value of the delivered
flexibility requires a more comprehensive study with the help of a
distribution grid model. Along with these benefits, the establishment of
ECs can arouse concerns regarding inefficient investments and increas-
ing overall energy-system costs. For instance, if sharing the electricity
across the EC reduces the revenues of the distribution grid, raising the
grid charges for other consumers is likely. This effect may exacerbate
inequalities and incentivize local self-consumption even further. In this
case, solutions such as distribution-network tariffs are suggested in the
literature [67]. Therefore, further studies are required concerning the
impact of the (collective) self-consumption in ECs on the larger energy
system. A useful approach for such analysis is the coupling of models
with different perspectives (e.g., local and national perspectives) [68].

Regarding the technical implementation, this paper assumes that the
bidirectional communication infrastructure and the required measuring
and control equipment for an efficient and secure transmission of data
is available in the EC. Therefore, we have neglected the investment
costs in our calculations. For the case of Germany, users need to be
equipped with smart-meter gateways, which are devices that auto-
matically communicate measurements from connected smart meters
to external market participants; these allow them to send incentives
or commands for load adjustments to local control boxes such as
energy-management systems [69]. While a general advantage of the
price-based DR measures is respecting users’ privacy [8], a limitation
of the single-level reduction approach in solving bilevel optimization
problems (compared to distributed algorithms such as [35]) is the
necessity for sharing information about users with the aggregator. The
technical evaluation of the technologies and algorithms that enable
an efficient and secure transmission of the necessary data is part of
another field of research [70]. Concerning our proposed methodology,
we demonstrated that the presented modeling approach and solving
technique can significantly contribute to a more effective solution of the
bilevel problem when compared to the benchmark solving approaches.
Real-world applications, however, can lead to optimization problems
with longer durations and more heterogeneous users. Improving the
performance of the proposed methodology to satisfy real-world-scale
problems should be the focus of future research. In this context, one
direction to improving the scalability potential of the algorithm is the
simultaneous evaluation of the created branches on multiple processors
using parallel computing [71].

6. Conclusion

The expansion of distributed electricity generation and storage po-
tential poses challenges for the efficient technical and economic opera-
tion of the power system. Smart-grid infrastructure has opened the door
to many innovative DR business models that can contribute to meeting
these challenges while creating financial benefits for the participating
actors. In this context, we have proposed an ORTP methodology for a
profit-maximizing community-owned aggregator in an EC, that is not

isolated from the wholesale market. In our model, the aggregator trades
bilaterally with users in the EC (e.g., prosumagers and electric vehicles)
while coping with restrictions regarding the maximum available line
capacity behind the point of common coupling. Moreover, the stochas-
tic formulation of the problem provides a solution for the aggregator to
deal with uncertainties regarding the wholesale market prices as well as
users’ electricity demand and generation. The required representative
scenarios for these sources of uncertainty are produced by develop-
ing a multi-parameter cluster-based scenario-generation approach. To
capture the hierarchical nature of the decision-making process in the
considered setup, the interplay between the users and the aggregator is
formulated as a bilevel optimization problem. To solve the resulting
problem efficiently, we reformulated the original stochastic bilevel
program as a stochastic disjunctive program and proposed a novel
MBB algorithm that applies a linear quasi-relaxation approach and a
dynamic partitioning technique. We assessed the effectiveness of our
proposed methodology in four cases studies.

Our results show that the derived ORTP leads to higher community
welfare for the EC. Furthermore, if necessary, the ORTP can provide
useful grid services by creating incentives to offset the EC’s demand and
supply locally. The comparison of the ORTP with the average pricing
strategy (with no time-varying component) shows a significant im-
provement in all studied cases. However, the effectiveness of the ORTP
against a simple real-time pricing strategy (including only signals from
the wholesale market) becomes evident when the diversity of users
increases. Moreover, our proposed algorithm outperforms the bench-
mark algorithms both in computational performance and community
welfare. These enhancements were found to be more substantial in the
large-scale case studies. There are two major drivers for the achieved
improvements: first, by applying the quasi-relaxation approach a large
number of binary variables are eliminated; second, the implemented
dynamic partitioning technique disentangles the optimization results
from the disjunctive parameters. Our simulation experiments show that
the computational effort is sensitive to the number of optimization time
steps. In contrast, the proposed model is observed to be scalable in
terms of the number of users and scenarios. One direction of future
studies includes assessing the impact of ECs on the German electricity
market. Another objective of the subsequent studies will be the further
development and enhancement of the proposed EC model and the
solution algorithm.
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Appendix

A.1. Proof of Proposition 1

We start with the objective on the left-hand side of (2), which is
defined in (29a). In (29), {𝑝S𝑡 , 𝑝B𝑡 } and 𝜒 are sets of decision variables for
the user and the aggregator, respectively and 𝜒 = {𝑒S𝑖𝑡𝑣, 𝑒

B
𝑖𝑡𝑣, 𝑎𝑖𝑡𝑣, 𝑧

C
𝑖𝑡𝑣, 𝑧

D
𝑖𝑡𝑣}.

The expression −
∑
𝑖𝑣𝜙𝑣𝐶𝑖𝑣(𝜒) is not a function of 𝑝S𝑡 and 𝑝B𝑡 . Therefore,

it can be added to the objective function in (29a) without changing the
optimal solution, i.e., (29a) and (29b) are equivalent. From (1), the ex-
pression 𝑟(𝑝S𝑡 , 𝑝

B
𝑡 ) can be replaced with its equivalent ∑𝑖𝑡𝑣𝜙𝑣𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝

B
𝑡 ),

as done in (29c). Then, we can extract 𝜙𝑣 in (29d); this has the term
(𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝

B
𝑡 ) − 𝐶𝑖𝑣(𝜒)), which is the CW. The terms 𝑟(𝑝S𝑡 , 𝑝B𝑡 ) and −𝐶𝑖𝑣(𝜒)

indicate profit of the aggregator and user 𝑖, respectively. CW can be
defined as a summation of revenue of all the participants in the EC
(users and the aggregator). Therefore, CW = 𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝

B
𝑡 ) − 𝑐𝑖𝑡𝑣(𝜒). Note

that 𝜙𝑣 is a fixed parameter that does not change with the decision
variables.

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

𝑟(𝑝S𝑡 , 𝑝
B
𝑡 ) ≡ (29a)

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

(
𝑟(𝑝S𝑡 , 𝑝

B
𝑡 ) −

∑
𝑖𝑣
𝜙𝑣𝐶𝑖𝑣(𝜒)

) ≡ (29b)

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

(∑
𝑖𝑡𝑣
𝜙𝑣𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝

B
𝑡 ) −

∑
𝑖𝑣
𝜙𝑣𝐶𝑖𝑣(𝜒)

) ≡ (29c)

Maximize
𝑝S𝑡 ,𝑝

B
𝑡

∑
𝑖𝑡𝑣
𝜙𝑣

(
𝑟𝑖𝑡𝑣(𝑝S𝑡 , 𝑝

B
𝑡 ) − 𝐶𝑖𝑣(𝜒)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=CW

)
(29d)

We have started from the left-side of (2) and demonstrated that it is
equivalent to the right-side of (2), which is CW. This shows that solving
(1) is equivalent to maximizing the CW, as stated in (2). □

A.2. EV parameterization

The optimization of the charging schedule for EVs requires a delib-
erate consideration of their mobility pattern. Assuming a price-inelastic
transport demand, we should know when the EV is available for charg-
ing/discharging from/to the grid (the battery storage of the prosumager
is connected to the grid the whole time) and what the electricity con-
sumption of the EV is. Due to a lack of suitable empirical open-source
data, in this work, the VencoPy tool was deployed to derive these data.
VencoPy uses data from the German national travel survey [61] and
aims to estimate future electric vehicle fleet charging flexibility [60]. In
the first step (trip diary building), the individual trips are consolidated
into a user-specific travel diary. In this step, the driven distance and
the travel purpose (e.g., shopping, returning home, etc.) are allocated
to their respective hour and merged into the daily travel diaries. In
the next step, using a basic charging infrastructure model, the charging
availability is allocated through a binary True–False mapping of the
respective trip purposes. Since we focus on the technical load-shifting
potential, and due to lack of sufficient data, user behavior (e.g., state-of-
charge dependent plugging decisions) is disregarded. The result of the
charging-availability allocation is a binary grid connection profile that
describes whether the EV is connected to the grid at a given hour. To
calculate the electricity flow from the battery to the electric motor, the
driven distance is multiplied by an assumed average specific electricity
consumption in 100 kWh/100 km. The two resulting profiles, together
with the technical parameters of the storage, are then passed to the EC
model. Fig. 14 gives an overview of the described steps to calculate the
EV load and availability profiles. The interested reader can refer to [60]
for a more detailed explanation of the internal calculations of VencoPy.

A.3. Visualization of the comparative results

In this section, we visualize the comparative results presented in
Section 4. Fig. 15 shows the achieved community welfare with ORTP
compared to the benchmark tariffs AP and RTP. Fig. 16 compares
the computational performance of the MBB with the benchmark ap-
proaches SBB and MILP. Figs. 15 and 16 respectively correspond to
Tables 6 and 7.

Fig. 14. Data preparation using the VencoPy tool.

Fig. 15. Community welfare for the studied tariffs in different case studies.
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Fig. 16. Computational performance of the benchmark MILP approach compared to the SBB and MBB algorithms. A: Number of iterations. B: Number of explored nodes. C: CPU
time. D: Aggregator’s profit (𝑟).
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a b s t r a c t

Energy system models are widely used to inform the political decisions required to successfully
mitigate climate change in the energy sector. The energy system optimization models (ESOMs) used
to identify cost-minimal transformation pathways assume the perfect behavior of market participants
from a central planner’s perspective. Neglecting the decision-making under uncertainties or biased
perceptions and attitudes leads to inaccurate assumptions regarding the requirements of a successful
energy transition. In particular, ESOMs underestimate the required capacities for power generation,
storage, and transmission compared with real-world energy systems, a phenomenon known as the
‘‘economic granularity gap’’. Agent-based models (ABMs) are helpful tools for capturing the behavior
of market actors. Hence, attempts have been made to identify and alleviate this phenomenon through
the coupling of ESOMs and ABMs. In this paper, we propose an automated workflow for such model
coupling and quantify the economic granularity gap for the case of photovoltaic-prosumer self-
consumption. Our results show that the current business models and regulatory frameworks affecting
prosumer self-consumption patterns require the adaptation of cost-minimal energy system designs.
However, if correctly implemented, instruments such as dynamic tariffs could narrow the economic
granularity gap, shifting real-world energy systems closer to their ideal counterparts.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background

To successfully mitigate climate change, it is important for
the energy sector to understand how future energy supplies can
be realized in a secure, affordable, and sustainable manner. In
this sense, a multitude of aspects need to be considered, such as
the electrification of energy demand sectors (IPCC, 2022), secu-
rity of supply even in time periods that lack renewable power
generation (Lund et al., 2015), and a highly diverse, econom-
ically feasible mix of technologies. Hence, identifying suitable
policy measures to incentivize the transformation of the en-
ergy supply system is a complex task. Models are often applied
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to gain insights into possible future scenarios for the energy
system (e.g., to serve as decision support in energy policy and
industry Pfenninger et al., 2014). To investigate the uptake of
renewable power generation and the deregulation of power mar-
kets from a macro-perspective, a broad variety of so-called energy
system models has evolved, each having different strengths for
addressing the abovementioned aspects (Ringkjøb et al., 2018;
Horschig and Thrän, 2017). One prominent category is energy
system optimization models (ESOMs) (Hawker and Bell, 2020),
which are applied to observe the possible operation of power
plants and technologies for balancing the intermittent power
supply of renewable energy sources. Due to the clear specification
of an objective function and constraints, they provide an easy-to-
use framework for modeling decision processes and simulating
investment decisions when multiple solutions are conceivable
(i.e., different technologies for load-balancing). Moreover, they
are used to design future energy systems subject to the rel-
evant political targets (e.g., greenhouse gas (GHG) mitigation
targets) (Sasanpour et al., 2021). The purpose of drafting such
ideal system designs is to provide templates for navigating the
transformation of the system, e.g., by setting incentives. However,
at this point, obvious discrepancies between the ideal scenario

https://doi.org/10.1016/j.egyr.2022.12.145
2352-4847/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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and the real world occur. We refer to these discrepancies as the
granularity gaps that are revealed across several dimensions of a
model. For example, Prina et al. (2020) identified four dimensions
of interest in this regard, which they refer to as resolution in
time, in space, in techno-economic detail, and in sector-coupling.
Similarly, we have defined four model dimensions where gran-
ularity gaps occur (Cao et al., 2021), but propose, in addition to
the distinction of the temporal, spatial, technological scale, the
consideration of an economic scale.

1.2. Economic granularity gap

The economic granularity gap comprises different aspects. In
general, similar to the well-studied granularity gaps in the spatial,
temporal, and technological dimensions (Fleischer, 2020; Pon-
celet et al., 2016), it includes the error made by abstracting
processes and phenomena of the real world in a model (ab-
straction bias). This may relate to the assumption of perfect
and equal information of market participants, thus neglecting
decision-making under uncertainty or ignoring distortions due
to regulatory framework conditions. The obvious solution for
bridging the economic granularity gap in this regard relates to
the calibration of a model. This calibration may be based on
observations of the real world or, if this is not possible, with
models that simulate the real world with greater accuracy. A
more specific aspect concerning the economic granularity gap
reflects the differences between a hypothetical macroeconomic
optimum and the entirety of decisions of heterogeneous actors
in the real world. This is particularly important in liberalized
energy markets under the absence of large integrated energy util-
ities (Hawker and Bell, 2020), where a multitude of stakeholders
and decision-makers, each having diverging levels of knowledge
or economic rationale, may lead to significant economic efficiency
losses compared with the desired system optimum (aggregation
bias).

The aggregation bias is a notable weakness of the above-
mentioned ESOMs. Other modeling approaches are more accu-
rate in this regard, but have drawbacks elsewhere. Consequently,
model-coupling frameworks are popular for compensating the
weaknesses of different modeling approaches. In this context, it
becomes obvious that granularity gaps also exist between mod-
eling approaches, so we can study different gaps depending on
our reference point. Maintaining the perspective of a partial-
equilibriummodel, such as an ESOM, an economic granularity gap
exists when compared with a macroeconometric model, which
describes the entire economy. Studying this ‘‘upper economic
granularity gap’’ is a typical research subject in energy economics.
For example, this relates to so-called hybrid modeling (Catenazzi,
2009) (realized by coupling bottom-up and top-down models).
In this paper, we focus on the less-studied ‘‘lower economic
granularity gap’’, which concerns discrepancies between a cen-
tral, technology-rich planning approach and the microeconomic
decision-making of individuals.

1.3. Research questions

Given the existence of the lower economic granularity gap in
the context of transforming the energy system, several questions
arise. They concern, for instance, the technological composition
of desired energy systems (e.g., in terms of the required expan-
sion of energy storage, power grids, or other so-called flexibility
services). As shown by Neumann and Brown, diverse system
compositions exist near the macroeconomic optimum (Neumann
and Brown, 2021). Accordingly, the two research questions to be
answered in this study are as follows:

1. Does the economic granularity gap significantly affect sys-
tem designs that result from an ESOM?

2. If this is the case, how can the economic granularity gap be
bridged?

Answering these questions is relevant because, from a cen-
tral planner’s perspective, it would help improve the quality of
an ESOM in terms of the plausibility of ideal system designs.
From a policy-making perspective, the answers would offer op-
portunities for evaluating the system-friendliness of regulatory
frameworks or incentives. However, both questions come down
to one key requirement: the capability to quantify effects that can
be summarized as the lower economic granularity gap.

1.4. How to quantify the economic granularity gap?

To quantify the lower economic granularity gap in the context
of energy system design, we seek approaches that extend or
complement the capabilities of central planning by modeling real-
world processes at greater detail in terms of decision-making
in liberalized markets. This includes the possibility to influence
these processes by the application of policy measures. Data-
driven approaches allow such models to be calibrated according
to empirical data (e.g., by comparing investment decisions from
before and after the liberalization of power markets). Against
the background of fundamental changes in the existing energy
system (which are poorly reflected by empirical data), we con-
sider data-driven approaches to be insufficient. In other words,
they are limited to effects that are assumed to be crucial in
energy futures with unprecedented power generation from re-
newable energy sources. A large spectrum of different model
types can simulate liberalized markets with asymmetric behavior,
each having strengths and weaknesses. In the field of decentral-
ized electricity markets, several simulation approaches have been
established. For instance, System Dynamics is a suitable approach
because it enables the modeling of imperfections and allows
the dynamic influencing of individuals’ decision-making (Teufel
et al., 2013). From a technological bottom-up perspective, agent-
based models (ABMs) are similar (Macal, 2010). Accordingly, they
are useful when considering the bounded rationality of actors
and understanding the impact of self-organized actions on the
overall energy system (Deissenroth et al., 2017). In contrast to
ESOMs, ABMs have no superior, centrally specified objective func-
tion and each actor is modeled as a self-interested agent with
the aim of maximizing their own utility. This property enables
the evolution of the energy system to be simulated, in which
agents act autonomously based on their microeconomic interests,
but are affected by external factors such as regulatory frame-
works. Compared with ESOMs, simulation approaches have sev-
eral drawbacks. From a microeconomic perspective, estimating
the feedback of the overall system to the multitude of indi-
vidual decisions and anticipating the behavior of other actors
becomes very complex. This requires more profound knowledge
about actors on the micro-level, and thus, more data. Accordingly,
modeling anticipations across a large diversity of actor groups,
and particularly decision-making on investments into competing
flexibility options, becomes as challenging as stand-alone microe-
conomic simulation models. The substantial data demand also
complicates the development of energy simulation models with
broad system boundaries (i.e., for sector-coupling in an inter-
national context) needed to draft comprehensive energy system
designs.

To conclude, simulation approaches are a valuable building
block for quantifying the lower economic granularity gap. How-
ever, simulating aspects that are easily modeled in ESOMs
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(e.g., investments into competing technologies) is somewhat dif-
ficult. Therefore, instead of extending existing models to inte-
grate the strengths of other model types, the coupling of both
macroeconomic system optimization and microeconomic sim-
ulation provides an alternative means of studying the lower
economic granularity gap within broad system boundaries. In the
literature, such model setups have been applied by Torralba-Diaz
et al. (2020), who coupled the ESOM E2M2 with the ABM AMIRIS
to investigate the effect of increasing the share of renewable
energy sources on the lower economic granularity gap. They
demonstrated the suitability of this methodological approach
for the analysis of energy policy instruments, and revealed the
importance of a harmonized model-coupling setup. Additionally,
Torralba-Díaz and her co-authors recommend bidirectional model
couplings for studying the impact of policy measures on the
granularity gap. Few studies have examined a combination of
macroeconomic system optimization and microeconomic sim-
ulation to investigate the effects of different policy measures.
One example is the study of Fraunholz et al. who used the
ESOM ELMOD for multi-regional dispatch optimization and the
ABM PowerACE to analyze the long-term effects of splitting the
German electricity market into two zones (Fraunholz et al., 2021).
Their key result was the negative welfare effect of splitting into
northern and southern price zones from benchmarking against a
single price zone. Hence, in a very simplified way, this means that
market splitting under the assumptions used by Fraunholz et al.
contributes to an increase in the lower economic granularity gap.

1.5. Scope and contribution

Granularity gaps in energy system designs are known. How-
ever, in the domain of energy system analysis, they are mainly
studied with regard to spatial and temporal model dimensions.
The economic dimension has been the focus of economic re-
search, where the granularity gap between macroeconometric
and partial-equilibrium models is investigated. However, there
are few model-coupling frameworks that quantify the biases be-
tween central planning and decentralized decision-making in
liberalized energy markets using only bottom-up models. Accord-
ingly, this study considers the question of how to implement an
optimal overall energy system in an environment with a multi-
tude of decentralized decision-makers. For this purpose, we set
up a modeling framework that combines two bottom-up energy
system models: (1) a partial-equilibrium model, represented by
an ESOM, for designing future energy systems and (2) an ABM
for simulating the individual decision-making behavior of mar-
ket participants. In this way, we combine the strengths of both
modeling approaches: the capability of determining the globally
required investment decisions across a broad set of technolog-
ical options ensures mitigation of GHG emissions for a future
target year, while the influence of specific policy measures on
decision-makers in a market and the impact on optimal en-
ergy system design can be investigated. The framework retains
a holistic perspective by ensuring a broad technological and spa-
tial scope. Therefore, our analysis focuses on Germany, which is
embedded in the European power system, while pan-European
power exchange and hourly operation planning of competing
load-balancing technologies are optimized, and further energy
demand sectors are interfaced. As an example for a specific pol-
icy instrument, we investigate dynamic tariffs for photovoltaic
(PV)-prosumers.

To summarize, our contributions are as follows:

1. We present a modeling framework based on the coupling
of an ESOM and an ABM implemented via automatized
and reproducible workflows. This allows the market align-
ment (Klein et al., 2019) of defined technologies in inter-
action with a transforming European energy system to be
studied.

2. We quantify the lower economic granularity gap in energy
system design in terms of changes in system costs and un-
derlying model-endogenous investment decisions induced
by the different modeling perspectives. This answers re-
search question 1.

3. We demonstrate and assess the different effects that cause
model-specific deviations in system costs starting from a
fully harmonized modeling framework.

4. For an exemplary real-world application, we examine how
the implementation of frequently discussed instruments
(e.g., real-time pricing) influences the economic granularity
gap. This answers research question 2.

We do not claim to study all aspects of the economic granu-
larity gap in detail (i.e., uncertainty or distortions due to changing
framework conditions).

The remainder of this paper is structured as follows. Section 2
describes how we quantify the economic granularity gap, and
briefly introduces the specific energy system models used. Next,
we detail the crucial aspects of how to establish and calibrate
a stable model-coupling system and introduce our case-study
and the underlying assumptions and data, before presenting our
results on the influence of actor behavior and, thus, the operation
strategy of PV-prosumers on the economic granularity gap. The
corresponding evaluations are presented in Section 3 and criti-
cally discussed in Section 4. Section 5 concludes this paper. A list
of acronyms and abbreviations used in this paper is presented in
Appendix A.

2. Methodology

2.1. Overall workflow

The core of our methodology is the coupling of two existing
energy system models, i.e., REMix, an ESOM with a geographical
focus on Europe and Maghreb (EUMA), and AMIRIS, an ABM of the
German electricity market. These models are introduced in Sec-
tion 2.2. We perform our analysis in four phases. Fig. 1 schemat-
ically illustrates these phases and the proposed model-coupling
workflow. We prepare the model-coupling setup in phases A
and B of the overall workflow. The complete model-coupling
workflow is then applied in phases C and D to investigate the
case of PV-prosumers. In the following, we give an overview of
the proposed workflows, followed by a more in-depth description
in Sections 2.3 and 2.4.

In general, our analysis relies on the definition of an observ-
able deviation ∆ that allows us to measure a quantity we refer to
as the economic granularity gap ∆econ. In Section 2.4, we propose
an indicator for quantifying these deviations (i.e., to calculate
∆). The overall workflow begins with the harmonization of both
models. In phase A, we configure the models with a set of equal
values for parameters that describe the same quantities in order
to produce identical results. This means that if AMIRIS is config-
ured with a macroeconomic ideal energy system expansion and
system-cost-minimizing storage dispatch (resulting from REMix),
the power system operation of both models will be congruent (no
deviation, i.e., ∆ = 0). Therefore, the techno-economic input data
are unified, and the power generation capacities, cross-border
power exchange, and dispatch of all storage technologies are
fed from REMix into AMIRIS. To select and process the input
parameters for AMIRIS, we use iog2x2 (see Section 2.4.1 for a
detailed explanation of the harmonization phase). In contrast
to the harmonization phase, where the operation of all storage

2 iog2x is a Python-based software tool that uses the open-source workflow
manager ioproc (Fuchs et al., 2020).
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Fig. 1. Schematic overview of the overall and model-coupling workflow. In phase A, both models are harmonized. In phase B, the modeling delta between REMix and
AMIRIS is measured. In phases C and D, stakeholder behavior is enabled and different tariffs for prosumers are compared. In the proposed model-coupling workflow
(applied in phases C and D), data are exchanged between REMix and AMIRIS through a Python tool called iog2x.

technologies is determined in REMix, phase B optimizes the dis-
patch of the selected storage technology in AMIRIS. While the
storage systems in both models are optimized to minimize the
system costs, the resulting deviation is caused by different model
implementations of the storage operation in REMix and AMIRIS.
In our analysis, we call this deviation the modeling delta ∆model.
If ∆model is sufficiently small, we conclude that the ∆ observed
for the following application of the model-coupling setup mainly
represents the economic granularity gap, rather than deviations
caused by different real-world abstractions of energy storage
(∆model

≪ ∆econ). The derivation of ∆model is further detailed
in Section 2.4.2. In phase C, stakeholder behavior is enabled in
AMIRIS. For the specific use-case investigated in Section 2.5, this
means that instead of minimizing total system costs, storage units
mimic actor behavior under current market and regulatory condi-
tions. In particular, AMIRIS simulates PV-battery storage systems
in households (PV-prosumers) in Germany. Next, we run REMix
for the second time, while constraining the dispatch of the PV-
storage system according to the PV-prosumer behavior given by
AMIRIS. This allows us to assess the impact of PV-prosumer self-
consumption patterns on the optimal system design (i.e., system
expansion), and thus on the economic granularity gap (∆ ≈

∆econ). How this gap can be influenced is finally demonstrated
by exposing the PV-prosumers to different market implementa-
tions of dynamic tariffs (phase D). To integrate the required data
processing into an automated, executable workflow, the Remote
Component Environment (RCE) software is used (Seider et al.,
2012).

2.2. Models

This section describes the energy system models used in this
study. Table 1 provides an overview of the model scopes and
features that are relevant to our methodological approach. Note
that the model characteristics listed in Table 1 are limited to their
application in this paper.

2.2.1. REMix
REMix is a modeling framework used for setting up ESOMs

that optimize the capacity and hourly dispatch of technologies
under perfect foresight for one target year by minimizing to-
tal system costs. The total system costs are represented by in-
vestment (i.e., costs for new renewable power generators, grid
and storage technologies) and operational expenditure (e.g., fuel
costs). Accordingly, power plants are only built and dispatched
if this contributes to a least-cost solution within the operation

horizon of one year. The modeled power sector is represented
by various power plant technologies, energy storage facilities,
and power transmission capacities, and includes the electricity
demand for conventional consumers, heat pumps, heat boilers,
and electric vehicles. Typical applications of REMix are scenario
studies for interconnected countries (Gils et al., 2017). The model
input includes techno-economic parameters for each technology,
feed-in time series, and potential data for renewable power gen-
eration, such as from wind and solar radiation. Besides prescribed
and maximal capacities for power generation, storage, and trans-
mission, the costs for CO2 certificates are part of the scenario
dataset (see Section 2.5.2).

2.2.2. AMIRIS
AMIRIS is an ABM that simulates the operational behavior of

the actors in the energy-only market with an hourly resolution
and uses a merit order model to calculate the electricity prices.3

In AMIRIS, the power plants offer their generated electricity based
on their marginal costs, which are calculated based on power
plant-specific techno-economic parameters (such as efficiency
and variable costs) as well as fuel and CO2 prices. Depending
on the implemented policy regimes, renewable power generators
may be entitled to receive financial support.

Based on information from fossil-fired and renewable power
plants, the forecaster agent in AMIRIS provides a prediction of
electricity prices for a certain period in the future (e.g., the next
24 h). In the following analysis, we assume that forecasts do not
contain any errors. This forecast can then be used by storage oper-
ators to optimize the bidding strategy and maximize their utility
function. The model setup allows the implementation and strate-
gic optimization of one storage entity. In other words, in our case
study (see Section 2.5), one flexibility option is operated accord-
ing to stakeholder behavior: PV-prosumers (remaining flexibility
options mimic the macroeconomic optimal dispatch in REMix).
For the purpose of this study, two new agents are modeled and
introduced to AMIRIS: prosumers and aggregator agents. The role
and functionality of these agents are described in Section 2.5.
The structure of AMIRIS and the interactions among agents are
schematically illustrated in Appendix B.

3 A basic version of AMIRIS is open-source. The model developments made
in this study are not part of the open-source model at the time of publication.
See also Appendix B.
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Table 1
Model comparison between REMix and AMIRIS based on the model setups used in this study.

REMix AMIRIS

Primary purpose Planning of large-scale energy systems Simulation of actors’ behavior with limited information
Model type Linear optimization Agent-based simulation
Economic scope System perspective: Central planner minimizes total system cost Actor perspective: Each actor minimizes its own costs
Temporal scope One year with hourly resolution One year with hourly resolution
Spatial scope Country-specific Country-specific
Geographical focus Europe and Maghreb Germany
Specific features Investment planning, cross-border power exchange, power sector

coupling to heat and transport sector
Actor behavior under different policy regimes

2.3. Model coupling

To perform our analysis, multiple datasets need to be pro-
cessed and exchanged between REMix and AMIRIS. Depending
on the individual phase of our overall workflow, this is done
in a unidirectional or bidirectional manner. In the following, we
describe the four steps required for bidirectional data exchange
in phases C and D of the overall workflow. The unidirectional data
exchange in phases A and B require only steps 1–3 of the model-
coupling workflow. Note that this model-coupling methodology
is independent of the specific use-case analyzed in this paper
and can therefore be used to investigate a large variety of pol-
icy regimes. Fig. 2 provides a more detailed overview of the
corresponding model-coupling workflow implemented in RCE.
The advantage of this workflow implementation is that all data
processing steps can be executed without specialist knowledge
of the models or data processing tools involved.

The model-coupling workflow consists of four data processing
steps:

1. The reference energy system (REF) is determined. There-
fore, energy system optimization is executed in REMix
to provide the optimal expansion and dispatch of power
plants, storage technologies, and the electricity grid for
a GHG mitigation scenario on the European level. After
optimization of REMix, the outputs and input parameters,
such as CO2 and fuel prices, are passed on to iog2x.

2. The iog2x module filters and processes the REMix out-
puts into AMIRIS inputs. This includes unit conversions,
changing data formats, and data aggregation, such as bal-
ancing power demand and power exchange time series. We
describe the data aggregation process in Section 2.4.1. Ap-
pendix C provides a more detailed overview of all technol-
ogy-specific modifications of the REMix outputs.
The processed data representing the cost-optimal energy
system design are then sent to AMIRIS over a peer-to-peer
network connection using RCE.

3. The processed data together with additional parameters
that describe the regulatory framework and business model,
are used to simulate the electricity market for one year
in AMIRIS. In the harmonization phase, the storage agent
imitates the determined optimal storage dispatch in REMix.
To determine the modeling delta in phase B, the storage
agent in AMIRIS minimizes the system costs. In our case
study, the AMIRIS market simulation includes PV-storage
optimization that minimizes the PV-prosumers’ costs.

4. In the last step, we pass the time-series back to REMix. The
energy system is then optimized for a second time, with
the dispatch of selected technologies constrained according
to the AMIRIS results. Regarding the specific case study
of this paper (see Section 2.5), we fix the charging and
discharging profiles4 of the batteries that belong to Ger-
man prosumers with the PV-storage dispatch obtained by

4 In other words, we set the lower and upper bounds of the storage
optimization variables, i.e., hourly amounts of charged and discharged electricity,
equal to a fixed value.

AMIRIS. In doing so, we ensure that the corresponding stor-
age technology in REMix reflects the PV-prosumer stake-
holder behavior derived from AMIRIS. Concerning genera-
tion and storage expansion, the capacity values are directly
prescribed according to REF for all regions except that for
which dispatch is constrained.

2.4. Setup for measuring the granularity gap

In this section, we describe the measures necessary to achieve
a modeling setup that can quantify the economic granularity
gap. In particular, we perform model harmonization and measure
what we refer to as the modeling delta.

2.4.1. Harmonization
Harmonization requires that, for a certain set of identical

input parameters, both involved models produce identical results.
However, this is only possible in the absence of model-specific
features. Accordingly, in phase A of the overall workflow, the
power plants in AMIRIS bid at their marginal costs, and the
dispatch of storage systems resembles that from REMix. Fur-
thermore, influences that stem from unequal technological and
geographical scopes need to be treated. In particular, this trans-
lates into balancing the hourly demand time-series that is input
to AMIRIS to consider technologies that are not simulated there.
Based on the REMix outputs for Germany, Dtotal

t is calculated as
follows:

Dtotal
t =Dconv

t + Dhp
t + DeBoiler

t + DeCars
t + Eexport

t − E import
t

+ ZC,stor
t − ZD,stor

t + Ltranst , ∀t,
(1)

where Dconv
t represents the electricity demand of conventional

consumers and Dhp
t , DeBoiler

t , and DeCars
t represent the power con-

sumption of heat pumps, electric boilers, and electric vehicles,
respectively. Moreover, electricity imports to Germany E import

t ,
and the discharging of storage technologies, ZD,stor

t , are deducted,
whereas electricity export from Germany, Eexport

t , charging of stor-
age technologies, ZC,stor

t , and power transmission losses, Ltranst , are
added to the total hourly electricity demand of Germany. Due to
the different representations of storage self-discharge in AMIRIS
and REMix, this feature is deactivated in both models, i.e., we
neglect self-discharge in all storage technologies. Due to the very
low self-discharge rate and short charge cycle (less than one day)
of the PV-storage systems, this assumption does not significantly
impact the results.

To achieve successful harmonization, two indicators that can
be directly obtained from the model outputs are useful: electricity
prices and costs. The former is the more intuitive choice, but dif-
ferent mechanisms for determining wholesale market electricity
prices with REMix and AMIRIS render a direct comparison diffi-
cult.5 Although an appropriate model configuration would allow

5 To derive the electricity prices in REMix, the dual variables of the power-
balance constraint (so-called shadow prices) are used. However, this common
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Fig. 2. Data exchange during model-coupling of REMix and AMIRIS. Step 1: Energy system optimization in REMix to determine the REF. Step 2: Filtering and
processing the REMix outputs for AMIRIS simulation. Step 3: Electricity market simulation in AMIRIS based on the REF energy system design. Step 4: Second round
of energy system optimization in REMix while constraining the dispatch of the selected technologies according to AMIRIS results.

the model harmonization to be assessed, numerical issues still
complicate a meaningful comparison. In particular, these issues
can be traced back to the non-differentiability of the merit-order
curve. Considering a vertical demand curve, the price cannot be
precisely determined for supply amounts that lie at the transition
between two price levels. At this point, minor numerical differ-
ences in demand can cause significant differences in the resulting
electricity prices. Unlike the prices, the value of the operational
system costs, represented by the area under the price curve, is
insensitive to these complications. For this reason, we evaluate
the operational system costs of our models instead.6

2.4.2. Modeling delta
In phase B of the overall workflow, we determine the modeling

delta ∆model. In general, we define the modeling delta as the
deviation between results from REMix and AMIRIS that cannot
be treated by harmonization. In other words, it is the difference
between operational system costs if the dispatch of energy stor-
age is modeled individually in both REMix and AMIRIS (even if
storage agents still aim to minimize system costs in AMIRIS).7 In
this phase of the overall workflow, our target is to keep ∆model as
small as possible, which calls for additional adjustments of our
model-coupling setup. This relates to the reference quantity of
a storage component’s capacity.8 To resolve the corresponding
discrepancies, the REMix source code adapts the constraints for
the capacity cap and storage-balancing so that the converter

interpretation of shadow prices is distorted if the costs for storage operations
or capacity expansion are considered in the energy system optimization. A
consequence of this circumstance would be additional price levels in the
resulting merit-order, which do not formally occur in the real market. In
contrast, AMIRIS correctly models the price-building procedure, and thus the
merit-order based on individual bids in the day-ahead market.
6 Note that the compared operational system costs for the harmonization of

the models are only one part of the total system costs. As we will explain in
Section 2.4.3, we use the total system costs as an indicator for quantifying the
economic granularity gap.
7 Hence, in phase B, ZD,stor

t and ZC,stor
t are no longer considered in Eq. (1) for

the storage technology modeled in AMIRIS.
8 Initially, the capacities of both power converters (e.g., pumps and turbines)

and storage (e.g. a water basin) are provided in terms of electricity in REMix.
This is not the case for AMIRIS, where converter and storage capacities refer to
their chemical or potential values. As the charging and discharging capacities
are identical in both models, they cannot be harmonized if one model considers
electrical and the other chemical/potential values.

and storage capacities in REMix represent chemical or potential
values, similar to AMIRIS. Additionally, the storage level in REMix
is fixed to zero for the last time step of the operational time
horizon. This is to replicate the behavior of the storage in AMIRIS,
which sees no economic advantage in stored energy at the end of
the operation period.

When it comes to modeling energy storage technologies, a
further aspect is crucial: the storage operators in AMIRIS use
a forecast of the upcoming market prices to optimize the stor-
age dispatch. However, in this model, the competition among
storage systems is neglected, meaning that one operator does
not anticipate the strategy of other operators. Thus, exposing
more than one flexibility option to the same electricity market
forecast leads to an overreaction of the storage entities. This
model artifact, which is referred to as the avalanche effect in the
literature (Ensslen et al., 2018), results in extreme price peaks.
Hence, we optimize the operation of only one storage system
in AMIRIS and fix the dispatch of all other storage technologies
according to the results of REMix.

Nevertheless, the operational system costs vary between the
models. The final modeling delta comprises several effects: REMix
operates storage technologies with variable costs and has perfect
foresight over the whole modeled year, whereas AMIRIS does not
consider variable costs for a storage agent’s business model. In
contrast to REMix, the operation foresight horizon is limited to
48 h, and (dis-)charging is modeled for discrete storage levels.

2.4.3. Granularity gap indicator
As mentioned before, we measure the economic granularity

gap in terms of total system costs. The total system costs consist
of all expenses for electricity supply in one year of a future
scenario, which includes both operational costs (COPEX

k ) and amor-
tization charges (CCAPEX

k ) for investments in new infrastructure.
Accordingly, we measure ∆model and ∆econ by comparing the
total system costs for REF in REMix C1 (step 1 of the model-
coupling workflow, see Fig. 2), with C4, which is observable after
constraining REMix according to the results from AMIRIS in step
4 of the model-coupling workflow:

∆ = C4 − C1. (2)

The total system costs Ck in step k of the model-coupling work-
flow are composed of

Ck = C fuels
k + CO&M

k + CCO2
k  

=COPEX
k

+CCAPEX
k , ∀k ∈ {1, 4}.

(3)
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Fig. 3. Schematic overview of qualitative system cost relations: System costs of the reference energy system (C1 , blue bars), the modeling delta (∆model , gray bars),
and the economic granularity gap (∆econ , orange bars) in the different phases of the overall workflow. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The operational system costs, COPEX
k , comprise the costs for fuel

C fuels
k , operation and maintenance (O&M) costs of the power sys-

tem components CO&M
k , and costs for emission allowances CCO2

k .
Fig. 3 illustrates the different cost components for each phase
of our overall workflow. While the operational system costs in
AMIRIS and REMix are equal in the harmonization step, a mod-
eling delta (∆model, shown in gray) can be observed in phase B.
The prosumer operation strategy in phases C and D of the overall
workflow increases the operational system costs and amortiza-
tion charges in Germany, resulting in the economic granularity
gap (∆econ, shown in orange).9

2.5. Case study

The model-coupling setup is now ready to be applied. There-
fore, we consider the battery storage used to moderate the inter-
mittency of the power supply from rooftop PV as the technology
to be investigated. In other words, given the successful comple-
tion of phases A and B in the overall workflow, we are ready to
quantify the impact of stakeholder behavior on energy system
design for one particular technology.

2.5.1. PV-prosumers in Germany
The levelized cost of electricity from PV systems has fallen

below the retail electricity price in many countries worldwide,
a development that has incentivized investment in PV rooftop
systems for many households (Lang et al., 2016; Bazilian et al.,
2013). Similar to PV systems, battery storage has experienced a
significant reduction in system prices. Several studies indicate
that this trend will continue in the next few years (Agnew and
Dargusch, 2015). As a result, storage systems for rooftop PV
(PV-prosumers) have become economically viable for households
under certain support schemes and generation potentials (Hopp-
mann et al., 2014; Bertsch et al., 2017). The available storage
capacity gives PV-prosumers the flexibility to store electricity at
specific times (e.g., when self-generated PV electricity exceeds
the electricity demand or when grid electricity is cheap) and

9 Note that, for a simple illustration, the operational system cost differences
caused by the modeling delta and the economic granularity gap are stacked in
this figure. This might not be the case in reality.

discharge it at later times (e.g., to cover the electricity demand
or sell to the grid) (Sarfarazi et al., 2023).

From an overall systems perspective, self-consumption with
PV-storage systems is neither desirable nor detrimental (Günther
et al., 2021). While the flexibility of PV-prosumers can contribute
to the integration of renewable energies, current business models
and regulatory frameworks are unable to incentivize a system-
beneficial dispatch of PV-prosumers (Sarfarazi et al., 2020; Klein
et al., 2019). Moreover, to untap the potential of the residential
demand-side flexibility, an entity should undertake the aggre-
gation of the small prosumer capacities (Plaum et al., 2022).
Therefore, we investigate how the operation of aggregated PV-
prosumers leads to an economic granularity gap under the cur-
rent regulatory framework and business models in Germany,
and how it could be decreased. Accordingly, assessing alternative
policy instruments is part of our analysis.

Next, we introduce the energy scenarios and input data used
in our case study (Section 2.5.2). In Section 2.5.3, we describe the
investigated business models and regulatory framework for two
different use-cases: static pricing (phase C of the overall work-
flow) and several implementations of dynamic pricing (phase
D). How PV-prosumers are modeled in AMIRIS is discussed in
Section 2.5.4.

2.5.2. Scenarios, input data, and modeling assumptions
The starting point for our analysis is a dataset of the European

power system from the year 2020 and the aim for GHG mitigation
of 55% compared with 1990. The REMix inputs are based on a
previous study by Cao et al. (2020), where the corresponding
scenario is referred to as ‘‘55% Base: Trend’’. However, instead of
a CO2 cap, we apply penalties to achieve the emissions reduction
target. Therefore, a price of 50 euros per ton of CO2 is assumed.10
While the energy system optimization is conducted for EUMA on
a national level, the electricity market simulation and the model
coupling are carried out for Germany only. According to this
scenario, system planning comprises the capacity expansion of
wind turbines, PV, pumped-hydro storage, lithium-ion batteries

10 In our scenarios, the focus is on the power sector. The study by Cao et al.
(2020) shows that, within this model setup, a CO2 price of 50 euros per ton can
achieve GHG mitigation of 55% in the power sector.
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and power transmission lines. In addition, the current model
setup considers a technology split for both lithium-ion batteries
and PV to distinguish rooftop PV with and without storage, utility
PV, and stand-alone stationary battery storage, each of which
has individual techno-economic parameters. For Germany, this
means that the scenario’s minimal total generation capacity of
PV (46.8 GW) comprises 34.9 GW rooftop PV, which is equally
split and assigned to systems with and without storage. In the
following, we refer to former as ‘‘PV-prosumers’’. In considering
their capacity expansion in REMix, we assume a fixed capacity
ratio between PV generators and battery power (factor 2), and
for the energy-to-power-ratio of the battery (factor 3).11 Fur-
thermore, the electricity demand is split to distinguish between
PV-prosumers and other power consumers:

• Aggregated prosumers (AP) consist of virtually aggregated
PV-prosumer households whose hourly power consump-
tion is calculated using typical household demand pro-
files. These are scaled by the annual electricity demand of
PV-prosumers. The former come from a dataset contain-
ing measured load profiles of 74 different German house-
holds (Tjaden et al., 2015). The annual electricity demand
DAP
t is estimated by assuming that a household with an

annual demand of 750 kWh installs 1 kW of PV rooftop
capacity. Accordingly, the total value for Germany depends
on the resulting capacity expansion of rooftop PV systems
in step 1 of the model-coupling workflow.

• Other power consumers (OPC) represent all electricity de-
mand except that of AP. This includes PV-rooftop systems
without integrated battery systems. Accordingly, we calcu-
late the electricity demand by subtracting the electricity
demand of the prosumers DAP

t from the total electricity
demand of Germany Dtotal

t :

DOPC
t = Dtotal

t − DAP
t , ∀t. (4)

In other words, in contrast to model harmonization (phase
A of the overall workflow), data for the prosumer systems
are treated separately in AMIRIS.

Moreover, we assume that conventional and renewable power
plants always bid with their marginal costs, i.e., no mark-ups or
mark-downs for conventional power plants and no feed-in incen-
tives for renewable power plants, except for PV-prosumers. More-
over, as mentioned above, large-scale storage systems (e.g., pump
storage systems) have the system-optimal dispatch calculated
in REMix. Regarding prosumer self-consumption, we consider
complete relief from regulatory-induced charges for behind-the-
meter use of self-generated electricity.

2.5.3. Use-cases under investigation
In this section, we define the use-cases for phases C and D of

our overall workflow. In phase C, the electricity retail price (pst )
and the price of purchasing electricity from prosumers (ppt ) are
fixed over a year. In this case, ppt adopts the value of the feed-in
remuneration (FiT ). Taxes and levies, which make up over 70% of
the retail electricity price in Germany, are fixed over a year and
do not include any time-varying component. This static pricing
approach is referred to as the business-as-usual (BAU) use-case.
Accordingly, the retail electricity price can be written as

pst = (pelect + r + ptax + pnc + plev + peegt ) · (1 + VAT ), (5)

where pelect is the cost of acquiring electricity, r is the aggregator’s
profit margin, ptax are the associated taxes, pnc are the volu-
metric network charges. peegt and plev are respectively levies to

11 This means, for instance, that a PV-prosumer with a 10 kWp PV system is
equipped with 5 kW battery power and 15 kWh battery storage.

Table 2
Regulatory framework and business model parameters.
Parameter Symbol Value Source

Taxes [¢/kWh] ptax 2.05 BDEW (2022)
Network charges [¢/kWh] pnc 7.65 BDEW (2022)
EEG levies [¢/kWh] peegt 3.72 BDEW (2022)
Other support levies [¢/kWh] plev 4.1 BDEW (2022)
Value added tax [%] VAT 19 BDEW (2022)
Feed-in remuneration [¢/kWh] FiT 7.69 BSW (2021)
Market price upper cap [¢/kWh] pm 30 o.a.a

Aggregator’s profit margin [¢/kWh] r 2 o.a.
Scaling factor in RTP tariff [–] κ 0.88 o.c.b

Scaling factor for vFiT [–] θ 1.28 o.c.
Scaling factor for dEEG [–] ι 0.53 o.c.

aOwn assumption.
bOwn calculation (see Appendix D).

support the renewable energy feed-in (according to the German
renewable energy act, EEG12) and other mechanisms. VAT is the
value-added tax.

In phase D of the overall workflow, we study different lev-
els of dynamism in the retail and purchase electricity prices
via real-time pricing. The basic idea behind this is that ppt or
certain components of pst follow the fluctuating market prices
and therefore, the demand and supply in the market to better
align the distributed decisions made by PV-prosumers. Based on
suggestions discussed in the literature, the following instruments
are considered:

1. Real-time pricing (RTP) (Hogan, 2014). The resulting dy-
namic prices include variable procurement costs (pelect ),
which are proportional13 to the electricity wholesale
prices.

2. Variable feed-in tariff (vFiT) (Ossenbrink, 2017; Klein et al.,
2019). This instrument denotes remuneration for PV elec-
tricity feed-in proportional to the wholesale prices.

3. Dynamic EEG levy (dEEG) (Economics and BET, 2016; Freier
et al., 2019). The EEG levy (peegt ) in this instrument varies
hourly according to the market prices.14

For these dynamic instruments, the values of pelect , ppt , and peegt
are determined such that their cumulative monetary effect over
the course of a year compared with the static equivalent for a
benchmark user is zero (i.e., the instruments do not affect the
annual cost or revenue of a benchmark user). The choice of bench-
mark users and the calculation of the used scaling factors for this
calibration, κ (for RTP), θ (for vFiT), and ι (for dEEG), are explained
in Appendix D. The assumed values for the parameterization of
the electricity tariffs are given in Table 2.

Considering the introduced instruments and their combina-
tions, in addition to BAU, we build three use-cases with the
naming conventions given in Table 3. For example, the instrument
mix of RTP and vFiT would be called ‘‘RTP + vFiT’’.

2.5.4. PV-prosumer modeling in AMIRIS
As explained in Section 2.5.2, we assume that all PV-prosumers

in AMIRIS are virtually aggregated to a single agent. An aggregator
is responsible for managing the electricity load and feed-in of
PV-prosumers. The aggregation of prosumers without PV-storage

12 Based on the German government’ decision, the EEG levy was eliminated
recently to lower the cost burden of power consumers.
13 Read as: wholesale market price times a constant.
14 Despite the omission of the EEG levy, this instrument is still relevant as it
can be applied to other regulated elements of the retail electricity price.
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Table 3
Naming convention of the use-cases under investigation.
Use-case RTP vFiT dEEG

BAU – – –
RTP ✓ – –
RTP + vFiT ✓ ✓ –
RTP + vFiT + dEEG ✓ ✓ ✓

Fig. 4. Schematic overview of the prosumer’s model.

systems and using community energy storage systems instead
has already been investigated with AMIRIS (Safarazi et al., 2020).
For the current analysis, we further develop the aggregator and
prosumer agents as follows:

Aggregator: The aggregator agent receives a forecast of the up-
coming market prices and related policy-related information,
such as electricity price elements induced by the government.
Based on the chosen instrument, the aggregator agent creates and
sends two sets of prices, i.e., retail and purchase prices (ps and
pp), to the prosumers. Note that the market price forecasts are
generated based on the electricity demand and generation of all
market actors except the prosumers.

Prosumer: This prototype agent represents an aggregated PV-
prosumer entity15 with a conventional household load, genera-
tion from a PV rooftop system, and battery storage system. In
reaction to the aggregator price signals, the PV-prosumer uses
a dynamic programming approach to optimize the dispatch of
the PV-storage system. Fig. 4 schematically illustrates the virtual
power flows in the PV-prosumer model and between the PV-
prosumer and aggregator. The prosumer’s electricity load and
generation are managed by an energy management system (EMS),
which determines the amount of battery charge (zC ) or dis-
charge (zD) as well as grid usage (es) and grid feed-in (ep) on
an hourly basis according to the prosumer’s generation (GAP )
and demand (DAP ). In Appendix E, we provide a more detailed
explanation of the mathematical model employed for prosumer
storage optimization.

3. Results

3.1. Model harmonization and modeling delta

In phase A of the overall workflow, AMIRIS does not operate
any PV-storage and adopts the optimized dispatch of its counter-
parts in REMix. The hourly sum of all discrepancies in operational
system costs between REMix and AMIRIS is 26800 e for Germany,
which (considering overall German operational system costs of
around 5.96 Be) corresponds to a relative deviation of 0.00045%.
The root-mean-square error is 1900 e. With this marginal differ-
ence, we consider the models to be harmonized and phase A to
be complete.

15 The model can also be parameterized for individual prosumers. Due to
computational impracticality and lack of data, we consider an aggregated
prosumer entity.

Table 4
Cost components of the EUMA and GER in the Reference energy system.
Cost component Cost–EUMA [Be] Cost–GER [Be]

CAPEX 114.73 3.07
O&M cost 27.86 0.55
Fuel cost 18.94 2.57
CO2 cost 8.19 2.85

To calculate ∆model, PV-prosumers operate such that opera-
tional system costs are minimized by AMIRIS (phase B).16 The
annual sum of the hourly differences between the operational
costs of the first and third steps of the model-coupling workflow
is ∆model

= 899 300 e. The corresponding root-mean-square
error is 13500 e. In other words, due to the modeling delta, our
indicator for measuring the granularity gap increases by 0.015%
compared with the reference energy system17 (see Fig. 3). This
indicates that the modeling delta is negligibly small.

3.2. Economic granularity gap

In this section, the economic granularity gap is quantified
for the case of PV-prosumers in the German electricity market.
The indicator used is the difference in total system costs (see
Section 2.4.3). We distinguish the system costs for two spatial
scopes: (i) EUMA and (ii) Germany (GER). Therefore, based on
Eq. (2), the economic granularity gap to be observed in this
case-study is
∆econ

c,s = Cc,s − CREF,s,

∀c ∈ {BAU, RTP, RTP+vFiT, RTP+vFiT+dEEG},
∀s ∈ {EUMA, GER},

(6)

where c is the set of studied use-cases and s is the spatial scope.
Cc,s represents the total system costs considering the stakeholder
behavior of PV-prosumers and CREF ,s is the total system costs
for the cost-minimal reference energy system design (REF) (step
1 of the model-coupling workflow, see Fig. 2). By considering
EUMA as well as GER, we can differentiate between the impacts
of the instruments on the overall and German energy systems.
The tariffs are only applied in Germany. However, by modeling
the whole EUMA region, we can consider the electricity grid and
observe changes in imports and exports. This allows us to analyze
the German energy system in a more dynamic setup.

In general, high retail electricity prices in comparison to feed-
in remunerations make self-consumption of electricity profitable.
However, in the BAU use-case, this self-consumption is scheduled
independently from market signals. Therefore, it is likely that the
system operation deviates from the macroscopic cost minimum
of REF, which may also affect the optimal energy system design.
In contrast, introducing instruments such as RTP, vFiT, and dEEG
increases the alignment of the operations of PV-prosumers, and
should thus decrease the economic granularity gap.

Table 4 lists the cost components on the EUMA level and
in Germany for REF. The macroeconomic optimum is at 169.71
Be of total system costs in REF. For Germany, system costs com-
prise 0.55 Be for O&M of the power system, with 2.57 Be and
2.85 Be of fuel and CO2 costs, respectively. Amortization charges
(CAPEX) for additional power system components are 3.07 Be.

16 Note that the modeling delta is determined between REMix (REF) and
AMIRIS, but it finally affects the economic granularity gap measured against
a second energy system optimization with REMix. Therefore, we estimate an
upper bound for the modeling delta because, even if constrained to the AMIRIS
output, the operational system costs observed in step 4 of the model-coupling
workflow can be further minimized in REMix, e.g., by re-dispatching storage
technologies other than PV-prosumers.
17 If the optimized PV-prosumer dispatch from AMIRIS is implemented in
REMix, CAPEX increases by 128000 e, corresponding to an increase of 0.0042%,
and OPEX increases by 54000 e, an increase of 0.00091%.
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Fig. 5. Differences in the cost components of EUMA and GER compared with REF for different tariff options. In the BAU scenario, the cost increase in Germany is
the highest at almost 400 Me. With the RTP tariff, the additional investment cost decreases in Germany by around two-thirds, shifting costs abroad. With a more
flexible vFiT the additional costs in Germany increase, while the overall system costs decrease.

Fig. 6. Capacity differences in GER compared with REF for different tariff
options. The BAU scenario leads to the highest additional capacities in GER.
In the RTP scenario, the capacity of central PV decreases significantly. With an
additional vFiT, the capacity of the grid decreases. The additional flexibility of
the EEG results in comparably low additional lithium-ion battery capacities.

Fig. 5(a) shows the economic granularity gaps for the EUMA
scope, and thus, the cost components and total system costs in
the overall energy system compared with REF. As the power gen-
eration and storage capacities are similar to REF in all countries
but Germany (see Section 2.3), the relative changes in total sys-
tem costs on the EUMA level are rather low. However, differences
can be observed depending on the tariff implemented for PV-
prosumers: higher flexibility of the prosumer tariff produces a
smaller economic granularity gap on the EUMA level. For BAU
and RTP, similar additional system costs can be observed, while
introducing a variable feed-in-tariff leads to a marginal improve-
ment in RTP+vFiT. The additional implementation of dynamic
EEG has a rather strong influence on the economic granular-
ity gap. RTP+vFiT+dEEG reduces the deviation of system costs
significantly.

For a better understanding of the impact of PV-prosumer
behavior on energy system design in Germany, Fig. 5(b) illustrates
economic granularity gaps for the German scope and thus, the
cost components in Germany compared with the least-cost REF.
In all use-cases, the energy system design changes in a way that
increases investment costs, which dominates the effect on the
total system costs. As expected, this is striking in BAU, where
additional investment costs are at 428 Me. In particular, Fig. 6
shows that the economic granularity gap is mainly visible in
the form of an additional need for stationary lithium-ion battery
capacity in Germany and, for all use-cases but RTP, utility PV. The
installed capacities in Germany in the REF are listed in Table F.1.

In general, the above results indicate that, in the case of PV-
prosumers, the economic granularity gap is mainly driven by
the nonaligned, and thus, inflexible operation of the associated
PV-storage systems. They do not fully exploit their capability to
balance power supply and demand. This is underestimated in the

Fig. 7. Differences in power generation in GER compared with REF for different
tariff options. In the BAU and RTP+vFiT+dEEG scenarios, the power generation
of central PV increases significantly, leading to less power generation and
imports from abroad. In the RTP+vFiT scenario, the power generation shifts
slightly to Germany. With the RTP tariff, the central PV power generation
decreases significantly in Germany, resulting in additional imports from abroad.

optimal energy system design of REF, which ignores PV-prosumer
behavior. Therefore, the resulting inflexibility needs to be bal-
anced by further installations of technologies having the same
capabilities. However, with a sufficiently dynamic electricity re-
tail tariff and feed-in remuneration, and with additional energy
storage capacity, the granularity gap in Germany can be reduced,
e.g., down to 242 Me in the RTP+vFiT+dEEG case. If the share of
dynamic price components in the prosumer tariff becomes larger,
such as in RTP+vFiT+dEEG, the need for temporal energy balanc-
ing in the form of lithium-ion batteries is minimized (+0.7 GW
compared with REF) and the need for spatial energy balancing
is reduced. This is even more significant for RTP+vFit, where
the grid transfer capacity between Germany and its neighbors is
reduced by 0.7 GW compared with REF.

As shown in Fig. 5(b), RTP gives the smallest economic gran-
ularity gap for Germany due to considerably lower investments
in additional power generation and storage capacity. Fig. 6 illus-
trates that considering RTP18 causes a displacement of 4.9 GW
of utility PV compared with REF. However, carbon emission costs
decrease across all use-cases except RTP. The reason is that, in the
RTP use-case, the cost savings observed for Germany are compen-
sated by shifting power generation to other countries. Although
the additional costs in Germany decrease with the RTP tariff com-
pared with the BAU tariff, the additional costs in EUMA are almost
the same, indicating higher additional costs abroad. This becomes
evident when looking at Fig. 7, which shows the changes in power
generation in GER compared with REF. The power generation in
REF is listed in Table F.2. Given the significant additional imports
of about 5.5 TWh for RTP, it becomes clear that the missing

18 According to our methodology, only in the German electricity market.
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solar power is mainly compensated by both greater renewable
and fossil-fired power generation outside Germany. This leads
to the most extensive GHG emissions across the analyzed use-
cases, even at the EUMA scope, with 33 Me for additional CO2
emission allowances compared with REF. At the same time, while
the additional costs of the German energy system decrease with
the RTP tariff, Germany’s import dependency increases.

Furthermore, Fig. 7 shows that BAU and RTP+vFiT+dEEG are
very similar in terms of power generation: the power generation
from utility PV increases significantly, while imports from abroad
decrease and less fossil-fired power plants are operated, both in
Germany and abroad, leading to lower fuel and CO2 costs, as
indicated in Fig. 5. However, due to the more efficient usage of
PV-storage systems in the RTP+vFiT+dEEG use-case, a decrease
in imports to Germany can be achieved with less infrastructure
in the form of additional lithium-ion battery capacity.

4. Discussion

4.1. Results summary

Our case-study has quantified the economic granularity gap
that arises, from a central planner’s perspective, when stake-
holder behavior is considered in the optimization of large-scale
energy systems. In particular, we studied the case of PV-prosumers
aiming to optimize the dispatch of PV-storage systems at the
household level in Germany. Under the actual pricing regime,
which we refer to as BAU, we observed an economic granularity
gap in Germany represented by an increase of 389 Me. To put
this into context, designing future energy systems with an opti-
mization model implies an underestimation of costs, whereas the
absolute value of 389 Me is rather interesting from a technical
point of view. However, the novelty of our study is that we were
able to quantify these costs, which are usually hidden if stake-
holder behavior is ignored. In addition, we studied the influence
of different prosumer tariffs, which are supposed to increase the
alignment of PV-prosumer dispatch decisions according to price
signals from the electricity market. We showed that a larger share
of dynamic components in electricity retail prices and feed-in
remunerations results in lower additional total system costs at
the overall system level. Accordingly, the economic granularity
gap could be reduced. In the case of variable procurement prices
(RTP use-case), the additional cost in Germany decreases to 150
Me, but at the cost of increasing GHG emissions and additional
power generation outside Germany, resulting in a higher import
dependency.19 In contrast, for a prosumer tariff that addition-
ally considers variable feed-in-tariffs and a dynamic EEG levy
(RTP+vFiT+dEEG use-case), we observed a very similar annual
electricity mix as in BAU. However, this could be realized with
less investment, and thus at lower total system costs, while also
decreasing GHG emissions.

In summary, replacing the static components of the prosumer
electricity prices with time-varying elements that contain signals
from the wholesale market reduces the total system costs at
the overall system level. Looking at Germany, considering only
system costs may provide an incomplete picture. Therefore, addi-
tional factors such as power exchange with neighboring countries
need to be considered when quantifying the economic granularity
gap.

19 In this particular case, a greater utilization of fossil-fired power plants and
purchasing emission allowances at 50 e/t turned out to be more cost-efficient
than greater investment in new PV plants.

4.2. Limitations

One limitation of our modeling setup is the isolated consid-
eration of stakeholder behavior for a single electricity market
(Germany) and solely for one technology. This limits the scope
for studying the economic granularity gap from an overall system
perspective and causes inaccuracies. In particular, when evaluat-
ing system costs in Germany, the profits and expenses of power
exchange are not considered because they cannot be directly
derived from REMix, which calculates the total system costs
across Europe and Maghreb. Additionally, it is clear from the
relative cost deviations that the granularity gaps are rather low
compared with the absolute total system costs. This effect is
a consequence of our methodology, where expenses for power
plants and storage outside Germany cannot be changed after
determining the reference energy system. In this way, we con-
sider policy instruments to be solely implemented for individual
countries. This severe limitation of the solution space fosters
more significant changes in the German energy system caused
by stakeholder behavior. In our study, this refers to investments
in technologies, which are directly affected by the dispatch deci-
sions of PV-prosumers’ lithium-ion batteries. Accordingly, further
improvements in the context of quantifying the economic gran-
ularity gap require the consideration of stakeholder behavior for
more than one decentralized actor, necessitating more technolo-
gies in the market. This includes the optimization of diverse
storage technologies, each of which is suitable for a specific
system need.

4.3. Policy implications of the case-study

The implementation of retail prices with dynamic compo-
nents based on perfect forecasts of wholesale market prices is
still largely hypothetical. Despite the associated simplifications,
the results of our case-study provide valuable insights into the
system impacts of different implementation levels of dynamic
pricing instruments for prosumers. In this context, we conclude
that dynamic electricity tariffs and remuneration schemes are
not a ‘‘system-friendly’’ policy instrument by default. Against our
expectations, the total system costs in Germany did not alter con-
sistently with the increasing market alignment of PV-prosumers.
Whether dynamic pricing mechanisms are beneficial depends on
the specific implementation (i.e., which price components are
dynamic) and also where it is introduced. Therefore, we can
confirm that the desired effects are possible in terms of both
reducing GHG emissions and the need for energy infrastructure.
Concerning the observed additional GHG emissions in one of our
use-cases, we recommend further research to cross-check our
findings with sensitivity analysis of CO2 costs.

In this context, our results show that replacing more than one
component of the electricity retail price with time-varying ele-
ments significantly increases the effectiveness of the instrument.
However, the remaining distortions caused by other static taxes
and levies prevent complete alignment of the prosumer operation
with the electricity market, and so complete elimination of the
economic granularity gap is not achieved (these findings are
similar to the results of Klein et al. (2019) and Sarfarazi et al.
(2020)). The implementation of other instruments, such as fixed
network charges (Borenstein, 2016), that reduce the share of fixed
volumetric components of the electricity retail price may further
improve the system impacts of prosumer operations. Moreover,
for the ‘‘system-friendly’’ operation of prosumers, besides fluctu-
ations in wholesale market prices, the condition of the physical
infrastructure, e.g., congestion in the distribution grid, should also
be signaled to the prosumers.
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5. Conclusion and outlook

How can a climate neutral overall energy system be imple-
mented in a society with a multitude of decentralized decision-
makers? This was the overall research question that motivated
the study described in this paper. As an extension to existing
research in energy system analysis, we have introduced different
economic perspectives with regard to the transformation of large-
scale energy systems that affect the potential gains from model-
based analyses on energy system design. In particular, we applied
the energy system optimization model REMix and the agent-
based electricity market model AMIRIS to explore different eco-
nomic perspectives. We described the economic granularity gap
as a metric for bringing these two perspectives closer together. In
general, this approach was useful in identifying effective policy
measures in terms of system-friendliness. From a technical point
of view, we set up an automated and reproducible modeling
workflow by coupling the energy systemmodels in a bidirectional
manner. This technical implementation is an essential novelty
compared with the state-of-the-art. We demonstrated the use-
fulness of this formulation in a case-study for PV-prosumers,
providing an example of how unaligned stakeholder behavior
affects energy system designs provided by ESOMs.

In the case-study, we analyzed a set of different policy mea-
sures that affect the deviation of simulated operation decisions
of PV-prosumers in the German power market and compared
them with optimal decisions from the overall system perspective.
We found that the developed modeling workflow was capable
of investigating the influence of different policy instruments for
bridging the economic granularity gap, and was thus able to
reduce costs, which are usually underestimated when designing
energy systems. From a practical point of view, the strength
of the established modeling workflow is its adaptability to a
large spectrum of further research questions that go beyond our
particular case-study. Therefore, an intuitive next step would be a
roll-out to further stakeholder groups, such as operators of other
storage technologies. It is expected that, when a large variety
of stakeholders are covered, the economic granularity gap will
increase. Thus, research on effective policy measures for bridging
this gap becomes even more important. Accordingly, examples for
further research are analyses of the market premium (Frey et al.,
2020), the interaction of markets due to increasing coupling of
energy demand sectors, or the impact of the strategic behavior of
stakeholders on the economic granularity gap. In this context, an
important topic for future research is modeling policy measures
that directly influence investment decisions.
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Table A.1
List of abbreviations and acronyms.
Shortened form Description

ABM Agent-based model
AP Aggregated prosumers
BAU Business-as-usual
CAPEX Capital expenditure
EEG Renewable energy act (Erneuerbare-Energien-Gesetz)
EMS Energy management system
ESOM Energy system optimization model
EUMA Europe and Maghreb
dEEG Dynamic EEG levy
GER Germany
GHG Greenhouse gas
O&M Operation and maintenance
OPC Other power consumers
OPEX Operational expenditure
PV Photovoltaic
REF Reference energy system
RTP Real-time pricing
VAT Value-added tax
vFiT Variable feed-in tariff
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Appendix A. Abbreviations

Table A.1 presents a list of the acronyms and abbreviations
used in this paper.

Appendix B. Structure of AMIRIS

The structure of the ABM AMIRIS and the financial, informa-
tion, and power flows among the enabled agents in this study are
illustrated in Fig. B.1. A more detailed description of AMIRIS can
be found in Deissenroth et al. (2017). AMIRIS has already been
used in several electricity market studies (Torralba-Diaz et al.,
2020; Frey et al., 2020; Nitsch et al., 2021; Safarazi et al., 2020).

For the assessment of PV-prosumer stakeholder behavior, we
have further developed the model and added two new agents,
i.e., prosumer and aggregator agents. The aggregator agent pro-
vides electricity tariffs for the prosumers and trades according
to their electricity excess or deficit in the wholesale market. The
prosumer agent reacts to the electricity prices and optimizes the
operation of the storage system to minimize their costs. Note that,
at the time of publishing this paper, the developed aggregator and
prosumer models for this analysis are not part of the open-source
model.

Appendix C. Data exchange details

As shown in Fig. 2, the data from REMix are processed within
iog2x before being sent to AMIRIS. Table C.1 lists the data types
and units that REMix and AMIRIS require and how they are
translated by iog2x.

Appendix D. Calculation of market constants

The instruments under investigation are determined in such a
way that their implementation disadvantages a benchmark user.
In the case of RTP and dEEG, the benchmark user is assumed to
be a household with no storage and generation potential. For the
calibration of the vFiT instrument, we consider a stand-alone PV
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Fig. B.1. Schematic structure of AMIRIS in this study.

Table C.1
Data exchange from REMix to AMIRIS within iog2x.

Parameter REMix Transformation AMIRIS

Global
CO2 price Scalar [ke/t] Scalar to time series Time series [ke/t]
Fuel price Scalar [ke/MWhth] Scalar to time series Time series [ke/MWhth]
Specific CO2 emissions per fuel Scalar [t/MWhth] – Scalar [t/MWhth]

Demand
Demand Germany (Dtotal

t ) Time series [GWh] (Dconv
t + Dhp

t + DeBoiler
t + DeCars

t + Eexport
t −

E import
t + ZC,stor

t − ZD,stor
t + Ltranst ) ∗ 103

Time series [MWh]

Demand Prosumer (DAP
t ) Time series [GWh] * 103 Time series [MWh]

Demand OPC (DOPC
t ) – Dtotal

t − DAP
t Time series [MWh]

Storages

Storage converter capacity Scalar [GW] (* 103) to time series Time series [MW]
Energy-to-power-ratio Scalar [TWh] * 106/storage converter capacity [MW] Scalar [h]
Charge efficiency Scalar [–] – Scalar [–]
Discharge efficiency Scalar [–] – Scalar [–]

Power plants

Installed power Scalar [GW] (* 103) to time series Time series [MW]
RE yield profile Time series [GWh] (power generation + curtailment) *

103/installed power [MW]
Time series [–]

Variable O&M cost Scalar [ke/MWh] * 103 Scalar [e/MWh]
Availability factor Scalar [–] Scalar to time series Time series [–]
Minimum efficiency Scalar [–] Scalar to time series Time series [–]
Maximum efficiency Scalar [–] Scalar to time series Time series [–]

system as the benchmark user. We derive the scaling factor χ of
the instruments in its general form as follows:

pxt = χpmc
t , (D.1a)

χ =
pmc
avg

∑Z
t=1 m

AP
t∑Z

t=1 p
mc
t mAP

t

. (D.1b)

The scaling factor χ and the price pxt respectively represent κ ,
ι, θ , and pelect , peegt , ppt for the RTP, dEEG, and vFiT instruments.
pmc
avg is the average market price and pmc

t is the capped market
price with lower and upper bounds (zero and pm). mAP

t is the
normalized electricity demand of the prosumers (dAPt ) in the RTP
and dEEG calculations and the normalized generation profile (gAP

t )
in the vFit calibration. We carry out the calculation with an hourly
resolution and for a simulation time of one year (Z = 8760 h).

Appendix E. Prosumer optimization model

Eqs. (E.1a)–(E.1f) describe the EMS logic, i.e., the cost function
and the optimization constraints of the prosumer.

Minimize
ξ

C =

T∑
t=1

(
pste

s
t − ppt e

p
t
)

(E.1a)

subject to: at = at−1 + ECzCt −
zDt
ED , ∀t ̸= 0, (E.1b)

0 ≤ at ≤ ϕς, ∀t ̸= 0, (E.1c)

at = A0, t = 0, (E.1d)

GAP
t − DAP

t = est − ept − zCt + zDt , ∀t ̸= 0, (E.1e)

GAP
t = γ APgAP

t , ∀t ̸= 0, (E.1f)

0 ≤ zCt ≤
ϕ

EC , ∀t ̸= 0, (E.1g)

0 ≤ zDt ≤ ϕED, ∀t ̸= 0. (E.1h)

ξ in Eq. (E.1a) is the set of prosumer decision variables ξ =

{est , e
p
t , at , zCt , zDt }. C is the cost of the prosumer agent during one

optimization period (T ), calculated based on the grid usage (est )
and grid feed-in (ept ) of the prosumer. Note that the investment,
operation, and maintenance costs of PV-storage systems are not
considered in the cost function. In Eq. (E.1b), which represents
the storage state of the charge constraint to the prosumer’s op-
timization problem, at is the energy content of the battery in
time step t . The storage technical parameters EC and ED are
the battery’s charging and discharging efficiency, respectively.
Constraint (E.1c) ensures that the energy content of the battery
remains between the minimum (zero) and maximum allowed
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Fig. E.1. Prosumer dispatch for an exemplary 36 h simulation time for the BAU (A) and RTP (B) use-cases. Positive electricity amounts correspond to residual load
and grid usage, negative amounts are residual generation and grid feed-in.

limits, i.e., maximum battery capacity, which is represented by
the battery’s installed power (ϕ) multiplied by its energy to
power ratio (ς ). Moreover, Eq. (E.1d) updates the initial battery
energy content (A0) in every optimization period. Note that the
value of A0 depends on the previous optimization result and
therefore, needs to be updated before every optimization. The
constraint formulated as Eq. (E.1e) balances the hourly power
flows managed by the EMS. Based on this equation, we assume
that the prosumer primarily utilize the electricity generation to
cover the electricity demand. We make this assumption due to
the near-zero marginal costs of produced solar energy and the
exemption of the self-consumed electricity from the regulatory-
induced charges. Electricity generated by prosumer is calculated
according to Eq. (E.1f) from the average PV generation profile
(gAP

t ) and installed PV rooftop capacity (γ AP ). Finally, the electric-
ity charged (zCt ) or discharged (zDt ) from the battery in each time
step is limited in Eqs. (E.1g) and (E.1h). Note that in our modeling,
we neglect the grid restrictions and losses.

Fig. E.1 shows the dispatch of PV-storage systems in the BAU
(A) and RTP (B) use-cases in AMIRIS. As can be seen, the intro-
duction of a dynamic electricity tariff scheme influences the self-
consumption pattern of prosumers. The most prominent change
in the usage of battery storage happens from 20:00 to 22:00.
In the case of an RTP tariff, the prosumer takes advantage of
low retail prices in these hours and covers the electricity de-
mand from the grid. The battery discharges later, from 00:00 to
04:00, to cover the electricity demand. In BAU, in contrast, the
battery discharges as soon as the electricity demand exceeds the
generation.

Appendix F. Reference energy system in Germany

Table F.1 presents the installed capacities in Germany in REF
as a reference for the capacity differences shown in Fig. 6.

Table F.1
Installed capacities in GER in REF.
Technology Capacity [GW]

Gas 11.14
Coal 8.36
Lignite 9.71
Oil 0.37
Hydro run-of-river 4.38
PV central 23.23
PV decentral 34.94
Wind onshore 49.64
Wind offshore 6.42
Grid 118.69
Lithium-ion battery 8.74
Pumped hydro-storage 6.49

Table F.2
Annual power generation in GER in REF.
Technology Power generation [TWh]

Gas 22.64
Coal 19.78
Lignite 39.00
Oil 0.05
Hydro run-of-river 21.80
PV central 27.54
PV decentral 25.39
Wind onshore 97.50
Wind offshore 18.96
Import 306.82

Table F.2 presents the power generation and imports in Ger-
many in REF as reference for the deviations in the use-cases in
Fig. 7.
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A B S T R A C T

In recent years, many energy markets have seen the rise of battery storage systems (BSSs). This study
focuses on home energy storage (HES) and community energy storage (CES) as two known applications of
distributed BSSs in energy communities (ECs). We explore the challenge of efficient market integration of
these systems by proposing a hybrid methodology combining agent-based electricity market modeling with
bilevel EC optimization. This approach allows for deriving an optimal real-time pricing (ORTP) mechanism
for the EC users. We apply our methodology to a case study of Germany in 2030, where a BSS capacity
of 1.5 GW is installed within the ECs. Subsequently, we evaluate the impact of static energy-based charges
included in the end-consumer’s electricity price on BSS operations. Our results reveal that future market
price fluctuations, when passed through to end-consumers, increase the incentive for market-aligned BSS
operations. The ORTP strategy significantly aligns HES with market dynamics, reducing system costs and
facilitating renewable energy integration. The profit-driven CES operation emerges as the most efficient use-
case, increasing community welfare by 88 ke/MW-year and concurrently reducing the annual operational
system costs by 0.6 %. However, static energy-based charges on power consumption hinder cost-effective
BSS operations from both community and system perspectives. Our research contributes to understanding the
intertwined dynamics between decentralized and central markets, thus advancing the modeling of complex
energy markets.

1. Introduction

1.1. Background and motivation

The prospects for distributed solar photovoltaics (PV) applications
in residential and commercial sectors are promising, mainly due to
decline in PV system costs and the rise in consumer electricity prices.
This trend indicates a future increase in the number of so-called pro-
sumers (International Energy Agency (IEA), 2022). Furthermore, the
decreasing feed-in remuneration and battery storage system (BSS) costs
has led to the growing adoption of BSSs to moderate the intermittent
nature of solar energy generation and promote self-consumption in
the residential energy sector (Schmidt and Staffell, 2024). This shift
towards distributed solar PV and BSS is a fundamental component of
establishing a sustainable energy supply and represents a paradigm
shift from the conventional centralized energy system (Agnew and
Dargusch, 2015; Jayaraj et al., 2024).

✩ This research is financed by the German Aerospace Center (DLR) basic-funding project SoGuR.
∗ Correspondence to: Accenture, Leipziger Platz 16, 10117 Berlin, Germany.
E-mail address: sf.sarfarazi@gmail.com (S. Sarfarazi).

Home energy storage (HES) and community energy storage (CES)
are two promising applications of BSSs for residential users, each offer-
ing unique advantages (Dong et al., 2020b). HES allows prosumagers,
i.e., prosumers with energy storage systems, to enhance their behind-
the-meter self-consumption rate. This business model is proven to be
economically viable under specific market and regulatory conditions
and local generation potential (Bertsch et al., 2017; Aniello and Bertsch,
2023). HES encourages private investment in storage technologies,
providing additional flexibility to the energy system and catalyzing
sector coupling, for example, by allowing for the flexible utilization
of self-generated solar electricity for electric vehicles or power-to-
heat appliances (Schill et al., 2017; Zakeri et al., 2021). Despite these
benefits, the partially independent operation of prosumagers presents
new technical and economic challenges for the broader energy sys-
tems (Klein, 2020). It may pose risks to the stability of the electricity
grid, lead to distributional impacts associated with grid charge savings,
and operate in a manner that is misaligned with market signals of
scarcity and surplus (Li et al., 2023; Aniello et al., 2024).
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Nomenclature

Parameters

𝐹 𝑝𝑟𝑖 , 𝐹
𝑎𝑔 HES/CES energy to power ratio

𝐾𝑝𝑟
𝑖 , 𝐾

𝑎𝑔 HES/CES capacity
𝛬𝑝𝑟𝑖 , 𝛬

𝑎𝑔 HES/CES self-discharge rate
𝑈𝑝𝑟
𝑖𝑡 , 𝑈

𝑎𝑔
𝑡 HES/CES availability

𝜖𝑝𝑟𝑖 , 𝜖
𝑎𝑔 HES/CES charge efficiency

𝜀𝑝𝑟𝑖 , 𝜀
𝑎𝑔 HES/CES discharge efficiency

𝑃 𝑐ℎ𝑖 Marginal operational cost of
charging/discharging the BSS

𝑀−, 𝑀+ Sufficiently large constants in the MILP
formulation

𝛤 Aggregator’s margin in benchmark pricing
strategies

𝑃 𝑟𝑐 Regulatory induced charges on electricity
consumption from the grid

𝑃+, 𝑃− Aggregator’s discrete sale and purchase
prices

𝑃 𝑎𝑔+𝑡 , 𝑃 𝑎𝑔−𝑡 Aggregator sale and purchase prices in 𝑡 in
SP scheme

𝜔 Forecast period of the BSS operator
𝜋 Schedule duration for the BSS optimization
𝐷𝑖𝑡 User’s power demand
𝐺𝑖𝑡 User’s power generation
𝐻𝑖𝑡 User’s residual load
𝐸 Market exchange during the simulation
𝐸𝑎𝑔−𝑡 , 𝐸𝑎𝑔+𝑡 Grid feed-in and usage limits for the

aggregator in 𝑡
𝐸𝑝𝑟−𝑖𝑡 , 𝐸𝑝𝑟+𝑖𝑡 Grid feed-in and usage limits for pro-

sumager 𝑖 in 𝑡
𝑃𝑀𝑡 Wholesale electricity market price in 𝑡
𝑃𝑀𝑚𝑖𝑛, 𝑃

𝑀
𝑚𝑎𝑥 Minimum and maximum market prices in

one 𝜔
𝛷 Community welfare
𝐶𝑝𝑟𝑖 Cost of prosumager 𝑖
𝐶 ′ Total cost of all users
𝐶𝑠𝑦 Operational system costs of the simulation

period
𝐶𝑐𝑎𝑝𝑠 Carbon emission allowance costs of power

plant 𝑝 in 𝑡
𝜖𝑝 Efficiency of power plant 𝑝
𝐶𝑓𝑢𝑝𝑠 Fuel costs of power plant 𝑝 in 𝑡
𝑄𝑝𝑠 Awarded generation of power plant 𝑝 in 𝑡
𝐶𝑚𝑎𝑝𝑠 Marginal cost of power plant 𝑝 in 𝑡
𝐶𝑂&𝑀𝑝𝑠 Operation and maintenance costs of power

plant 𝑝 in 𝑡
𝐵 Total number of power plants

Sets

𝜓 Set of decision variables in (1)
𝐵 Set of power plants outside the EC
 Set of all users within the EC
𝜉 Set of decision variables in (13)
𝜁 Set of decision variables in (3) and (4)

Community energy storage (CES) has emerged as a viable alter-
native to both grid-scale and single-home BSS solutions, offering a
range of benefits for both distribution grid operators and energy users

Indices

𝑎𝑔 Aggregator
𝑘 Discretization step
∗ Trade direction: Sale or purchase
𝑡 Optimization time
𝑝 Power plant index
𝑝𝑟 Prosumager
𝑠 Simulation time
𝑖 User’s index

Variables

𝑤𝑎𝑔 Aggregator’s objective in the self-sufficiency
driven CES strategy

𝑟 Aggregator’s profit
𝛼, 𝛽, 𝜆, 𝛾, 𝜏, 𝜐, 𝜇 Dual variables
𝑏+𝑡𝑘, 𝑏

−
𝑡𝑘 Binary variables in the MILP formulation

𝑧𝑝𝑟+𝑖𝑡 , 𝑧𝑝𝑟−𝑖𝑡 HES charged and discharged amount
𝑧𝑎𝑔+𝑡 , 𝑧𝑎𝑔−𝑡 CES charged and discharged amount
ℎ+𝑖𝑡𝑘, ℎ

−
𝑖𝑡𝑘 Continuous variables in the MILP formula-

tion
𝑑−𝑡 , 𝑑+𝑡 Spanning variables
𝜋+𝑖𝑡 , 𝜋

−
𝑖𝑡 Bilinear term intermediate values

𝑒𝑎𝑔−𝑡 , 𝑒𝑎𝑔+𝑡 Aggregator’s sold and purchased power in
the market

𝑒𝑝𝑟+𝑖𝑡 , 𝑒𝑝𝑟−𝑖𝑡 Prosumager’s grid usage and feed-in
𝑝𝑎𝑔+𝑡 , 𝑝𝑎𝑔−𝑡 Aggregator’s sale and purchase prices
𝑎𝑝𝑟𝑖𝑡 , 𝑎

𝑎𝑔
𝑡 HES/CES energy content

within an energy community (EC). CES facilitates self-consumption
and energy sharing within the EC, provides auxiliary grid services,
and generates economic revenues by participating in various markets,
thereby internalizing system-wide benefits (Gjorgievski et al., 2021).
While successful pilot projects have demonstrated promising results,
the commercial rollout of CES has faced challenges due to high BSS
costs and inadequate regulatory frameworks (Parra et al., 2017). Specif-
ically, regulatory fees imposed on the charged electricity have been
identified as a major economic burden for CES business models (Gährs
and Knoefel, 2020).

Given the challenges and opportunities highlighted above, this
study aims to investigate the system integration of distributed BSSs in a
post-feed-in incentive era. Specifically, we aim to address the following
central research question: ‘‘Under what circumstances does the opera-
tion of CES and HES for self-consumption within ECs contribute to a
more effective integration of renewable energies in the energy market?’’
To answer this question, we first propose a novel methodology that
integrates a bottom-up EC model in an agent-based electricity market
model. We then use the developed models to analyze the systemic
impacts of various EC use-cases under different market and regulatory
environments.

In the remainder of this section, we provide an overview of related
research in Section 1.2, and we highlight the research gap and the
contributions of this paper in Section 1.3.

1.2. Related works

This paper contributes to the intersection of two strands of liter-
ature. The first strand of research concentrates on the operation of
distributed BSS and the effective aggregation of energy storage assets
within ECs, a review of which is presented in Section 1.2.1. The second
branch investigates the broader system integration of ECs, exploring
this subject from a holistic perspective. We provide an overview of this
research in Section 1.2.2.
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1.2.1. Community-level analysis of BSSs
The technical and economic performance of HES and CES is signifi-

cantly affected by various factors, including pricing structures, country-
specific regulatory frameworks, and weather conditions. In the existing
literature, we can identify two sub-categories of research. The first
sub-category focuses on modeling the operations of BSS and conduct-
ing techno-economic analyses under specific regulatory environments
and pricing mechanisms. Several studies have explored the profitabil-
ity of investing in PV-storage systems for residential prosumagers in
different countries. For instance, the profitability of PV-storage sys-
tems for prosumagers in Germany and Ireland was examined by the
authors of Bertsch et al. (2017). Similarly, the economic viability
of PV self-consumption combined with lithium-ion batteries in the
French residential sector was assessed in Yu (2018). Another study
conducted in Spain investigated the impact of fixed charges added to
electricity tariffs on prosumager self-consumption (Solano et al., 2018).
The authors of Green and Staffell (2017) analyzed the self-sufficiency
operation of HES in Germany, Spain, and the UK, highlighting that
such operations, even in Spain with ample solar resources, resulted in
oversized storage capacities and inefficient investments. To explore the
potential advantages of CES over HES, the studies presented in Van
Der Stelt et al. (2018), Dong et al. (2020a), Barbour et al. (2018)
have conducted a comparison of the profitability and efficiency of these
two technologies for residential users. The simulation results presented
in Barbour et al. (2018) demonstrate that the optimal capacity of
CES is 65% of the capacity at the individual household level. This
finding suggests that in scenarios with high adoption of PV systems,
the installed storage capacity can be utilized more efficiently with CES
compared to HES.

The reviewed studies have assumed predetermined pricing rules
such as real-time pricing and time-of-use tariffs. However, in the con-
text of smart ECs, a narrow focus on the BSS operation overlooks
the role and interests of the EC managing entity. To overcome this
limitation, the second category of studies considers both the pricing de-
sign and the BSS operation in a simultaneous modeling approach. This
modeling typically employs game-theoretic techniques and bilevel op-
timization methods to simulate the interaction between an aggregator1

and the EC users. For instance, in Mediwaththe and Blackhall (2020),
a competitive operator of CES trades with the grid and establishes
time-varying prices for the users while considering the distribution grid
voltage constraints. Similarly, in Liu et al. (2021), an aggregator man-
ages the reserve capacity provided by electric vehicles using dynamic
price incentives to effectively participate in the day-ahead reserve
market. Similarly, the aggregator in Sarfarazi et al. (2020) operates a
CES and develops an optimal real-time pricing (ORTP) scheme for an
EC with heterogeneous actors. The study demonstrates that the ORTP
strategy leads to higher community welfare compared to a simpler
real-time pricing strategy. The simulation results in Sarfarazi et al.
(2023a) further support the superiority of the ORTP. In this study,
the aggregator creates price incentives to facilitate energy trading with
prosumagers and electric vehicles in the EC, taking into account various
sources of uncertainty.

1.2.2. Overall system integration of distributed BSSs
Researchers have used various methodologies to examine the

widespread adoption of HES from a systemic perspective. In an ide-
alized, frictionless power system, wholesale market prices serve as
effective indicators of scarcity or surplus in the energy system. To
evaluate the potential systemic impact of prosumager self-consumption,
the authors of the study presented in Klein et al. (2019) propose a
‘‘market-alignment indicator’’. This indicator measures the ratio of the
welfare generated by HES to that of an arbitrage battery. Similarly, the

1 defined as an entity responsible for organizing distributed energy
resources (Botelho et al., 2022).

authors in Sarfarazi et al. (2020) propose a comparable indicator for an
EC. Both studies identify potential inefficiencies in static pricing (SP)
and suggest real-time pricing strategies for improved market alignment.

The research presented in Yu (2018, 2021) investigates the role
of HES in the French energy system by 2030. In Yu (2021), the
author highlights significant systemic challenges within the seasonal
backup power system in relation to integrating variable PV sources.
They propose a load management model that relies on the secondary
utilization of HES to address these challenges. Similarly, in Yu (2018),
the author argues that incorporating HES for solar PV self-consumption
can effectively alleviate the systemic challenges associated with PV in-
tegration, such as daily balancing and annual backup issues, as opposed
to relying solely on full PV grid injection.

The authors in Günther et al. (2021) examine the investment choices
made by prosumagers and the systemic consequences of their opera-
tion within the German power sector in 2030. Their findings indicate
that when higher fixed annual expenses and lower volumetric grid
usage charges are introduced, households bear a greater portion of
the non-energy power sector costs. The authors also suggest that the
implementation of an hourly feed-in limit for households could help
mitigate stress on the distribution grid without necessarily having
adverse effects on the prosumage model. These results are aligned with
the findings in Fett et al. (2021), where the long-term impact of HES
diffusion on German electricity market is investigated. In Schick et al.
(2020), the research explores the suitability of high self-consumption
rates among prosumagers within an energy system with a substantial
share of renewable energy sources (RES). The investigation suggests
that inflexible HES operations driven solely by individual economic
interests might worsen the integration of RES, leading to higher car-
bon emissions and increased system expenses. Moreover, the authors
of Sarfarazi et al. (2023b) use a model-coupling approach to investigate
the impact of prosumagers’ behavior under different tariff mechanisms
on optimal system operation and design. This study highlights that
increasing the dynamic parts of the electricity usage and variable feed-
in remuneration can reduce the economic granularity gap between the
actual and the optimized energy systems.

1.3. Literature gap and contributions

In light of the above, we identify a research gap that exists at
the intersection of the two literature reviews. The studies focusing on
the EC perspective make significant assumptions about future market
dynamics and price developments. They also tend to overlook the
aggregated feedback effect of a large number of ECs on the larger power
system. Conversely, power sector studies often lack detailed models of
EC business models. Table 1 compares the focus of this paper with
the reviewed literature and highlights this gap. Focusing on energy
system operation, this paper contributes to this research gap from both
a methodological and substantive perspective:

• We propose a bottom-up methodology using an agent-based elec-
tricity market model to facilitate assessing the market integra-
tion of HES and CES. In particular, we develop a novel hybrid
approach that combines bilevel optimization with agent-based
energy market modeling. This approach allows for simulating the
decision-making interdependencies of the EC actors as well as the
self-interested behavior of other wholesale market participants.
While the bilevel optimization of EC allows for the derivation of
internal EC prices, referred to as ORTP, the agent-based market
simulation calculates the hourly wholesale market prices. There-
fore, unlike the main body of literature, our model architecture,
as shown in Fig. 1, accounts for the role of the aggregator and its
hierarchical interactions with EC users.
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Table 1
Comparative overview of the relevant literature on the system integration of distributed BSS.

Articles EC level
analysis

CES and HES
applications

EC pricing Overall system
implications

Energy
system model

Bertsch et al. (2017), Solano et al. (2018), Green and Staffell (2017) ✓ ✗ ✗ ✗ ✗

Van Der Stelt et al. (2018), Dong et al. (2020a), Barbour et al. (2018) ✓ ✓ ✗ ✗ ✗

Mediwaththe and Blackhall (2020), Liu et al. (2021), Sarfarazi et al. (2023a) ✓ ✓ ✓ ✓ ✗

Sarfarazi et al. (2020) ✓ ✓ ✓ ✓ ✗

Klein et al. (2019) ✓ ✗ ✗ ✓ ✗

Sarfarazi et al. (2023b), Schick et al. (2020) ✗ ✗ ✗ ✓ ✓

Yu (2018, 2021), Günther et al. (2021), Fett et al. (2021) ✓ ✗ ✗ ✓ ✓

This article ✓ ✓ ✓ ✓ ✓

Fig. 1. Model architecture in (a) the first body of literature focusing on EC (b) the
second strand of literature on system integration of prosumagers and (c) this paper.

• We apply our methodology to a case-study of German energy
system and conduct a comprehensive analysis on the short-term
systemic effects of different EC use-cases in two energy system
scenarios: one that represents the current status quo system in
Germany and another that projects the German power system in
2030. The EC use-cases under investigation can be distinguish
by three central factors: the choice of BSS application (CES or
HES), the operational strategy for CES (autarky-driven or profit-
maximizing), and the users’ pricing design, which can be either
SP or ORTP. The analysis concludes with an exploration of the
influence of regulatory induced charges on grid usage and a
benchmarking of the performance of distributed BSSs against a
system-cost minimizing storage operation.

The remainder of this paper is structured as follows. In Section 2,
we briefly describe the overall workflow of our methodology and
provide a description of the models used. Furthermore, this section
details the model parameterization for the analysis and introduces key
performance indicators to assess the results. We present the findings of
our analysis in Section 3, followed by a discussion of the limitations of
our methodology in Section 4. Finally, Section 5 concludes the paper
and outlines potential directions for future research.

2. Methodology

2.1. Overview

The core of our methodology revolves around the modeling of
representative EC use-cases and their integration into the electricity
market simulation model AMIRIS. The design of ECs is influenced
by various factors such as their organization structure, stakeholders
involved, and available technologies (Gjorgievski et al., 2021). In this

Fig. 2. Schematic overview of the overall workflow to analyze the integration of ECs
in the future energy system.

paper, we consider an EC with a hierarchical structure that is not
isolated from the wholesale market. In this setup, the aggregator is
the intermediary entity between the EC users and the market. Besides
trading activities, the aggregator is responsible for creating sale and
purchase prices for bilateral trading with EC users. The available stor-
age and generation resources in the EC are BSSs, which are either
operated by the prosumagers as HES or by the aggregator as a CES,
and households’ rooftop PV systems.

We assess the performance of HES and CES in various EC use-cases
and within current and future German energy systems (respectively
referred to as current and future scenarios). In order to simulate the
current scenario, we parameterize AMIRIS using historical data. To
represent the energy system in the future scenario, we derive the
necessary parameters and time-series by utilizing the energy system
optimization model REMix. Finally, we introduce four key performance
indicators (KPIs) to evaluate the outcomes obtained from AMIRIS. Fig. 2
demonstrates a schematic overview of the overall workflow employed
in our methodology for the future scenario. This section provides a com-
prehensive explanation of all building blocks comprising this workflow.
Section 2.2 gives a concise introduction to the energy system models,
AMIRIS and REMix, outlining their key characteristics and functional-
ities. In Section 2.3, we explain our approach towards integrating the
EC models into AMIRIS and detail the mathematical formulation of the
optimization models. Section 2.4 describes the energy system scenarios,
the constructed EC use-cases, and the data used for parameterizing the
models. Finally, Section 2.5 introduces the selected KPIs to measure
the performance of the simulated ECs and their feedback impact on
the overall energy system.
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Fig. 3. Schematic structure of the basic agents in AMIRIS.

2.2. Energy system models

2.2.1. AMIRIS
Agent-based models provide robust tools to simulate the effects of

actor behavior on energy systems (Yao et al., 2023). AMIRIS is an open-
source agent-based model for electricity markets2 that is designed to
facilitate such analyses (Schimeczek et al., 2023a; Deissenroth et al.,
2017). Fig. 3 delineates the structure of AMIRIS and the key agents
relevant to this analysis.

AMIRIS enables model endogenous simulation of the Energy-Only-
Market with an hourly resolution. After all participants have submitted
their bids, these are sorted according to the merit order model. The
market is cleared hourly with the wholesale market price determined
at the intersection of the supply and demand curves. In AMIRIS, power
plants offer their generated electricity based on their marginal costs.
These costs are calculated considering plant-specific techno-economic
parameters (including efficiency and variable costs), fuel prices, and
CO2 prices.3 Policy regimes may entitle renewable power plants to re-
ceive a market premium, consequently influencing their bidding strat-
egy. AMIRIS is used in this paper exclusively to simulate the German
electricity market. Power exchanges with neighboring countries are
treated as exogenous input data for the model. Consequently, if elec-
tricity generation exceeds demand at any point during the simulation,
power from variable renewable energies will be curtailed.

In AMIRIS, a ‘‘forecaster’’ agent generates forecasts of electricity
prices and supply/demand bids of other market actors for future pe-
riods (e.g., 24 h). Flexibility operators can use these forecasts, which
may be perfect or erroneous, to optimize their bidding strategies and
maximize their objective functions. One of these flexibility options is
a storage module that minimizes the operational system costs (Cao

2 AMIRIS has been published as open-source software in Schimeczek et al.
(2023a), with the code accessible under (Schimeczek et al., 2023b). However,
the model developments related to the bilevel optimization are not included
in the open-source version at the time of publication.

3 To align the bid behavior of the simulated power generators with the price
patterns observed in actual markets, offsets termed as mark-ups and mark-
downs can be incorporated into the marginal values. However, to reduce the
complexity of the analysis, this study does not take into account mark-ups and
mark-downs.

et al., 2019). However, AMIRIS does not endogenously model strategic
competition among actors, thereby allowing for the implementation
of a single storage entity.4 Hence, our analysis confines the available
flexibility options in the system to distributed BSS within the EC.

2.2.2. REMix
The current application of AMIRIS is accompanied by certain restric-

tions. Firstly, it does not endogenously simulate investment decisions,
instead relying on external inputs regarding the historical or future
design of the energy system. Secondly, it can only implement one
flexibility option. To circumvent these limitations, we utilize the REMix
model in this paper.

REMix is a modeling framework utilized to build energy system
optimization models that aim to optimize the capacity and hourly
dispatch of various technologies in a target year by minimizing the total
incurred costs. These optimizations are based on the assumption that
decisions are made by a benevolent system planner, aiming to find the
most cost-effective solutions for the entire system (Gils et al., 2017).
The total system costs include investment expenses, covering the costs
for the expansion of power plants, grid infrastructure, and storage tech-
nologies, as well as operational expenditures, such as fuel costs. Hence,
power plants are constructed and operated only if they contribute to the
most cost-effective solution within a one-year operational timeframe.

The modeled power sector includes a variety of power plant tech-
nologies, energy storage facilities, and power transmission capacities.
It also considers the electricity demand from conventional consumers,
heat pumps, heat boilers, and electric vehicles. To feed data into the
model, techno-economic parameters for each technology, feed-in time
series, and potential data for renewable power generation (such as
wind and solar radiation) are necessary. Additionally, the input data
comprises prescribed and maximum capacities for power generation,
storage, and transmission, along with costs associated with CO2 cer-
tificates, forming a comprehensive scenario dataset. To realistically
estimate operating power plants in 2030, we restrict capacity expan-
sions in REMix according to available energy system scenarios. The
assumptions utilized in this regard are detailed in Section 2.4.

4 Simultaneous operation of storage systems using the same forecast results
in extreme price peaks due to the so-called avalanche effect (Ensslen et al.,
2018), which is a model artifact.
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Fig. 4. Implementation of the EC models in AMIRIS.

As illustrated previously in Fig. 2, two REMix results are primarily
used in AMIRIS: installed capacities and dispatch profiles representing
the operation of flexibility options within the system. Note that the
REMix results do not differentiate between load, generation, and stor-
age in the EC and other market actors. Therefore, to parameterize the
EC in AMIRIS, we divide the data related to PV and BSS capacities, as
well as electricity demand and storage dispatch profiles, between the
EC and other market actors. The assumptions related to this division
are explained in Section 2.4.

2.3. EC models

We use two different approaches to model the ECs in AMIRIS. The
first approach involves modeling two separate entities, the ‘‘aggrega-
tor’’ and the ‘‘prosumager’’, with each optimizing their BSS indepen-
dently in order to maximize their individual utilities. The aggregator
obtains forecasts of upcoming prices and demand/supply bids from the
forecaster agent and creates two sets of electricity prices for bidirec-
tional trading with the prosumager. Given these prices, the prosumager
determines its trading strategy by optimizing the HES. Upon receiving
the prosumager’s strategy, the aggregator generates bids for market
trading. In this approach, the aggregator may use a CES to optimize
its market trading strategy.

The second modeling approach involves the concurrent optimiza-
tion of both the aggregator and prosumager, where the aggregator
anticipates the prosumagers’ response to price signals and develops
a pricing strategy that maximizes its overall profits. Unlike the first
approach, where the electricity prices are calculated based on pre-
determined rules, in the second approach, the bidirectional energy
trading prices with the prosumagers (what we refer to as ORTP) are
derived by solving a bilevel optimization problem. As the strategies of
the aggregator and prosumager are inherently interconnected, they are
treated as a single ‘‘Energy community’’ entity. Fig. 4 illustrates the
implementation of the EC models and their corresponding optimization
models in AMIRIS.

To optimize the operation of ECs during the simulation process, a
rolling horizon optimization methodology is implemented. The agents
undertake their respective optimizations over the ‘‘forecast period’’ (𝜔),
and store the results of this optimization for the ‘‘schedule duration’’ (𝜋,
𝜋 ≤ 𝜔). Fig. 5 A depicts the 𝜔 and 𝜋 during the simulation time, 𝑠. The
optimization results compiled during the 𝜋 are subsequently employed
in the ensuing simulation steps. 𝜋 time steps after this optimization, an
optimization for the new planning horizon (Fig. 5 B) is executed.

We develop and incorporate three optimization models into AMIRIS
to represent different EC use-cases effectively. The ‘‘HES optimizer’’

is responsible for the optimization of behind-the-meter BSS systems,
which are operated by prosumagers. The ‘‘CES optimizer’’ enables the
aggregator to determine the operation strategy of the CES. Finally, the
‘‘EC optimizer’’ comprises a bilevel optimization model where both the
aggregator’s pricing strategy and HES dispatch are determined simulta-
neously. Detailed step-by-step information exchange among the actors
in both EC implementation approaches is describe in Appendix A.1. The
remainder of this section explains these three models in details.

2.3.1. HES optimization model
A prosumager is defined as a household equipped with a PV system

that owns and operates a HES. The prosumager can be parameterized
to represent either a single household or an aggregate of households.
The schematic representation of the prosumager model is illustrated in
Fig. 6.

We assume that the prosumagers have a flawless forecast of their
solar PV generation (𝐺𝑖𝑡) and power demand (𝐷𝑖𝑡). Additionally, we
presume that the power generated is predominantly used to meet
the household’s electricity demand. The energy management system
then manages any residual load or generation (𝐻𝑖𝑡 = 𝐷𝑖𝑡 − 𝐺𝑖𝑡) from
the household to minimize the prosumager’s electricity bill (𝐶𝑝𝑟𝑖 ). To
accomplish this, the energy management system acquires the sale and
purchase prices, then decides the hourly grid usage and feed-in (𝑒𝑝𝑟+𝑖𝑡
and 𝑒𝑝𝑟−𝑖𝑡 ), and the HES charge/discharge schedule (𝑧𝑝𝑟+𝑖𝑡 , 𝑧𝑝𝑟−𝑖𝑡 ). Note that
if the EC users are not parameterized with a HES, the optimization is
bypassed and the 𝐻𝑖𝑡 is announced to the aggregator. The optimization
problem for prosumager 𝑖 is mathematically modeled as follows:

Minimize
𝜓

𝐶𝑝𝑟𝑖 =
∑

𝑡
((𝑃 𝑎𝑔+𝑡 + 𝑃 𝑟𝑐 )𝑒𝑝𝑟+𝑖𝑡 − 𝑃 𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 +

𝑃 𝑐ℎ𝑖 (𝑧𝑝𝑟+𝑖𝑡 + 𝑧𝑝𝑟−𝑖𝑡 )) (1a)

subject to: 𝑎𝑝𝑟𝑖𝑡 = (1 − 𝛬𝑝𝑟𝑖 )𝑎
𝑝𝑟
𝑖(𝑡−1) + 𝜖

𝑝𝑟
𝑖 𝑧

𝑝𝑟+
𝑖𝑡 −

𝑧𝑝𝑟−𝑖𝑡
𝜀𝑝𝑟𝑖

∶ (𝜆𝑎𝑖𝑡), (1b)

𝑧𝑝𝑟+𝑖𝑡 = 𝑒𝑝𝑟+𝑖𝑡 − 𝑒𝑝𝑟−𝑖𝑡 −𝐻𝑖𝑡 + 𝑧
𝑝𝑟−
𝑖𝑡 ∶ (𝜆𝑧𝑖𝑡) (1c)

0 ≤ 𝑎𝑝𝑟𝑖𝑡 ≤ 𝐾𝑝𝑟
𝑖 𝐹

𝑝𝑟
𝑖 ∶

(
𝜏 𝑖𝑡, 𝜏𝑖𝑡

)
, (1d)

𝑎𝑝𝑟𝑖(𝑡−1) = 𝐴𝑝𝑟𝑖0 ∶
(
𝜆𝑎0𝑖0

)
, 𝑡 = 1, (1e)

0 ≤ 𝑒𝑝𝑟+𝑖𝑡 ≤ 𝐸𝑝𝑟+𝑖𝑡 ∶
(
𝜐𝑖𝑡, 𝜐𝑖𝑡

)
, (1f)

0 ≤ 𝑒𝑝𝑟−𝑖𝑡 ≤ 𝐸𝑝𝑟−𝑖𝑡 ∶ (𝜇
𝑖𝑡
, 𝜇𝑖𝑡), (1g)

0 ≤ 𝑧𝑝𝑟+𝑖𝑡 ≤ 𝑈 𝑝𝑟
𝑖𝑡 𝐾

𝑝𝑟
𝑖

𝜖𝑝𝑟𝑖
∶ (𝛽

𝑖𝑡
, 𝛽𝑖𝑡), (1h)

0 ≤ 𝑧𝑝𝑟−𝑖𝑡 ≤ 𝑈 𝑝𝑟
𝑖𝑡 𝐾

𝑝𝑟
𝑖 𝜀

𝑝𝑟
𝑖 ∶ (𝛾

𝑖𝑡
, 𝛾 𝑖𝑡), (1i)

Eq. (1a) portrays the cost-minimizing objective function of the
prosumager. The term 𝜓 symbolizes the set of optimization variables,
i.e., 𝜓 = {𝑒𝑝𝑟+𝑖𝑡 , 𝑒𝑝𝑟−𝑖𝑡 , 𝑧𝑝𝑟+𝑖𝑡 , 𝑧𝑝𝑟−𝑖𝑡 , 𝑎𝑝𝑟𝑖𝑡 }. In our model, 𝑡 and 𝑖 respectively
denote the optimization time step and the user index. The terms in
parentheses (i.e., 𝜆𝑎𝑖𝑡, 𝜆

𝑧
𝑖𝑡, 𝜏 𝑖𝑡, 𝜏 𝑖𝑡, 𝜆

𝑎0
𝑖0 , 𝜐𝑖𝑡, 𝜐𝑖𝑡, 𝜇𝑖𝑡, 𝜇𝑖𝑡, 𝛽𝑖𝑡, 𝛽𝑖𝑡, 𝛾 𝑖𝑡, 𝛾 𝑖𝑡) are

the Lagrangian dual variables of the constraints in the prosumager HES
optimization model and are defined for later use in the EC optimization
model. 𝑃 𝑎𝑔+𝑡 and 𝑃 𝑎𝑔−𝑡 in (1a) represent the electricity sale and purchase
prices offered to the prosumager. The aggregator, when selling electric-
ity to the users, is obliged to incorporate regulatory-induced charges
(𝑃 𝑟𝑐) into the end-user price. 𝑃 𝑐ℎ𝑖 is the marginal cost of charging or
discharging the HES.

Eq. (1b) describes on the state of charge (SOC) of the HES, which
depends on the SOC from the preceding time step, the self-discharge
rate (𝛬𝑝𝑟𝑖 ), the charged and discharged power (𝑧𝑝𝑟+𝑖𝑡 and 𝑧𝑝𝑟−𝑖𝑡 ), and the
HES’s charging and discharging efficiencies (𝜖𝑝𝑟𝑖 and 𝜀𝑝𝑟𝑖 ). The balance
of incoming and outgoing power flows for each prosumager and time
step is maintained as per the constraint in (1c). Eq. (1d) ensures that
the stored energy is neither negative nor exceeds the energy capacity
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Fig. 5. Forecast period (𝜔) and schedule duration (𝜋) in two consequent optimization runs A and B.

Fig. 6. Schematic overview of the prosumager’s model.

of the HES (represented as BSS power 𝐾𝑝𝑟
𝑖 multiplied by its energy-to-

power ratio 𝐹 𝑝𝑟𝑖 ). The initial SOC of the HES (𝐴𝑝𝑟𝑖0 ) is established in (1e),
with the rolling horizon parameter 𝐴𝑝𝑟𝑖0 updated according to the SOC
stored from the prior simulation step (𝑠−1). The maximum permissible
grid usage (𝐸𝑝𝑟+𝑖𝑡 ) and feed-in (𝐸𝑝𝑟−𝑖𝑡 ) by the prosumager are outlined
in constraints (1f) and (1g) respectively. The upper bounds of the grid
interactions are computed as shown in (2).

𝐸𝑝𝑟+𝑖𝑡 = max{0, 𝐾𝑝𝑟
𝑖 +𝐻𝑖𝑡} (2a)

𝐸𝑝𝑟−𝑖𝑡 = max{0, 𝐾𝑝𝑟
𝑖 −𝐻𝑖𝑡} (2b)

Eqs. (1h) and (1i) limit the charging and discharging power in
each time step. The term 𝑈 𝑝𝑟

𝑖𝑡 delineates the availability of the HES
in a time step and can assume a value between 0 and 1. We solve
the optimization problem in (1) by discretizing the SOC and applying
a dynamic programming model (DPM) similar to the approach used
in Sarfarazi et al. (2020).

2.3.2. CES optimization model
Once the users’ grid interaction is planned (that is, 𝑒𝑝𝑟+𝑖𝑡 and 𝑒𝑝𝑟−𝑖𝑡

are determined), the aggregator can leverage the CES to optimize its
bidding strategy, denoted as 𝑒𝑎𝑔∗𝑡 . As depicted in Fig. 7, if the aggregator
does not possess a CES, 𝑒𝑎𝑔∗𝑡 equals to the grid interaction of all EC users
(∑

𝑖 𝑒
𝑝𝑟∗
𝑖𝑡 , ∗ stands for both + and − indices and  is set of all users in

the EC).
The aggregator can adopt either a self-sufficiency driven or a profit-

maximizing strategy for CES optimization. Given that these strategies
share similar constraints with the HES optimization model detailed

Fig. 7. Schematic overview of the CES model.

in 2.3.1, the relevant equations are described in Appendix A.2. In
the following, we describe the objective functions for these two CES
strategies.
Self-sufficiency driven: With this strategy, the CES is employed to
minimize interactions with the wholesale market. Consequently, the
objective function can be expressed as follows:

Minimize
𝜁

𝑤𝑎𝑔 =
∑

𝑡
(𝑒𝑎𝑔−𝑡 + 𝑒𝑎𝑔+𝑡 )2 (3)

In (3), 𝜁 represents the set of optimization variables: 𝜁 = {𝑒𝑎𝑔+𝑡 , 𝑒𝑎𝑔−𝑡 ,
𝑧𝑎𝑔+𝑡 , 𝑧𝑎𝑔−𝑡 , 𝑎𝑎𝑔𝑡 }. The implemented quadratic function aims to minimize
the power exchange with the market while preventing sudden peaks in
charge and discharge.
Profit maximization: The aggregator employs the CES to capitalize on
market price fluctuations and maximize its revenue. Given the forecast
of upcoming power supply and demand bids over 𝜔, the aggregator has
knowledge of its market power when optimizing the CES. The objective
function in this strategy is given in Eq. (4):

Maximize
𝜂

𝑟 =
∑

𝑡
(𝑝𝑀𝑡 (𝑒𝑎𝑔−𝑡 −𝑒𝑎𝑔+𝑡 )+𝑃 𝑎𝑔+𝑡

∑
𝑖
𝑒𝑝𝑟+𝑖𝑡 −𝑃 𝑎𝑔−𝑡

∑
𝑖
𝑒𝑝𝑟−𝑖𝑡 −𝑃 𝑟𝑐𝑧𝑎𝑔+𝑡 )

(4)

In this equation, 𝑝𝑀𝑡 refers to the anticipated market price, consider-
ing the aggregator’s bids. The set of decision variables, 𝜂, includes 𝑝𝑀𝑡 ,
𝑒𝑎𝑔+𝑡 , 𝑒𝑎𝑔−𝑡 , 𝑧𝑎𝑔+𝑡 , 𝑧𝑎𝑔−𝑡 , and 𝑎𝑎𝑔𝑡 . The term 𝑃 𝑟𝑐𝑧𝑎𝑔+𝑡 accounts for potential
regulatory charges that may be levied when the CES charges.

As illustrated in Fig. 8, during a full charge–discharge cycle of the
CES, the market clearing price may adopt higher (𝑃𝑀𝑐

𝑡 ) or lower (𝑃𝑀𝑑
𝑡 )
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Fig. 8. Illustrative example of CES exercising market power.

values than the forecasted price (𝑃𝑀𝑡 ). In such a scenario, the CES might
reserve some of its capacity to avoid inflated purchase prices during
charging or revenue lower than expected while discharging. Similar to
the HES model, the CES optimization model also employs a DPM.

2.3.3. EC optimization model
The second approach involves the simultaneous optimization of

the aggregator and the prosumager objective functions. While the
prosumagers aim to minimize their electricity bills (similar to the
first approach), the aggregator seeks to maximize its profit by setting
the ORTP for bidirectional energy trading with prosumagers. In order
to isolate the effect of ORTP, it is assumed that the aggregator is
not equipped with CES in the EC optimization model. Therefore, the
aggregator’s bids in terms of quantity are identical to the prosumagers’
grid interaction (𝑒𝑎𝑔∗𝑡 =

∑
𝑖𝑒
𝑝𝑟∗
𝑖𝑡 ). The interplay between the users of the

EC and the aggregator is modeled as a bilevel optimization problem:

Maximize
𝑝𝑎𝑔+𝑡 , 𝑝𝑎𝑔−𝑡

𝑟 =
∑

𝑖,𝑡
(𝑃𝑀𝑡 (𝑒𝑝𝑟−𝑖𝑡 − 𝑒𝑝𝑟+𝑖𝑡 ) + 𝑝𝑎𝑔+𝑡 𝑒𝑝𝑟+𝑖𝑡 − 𝑝𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 ) (5a)

subject to: 𝑃𝑀𝑚𝑖𝑛 + 𝛤 ≤ 𝑝𝑎𝑔+𝑡 ≤ 𝑃𝑀𝑚𝑎𝑥 + 𝛤 , (5b)

𝑃𝑀𝑚𝑖𝑛 − 𝛤 ≤ 𝑝𝑎𝑔−𝑡 ≤ 𝑃𝑀𝑚𝑎𝑥 − 𝛤 , (5c)

where 𝑒𝑝𝑟+𝑖𝑡 ,𝑒𝑝𝑟−𝑖𝑡 ∈ argmin
𝜓

𝐶𝑝𝑟𝑖 =
∑

𝑡
((𝑝𝑎𝑔+𝑡 + 𝑃 𝑟𝑐 )𝑒𝑝𝑟+𝑖𝑡 − 𝑝𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 + 𝑃 𝑐ℎ𝑖 (𝑧𝑝𝑟+𝑖𝑡 + 𝑧𝑝𝑟−𝑖𝑡 )), (5d)

(1b)–(1i). (5e)

Eq. (5a) represents the objective function for profit maximization with
decision variables 𝑝𝑎𝑔+𝑡 and 𝑝𝑎𝑔−𝑡 . Here, 𝑃𝑀𝑡 refers to the forecast of the
electricity market price, which is obtained from the forecaster agent. In
this model, the aggregator assumes that prices after the market clearing
will not deviate from the forecast, and thus, it does not factor in its
market power during the optimization process.

The lower and upper bounds for the aggregator’s sale and purchase
prices are constrained by Eqs. (5b) and (5c), respectively. These con-
straints are put in place to ensure that the prices remain attractive for
prosumagers, especially in the absence of competition among multiple
aggregators. We set the upper and lower price bounds based on the
forecast prices, as exemplified in Fig. 9. Here, 𝑃𝑀𝑚𝑖𝑛 and 𝑃𝑀𝑚𝑎𝑥 represent
the minimum and maximum market prices for each optimization period
(from simulation time 𝑠 to 𝑠 + 𝜔), and these values can change during

the simulation. Eqs. (5d) and (5e) represent the objective function
and constraints for the lower-level problem. These are identical to the
prosumager’s model that was described in Section 2.3.1.

In order to solve the problem formulated in (5), a single-level
reduction approach is applied. This approach uses the Karush-Kuhn–
Tucker (KKT) optimality conditions, which are both necessary and
sufficient, to transform the problem into an equivalent mathematical
program with equilibrium constraints. The dual feasibility conditions
are described in Eq. (6).

𝛽
𝑖𝑡
, 𝛽𝑖𝑡, 𝛾 𝑖𝑡, 𝛾 𝑖𝑡, 𝜇𝑖𝑡, 𝜇𝑖𝑡, 𝜏𝑖𝑡, 𝜏𝑖𝑡, 𝜐𝑖𝑡, 𝜐𝑖𝑡 ≥ 0, (6)

where 𝛽
𝑖𝑡
, 𝛽𝑖𝑡, 𝛾 𝑖𝑡, 𝛾 𝑖𝑡, 𝜇𝑖𝑡, 𝜇𝑖𝑡, 𝜏 𝑖𝑡, 𝜏𝑖𝑡, 𝜐𝑖𝑡, 𝜐𝑖𝑡 are the Lagrangian dual

variables of the lower-level problem constraints, as defined in (1). The
stationary conditions are given in (7).

𝑝𝑎𝑔+𝑡 + 𝑃 𝑟𝑐 + 𝜆𝑧𝑖𝑡 + 𝜐𝑖𝑡 − 𝜐𝑖𝑡 = 0 ∶ 𝑒𝑝𝑟+𝑖𝑡 , (7a)

− 𝑝𝑎𝑔−𝑡 − 𝜆𝑧𝑖𝑡 + 𝜇𝑖𝑡 − 𝜇𝑖𝑡 = 0 ∶ 𝑒𝑝𝑟−𝑖𝑡 , (7b)

− 𝜆𝑎𝑖𝑡 + (1 − 𝛬𝑝𝑟𝑖 )𝜆
𝑎
𝑖(𝑡+1) − 𝜏 𝑖𝑡 + 𝜏 𝑖𝑡 = 0 ∶ 𝑎𝑝𝑟𝑖𝑡 , (7c)

(1 − 𝛬𝑝𝑟𝑖 )𝜆
𝑎
𝑖1 − 𝜆

𝑎0
𝑖0 = 0 ∶ 𝑎𝑝𝑟𝑖𝑡 , 𝑡 = 1, (7d)

𝑃 𝑐ℎ𝑖 − 1
𝜀𝑝𝑟𝑖

𝜆𝑎𝑖𝑡 + 𝜆
𝑧
𝑖𝑡 − 𝛾 𝑖𝑡 + 𝛾 𝑖𝑡 = 0 ∶ 𝑧𝑝𝑟−𝑖𝑡 , (7e)

𝑃 𝑐ℎ𝑖 + 𝜖𝑝𝑟𝑖 𝜆
𝑎
𝑖𝑡 − 𝜆

𝑧
𝑖𝑡 − 𝛽𝑖𝑡 + 𝛽𝑖𝑡 = 0 ∶ 𝑧𝑝𝑟+𝑖𝑡 . (7f)

Complementary slackness conditions for the lower-level problem
result in several nonlinear terms, but, since the prosumager’s problem
is a linear program, these can be replaced with the strong duality
condition (Bard, 2013). The strong duality condition for the lower-level
problem can be formulated as:

−
∑

𝑡
(𝑝𝑎𝑔+𝑡 𝑒𝑝𝑟+𝑖𝑡 + 𝑃 𝑟𝑐𝑒𝑝𝑟+𝑖𝑡 − 𝑝𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 + 𝑃 𝑐ℎ𝑖 (𝑧𝑝𝑟+𝑖𝑡 + 𝑧𝑝𝑟−𝑖𝑡 )) =
∑

− 𝜆𝑎0𝑖0𝐴
𝑝𝑟
𝑖0 +

∑
𝑡
(𝜏 𝑖𝑡𝐾

𝑝𝑟
𝑖 𝐹

𝑝𝑟
𝑖 + 𝜇𝑖𝑡𝐸

𝑎𝑔−
𝑡 + 𝜐𝑖𝑡𝐸

𝑎𝑔+
𝑡 + 𝜆𝑧𝑖𝑡𝐻𝑖𝑡

+𝛽𝑖𝑡
𝑈 𝑝𝑟
𝑖𝑡 𝐾

𝑝𝑟
𝑖

𝜖𝑝𝑟𝑖
+ 𝛾 𝑖𝑡𝑈

𝑝𝑟
𝑖𝑡 𝐾

𝑝𝑟
𝑖 𝜀

𝑝𝑟
𝑖 ) (8)

In the single-level reduction process, two bilinear terms emerge
in the objective function (5a) and the strong duality condition (8):
𝑝𝑎𝑔+𝑡 𝑒𝑝𝑟+𝑖𝑡 and 𝑝𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 . To handle the resulting non-linearity, as proposed
in Sarfarazi et al. (2023a), we assume that 𝑝𝑎𝑔+𝑡 and 𝑝𝑎𝑔−𝑡 can only take
discrete values. Hence, a disjunctive formulation for the bilinear terms
is proposed as follows:

𝑝∗𝑡 𝑒
𝑝𝑟∗
𝑖𝑡 =

⋁𝑛
𝑘=1

𝑃 ∗
𝑘𝑡𝑒

𝑝𝑟∗
𝑖𝑡 (9)

In this case, 𝑘 is the disjunction index and ⋁ is the disjunction oper-
ator. The binary expansion technique is then used to introduce binary
variables 𝑏∗𝑡𝑘 and reformulate the disjunctive program ⋁𝑛

𝑘=1𝑃
∗
𝑘𝑡𝑒

𝑝𝑟∗
𝑖𝑡 .

−𝑀∗𝑏∗𝑡𝑘 ≤ ℎ∗𝑖𝑡𝑘 ≤𝑀∗𝑏∗𝑡𝑘,∀𝑖𝑡𝑘 (10a)

−𝑀∗(1 − 𝑏∗𝑡𝑘) ≤ ℎ∗𝑖𝑡𝑘 − 𝑃
∗
𝑘𝑡𝑒

𝑝𝑟∗
𝑖𝑡 ≤𝑀∗(1 − 𝑏∗𝑡𝑘),∀𝑖𝑡𝑘 (10b)

∑𝑛
𝑘=1

𝑏∗𝑡𝑘 = 1 (10c)

𝑀∗ in (10) is a sufficiently large number and ℎ∗𝑖𝑡𝑘 is a continu-
ous variable which is enforced to adopt corresponding discrete value.
Hence, we can substitute the bilinear terms and the aggregator prices
as:

⋁𝑛
𝑘=1

𝑃 ∗
𝑘𝑡𝑒

𝑝𝑟∗
𝑖𝑡 =

∑𝑛
𝑘=1

ℎ∗𝑖𝑡𝑘, (11a)

𝑝∗𝑡 =
∑𝑛

𝑘=1
𝑃 ∗
𝑘𝑡𝑏

∗
𝑡𝑘. (11b)

Consequently, the original bilevel optimization problem in (5) can
be reformulated with additional constraints derived in (10) and (11)
as:

Maximize
𝜉

𝑟 =
∑
𝑡, 𝑖

(𝑃𝑀𝑡 (𝑒𝑝𝑟−𝑖𝑡 − 𝑒𝑝𝑟+𝑖𝑡 ) +
∑𝑛

𝑘=1
ℎ+𝑖𝑡𝑘 −

∑𝑛
𝑘=1

ℎ−𝑖𝑡𝑘)
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Fig. 9. Sale and purchase price limits for one exemplary optimization period.

Subject to: (5b) and (5c),
(8) rewritten with (9) and (11a),
(1b) − (1i), (6) and (7),

(10) and (11a). (13)

In this formulation, 𝜉 includes {𝑝𝑎𝑔+𝑡 , 𝑝𝑎𝑔−𝑡 , 𝑒𝑝𝑟+𝑖𝑡 , 𝑒𝑝𝑟−𝑖𝑡 , 𝑧𝑝𝑟+𝑖𝑡 , 𝑧𝑝𝑟−𝑖𝑡 , 𝑎𝑝𝑟,
𝜆𝑎𝑖𝑡, 𝜆

𝑧
𝑖𝑡, 𝜏 𝑖𝑡, 𝜏 𝑖𝑡, 𝜆

𝑎0
𝑖0 , 𝜐𝑖𝑡, 𝜐𝑖𝑡, 𝜇𝑖𝑡, 𝜇𝑖𝑡, 𝛽𝑖𝑡, 𝛽𝑖𝑡, 𝛾 𝑖𝑡, 𝛾 𝑖𝑡, 𝑏

+
𝑡𝑘, 𝑏

−
𝑡𝑘, ℎ

+
𝑖𝑡𝑘, ℎ

−
𝑖𝑡𝑘}. The

problem in (13) is a mixed integer linear problem (MILP) and can be
solved using standard commercial MILP solvers and branch-and-bound
algorithms.

2.4. Model parameterization and data

This section introduces the energy system scenarios and EC use-
cases, explaining the data used and the underlying parameterization.

We investigate the systemic impacts of distributed BSS within two
energy systems. The current scenario resembles the German electricity
market and the installed capacities for the year 2019. The parame-
terization and back-testing of AMIRIS for this scenario, founded on
historical data, is illustrated in Nitsch et al. (2021). The future scenario
represents a projection of the German energy system for the year 2030.
As detailed in Section 2.2, we utilize the energy system optimization
model REMix to derive the optimal capacity expansions and storage
operations for the future scenario.

The REMix model configuration used in this research is grounded
on Cao et al. (2018), treating Germany as a singular model node with
imports/exports to neighboring countries considered as exogenous. The
primary emphasis is on the power sector, integrating renewable and
conventional power converters, the electricity grid, and electricity stor-
age technologies into the analysis. By 2030, we assume that Germany
will cease the use of coal or lignite power plants,5 adhering to the
projections set out in the energy scenario of Agora Energiewende and
Prognos (2022). As such, only gas power plants can be expanded
and dispatched. A carbon emission price serves as a stimulus for the
investment and operation of renewable power plants. As shown in
Table 2, Agora Energiewende and Prognos (2022) proposes a CO2 price
of 100 e per ton for the year 2030. The same source also anticipates
that the price of natural gas, after the price shocks in 2022, will stabilize
at 38 e/MWh. Furthermore, an average energy-to-power ratio of 3 h,
based on the analysis in Hesse et al. (2017), is included as a constraint
on the expansion of lithium-ion batteries.

5 According to various studies, including (Hauenstein et al., 2022), achiev-
ing a coal phase-out by 2030 remains a feasible scenario, considering the
ambitious goals of the German federal government and the substantial
expansion of renewable energy sources.

To adapt AMIRIS for the future scenario, we use input data and
results derived from REMix. We assume that renewable power plants
do not receive feed-in incentives and the operations of pump storage
and lithium-ion BSS in AMIRIS, excluding those located within the EC,
mirror those of their REMix counterparts. REMix does not differentiate
between centralized and decentralized generation or storage resources.
As such, we assume an existing EC that possesses a total installed
capacity of 3 GW for PV generation and 1.5 GW for BSS, along with an
annual power demand of 2.25 TWh in both scenarios. These values are
subsequently subtracted from the total capacities and profiles derived
from REMix.6

Our model supports the integration of multiple ECs, with each EC
comprising various users (as denoted by the index 𝑖). However, due to
data scarcity and for simplicity, our analysis is constrained to a single
representative EC composed of an aggregator and a representative
prosumager (|𝑖|=1). We use household power demand profile data
from (Tjaden et al., 2015), which offers high-resolution load profiles for
74 households. The aggregate of these profiles yields a single demand
profile with an hourly resolution, closely approximating the standard
load profile due to smoothing effects.

We assume that both the aggregator and the prosumager possess
precise foresight of the upcoming prices for the next 24 h (𝜔 = 24),
adjusting their strategies bi-daily (𝜋 = 12). Furthermore, we assume
that all BSSs are available at all times (𝑈𝑎𝑔

𝑡 = 1,∀𝑡). In all cases, with
the exception of the profit-maximizing CES where the aggregator might
reserve a portion of its capacity to exert market power, we assume that
it opts for exceedingly high prices for demand bids and extremely low
prices for supply bids, ensuring that the bids are always awarded. The
aggregator is also mandated to include volumetric charges, denoted
as 𝑃 𝑟𝑐 , comprising taxes, levies, and grid charges in the prosumager
electricity tariff. These charges may also apply when the CES is drawing
power from the grid. The elimination of the EEG-levy in Germany
in 2022 resulted in a reduction in the total value of added charges
from 22.7 cents/kWh to 18.5 cents/kWh (Anon, 2022). Therefore, we
conduct our simulations for two cases: one incorporating regulatory
charges (𝑃 𝑟𝑐 = 18.5), and a hypothetical case devoid of regulatory
charges (𝑃 𝑟𝑐 = 0).

In this paper, we study five EC use-cases, depicted in Table 3,
by considering three fundamental components of EC business models:

6 To prevent disproportionate systemic effects provoked by the EC,
the proposed storage capacity is significantly below future energy sce-
nario predictions. The installed HES is projected to reach capacities of 26
GW by 2030 (Agora Energiewende and Prognos, 2022) and 64 GW by
2037 (Bundesnetzagentur, 2022).
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Table 2
Fuel and CO2 costs in the energy system scenarios.

Item Current scenario (Nitsch et al., 2021) Future scenario (Agora Energiewende and Prognos, 2022)

CO2 [e/ton] 24.7 100
Gas [e/MWh] 27.3 38
Coal [e/MWh] 7.8 –
Lignite [e/MWh] 5 –
Oil [e/MWh] 30.7 –
Nuclear [e/MWh] 3.0 –

Table 3
Studied EC use-cases.

Use-case Model Storage Pricing scheme Goal

No_stor No optimization – SP –
CES_A Single-level optimization in (3) CES SP Autarky
CES_P Single-level optimization in (4) CES SP Profit
SP Single-level optimization in (1) HES SP Profit
ORTP Bilevel optimization in (5) HES ORTP Profit

Pricing scheme, BSS application, and the aggregator’s optimization
objective. Among these, the No_stor acts as the reference point, enabling
the evaluation of the performance of other use-cases that deploy a BSS
within the EC.

In addition to the aforementioned EC use-cases, we introduce a
Sys_min case, wherein the built-in storage module in AMIRIS is used
to minimize system operational costs (Cao et al., 2019). Thus, while
the EC model in this case mirrors the No_stor, an optimization for a
BSS with a capacity of 1.5 GW, hypothetically located outside the EC,
is undertaken. We consider this case to benchmark the most desirable
system-wide outcome for a BSS operation, against which we assess the
system-friendly operation of our EC use-cases.

2.5. Key performance indicators

In this paper, we study the performance of the EC use-cases by
observing and assessing indicators at both the community and overall
energy system levels:

• Community welfare (𝛷): This refers to the total revenue gen-
erated by all participants in the EC, including the aggregator
and users. It is calculated using the equation presented in (14).7
Efficient trading practices can enhance 𝛷, while paid regulatory
charges may negatively influence it. It is worth noting that the
internal transactions within the EC do not impact the 𝛷 value.
This analysis, therefore, does not cover the actual redistribution
of welfare among EC stakeholders.

𝛷 =
∑

𝑠
(𝑟𝑠 −

∑
𝑖
𝐶𝑝𝑟𝑖𝑠 ) =

∑
𝑠
𝑃𝑀𝑠 (𝑒𝑎𝑔+𝑠 − 𝑒𝑎𝑔−𝑠 ) − 𝑃 𝑟𝑐 (𝑧𝑎𝑔+𝑠 +

∑
𝑖
𝑒𝑝𝑟+𝑖𝑠 )

(14)

• Market exchange (𝐸): This indicator pertains to the total power
exchanged with the higher-level grid or market. Although self-
consumption and self-sufficiency ratios are prevalent measures
of prosumager autonomy from the larger energy system, they
fail to accurately depict the scenario in ECs due to continuous
interactions of a grid-connected CES with the broader energy
system. Therefore, the necessity arises for alternative methods
to evaluate the level of independency of ECs. We define the
market exchange indicator as a suitable measure to assess the
self-sufficient operation of the EC:

𝐸 =
∑

𝑠
(𝑒𝑎𝑔+𝑠 + 𝑒𝑎𝑔−𝑠 ) (15)

7 Given that the value of 𝑃 𝑐ℎ
𝑖 is negligible in comparison to 𝑃𝑀

𝑡 and 𝑃 𝑟𝑐 ,
we have omitted the term 𝑃 𝑐ℎ

𝑖 (𝑧𝑝𝑟+𝑖𝑡 + 𝑧𝑝𝑟−𝑖𝑡 ) in the definition of 𝛷.

• Market-driven curtailment: This event takes place when a re-
newable energy power plant fails to secure contract awards de-
spite submitting bids to the wholesale market. Consequently, the
potential generation of solar or wind power plants cannot be
sold on the market and has to be curtailed. Considering the
near-zero marginal costs of renewable power generation and the
national geographical scope of this analysis, such curtailment
becomes necessary if the potential RES generation exceeds the
electricity demand in Germany. Note that in our model, the solar
PV generated in the EC is never curtailed.

• Operational system costs (𝐶𝑠𝑦): This refers to the sum of short-
term running costs of all power plants, i.e., the summation of the
marginal costs of all awarded power plants:

𝐶𝑠𝑦 =
∑

𝑠

∑𝐵
𝑝
𝑄𝑝𝑠𝐶

𝑚𝑎
𝑝𝑠 , (16)

where the marginal cost of power plant 𝑝 (𝐶𝑚𝑎𝑝𝑠 ) is determined as
follows:

𝐶𝑚𝑎𝑝𝑠 =
𝐶𝑓𝑢𝑝𝑠 + 𝐶𝑐𝑎𝑝𝑠

𝜖𝑝
+ 𝐶𝑂&𝑀𝑝𝑠 . (17)

Here, 𝐶𝑓𝑢𝑝𝑠 , 𝐶𝑐𝑎𝑝𝑠 , and 𝐶𝑂&𝑀𝑝𝑠 respectively denote the fuel, CO2, and
variable costs of the power plant 𝑝 at time 𝑡, while 𝜖𝑝 signifies the
efficiency of each power plant.

3. Results

The forthcoming section provides a comprehensive presentation of
our analytical findings for different readerships. Sections 3.1 to 3.3
accommodate those readers who seek a detailed understanding of the
results. Section 3.1 describes the results from simulating the two energy
system scenarios as introduced in Section 2.4. Subsequently, Section 3.2
presents the operation of BSS, showcasing the local consumption and
energy arbitrage across various EC use-cases. In Section 3.3, we eval-
uate the introduced EC and overall system level KPIs. Moreover, Sec-
tion 3.4 summarizes our main findings and serves readers more inclined
towards high-level insights, who may prioritize a concise overview and
are less focused on methodological complexities and specific details.

3.1. Energy system scenarios

Fig. 10 depicts the installed capacities for the simulated energy
systems. Capacities in the current scenario are derived from historical
data, while the capacities for the future scenario are direct outcomes
of REMix, under the assumptions explicated in Section 2.4.

Before incorporating the EC into AMIRIS, we simulate the electricity
markets for the two energy system scenarios to provide an overview
of the key market indicators. The simulation outcomes are shown in
Table 4. In the current scenario, renewable sources contribute to 42%
of the power generation, while this figure rises to 82% in the future
scenario. These results are in line with the objectives set forth in the
federal government’s climate emergency program (Easter Package),
published in early 2022, which aimed for a minimum of 80% of gross
electricity consumption to come from renewable sources (Abuzayed
and Hartmann, 2022). The future scenario sees higher operational sys-
tem costs due to the increased cost of conventional power generation.
With a larger proportion of renewable energy sources and a phase-out
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Fig. 10. Installed power plant capacities in the current and future scenarios.

Table 4
Descriptive energy system indicators resulted from AMIRIS simulations.

Indicator Current scenario Future scenario

Renewable power generation [TWh] 224.0 578.5
Conventional power generation [TWh] 303.19 125.1
Operational system costs [Me] 9227.8 14 004.4
CO2 emissions [Mt] 155.1 47.9
Curtailed power generation [GWh] 0.9 92 609.3

of coal, the future scenario results in a 69% reduction in CO2 emissions
compared to the current scenario. The curtailment of power generation
from renewable energy sources is 0.9 GWh in the current scenario. This
figure escalates to 93.5 TWh in the future scenario.

Table 5 provides an overview of the market price statistics. In the
future energy scenario, the average market price escalates by 14.4
e/MWh due to the higher marginal costs of gas power plants, an
outcome primarily arising from the projected increase in gas and CO2
prices. The peak electricity price rises from 63.8 e/MWh to 173.7
e/MWh in the future scenario, also attributable to the projected hikes
in fuel and CO2 prices. Notably, the lowest market price remains
constant at 0 e/MWh in both scenarios because of the absence of regu-
latory incentives for renewable feed-in, coupled with the presumption
that the marginal cost of power generation from RES is zero. In the fu-
ture scenario, the duration of RES price-setting extends drastically from
a single hour8 in the current scenario to 4350 hours, thus decreasing the
median price from 42.5 e/MWh to 6.6 e/MWh. The increased standard
deviation distinctly showcases the intensified market volatility in the
future scenario. This volatility becomes more evident in the Bollinger
bands chart depicted in Fig. 11. The price fluctuations in the future
scenario during the spring and summer seasons become particularly
striking due to the surge in solar PV power generation.

3.2. EC operation

The operation of the EC varies across the case studies due to
differences in the BSS operating entity, optimization goals, and pric-
ing mechanisms for the prosumagers. Fig. 12 displays the simulated
EC dispatch over three exemplary days in the current scenario with
regulatory-induced charges assumed to be zero (𝑃 𝑟𝑐 = 0). Fig. 12(A)

8 The deviation of this value from historical data can be explained by the
electricity demand and generation of the EC, which are not considered in this
simulation.

Table 5
Descriptive statistics of the market prices before EC integration.

Indicator Current scenario Future scenario

mean [e/MWh] 43.0 57.4
std [e/MWh] 4.7 62.7
min [e/MWh] 0 0
max [e/MWh] 63.8 173.7
median [e/MWh] 42.5 6.6

shows the predicted market prices to which the aggregator is exposed.
Fig. 12(B) displays the direct electricity consumption and residual de-
mand of the prosumer in the No_stor. The BSS dispatch and the residual
load of the EC in different use-cases are presented in Figs. 12(C) to
12(F).

The storage optimization approach employed in the CES_A actively
disregards market dynamics, while the users in the SP do not receive
any time-varying price signals. Consequently, the charging schedule of
the BSS in these two cases remains unaffected by the fluctuations in
market prices. In the CES_A, the CES aims to minimize the power traded
in the market, and on a sunny day, it accumulates excess generation
to meet the evening electricity demand. Similarly, the HES in the
SP follows this pattern on the first day, as selling electricity to the
grid is not cost-effective due to lower market prices. However, on the
following two days, the charging profiles of the BSS in these cases
diverge. While the CES in the CES_A utilizes the stored energy to sustain
a stable grid usage, the cost-optimizing HES in the SP use-case finds no
incentive to charge the battery.

In contrast to the previous use-cases, the BSS operation in the ORTP
and the CES_P is subject to market fluctuations. In both cases, the aggre-
gator endeavors to align the BSS operation with market signals. In the
CES_P, this is achieved by direct optimization of the CES, while in the
ORTP, dynamic incentives in the form of time-varying electricity prices
are created. The simulation results clearly demonstrate that the BSS
charging and discharging strategy in the CES_P closely follows market
price developments, with charging occurring during periods of high
prices and discharging when prices are low. In the ORTP, however, the
behind-the-meter self-consumption still remains more attractive than
selling self-generated electricity to the grid. Nonetheless, the HES shifts
the electricity load to hours of low market prices (e.g., in timesteps
385, 387, and 412). Our observations reveal that due to significant
price fluctuations in the future scenario (as shown in Fig. 11), selling
self-generated solar energy is occasionally more attractive than self-
consumption. Additional insights regarding the BSS dispatch can be
obtained from the annual duration curves, as depicted in Appendix A.3.
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Fig. 11. Bollinger bands chart for the market prices in current and future scenarios. The chart illustrates two standard deviations, both above and below, from the 24-hour moving
average trend.

3.3. KPI results

In this section, we examine the KPIs introduced in Section 2.5. To
isolate the effects of the BSS operation on the KPIs, we present relative
values compared to the No_stor.

Fig. 13 presents the community-level KPIs. As shown in Fig. 13(A),
the EC in the CES_A and SP simulations significantly reduces its in-
teraction with the wholesale market (50.7% and 48.4% respectively).
Conversely, the EC in CES_P shows the highest trading volume. The
incentive for trading activities is notably higher in the future scenario
due to increased short-term volatility (54.7% compared to 15.5% in the
current scenario). In both scenarios, the incentive for market arbitrage
diminishes significantly if the CES is required to pay an additional
18.5 cents/kWh for charging the battery. Prosumagers’ behavior in
ORTP contrasts somewhat across scenarios: Although electricity self-
consumption remains a priority in the current scenario (with nearly
45% less grid usage and feed-in), the HES shows up to a 23% higher
market trading volume in the future scenario. Even when 𝑃 𝑟𝑐 = 18.5
cents/kWh, where the market signals of scarcity and excess do not
‘‘directly’’ reach the EC users, prosumagers interact 15% more with the
grid.

Fig. 13(B) illustrates how the use of BSS in each case impacts com-
munity welfare. The changes in community welfare are, by definition
(as expressed in Eq. (14)), driven by the overall profit gained in the
market and the regulatory fees paid. The aggregated impact of these
two drivers differs in the current and future scenarios: In the current
market with comparably lower arbitrage potential, higher end-user
electricity prices incentivize a higher level of behind-the-meter self-
consumption and encourage the users to invest more in self-sufficiency.
In such environment, the operation of front-of-the-meter CES does not
generate a positive welfare effect. Due to higher power prices in the
future market, the welfare gain using a BSS is significantly higher,
where the least favorable case, CES_A with 𝑃 𝑟𝑐 = 18.5 cents/kWh,
generates over 34 Me (i.e., ≈ 22.6 ke/MW-year) additional welfare
for the community. Moreover, the profit potential from volatile market
dynamics in the simulated future scenario generally outweighs the cost
savings through self-consumption, leading to viable use-cases in market

driven CES (CES_P) and HES (ORTP) solutions. The most profitable use-
case, CES_P with 𝑃 𝑟𝑐 = 0, generates an additional 132 Me, (i.e., ≈ 88
ke/MW-year).

The BSS operation in the CES_P effectively aligns the EC’s operation
with market price signals, resulting in the highest 𝛷. Nevertheless, due
to limited foresight, the operator may still experience misalignment
as the forecast for the entire simulation period is not available. The
sensitivity analysis presented in Fig. 14 illustrates that extending the
forecast period from 2 to 256 h significantly improves the community
welfare, but the improvements are diminished when the forecast period
exceeds 64 h. This is mainly due to the short charging cycle of the
BSS that is taken into account. In addition, the analysis indicates that
a shorter schedule duration leads to superior performance of the BSS
operation, and the most favorable outcomes are attained with a 𝜋 =
1. However, the considerable computational effort demanded by the
bilevel optimization in the ORTP justifies the choice of the schedule
duration (𝜋 = 0.5𝜔) in our analysis.

Fig. 15 shows the impact of the EC on overall system KPIs, i.e., the
operational system costs and the market-driven curtailment of RES, and
compares them against a benchmark case where the BSS is used to
minimize the system costs (Sys_min). The benchmark case assumes that
the BSS operator has the same foresight as the aggregator in the EC,
enabling a comparison of the system-friendly behavior of the different
use-cases.

The results show that the BSS operation can have a more significant
impact on system costs in the future scenario, owing to the higher
marginal costs of gas power plants in this scenario. While the BSS in
the Sys_min reduces the system costs by as much as 2.7 Me (0.03% of
total operational costs) in the current scenario, cost savings increases
to 132.16 Me (0.94%) in the future scenario. Among the EC use-cases,
the most substantial reduction in system costs is achieved in the CES_P,
where market-oriented BSS optimization leads to a reduction of up to
2.4 Me (0.026%) and 83.5 Me (0.6%) in the current scenario and the
future scenario, respectively. In the current scenario, the high level
of local self-consumption in the SP, ORTP, and CES_A increases the
operational system costs. The negative impact of local self-consumption
on system costs is reduced in the future scenario, with the EC operation
in the SP resulting in an increase of 12.7 Me (0.09%) in this scenario,
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Fig. 12. EC dispatch in different use-cases over three exemplary days. Market price
forecast is shown in A. User’s direct consumption and residual demand are presented
in B. subplots C, D, E, F respectively show the EC dispatch in the CES_A, SP, ORTP
and CES_P use-case (as described in Table 3).

while system costs in the ORTP and CES_A decrease by 59.9 Me
(0.42%) and 8.2 Me (0.05%), respectively. The negative impact of
volumetric regulatory-induced charges on BSS performance is most
visible for the CES_P and ORTP. The system costs for the CES_P increase
by 1.87 Me and 4.47 Me, while for the ORTP they increase by 0.36
Me and 1.14 Me in the current scenario and the future scenario,
respectively, compared to the simulations with 𝑃 𝑟𝑐 = 0. The impact
of these charges in other cases is comparatively insignificant.

As presented earlier in Table 4, there is a significant increase in
market-driven curtailment in the future energy system scenario, no-
tably characterized by a high level of RES generation. It is important to
note, as will be discussed in the following section, that the high level of
market-driven curtailment in our findings is primarily a model artifact
resulting from the omission of endogenous modeling of sector coupling
and cross-border power exchange. Specifically, the untapped potential
of RES generation that could not be marketed even at the price of 0
e/MWh escalate from a mere 0.9 GWh in the current scenario to over

92 TWh in the future scenario. In our benchmark scenario (Sys_min),
the BSS operator absorbs 100% (0.9 GWh) and 1.25% (1156.45 GWh)
of the unused RES generation in the current scenario and the future
scenario, respectively, with the aim of minimizing the operational
system costs. Our analysis indicates that the BSS operation had a minor
effect on the curtailment in the CES_A and SP, with the exception of the
SP in the future scenario, where the curtailment increased by 206 GWh
more. In contrast, in the CES_P and ORTP, the BSS effectively absorbed
all the surplus generation in the current scenario. Similarly, the battery
operation in the CES_P and ORTP reduces the amount of market-
driven curtailment by up to 290 GWh and 205 GWh, respectively.
Furthermore, our results show that the regulatory induced charges do
not have a fundamental effect on the curtailment.

3.4. Key takeaways

The key findings in the context of the central research question of
our study can be summarized as follows:

In the current energy system, distributed BSSs are used to reduce
reliance on the grid by promoting self-consumption. Within the existing
regulatory framework, where energy consumers face substantial static
energy-based charges for taxes, levies, and fees aimed at covering
grid investment and operational expenses, the most financially viable
BSS use-case remains behind-the-meter self-consumption using HES
systems. This observation aligns with current realities, with over 83%
of stationary battery installations in Germany being HES.9 While such
self-consumption approach improves the integration of local PV gen-
eration, the full potential of energy storage systems remains largely
untapped. Our findings indicate that focusing solely on self-sufficiency-
oriented operation yields only marginal improvements in system-level
KPIs compared to approaches oriented towards the wholesale market.
As we move towards a future energy system, in which the abundant
RES need to be curtailed during certain hours and RES scarcity leads
to expensive power generation from conventional, high-CO2 footprint
fuels, efficient utilization of available flexibility becomes crucial. The
simulated scenario in 2030 with an 82% share of RES exhibits a
potential for significant price volatility in the future energy system,
which may lead to growing incentive for BSSs to engage in energy
arbitrage. It is important to note that our study did not address grid
constraints related to electricity transportation. Given that a significant
amount of RES is already curtailed due to transmission grid limita-
tions, relying solely on local consumption and generation through BSS
operation could exacerbate efficiency losses from the system perspec-
tive (Monforti-Ferrario and Blanco, 2021). Moreover, as for example
shown in van Westering and Hellendoorn (2020) CES can provide
services to distribution grid operators to reduce the congestion caused
by decentralized RES generation in the low voltage grid.

The proposed ORTP scheme, which results from the simultaneous
optimization of the aggregator and prosumagers’ profit-maximizing
utility functions, improves the alignment of the HES systems’ operation
with the real-time conditions of the overall energy system. In contrast to
the straightforward real-time pricing strategies examined in the existing
literature (such as those discussed in Klein et al. (2019), Sarfarazi
et al. (2023b), and Günther et al. (2021)), which simply pass wholesale
prices through to end-users, ORTP ensures an equilibrium in the EC.
As mathematically proved in Sarfarazi et al. (2023a), this equilibrium
guarantees the highest welfare for the EC. While this approach effec-
tively communicates market signals to the EC users, the preference

9 As of March 1st, 2024, the total installed battery storage capacity in
Germany amounts to 12.4 GWh. Among these installations, 10.4 GWh are
attributed to HES systems, typically with a size of up to 30 kWh. Additionally,
488 MWh are associated with commercial and industrial batteries, ranging
from 30 kWh to 1 MWh in size, while 1.5 GWh are accounted for by large-scale
batteries exceeding 1 MWh in capacity (Figgener et al., 2022, 2024).
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Fig. 13. Community level KPIs: market exchange (A) and community welfare (B) in the CES_A, SP, ORTP and CES_P relative to the No_stor(as described in Table 3). Note that
subplots are scaled differently.

Fig. 14. Sensitivity analysis regarding the impact of the schedule duration (𝜋) and
forecast period (𝜔) on the community welfare (𝛷).

for behind-the-meter self-consumption of PV electricity remains strong
among prosumagers in the current market. However, the simulated fu-
ture energy system scenario reveals increased short-term price volatility
in the market, amplifying the incentive for grid interactions during
specific hours. This contributes to the cost-effective operation of the
HES and improves the nationwide integration of RES. Nevertheless, the
effectiveness of such a mechanism is compromised if the tariff structure
incorporates static energy-based charges that distort real-time signals.

The profit-oriented operation of CES emerges as the most system-
friendly approach, yielding the highest EC welfare among the studied
use-cases. It is important to note that the profit derived from CES
cannot be directly compared with that of HES, as we evaluated the
generated welfare across the entire EC. The profitability of CES op-
eration through arbitrage is heavily dependent on prevailing market
conditions. Our findings indicate a per-unit arbitrage opportunity rang-
ing from 1.7 ke/MW in the current system to 88 ke/MW in the future
energy system. These figures fall on the lower and upper bounds of the
spectrum of data compiled from 176 individual valuation studies and

market transactions, which range from 5 to 85 ke/MW-year in Schmidt
and Staffell (2024).10 The operation of CES becomes even more sensi-
tive to regulatory charges in the absence of behind-the-meter potential.
The recent decision by the German government to exempt BSS projects
commissioned until 2029 from grid fees for 20 years (German Energy
Storage Systems Association (BVES), 2024), enhances the attractiveness
of investment in this sector. Additionally, under current market condi-
tions revenue stacking by providing multiple services within a specified
time frame, though not explored in this study, has the potential to
significantly improve the profitability of BSSs (Schmidt and Staffell,
2024). For instance, the study in Sorourifar et al. (2018) demonstrates
that under specific market conditions, simultaneous participation in
energy and ancillary services markets can yield a 4- to 5-fold increase
in net present value compared to solely engaging in energy transactions
in the day-ahead market.

Furthermore, our results underscore the systemic advantages of en-
ergy arbitrage in the market using BSSs. The considered 1.5 GW battery
in our study results in a reduction of operational system costs by 2.4 Me
and 83.5 Me in current and future scenarios, respectively. Despite these
positive effects on the system, the operation of BSSs often diverges from
the optimization of system costs, as the business economic benefits of
BSS operation do not always align perfectly with the system’s require-
ments. One such scenario arises when a price-setting BSS deliberately
withholds its full capacity to respond to energy scarcity and excess,
aiming to prevent price cannibalization. The assumption of system-
cost minimizing BSS operation is commonly employed when assessing
the potential of batteries in future energy systems using energy system
optimization models.

4. Discussion of limitations

We conducted a comprehensive analysis to assess the efficiency of
BSS operations across different EC use-cases, taking into account the
perspectives of the EC and the overall energy system. Our evaluation,
encompassing assessments at both the EC and wholesale market levels,

10 To provide context, the current investment cost for Lithium Ion Phosphate
batteries is estimated approximately 300 ke/MW.
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Fig. 15. Changes in system costs and RES generation curtailment in both energy system scenarios and in the CES_A, SP, ORTP and CES_P (as described in Table 3). Note that
subplots are scaled differently.

was subject to various constraints. Firstly, in terms of the market, we
did not account for the potential externalities of BSS operation on non-
energy power sector costs, such as those associated with the electricity
network. To ascertain whether BSS operation has any adverse effects
on the distribution grid, it would be necessary to explicitly model the
underlying power flows, a task that exceeded the scope of our study. In
this context, one vital avenue for future research involves establishing
appropriate incentives and coordination mechanisms that align BSS
operations with both market and grid signals.

Secondly, our market simulation was subject to several simplifying
assumptions. By solely focusing on Germany, our results are prone to
overestimating price fluctuations and required curtailment due to mar-
ket reasons. Furthermore, neglecting uncertainties and forecast errors
has a tendency to exaggerate the efficiency of storage operations. Ad-
ditionally, our model did not take into account the competition among
flexibility operators. We anticipate that strategic bidding by various
storage operators and aggregators of sector coupling technologies will
mitigate the intense price fluctuations observed in future energy system
scenarios. Correspondingly, if we parameterize our model to represent
a large array of ECs, each encompassing diverse actors, we anticipate a
similar effect. The effective modeling and data supply for the large-scale
integration of small actors in the energy market is a topic of another
research path.

Thirdly, our study imposed restrictions on the available technolo-
gies within the EC, limiting it to PV and lithium-ion battery systems,
which were parameterized exogenously. However, if capacity expan-
sions are optimized endogenously, prosumagers invest extensively in
self-sufficiency when regulatory-induced charges are in place (Bertsch
et al., 2017). Moreover, we did not consider the heterogeneity of house-
holds and instead parameterized a single prosumager with a standard
load profile and national generation profile. In Sarfarazi et al. (2023a),
we demonstrated that incorporating actor heterogeneity within the
EC leads to greater welfare, as there are more opportunities for local
trading and balancing within the EC.

Last, we analyzed the impact of regulatory charges as static energy-
based charges added to the electricity price and demonstrated that
such charges distort market signals, leading to sub-optimal utilization
of demand-side flexibility options. Furthermore, while prosumagers

benefit from reduced costs through self-consumption, they contribute
less to taxes, levies, and grid expenses. In the case of grid costs, these
expenses must be borne by non-privileged consumers, raising distribu-
tional concerns (Mehigan et al., 2018). Future research should delve
into alternative tariff options, such as time-varying levies (Sarfarazi
et al., 2023b) or capacity-based grid charges (Khalilpour and Lusis,
2020; Klein et al., 2019), and also consider feed-in remunerations as
well as CO2-oriented reforms of retail tariffs abolishing the regulatory-
induced energy taxes and surcharges altogether (Aniello and Bertsch,
2023). Although the aggregator in our model participates in a single
electricity market, multi-use business models can enhance the prof-
itability of BSS operation (Gährs and Knoefel, 2020), particularly as
the storage remains idle for numerous hours in the year. Collective
self-consumption within the EC and providing grid services can create
additional revenue streams for BSS, making the investment more at-
tractive. We demonstrated that the community welfare in the EC can be
increased, but the question of how the resulting welfare is distributed
among stakeholders remains unanswered; specifically, what financial
incentives encourage users to participate in this business model, rather
than switch to another aggregator.

5. Conclusion

Decreasing battery storage system (BSS) costs and growing interest
in self-consumption of solar electricity have driven significant pri-
vate investments in home energy storage (HES). On the other hand,
multi-use business models using community energy storage (CES) are
proposed as alternatives to behind-the-meter HES operation. The rise
of distributed BSSs for local consumption poses a challenge to effi-
cient energy system operation and design. This study employed the
agent-based market model AMIRIS to evaluate the distributed BSS
operation from the EC and overall energy system perspectives. For CES,
we analyzed profit and autarky-oriented operations. We investigated
HES operation under static pricing and an optimal Real-Time Pricing
(ORTP) scheme. Additionally, we benchmarked these cases against a
system-cost minimizing battery.

Our study explored the ECs in current and future energy systems.
Simulations of the future energy market, with an 82% share of fluc-
tuating renewable energies, revealed an increase in price volatility. In
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this market environment, BSSs exhibit significant arbitrage potential,
thereby aiding the integration of renewable energies. In the current
system, a 1.5 GW BSS minimizes the operational system costs by mere
2.72 Me in one year. However, in the future scenario, this value
rises impressively to 132.16 Me. Despite this, the favorable impact
of BSS on studied EC use-cases is lower than system-cost minimizing
operation. Consequently, our conclusion emphasizes that policy deci-
sions relying solely on system-cost minimizing storage assumptions,
commonly employed in large-scale energy system models, without
considering the micro-economic interests of BSS operators, may lead
to an underestimation of future storage system needs.

Our findings highlighted inefficiencies in autarky-oriented CES op-
eration. Despite trading 50% less power in the market compared to
profit-seeking CES, the self-sufficiency-driven CES has limited effec-
tiveness in reducing system operational costs and consuming surplus
energy during high RES generation. The reduced EC interaction with
the larger energy system may result from the prevailing regulatory
framework, such as free of charge behind-the-meter self-consumption,
and lack of dynamic price incentives rather than being intentional.
Our proposed ORTP design creates time-varying incentives, enhancing
community welfare and aligning BSS operation with market signals.
Implementing such real-time pricing schemes, currently hindered by
smart grid infrastructure, will be increasingly crucial in the future
energy system.

Incorporating high static energy-based regulatory charges into con-
sumer tariffs promotes prosumager self-consumption, but our study
underscored potential trade-offs. During periods of high market fluctu-
ations, the efficiency gain through market participation may outweigh
savings from regulatory-induced charges, increasing overall commu-
nity welfare. Without incentives for local self-consumption, regulatory
charges decrease the efficiency of front-of-the-meter BSS operation.
Our investigation showed that profit-maximizing CES remains idle for
over half of the year, emphasizing the potential benefits of multi-use
business models for both ECs and the energy system.

This study provides a valuable foundation for further exploration,
fostering comprehensive understanding of EC dynamics in sustain-
able energy system transitions. The methodology allows for extended
analysis of distributed energy systems, considering technological di-
versity and regulatory frameworks. Future research may enhance the
ORTP scheme to incorporate physical energy system signals for a more
system-friendly operation of distributed BSS. Additionally, endogenous
modeling of investment decisions, both within the EC and at the macro
energy system level, offers significant prospects for a comprehensive
understanding of energy system design aspects.
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Appendix

A.1. Information exchange in EC models

In Section 2.3.3, we introduced the integration of two EC models
in AMIRIS and introduced two modeling approaches to represent EC
use-cases in AMIRIS. The main difference between these approaches
lies in the definition of EC prices. In the first method, the aggre-
gator uses a ‘‘Tariff strategist’’ module to calculate the prices using
predetermined rules, such as SP or simple real-time pricing. In the
second method the aggregator passes the forecasted market prices to
the ‘‘Energy community’’ and the internal EC prices (ORTP) are derived
by solving the bilevel optimization. The interplay between the actors
during simulation in both approaches is described in Fig. 16.

A.2. Constraints for the CES optimization model

The CES optimization model can adopt the self-sufficiency driven or
profit maximizing objective functions as respectively formulated in (3)
or (4). The constraints to the CES optimization problem are formulated
as:

𝑎𝑎𝑔𝑡 = (1 − 𝛬𝑎𝑔)𝑎𝑎𝑔(𝑡−1) + 𝜖
𝑎𝑔𝑧𝑎𝑔+𝑡 −

𝑧𝑎𝑔−𝑡
𝜀𝑎𝑔

, (18a)

𝑧𝑎𝑔+𝑡 = 𝑒𝑎𝑔+𝑡 − 𝑒𝑎𝑔−𝑡 −
∑
𝑖
(𝑒𝑝𝑟+𝑖𝑡 − 𝑒𝑝𝑟−𝑖𝑡 ) + 𝑧𝑎𝑔−𝑡 (18b)

0 ≤ 𝑎𝑎𝑔𝑡 ≤ 𝐾𝑎𝑔𝐹 𝑎𝑔 , (18c)

𝑎𝑎𝑔𝑡−1 = 𝐴𝑎𝑔0 , 𝑡 = 1, (18d)

0 ≤ 𝑒𝑎𝑔−𝑡 ≤ 𝐸𝑎𝑔+𝑡 , (18e)

0 ≤ 𝑒𝑎𝑔+𝑡 ≤ 𝐸𝑎𝑔−𝑡 , (18f)

0 ≤ 𝑧𝑎𝑔+𝑡 ≤ 𝑈𝑎𝑔
𝑡 𝐾

𝑎𝑔

𝜖𝑎𝑔
, (18g)

0 ≤ 𝑧𝑎𝑔−𝑡 ≤ 𝑈𝑎𝑔
𝑡 𝐾

𝑎𝑔𝜀𝑎𝑔 (18h)

where the storage parameters 𝜖𝑎𝑔 , 𝜀𝑎𝑔 , 𝛬𝑎𝑔 , 𝐾𝑎𝑔 , 𝑈𝑎𝑔
𝑡 , and 𝐹 𝑎𝑔 are

similar to those of prosumagers. In Eq. (18a), the SOC of the CES is
determined by various factors including the self-discharge rate (𝛬𝑎𝑔),
the charged and discharged power (𝑧𝑎𝑔+𝑡 and 𝑧𝑎𝑔−𝑡 ), as well as the CES
charge and discharge efficiencies (𝜖𝑎𝑔 and 𝜀𝑎𝑔), in addition to the SOC
in the previous time step. To ensure that power flows are balanced in
each time step, constraint (18b) is in place. Eq. (18c) sets a limit to the
amount of stored energy to prevent negative storage levels or exceeding
the HES energy capacity, which is determined by the power capacity
(𝐾𝑎𝑔) multiplied by the energy to power ratio (𝐹 𝑎𝑔). Furthermore, the
initial SOC of the CES is established in Eq. (18d), with the rolling
horizon parameter 𝐴𝑎𝑔0 being updated based on the previous simulation
step’s (𝑠 − 1) stored SOC. Aggregator market bids are capped in (18e)
and (18f). Specifically, the upper bounds for power purchase and sale
from the market are defined as followed:

𝐸𝑎𝑔+𝑡 = max{0, 𝐾𝑎𝑔 +
∑
𝑖
(𝑒𝑝𝑟+𝑖𝑡 − 𝑒𝑝𝑟−𝑖𝑡 )} (19a)

𝐸𝑎𝑔−𝑡 = max{0, 𝐾𝑎𝑔 −
∑
𝑖
(𝑒𝑝𝑟+𝑖𝑡 − 𝑒𝑝𝑟−𝑖𝑡 )} (19b)

We restrict the charging and discharging power of the CES through
(18g) and (18h). To complete the formulation, we add 𝑈𝑎𝑔

𝑡 to denote
the availability of the CES in each time step, which takes a value
between 0 and 1.

A.3. Storage dispatch duration curves

Fig. 17 shows the charging duration curves of the BSS for different
use-cases and scenarios, with and without regulatory charges. The
charging duration curves for the CES_A and the SP can be seen to
remain constant, as they function independently of the broader energy
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Fig. 16. Interaction among AMIRIS agents in one simulation step: Purple and pink boxes respectively correspond to information flows in the first and second approaches.

Fig. 17. BSS usage duration curves for different use-cases and scenarios. Positive and negative values respectively indicate charging and discharging of the BSS.

system and are unaffected by scenario modifications. Conversely, the
operation of the BSS in the CES_P is substantially impacted by regu-
latory charges, particularly in the current scenario, where the CES is
charged or discharged for a mere 63 h annually (compared to 1975 h
in the absence of regulatory charges). However, the existence of intense
short-term price fluctuations in the future scenario suggest potentially

profitable CES market trading activities. Thus, a significant increase
in CES charging cycles compared to those in the current scenario can
be noticed in this scenario, a trend that persists even with regulatory
charges in place. In the current scenario, the HES in the ORTP pri-
marily serves the purpose of self-consumption. However, in the future
scenario, there is an increase in the charging and discharging hours of
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the HES, suggesting expanded opportunities for trading in the market.
Notably, the BSS in the CES_P and ORTP deviates from the behavior of
the CES_A and SP, exhibiting less frequent charging or discharging in
terms of the number of hours.
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Chapter 5

Discussion and conclusion

This doctoral thesis was motivated by the ongoing decentralization of the German
energy system and the challenges encountered by policy makers, regulators, and
emerging market actors to ensure a cost-efficient operation of the energy system.
Alongside this, an investigation into innovative mechanisms for the effective opera-
tionalisation of decentralized energy systems (DESs) has emerged as an important
area of focus within energy research. However, as discussed in section 1.2, a significant
research gap exists between studies that focus on the techno-economic analysis of
energy communitys (ECs) and those that examine the overall system integration of
DESs. The former fails to consider the feedback effects of ECs on the larger energy
system, while the latter often lacks the necessary level of detail to comprehensively
capture the diverse and complex nature of EC business models. As a response, this
thesis aimed to contribute to this gap by proposing novel methodological developments
(as reviewed in Chapter 2) to bridge these two body of literature for the first time.
The developed methods, for the first time, enable holistic analysis of EC integration
and is capable of supporting important political decision-making processes.

Following a bottom-up approach, this thesis studied the research questions concern-
ing the operation of distributed energy resources (DERs) in ECs (related to guiding
question A) before investigating their overall systemic integration (related to guid-
ing question B). The most significant findings related to the research questions are
presented in section 5.1. In section 5.2 of this chapter, the author undertakes a
critical evaluation of the thesis’s methodologies and findings. Finally, section 5.3
provides a concise summary of the thesis’s accomplishments and findings, along with
a prospective outlook on future research.

5.1 Summary of key findings and achievements

The contributions of the thesis at hand are related to the guiding questions A and B,
introduced in Section 1.2:
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A: What operation strategies can intermediary entities employ to effectively
organize DERs in ECs?

A.1: What modeling and optimization methods can be employed to represent the local
aggregation of DERs in ECs?

This research question is primarily examined in Paper 1 and 2. Both research works
introduce innovative EC models that encapsulate the microeconomic behavior of the
participating actors. Although these models each have unique characteristics, their
primary contribution lies in representing the bilateral energy trading game within ECs
that feature hierarchical aggregator–user structures.

Internal energy trading within an EC is commonly depicted as a 1-leader, n-followers
Stackelberg game. In this game, an aggregator (the Stackelberg leader) first estab-
lishes a strategy, and then the users (the Stackelberg followers) respond by selecting
their individual strategies. As explained in Section 2.1.1, the internal EC prices
render the strategies of the aggregator and users interdependent. This Stackelberg
game can be expressed as a bilevel optimization problem (BIOP), with the followers’
decision-making optimization problem nested within the leader’s outer optimization
problem. BIOPs are NP-hard and pose considerable challenges to solve. Therefore,
discovering the Stackelberg equilibrium of the energy trading game and determin-
ing the optimal real-time pricing (ORTP) strategy requires a balance between the
exact techno-economic modeling of the actors’ objective functions and constraints
and the complexity of the required solution methodologies and algorithms. Both
papers addressed this trade-off by increasing the model’s granularity compared to
existing literature, and suggesting advanced methodologies to effectively manage the
increased complexity.

Paper 1 introduced an innovative bottom-up approach to model the self-interested
behavior of the stakeholders in an EC and developed a genetic algorithm (GA) that
iterates between the leader’s and followers’ problems and searches the non-convex
solution space for the Stackelberg equilibrium of the energy trading game. Employing
such a heuristic approach to optimization allows for an increase in the problem’s
complexity: households are portrayed as heterogeneous agents; these include con-
sumers, prosumers, prosumagers, and flexible consumers with heat pumps (HPs).
Consequently, the followers’ problem is a sum of separable sub-problems. Moreover,
the aggregator in the proposed model operates a community energy storage (CES).
Thus, both problem levels involve storage optimization, indicating a significant overall
problem complexity. While finding the global optimum using heuristic approaches like
GA is not guaranteed, the ORTP solution obtained through the proposed algorithm
significantly outperformed the studied benchmark pricing strategies.

Paper 2 frames the bilateral energy trading game as a BIOP and adopts a single-
level reduction method to solve the problem to its global optimum. The users are
represented by a prototype agent, which can be parameterised to portray a consumer,
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a prosumer, a prosumager, or an electric vehicle (EV) owner. Furthermore, the model
takes into account the uncertainties regarding wholesale market prices as well as the
power demand and generation of the users, making the problem a stochastic BIOP.
Paper 2 also propose a cluster-based scenario generation algorithm to prepare the
required scenarios for the stochastic optimization. Another unique feature of the EC
model is the incorporation of the maximum available line capacity behind the point of
common coupling as a constraint. This indicates that the price incentives in the EC
can promote an operation favorable to the physical power system.

In this research, several mathematical theories and techniques (outlined in Section
2.1.2) are applied to transform the stochastic non-linear BIOP into a problem solvable
using commercial solvers. The study first applies a single-level reduction technique
using Karush–Kuhn–Tucker (KKT) optimality conditions to derive a single-level opti-
mization problem. To manage the non-linearity inherent in the resultant mathematical
problem, the big-M technique is utilized, enforcing a discrete value state for two opti-
mization variables, namely, the aggregator’s purchase and sale prices. Accordingly, a
mixed-integer linear program (MILP) is derived.

This paper enhances the body of literature on bilevel optimization by introducing an
alternative solution technique to the classic big-M approach. It proposes a novel linear
quasi-relaxation technique combined with a modified branch-and-bound algorithm
for efficient problem-solving. A noteworthy feature of the developed algorithm is
its dynamic partitioning. After finding the optimal solution to the discrete problem,
the algorithm considers a reduced solution space close to the found solution and
initiates a new round of optimization. By doing this, the found solution gradually
moves closer to the global optimal solution within a continuous solution space. The
performance of the algorithm is assessed through various case studies. The largest
case study demonstrated a 91% reduction in overall CPU time compared to the MILP
benchmark formulation.

Additionally, Paper 4 extends the model proposed in Paper 2, incorporating the charges
induced by grid usage regulations. This development facilitates the analysis of the
impact of existing regulatory frameworks on the operation of ECs, thereby enhancing
the policy implications of the proposed methodology.

A.2: What are the advantages of EC business models for the stakeholders involved?

The stakeholder benefits of aggregating DERs within an EC are evaluated in research
papers 1, 2, and 4. These assessments focus on two essential, interrelated elements
of EC business models. The first element concerns the operation of distributed pho-
tovoltaic (PV) generation and various flexibility options, which serve as key energy
resources within the EC. From the end-user perspective, this thesis explores the use
of HPs and EVs, as well as the combined PV-storage operation as a home energy
storage (HES) to decrease users’ electricity costs. From the aggregator’s viewpoint,
the grid-connected CES is analyzed for its potential to augment the aggregator’s profits

140



or reduce the EC’s reliance on broader system exchanges.

The second business model element pertains to the pricing design for the EC members.
Three pricing schemes are studied: the static pricing (SP), incorporating a fixed fee
for electricity procurement and sale, which represents the prevalent pricing structure
for the majority of power consumers in Germany. Second, the real-time pricing (RTP)
strategy is considered, in which time-varying wholesale market price signals are
directly integrated into end-user prices. Finally, this thesis derived an optimized
internal pricing scheme for the EC, termed ORTP, where prices are affected by market
prices and local generation and consumption patterns.

From the users’ viewpoint, operating flexibility options under both dynamic pricing
schemes can yield cost-saving benefits. For flexible consumers, electricity demand can
be met when prices are lower. Furthermore, users with battery storage system (BSS)
can engage in energy arbitrage, strategically charging and discharging their batteries
based on fluctuating electricity prices. For instance, EVs can either purchase or sell
power to the grid1 during their charging station connection. However, volumetric
charges on grid usage can challenge this business model as they often push the
purchase price from the grid above the selling price. In such a regulatory environment,
prosumagers gain a significant advantage as they can use the HES for behind-the-meter
self-consumption of their generated electricity. However, real-time scarcity signals
could make grid feed-in more profitable in certain hours than self-consumption. While
the fairness of dynamic pricing is part of a broader debate [118, 119] and beyond the
scope of this thesis, the findings show that market-based pricing can raise traditional
consumers’ electricity bills. This drawback can be strategically mitigated in tailored
community pricing schemes, such as the studied ORTP.

From policymakers’ perspective, the profitability of prosumage under current regula-
tions may trigger distributional concerns. Since grid infrastructure maintenance costs
are levied on a per unit basis, an increase in the number of prosumagers, who draw
a small portion of their power demand from the grid, increases the per unit charges
for other households [28]. This can create a further incentive to disconnect from the
grid, a trend known as the “death spiral” [120]. To counter this, introducing fixed
network charges, which are not proportional to household energy consumption but
instead related to their peak usage or fixed per connection [121], is often discussed
as a fairer cost allocation method that ensures network cost recovery [122].

Similar to the users, the operation of flexibility options available in the EC can offer
significant financial advantages for the aggregator. These benefits might become
more noticeable if the market price volatility increases due to the high penetration of
renewable energy sources (RES) and the rising cost of conventional power generation
in future energy systems (as demonstrated in the simulated scenario in Paper 4).
To leverage the price oscillations in the market, the aggregator can operate its own
storage system, such as a CES, while managing the power usage and grid feed-in of its

1A concept known as vehicle-to-grid [117].
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customers. Unlike behind-the-meter HES, a CES needs to access the public grid during
each charging cycle. Thus, the regulatory-imposed charges on the consumed electricity
can significantly reduce its financial viability. This challenge is a predominant obstacle
to their incorporation in several pilot projects in Germany, as evidenced in [123] and
[124].

In addition, the aggregator has the ability to employ time-varying price incentives to
optimize the coordination of users’ energy storage in line with its financial objectives.
In this context, RTP strategies, which are developed concurrently or proportionally to
wholesale market prices, are broadly acknowledged as effective instruments. They
expose users to an almost accurate representation of electricity price at each time
interval1 [125]. Nevertheless, this thesis interrogates the optimality of RTP in the
context of EC, revealing that the obtained welfare2 via internal EC pricing mecha-
nisms, such as ORTP, surpasses that of RTP when the count of EC members increases.
The effectiveness of ORTP originates from its ability to incorporate power demand
and supply patterns in the EC, as well as those in the overall energy system, in the
price building process. Additionally, ORTP can accommodate the constraints of the
physical power network, consequently contributing valuable grid services. While such
applications in this thesis (Paper 2) were not monetized, they hold the potential to
generate additional revenue streams for the aggregator.

If self-sufficiency is perceived as the primary objective of the EC business model, the
aggregator canmanage the flexibility options to considerably curtail the dependence on
energy exchange with the market. In this setting, local consumption is prioritized and
CES serves as a means to store the EC’s generation surplus for subsequent utilization.
Likewise, internal EC pricing via ORTP can be employed to stimulate electricity usage
when local generation is abundant, and conversely, encourage conservation when it is
low. The assessments presented in this thesis (papers 1 and 4) indicated that such
operational strategy results in a welfare loss compared to a profit-driven approach.
However, regulatory incentives aimed at promoting power consumption within the
EC can enhance the profitability of such business models. One such regulation in
Germany is the tenant law (Mieterstromgesetz in German), which provides a financial
incentive3 for the direct supply of rooftop solar PV electricity to tenants, encouraging
landlords to install new PV systems [126].

B: What are the broader energy system implications of emerging ECs?

B.1: How can the potential system-wide impacts of large-scale integration of self-optimizing
ECs be measured and quantified?

1Simultaneously, real-time prices introduce a certain risk to the users due to higher variance compared
to SP.

2The cost and revenue streams of the EC actors are interconnected. Therefore, this thesis proposed
community welfare, defined as the summation of costs and revenues of the aggregator and all users,
as a suitable indicator to assess the financial merits of various EC use-cases.

3In form of a surcharge, termed Mieterstromzuschlage in German
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Extending upon existing approaches, this thesis expands two existing methodologies
as well as introduces a new methodology aiming to assess the systemic impacts of
ECs, thus addressing the research question at hand. These methods are presented in
papers 1, 3, and 4.

Paper 1 introduced a method for evaluating the alignment between the operation of
an EC and wholesale market signals. The foundation of this methodology originates
from [47] and [79], where the authors establish a market alignment indicator (MAI)
to compare the performance of a HES with a benchmark system operating in complete
harmony with market signals, defined as an arbitrage BSS in their work. A significant
advantage of this approach is its capability to assess the system-friendly operation of
DESs without necessitating explicit modeling of the broader energy system.

While effective for evaluating prosumager behavior, this concept proves challenging
to adopt for more complex system structures involving various stakeholders and
flexibility options. For example, comparing the operation of HPs to arbitrage batteries
is not meaningful. This comparison becomes even more intricate when multiple
different sector-coupling technologies are involved. The innovation in the methodology
presented in paper 1 addresses this challenge by offering a more robust approach to
defining the most market-aligned behavior of ECs.

The proposed MAI compares the welfare generated by the EC to that of a benchmark
EC of identical size. This benchmark EC is characterized by the aggregator’s complete
control not only over its own storage assets (e.g., CES) but also over other available
flexibility options, such as HES and HPs, within the EC. To simulate such a bench-
mark scenario, this thesis adapted the genetic-algorithm-based bilevel optimization
methodology, originally developed for deriving the ORTP. This approach enables the
search for the aggregated optimal solution for an EC with a heterogeneous stake-
holder and technology structure while maintaining the distributed implementation of
the optimization problems. Therefore, unlike the centralized optimization approach
(where the EC is considered as one operating entity, as seen, for example, in [78]),
the distributed optimization proposed in this dissertation can be integrated into the
agent-based environment.

Paper 3 and 4 employed the agent-based model (ABM) AMIRIS to explore the sys-
temic impacts of DESs. For this purpose, I expanded the functionality of AMIRIS by
integrating new agents and modules to emulate the operational behavior of ECs.

Paper 3 introduced the aggregator and prosumager agents into AMIRIS, empowering
the model to evaluate the impact of electricity prosumage under a variety of pric-
ing mechanisms. Furthermore, Paper 3 established an automated and reproducible
modeling workflow by bidirectionally coupling the ABM AMIRIS with the energy
system optimization model (ESOM) REMix, thereby enabling an assessment of the
economic granularity gap. This gap represents the divergence in optimal investment
and operational costs of the energy system when stakeholders’ behavior is taken into
account. The proposed workflow commences with an optimization of the energy
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system using the REMix model. Subsequently, AMIRIS is calibrated using the results
obtained from REMix. The simulated behavior of selected actors within AMIRIS is
then integrated back into REMix, prompting a re-optimization of the energy system.
This methodology is specifically applied to the case of prosumager self-consumption
in Germany. In this context, the storage operation in the second REMix optimization
is constrained in line with the simulated dispatch of HES within AMIRIS. Finally,
the economic granularity gap is quantified for two distinct spatial scopes, namely
Germany and a broader scope including Europe and Maghreb.

The proposed model-coupling approach allows for the integration of the features,
scopes, and perspectives of two (or potentially more) energy system models, thereby
offering two substantial benefits: Firstly, the features of different models can comple-
ment each other, thereby reducing the necessity for extensive model development.
For instance, in the case of AMIRIS, one significant limitation was the absence of
investment modeling, which was addressed by the incorporation of REMix. Secondly,
merging different model perspectives offers valuable insights that could not be ob-
tained from individual models without significant modeling efforts and fundamental
changes to the underlying modeling logic of each model. In this thesis, the coupling
of the benevolent energy system planner perspective of the ESOM with the actor
perspective of the ABM facilitated the analysis of deviations in the optimal operation
and design of the energy system (embodied in the economic granularity gap) in the
context of prosumager self-consumption.

This methodology builds upon the prior works by Torralba-Díaz et al. presented in [84,
85], where the authors measure the “efficiency gap” resulting from storage system
operation strategies in the electricity market. In this study, the authors proposed a
workflow for harmonizing both models, which serves as a critical preparatory step for
further analysis. This workflow is also utilized in Paper 3. However, the novelty in
Paper 3 lies in the feedback loop of AMIRIS results into the ESOM for a secondary
optimization of energy system operation and design. Thus, while the study in [84]
compares operational system costs resulting from both models, Paper 3 additionally
evaluates changes in total investment costs, as well as alterations in energy system
design and operation. Furthermore, the model-coupling process in Paper 3 is signifi-
cantly more automated: Integration of the iog2x tool facilitates quick translation of
gdx data (a typical format of ESOM results) into readable inputs for AMIRIS. Addi-
tionally, incorporating all steps into the Remote Control Environment (RCE) enables
decentralized implementation of the involved models.

The studies introduced in [127, 128, 129] propose an automated iterative coupling
approach to diminish the efficiency gap and explore the convergence behavior for two
coupling parameters: peak capacity usage and storage dispatch. In each iteration,
the power plant fleet optimization is adjusted to meet the demands of AMIRIS until
convergence is achieved. In contrast to the RCE setup in Paper 3, the models in this
ongoing study are centrally implemented, requiring both models to be configured
within a single system. Figure 5.1 provides a schematic comparison of the coupling
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Figure 5.1: Comparison of the model-coupling approaches in a) previous studies [85,
84], b) this dissertation, and c) ongoing research as introduced in [127,
128, 129]

approach in this dissertation with previous works conducted both before and after the
publication of Paper 3.

Paper 4 considerably contributes to this research question by extending the model
enhancements of Paper 3 and proposing a novel combination of agent-based modeling
and bilevel optimization. This innovative approach is employed to assess the system
integration of more complex DESs, such as ECs. The methodology implements a
rolling-horizon of the bilevel EC model from Paper 2 into AMIRIS, thereby creating the
necessary interfaces for seamless communication between the “external” EC model
and AMIRIS. This model development enables AMIRIS, for the first time, to capture
hierarchical decision-making interdependencies among various actors. As depicted in
Figure 5.2, this approach introduces a new coordination mechanism among the actors,
superseding the fixed predefined protocols. This mechanism is particularly critical
for representing the equilibrium dynamics between aggregators and contracted DER
operators. The introduced methodology addresses a substantial gap in the existing
literature (as discussed in Section 1.2) by connecting a detailed EC model to an
agent-based market model. Consequently, this approach permits an exploration of the
interconnected dynamics between community markets and wholesale markets.

Additionally, Paper 4 further enhanced the aggregator agent by incorporating a stor-
age module and enabling the assessment of EC use-cases with profit-maximizing and
self-sufficiency-driven CES strategies. This paper focused on analyzing system-level
indicators derived directly from AMIRIS. Specifically, it evaluated the market integra-
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Figure 5.2: Abstract model architecture of AMIRIS model. Adjusted representation
based on [83].

tion of HES and CES by measuring the operational costs of the system, defined as the
aggregate short-term running costs of all power plants, as well as the market-driven
curtailment resulting from the non-awarded market bids of a RES power plant.

In conclusion, this thesis developed and employed three distinct methodologies to
quantify the systemic impacts of DES operations: The first method compared the
operation of DES with a benchmark system using the MAI. The second approach
involved bidirectional model-coupling of AMIRIS and REMix, measuring the emerging
economic granularity gap in the case of prosumager self-consumption. The third
approach integrated the bilevel EC model into AMIRIS and assessed system indicators
for more complex EC use-cases.

B.2: Under what circumstances do ECs operate aligned with the needs of the broader
energy system?

The exploration of this research question is detailed in papers 1, 3, and 4, utilizing the
methodology developed in research question B.1, and applying it to various simulated
case studies. The subsequent analyses, which draw parallels to those of research
question A.2, focus on two interconnected strategies. The first involves the operation
of existing distributed BSSs within the EC, and the second pertains to the formulation
of pricing mechanisms for users of the EC.

The prospective energy system, characterized by a substantial proportion of energy
from RES, is heavily dependent on the contribution of flexibility options. Projected
simulations of Germany’s electricity market in 2030 with a RES share surpassing 80%,
suggesting that events of energy excess and scarcity could occur frequently. This could
subsequently lead to increased price volatility in the market. In such a landscape, the
efficient deployment of available DERs within the ECs to stabilize electricity demand
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and supply across the broader system becomes pivotal from the perspective of the
energy system.

Among the case studies investigated in this thesis, those featuring a CES with a self-
sufficiency driven strategy and HES under the SP scheme were found to be the most
inefficient in terms of all measured system indicators. For instance, Paper 3’s analysis
revealed that in 2030, given prosumage by half of Germany’s prosumers under the
SP scheme, the required capacities for lithium-ion BSS and PV in an idealized energy
system would increase by 6.3 GWh and 4.2 GW, respectively. In both cases, the energy
exchange between the EC and the wholesale market is significantly reduced. While this
reduction in the first use-case is a result of an overarching autarky-driven strategy, there
are strong economic incentives for prioritizing self-sufficiency for households exposed
to SP. Specifically, if an investment in storage is already made, the higher invariant
grid usage costs compared to feed-in remuneration always justify prioritizing self-
consumption and using the grid according to the residual load. Even though storage
in these cases can still provide some benefits by improving the local integration of
distributed RES generation, its contribution to the overall efficient integration of RES
into the energy system remains limited.

The investigation carried out in Paper 4 reveals that the market-oriented operation of
EC positively impacts key system indicators, i.e., operational system costs and market-
driven curtailment. Within these ECs, the use-case with the profit-maximizing CES,
whose operation remains uninterrupted by regulatory-induced charges, demonstrates
the most considerable reduction in these two indicators. However, due to a limited
forecast horizon and strategic bidding behavior, such as reserving a portion of capacity
to exercise market power, discrepancies arise when compared to the system-optimal
operation of storage. Moreover, imposing volumetric regulatory charges on storage
grid usage constitutes another factor that diminishes the systemic benefits of CES.
Nonetheless, the impact of these charges may become less significant in the future
system with high short-term price volatility. Under such market dynamics, energy
arbitrage could still be feasible during numerous hours, even when factoring in the
regulatory charges incurred.

Dynamic pricing schemes can incentivize a system-friendly behavior of EC users by
reflecting the real-time cost of electricity production. The findings of this thesis
reveal that by exposing prosumagers to uninterrupted (predicted) market prices
under a RTP scheme, a better alignment of DES operation with market signals can be
achieved. This results in reduced system costs and a smaller economic granularity gap.
However, similar to the observed effect for CES, the incorporation of static volumetric
charges into grid consumption hampers the effectiveness of the price signals reaching
households. The analysis in Paper 3 demonstrates that the dynamization of the EEG
levy1 [131] as a regulated component of the consumer tariff, combined with variable
feed-in tariff (FiT) [32], significantly aligns the system closer to one that would result

1Recently, the German government has decided to eliminate the EEG levy in order to reduce the cost
burden on power consumers [130].
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from optimal storage dispatch.

The internal EC pricing design, as examined under the ORTP scheme, can yield benefits
similar to those provided by the RTP scheme. However, the alignment of the operation
of DERs with the larger system’s signals may be skewed due to the consideration of
local generation and consumption patterns within the EC. This becomes particularly
relevant when there are incentives for local consumption, such as reduced taxes
and levies. For instance, in the case study featured in Paper 1, the EC operation
under the ORTP scheme adopted a lower MAI value compared to the RTP scheme.
Nevertheless, the signals of scarcity and excess, translated into very high and low
market prices, encouraged the EC to provide support during critical periods. This
resulted in significantly improved system indicators compared to the SP scheme.

In conclusion, this thesis showed that ECs can enhance the integration of RES and re-
duce the system costs within the larger system, if they do not prioritize local electricity
consumption. This prioritization could either be an explicit goal of ECs or could arise
from regulatory frameworks that incentivize local consumption. Therefore, policy
makers face a challenge in devising the regulatory framework for ECs: they should
provide financial incentives to encourage investment in DERs, while simultaneously
avoiding the promotion of operations driven solely by self-sufficiency.

This thesis highlighted the efficiency gains achievable by subjecting EC users to the
real-time cost of electricity production, thus incentivizing a system-aligned deploy-
ment of flexibility options. Nevertheless, the desired impact can be distorted by a
constant offset added due to static per unit regulatory charges, even when dynamic
prices are in place. To facilitate more direct exposure to system signals, the author
suggests that regulators consider revising the tariff structure for power consumers.
While the implementation of dynamic levying, as studied in this thesis, may present
challenges [132], the distortion to real-time system signals could be mitigated by
replacing volumetric network charges with capacity-based tariffs, thereby reducing
the static offset. Such tariff reform could be complemented by replacing energy taxes
and surcharges with a uniform CO2 pricing mechanism, effectively abolishing static
volumetric charges altogether [133]. Such a measure could concurrently address
concerns around the contribution of prosumagers to power network maintenance costs
(a topic discussed while addressing research question A.2). It’s important, however,
to acknowledge that this approach may diminish the cost-saving potential of HES
investments, and could possibly jeopardize the refinancing of already installed units.

Lastly, this thesis revealed a significant deviation between the operation of storage
systems in all examined ECs and the operation that minimizes system costs. This
deviation is particularly critical for policymakers to consider when interpreting future
energy system scenarios developed with ESOMs, as these scenarios could potentially
underestimate the required generation and storage capacities in the future energy
system.
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5.2 Discussion of limitations

Simplifying assumptions and limited system boundaries are inherent aspects of energy
system modeling. This section discusses some of the key limitations of the models
and methods introduced in this thesis. I will first address these limitations at the EC
level (Section 5.2.1), followed by a discussion at the overall system level (Section
5.2.2). Finally, in Section 5.2.3, I will provide a critical reflection on the proposed
game-theoretic framework.

5.2.1 Energy community modeling

The models developed in this thesis offered significant insights into the economics
of ECs. However, a number of important limitations narrowed the technical and
economic breadth of the analyses. In this regard, a critical constraint stemmed from
the model assumption that there was no competition between the aggregator under
study and other aggregators. As a result, the question of “why would users prefer to
participate in the EC model instead of alternative business models?” remains only
partially addressed.

From a methodological standpoint, the single aggregator assumption was made to
reduce the complexity of the energy trading game within the EC. This allowed for
a manageable mathematical problem formulation and solution given the available
computational resources. Competition among aggregators is often modeled as a
multi-leader multi-follower Stackelberg game. However, these types of games are
comparatively understudied [134], and current literature often resorts to simplifying
assumptions regarding the EC structure, price building, and available technologies
to manage the resulting problem complexity [135]. Despite these constraints, the
monopoly assumption in this thesis can be somewhat justified due to the often unique
relationship among EC stakeholders. For instance, in the case of energy cooperative
business models (known as Energiegenossenschaft in German), the aggregator is owned
by the community and users’ commitment to the business models is typically higher
[136].

In the absence of competition among different aggregators, this thesis ensured the
“fairness” of the aggregator’s trading with users, for instance, by constraining the
ORTP to ensure that it left users better off compared to a benchmark business model.
However, the related assumptions influenced the revenue and cost flows of the EC
stakeholders. For example, the study by [137] shows that in the case of competing
retailers, each providing real-time prices for users, their profit can even fall below
that of the SP tariff; a result that contradicts the findings of the study in Paper 1.
Consequently, this thesis primarily measured community welfare to evaluate the
economic performance of different use-cases, without extensively investigating the
question of welfare redistribution among various stakeholders within the EC.
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This dissertation focused on the operation of an EC within an existing community
energy system, thereby neglecting a crucial aspect of EC business models concerning the
investment decisions in DER. Consequently, it largely leaves unanswered the question
of whether the financial benefits derived from establishing an EC justify the investment
in DER and the requisite measurement and control equipment for efficient and secure
data transmission, or if they potentially jeopardize the refinancing of already made
investments. Furthermore, the parameterization of available technologies in the
community energy system was based on a literature review and may not necessarily
reflect the optimal sizing of each technology. In this context, understanding investment
decisions into DERs is critical for policy-makers when crafting regulatory frameworks
for ECs, as such investments may justify their potential operational inefficiencies from
the overall system perspectives. Furthermore, this thesis fell short in considering
current EC-specific incentives, such as those under the German tenant electricity law
[138], which are important in supporting such decision-making processes.

Furthermore, the analysis in this thesis primarily focused on virtual energy trades
among actors and the market, thereby overlooking the physical power system. Al-
though Paper 2 somewhat addresses this issue, quantifying the technical and economic
value of the delivered flexibility requires a more comprehensive study, preferably using
a distribution grid model. This evaluation becomes particularly crucial in view of the
high level of sector-coupling, as local self-consumption may decrease the expansion,
operation, and maintenance costs of the distribution network or mitigate necessary
RES curtailment due to grid constraints. Without considering the physical power sys-
tem, the “system-friendly” operation of DESs is only partially evaluated. If the physical
power network is taken into account, the model could provide further insights into the
critical issue of cost allocation in the power network. Alongside a more detailed study
of alternative network tariffs like the discussed capacity-based charges, the proposed
EC model could be expanded to examine distribution locational marginal pricing and
the location-specific costs associated with delivering electricity across different parts
of the EC’s distribution grid [139].

This thesis endeavored to model EC business models with sufficient granularity to
answer the research questions. However, several aspects were modeled in a simplified
manner. For instance, energy exchanges with the broader energy system were limited
to a single wholesale market. In reality, aggregators and storage operators participate
in multiple markets (e.g., intraday and control reserve markets) to further optimize
their revenue [140]. Another example is the potential for multi-use applications
of CES [141], instead of the binary choice of either profit-driven or self-sufficiency-
driven operations, which could provide additional revenues for the aggregator while
simultaneously increasing the self-sufficiency degree of the EC. Particularly, the findings
showed that an arbitrage CES, depending on the market and regulatory environment,
may remain significantly underutilized. Therefore, a dynamic prioritization [142]
of BSS operation could facilitate energy sharing within the EC without markedly
interrupting market trading activities.
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Lastly, the techno-economic modeling of energy systems in this thesis was rather
coarse. For instance, when modeling the BSS, factors such as charge-dependent
efficiencies, battery aging, and inverter interactions were not considered. Additionally,
the households’ electricity demand was presumed to be inelastic to prices, and an
average household demand profile, based on measured values from [143] that resem-
bled a standard load profile, was used. In terms of the PV system, an external solar
generation profile was simply scaled up based on the peak performance of the installed
system, thereby ignoring other factors such as efficiency, tilt angle, or orientation of
the rooftop system. In reality, generation profiles and especially their demand curves
may significantly differ from each other, providing a more substantial potential for
local balancing of demand and supply within the EC.

5.2.2 Overall energy system analysis

The models and methods used to assess the overall system integration of ECs on a
broader level in this thesis faced a number of limitations, many of which could be
attributed to the current state of AMIRIS:

The first limitation pertains to the national scope of the utilized model and the
use of exogenous input time-series to consider cross-border energy exchanges. The
import/export to and from neighboring countries was exogenous input parameter
to the model. In this regard, the market-coupling approach proposed in [144] to
connect the day-ahead market in Germany with those of neighboring countries can
significantly address this limitation in the future. The second limitation is related to
strategic bidding. AMIRIS did not consider the behavior of competitors when actors
make their bids. This is especially crucial for sector coupling technologies and storage
technologies, which highly rely on the market predictions of a simple forecasting agent.
To address this issue in the future, [145] proposes the use of smarter forecasting
methods based on machine learning algorithms. However, to avoid the resulting
model artifacts caused by the overreaction of flexibility options to the same price
prediction [113] with this approach, the operation of a single flexibility option could
be simulated in AMIRIS in a feasible manner. Lastly, AMIRIS did not endogenously
calculate investments into generation and storage technologies.

To address these limitations, the REMix model is used to provide a starting point for the
simulation of future energy markets. However, the missing features in AMIRIS resulted
in inelastic demand and supply curves during the simulation. For instance, periods of
high scarcity prices could theoretically create incentives for new investments in energy
generation units to increase supply, an aspect that AMIRIS was unable to capture
due to its missing investment feature. Moreover, in AMIRIS, when RES generation
exceedede the national power demand, the excess had to be curtailed instead of being
stored or exported to neighboring countries. As a result, AMIRIS might overestimate
the amount of energy scarcity and excess, as well as price volatility, and consequently
overestimate the potential welfare for flexibility options in future energy markets.
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This thesis demonstrates that the back-coupling of an ABM with an ESOM offers
a suitable method for evaluating the impact of DES operation on optimal system
operation and design. However, it’s plausible to argue that such an analysis could
be conducted using a single model. On one side, the operation of the DES could
be modeled in an ESOM as a self-optimizing cell, an approach widely adopted in
most research works exploring the system integration of prosumagers, such as [31].
However, in this case, the operation of the DES would be disconnected from market
dynamics in disequilibrium. For instance, a RES support regime can induce negative
market prices [146], subsequently affecting the operation of DESs. In this context, one
overarching limitation of the overall system analyses presented in this dissertation is
that it did not to systematically take into account the stakeholder behavior outside the
energy system, causing the operation of the technologies beyond the EC to resemble
those of the ESOM.

Conversely, one could evaluate alterations in the optimal system design employing
an ABM. This could be achieved, for instance, by introducing system cost minimizing
strategies for various storage operators and investment agents. Despite the complexity
involved in implementing such an approach due to the plurality and bounded rational-
ity of agents, this application runs counter to the primary aim of ABMs in simulating
self-interested actor behavior. In this regard, a potentially superior approach for
investigating the optimal system design via ABM might be a multi-scenario analysis,
which would explore the range of possibilities for future energy systems as suggested
in [79].

Therefore, while both models could be further developed to somewhat measure
the economic granularity gap, coupling models emerges as a plausible choice. This
approach is relatively easier to implement and doesn’t necessitate a fundamental
shift in the underlying modeling logic. Yet, the full potential of the proposed model-
coupling methodology can be realized if the behavior of more than one actor in the
ABM deviates from that of the ESOM.

A significant challenge in assessing the large-scale integration of DES in the ABM lies
in the up-scaling of DES models. Providing the necessary data and computational
resources to simulate millions of DES is practically unfeasible. Consequently, this
thesis focused on an aggregated DES, which tends to exaggerate the impact of DES
operation on the overall energy system. This overestimation occurs as the model
neglects the smoothing effects arising from the aggregation of a large number of DESs,
each exhibiting unique demand and generation patterns.

Additionally, the aggregated representation of EC gives the aggregator substantial
market power. However, strategic bidding of the aggregator, considering its market
power, is only modeled for the case of profit-maximizing CES. In other examined use-
cases, the aggregator operates as a price-taker (with regard to the wholesale market)
and opts for a simplified strategy, ensuring its bids are consistently awarded in the
market. This approach results in sub-optimal outcomes for the aggregator, as it does
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not account for shifts in market clearing prices when submitting its bids. Including the
price-maker behavior of the aggregator, significantly increases the already complex
bilevel EC energy trading problem, but, in the author’s opinion, is essential to address.

5.2.3 Game-theoretic framework

In this dissertation, considerable effort was dedicated to investigating the partial-
equilibrium in decentralized energy system decentralization: A Stackelberg equilib-
rium within the EC, viewed as a small subset of the larger energy market in disequi-
librium. Two critical aspects of the studied framework warrant further discussion: the
information structure and the cooperation of the players.

Firstly, in terms of the information structure of the energy trading game, the Stack-
elberg competition presumed perfect information among the involved players. This
assumption implies that all players possess complete and accurate knowledge of the
game’s structure, the strategies available to each player, and the payoffs associated
with each combination of strategies. Consequently, the leader knows the followers’
potential strategies and their corresponding payoffs, while the followers observe the
strategy chosen by the leader before making their own decisions. It is important to
highlight that the incorporation of stochastic elements into the game formulation,
as suggested in Paper 2, did not change the game’s information structure, as the
information accessible to all players remained comprehensive. The assumption of
perfect information in the studied Stackelberg game somewhat oversimplifies the
decision-making process and neglects the challenges and uncertainties present in
real-world markets. Nevertheless, in the author’s opinion, the assumption of perfect
information within the context of smart grids and ECs can be justified. In such markets,
informational asymmetries are minimized due to the availability of advanced com-
munication infrastructure for real-time data collection and transmission. Moreover,
the actors within the EC are typically willing to share information and collaborate to
achieve the EC objectives.

Secondly, the studied Stackelberg equilibrium arises from a non-cooperative game
structure, where the players act according to their individual self-interest and do not
explicitly coordinate their strategies. In this scenario, the aggregator exercises market
power within the EC and leverages its first-mover advantage to shape the game’s
outcome in its favor, while the users react strategically based on the aggregator’s
actions. This assumption might not entirely capture the dynamics of ECs, which
frequently involve actors with shared objectives and cooperative behaviors. Paper
2 mathematically proved that the outcome of the proposed non-cooperative energy
trading game maximizes community welfare. However, as the aggregator does not
explicitly consider collective welfare, its choices might lead to a sub-optimal overall
outcome if the objectives or strategies of the involved players were to change. For
certain EC business models, alternative game-theoretic frameworks that explicitly
incorporate cooperation among players, such as cooperative game theory [147] or
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coalition formation [148], may be more suitable.

This dissertation proposed two methodologies for finding the optimal solution to the
bilevel optimization problem, serving as a proxy to identify the equilibrium in the
Stackelberg game within the EC. Each of these methodologies presents its own set of
advantages and limitations:

The proposed heuristic method using a genetic algorithm offers a mathematically
simpler approach to search for the Stackelberg equilibrium, as the optimization
problems of the players can be solved independently. Consequently, the user-side
problem could be a summation of several distinct sub-problems, and the complexity of
each problem can be increased. Additionally, the distributed nature of this approach
aligns better with real-world implications, as it does not require the users to disclose
their information to the aggregator. However, this approach comes with a notable
limitation, in that the attainment of the globally optimal solution is not guaranteed.

Solving the energy trading game using the single-level reduction technique also raises
several notable concerns: In this approach, the users’ information is fully exposed to
the aggregator, which could give rise to privacy concerns from an engineering per-
spective. Additionally, the mathematical complexity of this method poses challenges
to its application in real-world problems with a large number of users and lengthy
optimization periods. While the proposed stochastic BIOP model demonstrated rela-
tively good scalability with respect to increasing uncertainties, increasing the number
of users and specially extending the optimization time steps markedly increased the
computational effort required to solve the problem. Moreover, the applied discretiza-
tion technique to address the non-linearities arising in the single-level transformation
process conditions the finding of the global optimal solution on a very high granularity
of the discretization intervals, in order to replicate the continuous solution space.
Practically, increasing the number of discrete steps is computationally very demanding.
To address this issue, one significant contribution of this thesis was the proposal of the
modified branch-and-bound algorithm with a dynamic partitioning technique. After
finding the optimal solution to the discrete problem, this approach considers a smaller
solution space close to the found solution and initiates a new round of optimization.
However, achieving the global optimal solution to the original bilevel problem was not
mathematically confirmed.

The proposed hybrid approach of agent-based modeling and bilevel optimization
was an innovative effort to identify the Stackelberg equilibrium among a subset of
market actors. While this innovative methodology yielded invaluable insights into
the interrelated dynamics of the community and wholesale markets, there are two
interlinked constraints I would like to briefly discuss:

Firstly, the computational cost of solving the BIOP problem is high. This challenge
becomes particularly apparent when studying large-scale energy systems, where
simulations are typically conducted over a period of at least one year. In this thesis,
during the energy market simulation for one year, the BIOP for an EC with relatively
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straightforward parameterization was solved 720 times, taking an average of 26
hours12. This computation time may still be justifiable for studying a specific research
question. However, as ABMs increasingly aim to capture the strategic behaviors of
numerous energy market actors and their competitions across multiple dimensions,
the application of such complex methodologies may become impractical.

Secondly, the assumption of perfect information in the EC energy trading game is
somewhat plausible when the system boundaries are confined to the community.
However, this assumption can be substantially challenged when the system boundaries
extend to broader energy systems and the EC Stackelberg game emerges as a subgame
within the larger energy trading game in the wholesale market, marked by imperfect
information. Within such a game, identifying the Nash equilibrium may become
unfeasible: On one hand, the aggregator may have incomplete or uncertain knowledge
of the precise strategies or payoffs of other market players. On the other hand,
in games with imperfect information, the number of possible strategies for each
player can increase substantially, as they need to consider a wide array of possible
actions to make their decisions. This complexity increases as the number of players
and the size of the strategy space grow, making it challenging to enumerate and
analyze all possible strategy combinations [149]. Therefore, games with imperfect
information become computationally complex due to the increased dimensionality and
uncertainty. Consequently, solving for Nash equilibrium in such games requires the
use of sophisticated mathematical techniques, numerical methods, or approximations,
which can be computationally demanding or unfeasible for larger games.

Within this context, “learning” becomes an essential feature in navigating the complex-
ities posed by lack of complete information, limitations of solution concepts, and high
computational demands [150]. The requirement for adaptive multi-agent systems and
the complexity of managing interacting learners have encouraged the development
of the field of multi-agent reinforcement learning [151, 152]. Additionally, alterna-
tive game-theoretic frameworks are deployed to model learning agents within an
environment marked by imperfect information. For instance, Bayesian games, as
exemplified in [153], capture uncertainty and enable players to refine their strategy
based on observed actions. Similarly, Repeated games, as in [154], facilitate strategic
learning over multiple iterations by adapting strategies in light of previous outcomes.
Furthermore, evolutionary game theory, although not explicitly integrating learning,
leverages mechanisms like imitation and selection to aid agents in adapting to the
market and responding to incomplete information [155].

1On a laptop with an Intel Core i7-8650U CPU running at 1.90 GHz with eight nodes and 16 threads.
2In contrast, the AMIRIS simulation incorporating linear storage optimization was completed within
an approximate duration of 7 minutes.
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5.3 Conclusion and outlook

This dissertation was motivated by the ongoing trends of decentralization and digital-
ization in the German energy system. The aim of this thesis was to deliver an holistic
analysis of ECs, and to investigate potential strategies for their efficient coordination
within the broader energy landscape.

To achieve this aim, this thesis developed innovative methodologies that encompassed
both the perspective of the community and the overall energy system. At the com-
munity level, the operation of various DERs, including PV, HES, CES, HP, and EV,
were modeled to represent the microeconomic behavior of the EC stakeholders. This
methodology was extended by proposing a game-theoretic framework that modeled
the hierarchical decision-making interdependencies between the aggregator and users.
This led to the derivation of an ORTP design, serving as an internal pricing mechanism
for EC. Moreover, significant effort was dedicated to the development of efficient
mathematical techniques and algorithms, necessary for solving the emerging complex
bilevel optimization problem.

To evaluate the systemic effects of ECs, three methodologies were proposed: firstly, a
market alignment indicator, which served as a proxy for assessing the system-friendly
operation of ECs without the need for a large-scale energy system model. Secondly,
the agent-based electricity market model, AMIRIS, was expanded by implementing
new agents and modules to represent the EC stakeholders. This development en-
abled further comprehensive analysis of DESs at the overall system level. Perhaps the
most interesting methodological contribution of this thesis lies in the integration of
the game-theoretic EC model into AMIRIS, enabling the exploration of the intercon-
nected dynamics between community and wholesale markets. Lastly, an automated
model-coupling framework was introduced to couple AMIRIS with an energy system
optimization model. This methodology enabled the evaluation of the impact of EC
actor behavior on optimal energy system operation and design, thus defining and
quantifying the economic granularity gap.

In addition to methodological contributions, the analyses presented in this thesis
provided valuable policy-relevant insights regarding the conditions under which the
aggregation of DERs in ECs can be efficiently integrated into the German energy
system. These assessments revealed that the aggregation of DERs in ECs is not inher-
ently desirable or detrimental. The extent to which these decentralized systems are
coordinated with the broader energy system is significantly influenced by the market
mechanisms and regulatory frameworks in place.

In this context, this thesis highlighted the inefficiencies of current business models
and regulations in the residential power sector. Specifically, time-invariant consumer
prices fail to incentivize system-friendly operation of flexibility options, as they do
not reflect the actual costs of electricity generation and, consequently, the real-time
availability of RES in the system. This inefficiency is further exacerbated when power
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consumption is charged with static volumetric grid fees, taxes, and levies. Such
tariff structures significantly incentivize prosumagers to prioritize self-consumption,
irrespective of energy market dynamics. The findings of this thesis demonstrated that
such prioritization, whether on a household or community scale, could potentially
unfold disruptive effects on the power system, resulting in a significant deviation from
the optimal energy system operation and design.

To improve the coordination of DES operations, the tariff design should be revised to
favor business models that incentivize a more conscious interaction with the broader
energy system. Such reforms should permit a certain level of local consumption,
securing economic benefits for EC stakeholders and thereby providing incentives for
new investments in DERs. Simultaneously, they must provide adequate system signals
for DESs to respond to market conditions, especially during periods of energy scarcity
or excess. If appropriately designed, RTP mechanisms can serve as effective tools
to achieve this objective. However, constructing RTPs solely based on the wholesale
market price overlooks the power demand and generation patterns of heterogeneous
EC actors. Taking these factors into account, as proposed in the ORTP scheme, offers
a compromise between slightly distorted alignment with the wholesale market and
increased community welfare. Nonetheless, to expose the DES more “directly” to
dynamic price signals, it is necessary to reduce static regulatory induced elements.
This could be accomplished by either dynamizing the volumetric regulated tariff
elements or replacing the per unit charges with mechanisms such as capacity network
charges.

The methodologies and analyses presented in this thesis, while comprehensive, are
subject to several limitations, as discussed in section 5.2. These limitations help
identify potential avenues for future research:

Concerning the efficient operation of ECs, a critical aspect that warrants further explo-
ration is the development of more complex or complementary pricing mechanisms to
coordinate the operation of DES with the conditions of the physical system, particularly
in distribution grids with a high degree of sector-coupling. In this context, alternative
mechanisms related to network charges should be investigated for a more equitable
cost allocation of the operation and expansion of grid costs. Additionally, modeling
the investment decisions in DER represents a crucial step in determining whether
potential efficiency losses from local self-consumption can be justified by additional
investments in clean energy technologies.

Simulating the systemic effects of DES using AMIRIS, particularly in power systems
that are more or less carbon neutral, demands several methodological advancements.
Firstly, the strategic behavior of various market actors should be modeled with en-
hanced precision. This includes enabling actors to anticipate the strategies of their
competitors and evolve within the dynamic market environment. Secondly, solutions
must be devised to sensibly incorporate institutional investments in power plants and
storage technologies into the model. Furthermore, the current lack of transnational
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scope should be addressed by including market-coupling. Finally, future research
should concentrate on developing methodologies capable of modeling the representa-
tive behavior of numerous DESs, each with its unique set of parameters.

In a nutshell, this dissertation has made several significant methodological and sub-
stantive contributions regarding the modeling of DES operations in ECs, as well as
measuring their systemic impacts. Nevertheless, there is an evident need for continued
research. The author hopes that this thesis, whether directly or indirectly, can provide
valuable support to the multitude of important decision-making processes required by
the transition of the European energy system toward a more sustainable future.
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