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INTRODUCTION 
 
The Laser Altimeters BELA [3] and GALA [2] (BEpi-colombo Laser Altimeter and GAnymede Laser Altimeter) are 
currently en-route to Mercury and Ganymede, respectively. They measure distance to the surface by emitting short laser 
pulses at frequencies between 10 Hz and 48 Hz, which are subsequently sampled upon return using a single APD 
(Avalanche Photodiode) operating at 200 MHz (GALA) and 80 MHz (BELA). The resulting time-of-flight measurements 
enable precise distance calculations. On-board, a Field-Programmable Gate Array (FPGA) selects four brief windows of 
64 or 42 (GALA / BELA) 12-bit samples from an Analog-to-Digital Converter (ADC) per shot from a range window as 
potential candidates and transmits these to the central processing unit for further analysis. Subsequently, a Gaussian fit is 
applied, and only the fitted center position, pulse width, and amplitude are transmitted back to Earth, minimizing data 
volume. This approach enables high detection accuracy in the decimeter range despite the relatively low sampling 
frequency together with a low data-rate, required for deep-space missions. 
Unfortunately, secondary science objectives such as surface roughness and slope are lost when only transmitting fit 
information [1]. Moreover, even higher accuracy can be achieved by accounting for the non-Gaussian nature of the 
outgoing laser pulses. It became evident from examining raw data that these secondary objectives, along with improved 
precision, are highly desirable goals. However, downlink bandwidth will not magically increase at our request, so 
maintaining a low data rate is crucial. Consequently, implementing a compression method that our central processor can 
handle has become a priority. 
When dealing with noisy sensor data, entropy coding emerges as the method of choice. To leverage the existing Gaussian 
fit, we subtracted it from the signal to decrease the remaining symbol count. The remaining samples could then be 
compressed by a factor of ~3.5 using an implementation of the Tabled Asymmetric Numeral Systems (TANS) encoder. 
Remarkably, the compression ratio is close to the Shannon entropy under all circumstances. We provide a comprehensive 
comparison with Huffman coding as well as detailed implementation specifics and performance metrics for our C version 
on both the Gaisler GR712RC in-flight CPU and Commercial Off-The-Shelf hardware. 
 
THEORY OF (TABLED) ASYMMETRIC NUMERAL SYSTEMS 
 
Entropy Coding 
 
Entropy coding is a lossless compression technique that aims to reduce the number of bits required to represent data, 
basically an array of symbols, by exploiting the statistical properties of that data. The core idea behind entropy coding is 
to use shorter codes for more frequent symbols and longer codes for less frequent ones, thereby reducing the overall size 
of the encoded data [6].  
Entropy coding is widely used in various fields, including multimedia compression (e.g., JPEG, MP3, H.264), data 
transmission, and storage systems. It's a powerful tool for reducing data size without losing any information, making it 
crucial for efficient data handling in many technologies. 
What entropy coding does not do is positional coding, i.e. exploiting positional relationships between symbols like run-
length encoding, delta coding, Fourier transforms or wavelets. For best compression ratios a positional coder specific to 
the type of data is usually combined with an entropy coder [6]. 
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Arithmetic Coding on Symmetric Numeral Systems 
 
Arithmetic coding [7,8] is a sophisticated form of entropy encoding used for lossless data compression. Unlike other 
methods such as Huffman coding [6,5], which replace input symbols with specific codes, arithmetic coding maps the 
entire input message to a single number that can be represented using fewer bits than the original message. 
A prominent example is our own way of writing numbers. We use 10 symbols (0-9) in a Base-10 (or radix-10) system. If 
these 10 symbols have an equal probability of occurring in the message (i.e., the number itself), then this is the optimal 
way to represent numbers. When seeking a binary representation to store this number inside computers, we simply 
transform the number to Base-2, thereby creating an optimal system to store a 10-symbol alphabet without being restricted 
to a 2n alphabet size that would limit us in a naïve fixed-width binary representation. Our 10-symbol alphabet requires 
only log2(10)≈3.322 bits per symbol. Using 4 bits would waste almost 0.7 bits per symbol. 
The power of symmetric numeral systems lies in their ability to represent any alphabet size N as an optimal bit-stream 
through pure Base (or radix) transformation. The system can accurately retain fractions of bits without wasting space, 
making it highly efficient for data compression purposes. 
 
Asymmetric Numeral Systems (ANS) 
 
ANS builds upon symmetric numeral systems and arithmetic coding. It generalizes this process for arbitrary sets of 
symbols 𝑠 ∈ 𝑆 with an accompanying probability distribution (𝑝௦)௦∈ௌ [10, 11, 12]. This is best understood with the binary 
example, also called the uniform asymmetric binary system from [11]: 
 

 

Figure 1 Two ways to asymmetrize binary numeral system. Having some information stored in a natural number 
x, to attach information from 0/1 symbol s, we can add it in the most significant position (x 0 = x + s2 m), where s 
chooses between ranges, or in the least significant (x 0 = 2x + s) position, where s chooses between even and odd 
numbers. The former asymmetrizes to AC by changing range proportions. The latter asymmetrizes to ABS by 
redefining even/odd numbers, such that they are still uniformly distributed, but with different density. Now x 0 is 
x-th element of the s-th subset – from [11] 

The theory of arithmetic coding would require to store an ever-growing numeral state which becomes quickly 
impracticable on computers. ANS handles that problem efficiently by a re-normalization of the state. A shift is applied to 
the state and the lowest bits that are shifted out go into the bit-stream. [10] describes the ANS system to manage arbitrary 
message lengths with arithmetic coding and [11] goes into detail of a highly performant encoder/decoder that even exceeds 
Huffman Coding in compression ratio and speed [12]. Besides the ABS described above, two main variants are described:  

- The ranged ANS (rANS) can be applied to a symbol stream where an approximated probability is sufficient. The 
symbol probability table is updated as new symbols arrive.  

- The tabled ANS (tANS) can be described as a finite-state machine with pre-computed tables. Ideally the entire 
symbol block must be available to construct accurate tables. Practically this is split into convenient blocks of 
finite symbols.  

The rANS version has the advantage of operating on a stream with the shortcoming that it uses multiplication operations 
and is slightly sub-optimal by design. tANS will mostly outperform rANS in compression ratio but tANS requires a longer 
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setup phase as tables need to be created from symbol probabilities (with higher memory footprint as well) but without the 
need of multiplications.  
 
IMPLEMENTATION AND PERFORMANCE DETAILS FOR BELA AND GALA 
 
The incoming raw data from the sensor is in a worst-case scenario (GALA@48Hz, 4 windows) at 19200 byte/s. While 
BELA and GALA have 128Mbyte of RAM [2,3], it is possible to store the required samples for an entire orbit in RAM 
and compress everything after continuous shooting. With this option we relaxed the speed requirements on the compressor 
which at the end was not even necessary. One hour of continuous worst-case science operation on BELA (10Hz, 4+1 
windows) produces 11.3Mbyte data. This scenario is ideal for the tANS encoder that requires accurate symbol tables and 
avoids potentially slow multiplication.   
The tabled ANS consists of two primary phases: initialization and encoding. During the initialization phase, various 
encoding tables are constructed based on the symbol probability distribution within the alphabet. The compression ratio 
improves as the table size increases, approaching the Shannon Entropy (1), expressed in average bits / symbol [6, 14]: 

𝐻(𝑋) ≔ −  𝑝(𝑥) logଶ 𝑝(𝑥)

௫∈

 

 (1) 
To reduce execution time in the encoding phase, three variables for each symbol are generated: 𝑘[𝑠], 𝑠𝑡𝑎𝑟𝑡[𝑠], and 
𝑏𝑜𝑢𝑛𝑑[𝑠]. During the encoding phase, each symbol contributes either 𝑘[𝑠] or 𝑘[𝑠] − 1 bits to the output stream. This is 
determined by comparing the current state value with 𝑏𝑜𝑢𝑛𝑑[𝑠]. Symbols are encoded using the encoding tables with the 
three precomputed variables from the initialization phase.  
We follow the optimized algorithm [12, 13] that yields identical results with fewer mathematical operations. Notably, for 
each symbol 𝑠 and state 𝑥, there exists a unique value and a unique new state that can be precomputed. The key is to 
create two new tables, 𝑛𝑏𝐵𝑖𝑡𝑠𝑇𝑎𝑏𝑙𝑒 and 𝑠𝑡𝑎𝑡𝑒𝑇𝑎𝑏𝑙𝑒, which store all possible combinations of input symbols and current 
states after the initialization phase. Two loops generate all possible combinations of 𝑠 and 𝑥. The address within the new 
tables is formed by concatenating the input symbol 𝑠 and the current state 𝑥. Once 𝑛𝑏𝐵𝑖𝑡𝑠 is calculated, the stream 
function transfers 𝑛𝑏𝐵𝑖𝑡𝑠 least significant bits of 𝑥 to the output stream. 
To test and compare this method, we first developed a reference algorithm in Python without dependencies (pure Python) 
as a proof-of-concept. Subsequently, a C version was created that can compress arbitrary data on the Linux command 
line. Data were divided into blocks of 64k symbols with 16-bit state tables, representative of BELA/GALA data chunks. 
The performance is detailed in Table 1. For GALA, we did not test the encoder yet; however, since the hardware is 
identical except for the clock speed (GALA at 50 MHz and BELA at 30 MHz), we anticipate a linear influence of clock 
speed on encoding speed, potentially reaching up to 140k symbols/second. Unfortunately, we had to use a relatively old 
compiler for BELA & GALA (GCC 4), which means many cache optimizations available in recent compilers were not 
utilized. The decoder was not implemented within the central software of BELA/GALA as it will not be used. Decoding 
with the C version was slightly slower than encoding, but only by around 5-10%. A significant difference in coding speed 
is observed if the additional lookup tables fit into the CPU cache. 
For comparison with different compression mechanisms and to test the algorithm on real data, we selected five datasets 
as detailed in Table 1. The datasets included original BELA/GALA data and, for comparison, raw image data from the 
JANUS instrument, the camera system of JUICE, of a recent moon flyby (LEGA). For GALA, two datasets were used: 
one with original data including the pulse and another with the subtracted fit. The corresponding probability distributions 
are shown in Figures 2, 3, and 4. Table 2 presents the results of the compression, while Table 3 shows the encoding speed 
for the various implementations. 

Number Description Size 
(Symbols) 

Bits / 
Symbol 

Bits / Symbol –
Shannon 

1 GALA samples from APD with expected pulse 
shape 

65536 12 4.885 

2 GALA samples with removed pulse 65536 12 3.493 
3 BELA samples from APD with typical noise 65535 12 3.187 
4 JANUS raw image A from LEGA flyby 3008000 14 12.522 
5 JANUS raw image B from LEGA flyby – High 

Contrast 
3008000 14 12.290 

Table 1 Description and details of the 5 test data-sets 
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Figure 2: Left: GALA raw data with received pulses (stacked), right: distribution of symbols, both of dataset 1 

 

Figure 3: Left: BELA noise distribution (dataset 3), right: GALA removed pulse distribution (dataset 2) 

 

Figure 4 Left: JANUS image from the moon fly-by and its symbol distribution (dataset 4), right: high-contrast 
moon fly-by image (dataset 5). 
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System Description Block Size 

(Symbols) 
Bits / 
Symbol 

Encoding 
speed 

Intel 3.5GHz i7-1370P C-encoder 65536 8 140MS/s 
Intel 3.5GHz i7-1370P Python Reference encoder 65536 8 532kS/s 
Gaisler SPARC GR712RC 
30MHz, incl. SpaceWire 
delivery 

C-encoder (BELA) 65535 12 87kS/s 

Table 2 Encoding speeds on different hardware and for different implementations 

 
Dataset Huffman – 

Stream 
TANS – 
Stream 

TANS – with 
Symbol Table 

Bzip2 
linux 

Theoretical 
Shannon 

Delta Bytes / MByte 
Huffman vs TANS Stream 

1 2.441 2.456 2.407 2.544 2.456 2624 
2 3.410 3.435 3.410 3.151 3.435 450 
3 3.703 3.764 3.750 3.707 3.765 4589 
4 1.1146 1.1174 1.1013 1.326 1.1179 2357 
5 1.1356 1.1387 1.1211 1.351 1.1391 2513 

Table 3 Compression ratios for the 5 different datasets. The Bzip2 compressor is a combination of a general-
purpose positional and entropy coder, which is why it can exceed the Shannon limit. 

 
OUTLOOK AND CONCLUSION 
 
Although CPU based compression is quite slow compared to FPGA [4, 9] based, we found it more than sufficient for the 
low data-production rates of BELA and GALA. Because we subtract the signal fit, the remaining quasi-noise has excellent 
compression ratios and enables us to transmit the raw samples without increasing the promised transmission budget. As 
with most compression, corruption within a compressed block is fatal. On the other hand, the fit information is transmitted 
separately in the science stream so primary science goals would remain intact and the block-size of 64kS would leave us 
with only around 780 lost shots or 78s operation time (assuming 2 windows transmitted per shot).  
For an outlook, the perspective of using the symbol table to improve compression ratio and turn the method into a hybrid 
positional / entropy coder is tempting but also not quite easy. Simple approaches by varying distributions on the symbols 
have been tried with different symbol spreading techniques but achieving notable results is tough. Nevertheless, a symbol 
spread permutation could be used to fit any kind of signal, but it remains to be seen that the transmission overhead of a 
custom (and varying) symbol spread function, which must match precisely within the encoder and decoder, does in the 
end yield better results.  
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