DEVELOPMENT AND CHARACTERIZATION OF ELECTRODES AND MEAS FOR HT-PEM FUEL CELLS INVITED TALK IN SESSION A "FUEL CELL ELECTROCATALYST ACTIVITY AND DURABILITY"

Dana Schonvogel, Julia Müller-Hülstede, Tanja Zierdt, Julia Buschermöhle, Marek Mooste, Nadine Pilinski, Lisa M. Uhlig, Henrike Schmies, Peter Wagner

German Aerospace Center (DLR), Institute of Engineering Thermodynamics

ECS PRiME 2024, 10th October 2024

German Aerospace Center (DLR)

DLR Institute of Engineering Thermodynamics

Material Development Long-term stable, efficient components for HT-PEM fuel cells *Catalysts, membranes, electrodes, membrane-electrode-assemblies*

Analytics and Quality Control On gas diffusion layers and bipolar plates after fabrication

Electrochemical, physico-chemical, imaging methods

3

Group *HT-PEM Fuel Cells (Peter Wagner)* **Division** *Electrochemical Energy Technology (K. Andreas Friedrich)*

Performance Studies From thin-film analysis to PEM fuel cells *Activity and degradation, contamination effects, accelerated stress tests*

Cost-efficient Electrodes for PEM fuel cells *Reduced PGM-contents, use of M-N-C catalysts, sintered paper-based electrodes*

HT-PEM Fuel Cells

Advantages

- Increased tolerance towards contaminants like CO or H₂S due to **160 °C**
- **•** Direct use of industrial quality H_2 or reformates → **Application flexibility**

Challenges

- Lower cell performances and graphitic bipolar plates \rightarrow Larger stack sizes compared to LT-PEMFCs
- **EXA** Limited lifetime due to corrosion of components
- Phosphate poisoning of catalytic active sites → Higher Pt loading of up to 1 mg_{Pt}cm⁻² per electrode

Increasing Corrosion Resistance Reducing PGM-Contents in PEM Fuel Cells

D. Schonvogel et al., J. Power Sources **2021**, *High temperature polymer electrolyte membrane fuel cell degradation provoked by ammonia as ambient air contaminant*, 109, 401.

D. Schonvogel et al., Int. J. Hydrog. Energy **2021**, *Impact of air contamination by NOx on the performance of high temperature PEM fuel cells*, 46, 33934.

D. Schonvogel et al., Int. J. Hydrog. Energy **2021**, *Effect of air contamination by sulfur dioxide on the high temperature PEM fuel cell*, 46, 6751.

PEM FC Cost Issues

- Elimination of Platinum in PEM FC cathode significant for system cost reduction
- Current Pt loadings per electrode
	- \blacksquare HT-PEM FC: 0.70-1.0 mg_{Pt} cm^{-2 [1]}
	- **LT-PEM FC: 0.05-0.3 mg_{Pt} cm^{-2 [2]}**
- Most promising alternative: M-N-C (Metal-Nitrogen-Carbon) catalyst [3]
	- Fe-N-C active for the oxygen reduction reaction (ORR)

System costs for light-duty vehicle PEMFC system. This cost reduction pathway is based on system cost analysis.

M-N-C for Oxygen Reduction Reaction

Advantages

- M-N-C costs 200 times less than Pt-based catalyst (0.142 mg_{Pt} cm⁻²) ^[1]
- No catalyst poisoning by phosphates in HT-PEM FCs [2,3]

[1] S. T. Thompson, D. Papageorgopoulos, Nature Catalysis 2019, 2, 558. [2] Q. Meyer, C. Yang, Y. Cheng, C. Zhao, *Electrochem. Energy Rev.* **2023**, 6, 16. 15 [3] Y. Hu, J. O. Jensen, C. Pan, L. N. Cleemann, I. Shypunov, Q. Li, *Appl. Catal., B* **2018**, 234, 357. [4] K. Kumar, L. Dubau, F. Jaouen, and F. Maillard, *Chem. Rev.* **2023**, 123, 9265. [5] J. Müller-Hülstede, H. Schmies, D. Schonvogel, Q. Meyer, Y. Nie, C. Zhao, P. Wagner, M. Wark, *Int. Journal Hydrogen Energy* **2024**, 50, 921-930.

Challenges

- \bullet Volumetric activity lower compared to Pt/C $[1,2]$
	- Thicker catalyst layers (60-100 μm versus 3-5 um for PGM in LT-PEM FC) [1]
- **EXECUTE:** Stability insufficient in LT- and HT-PEM FC $[4, 5]$

Fe-N-C Catalysts based on Carbon Aerogels

T. Zierdt et al., ChemSusChem **2024**, *Impact of Aerogel Modification for Fe N C Activity and Stability towards Oxygen Reduction Reaction in Phosphoric Acid Electrolyte*, under revision.

Fe-N-C Catalysts based on Carbon Aerogels Effect of Aerogel Treatment

9

- H_3PO_4 → Treatment not beneficial
- K and $K+M \rightarrow$ Lower selectivity
	- Higher graphitic N content
	- **EXECUTE:** Lower pyrrolic/pyridinic N contents than $HNO₃$
- $HNO₃ 2h \rightarrow Incomplete oxidation$
	- Lower ORR activity and selectivity
- $HNO₃$ 5h \rightarrow Highest activity and selectivity

Increase of pyrrolic/pyridinic N content

 $K_{\kappa}^{\text{H}_3 \text{F} \cup 4}$ \rightarrow Higher ORR activity with **higher pyrrolic/pyridinic N** required for $Fe-N_x$ sites

T. Zierdt et al., ChemSusChem **2024**, *Impact of Aerogel Modification for Fe N C Activity and Stability towards Oxygen Reduction Reaction in Phosphoric Acid Electrolyte*, under revision.

Fe-N-C Catalysts based on Carbon Aerogels Optimized Synthesis Route

Fe-N-C Catalysts based on Carbon Aerogels ORR Activity and Stability

- Faster and cheaper catalyst fabrication than template or carbon support synthesis
- Sufficient activity and stability close to commercial Fe-N-C
- **Ext Step: Synthesis upscaling to 20 g and** HT-PEM electrode fabrication

Bimetallic Fe-Sn-N-C Catalysts based on MOFs Synthesis and ICP-MS

- Names refer to metal ratios determined by ICP-MS
- Fe-N-C_{PMF} \rightarrow PMF-D14401 (Pajarito Powder) for comparison
- Low Fe and Sn amounts in Fe-Sn-N-Cs
	- − Second doping in MeOH probably causes Sn being washed out
- No acid leaching or template removal necessary $\frac{1}{20}$ $\frac{1}{20}$ $\frac{0.701}{20}$ $\frac{0.3}{20}$ $\frac{0.4}{20}$
	-

Bimetallic Fe-Sn-N-C Catalysts based on MOFs XPS and Mössbauer Spectroscopy

- Significant contents of pyridinic, pyrrolic, graphitic N species
	- − M-N_x sites selective for preferred 4e pathway and non-metallic N sites catalyzing 2x2e pathway
- Similar Mössbauer results for Fe-N-C and Fe-Sn-N-Cs
	- − Comparable Fe coordination environments indicating bimetallic character without neighbored Fe and Sn

Bimetallic Fe-Sn-N-C Catalysts based on MOFs ORR Activity and Stability

- Low mass activity for monometallic Sn-N-C and Fe-N-C
- High mass activity for Fe-Sn-N-Cs
	- Exceeding commercial Fe-N-C (PMF, Pajarito Powder)
	- Fe-Sn-N-C (1:0.3) surpassing commercial Pt/C (40 wt% Pt/C, TEC10E40E, Tanaka)
- Good stability of Fe-Sn-N-C (1:1) under harsh AST
	- − Comparable to commercial Fe-N-C
	- − Much lower stability of Fe-Sn-N-C (1:0.3) compared to (1:1)
	- − Indicating stability enhancing effects of Sn

→ **Significant impact of Sn on ORR activity**

Bimetallic Fe-Sn-N-C Catalysts based on MOFs

-
- In XRD no changes of crystal structure or metallic particle formation
	- − Visible peaks belonging to the glassy carbon disc
- In XPS fitting for N1s, however, due to Nafion[®] no fitting for Fe, C and O
	- − Pyridinic N decreased after AST showing loss of active sites
- In XPS no significant differences for Sn3d

15

→ **XRD and XPS suggesting that mostly non-metallic active sites are lost**

RRDE Study $0.5 M H_3PO_4$

Bimetallic M-M-N-C Catalysts based on SiOC

- Choice of metal combinations embedded into SiOC material
	- 1. Fe and Co (most widely studied combination for ORR in FC applications)
	- 2. Fe and Cu (paper by Prof. Cheng group and their superior FeCu catalyst)
	- 3. Fe and Mn (Mn good ORR catalyst in acidic medium)
- SiOC materials prepared in Advanced Ceramics group at University of Bremen
- Modification with ZIF-8 using pyrolysis

SEM of FeMn-based material before (-PDC) and after modification with ZIF-8 via pyrolysis at 950 °C (-N-SiOC).

Applied Catalysis B: Environmental Volume 284, 5 May 2021, 119717

First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells

 Y_i Cheng Prof.³ \boxtimes , Mengen Wang $\stackrel{b}{\sim}$ \boxtimes , Shanfu Lu $\stackrel{c}{\sim}$ \boxtimes , Chongjian Tang Prof.³ \boxtimes , Xing Wu $\stackrel{a}{\sim}$ \boxtimes , <u>Jean-Pierre Veder die al, Bernt Johannessen</u> e ⊠, Lars Thomsen e ⊠, Jin Zhang e ⊠, Shi-ze Yang_b f Q x , Shuangyin Wang Prof. 8 Q x , San Ping_liang_h Q x x

M. Mooste et al., Electrochimica Acta **2024**, *Binary transition metal and ZIF-8 functionalised polymer-derived ceramic catalysts for high temperature PEM fuel cell cathode*, submitted.

Bimetallic M-M-N-C Catalysts based on SiOC Physical Characterisation

Scanning transmission electron microscopy (STEM) with EDS

M. Mooste et al., Electrochimica Acta **2024**, *Binary transition metal and ZIF-8 functionalised polymer-derived ceramic catalysts for high temperature PEM fuel cell cathode*, submitted.

Bimetallic M-M-N-C Catalysts based on SiOC ORR Activity and Stability

Bimetallic M-M-N-C Catalysts based on SiOC GDE Performance

(a) Polarisation curves of ZIF-8-modified and further acid leached (in 2 M sulfuric acid for 16 h at 90 °C with second pyrolysis) catalyst based GDEs and (b) semi-logarithmic plots. potential value at 187 mA cm $^{-2}$ (E187, mV $_{\sf RHE}$) .

HT-PEM FC –ELECTRODES HALF-CELL AND SINGLE CELL STUDIES

Reduction of Platinum Contents in HT-PEM Electrodes

µ-Computed tomographic images of the whole GDEs (left) and catalyst layers only (right).

H. Schmies et al., J. Power Sources **2022**, Reduction of platinum loading in gas diffusion electrodes for high temperature proton exchange membrane fuel cell application: Characterization and effect on oxygen reduction reaction performance, 529, 231276.

Impact of PTFE of Fe-N-C-based HT-PEM Electrodes

22

Different PTFE contents in catalyst layer using commercial Fe-N-C (PMF-D14401, Pajarito Powder)

GDE Study

Conc. H3PO⁴ 160 °C

- − Minimum of 20 wt% PTFE in Fe-N-C catalyst layers mandatory
- $H₂O$ contact angle > 140 ° beneficial hydrophobic properties
- Fe-N-C copes wide range of PTFE contents

T. Zierdt et al., ChemElectroChem **2024**, *Effect of Polytetrafluorethylene Content in Fe-N-C-Based Catalyst Layers of Gas Diffusion Electrodes for HT-PEM Fuel Cell Applications*, 11, e202300583.

Impact of Additive of Fe-N-C-based HT-PEM Electrodes

- Different additive contents in catalyst layer using commercial Fe-N-C (PMF-D14401, Pajarito Powder) and 50 wt% PTFE
	- − Increase of surface hydrophilicity with increased Tergitol amount
	- − Reduced conductivity and performance for GDEs with increased Tergitol amount
- \rightarrow No positive effect for Fe-N-C based ink and catalyst layer

 $n = 2-6$

Effect of Carbon Support on Fe-N-C-based HT-PEM Electrodes

Support-based synthesis Commercial

Black Pearls[®] 2000

 $-N-ox-BP$

50 nm

Fe: 1.3 wt.% Surface Area: $1280 \text{ m}^2 \text{ g}^{-1}$ $N+O$ content: 6.4 at.%

P content

24

Catalyst

C- Source

Properties

-

1.2 wt.% 588 m² g-1 8.4 at.%

J. Hülstede et al., *Relevant Properties of Carbon Support Materials in Successful Fe-N-C Synthesis for the Oxygen Reduction Reaction: Study of Carbon Blacks and Biomass-Based Carbons*, Materials **2021**, 14, 1, 45.

1.3 wt.% 1.2 wt.% 1117 $\text{m}^2 \text{ g}^{-1}$ 977 $\text{m}^2 \text{ g}^{-1}$ **19.7 at.% 19.3 at.% 1.9 at.% 2.2 at.%**

J. Müller-Hülstede et al., ACS Appl. Energy Mater. **2021**, *Incorporation of Activated Biomasses in Fe-N-C Catalysts for Oxygen Reduction Reaction with Enhanced Stability in Acidic Media*, 4, 7, 6912.

Effect of Carbon Support on Fe-N-C-based HT-PEM Electrodes

- Implementing Fe-N-C catalysts in HT-PEM FC cathodes
	- **Target loading of 3 mg cm⁻²**
	- \blacksquare 40 wt% PTFE
- Nature of the catalyst more relevant than electrode fabrication

Ultrasonic Spray Coating

Doctor Blade Coating

HT-PEM Single Cell Study 160 °C

Fe-N-C_{PMF}

J. Müller-Hülstede et al., J. Power Sources **2022**, *Implementation of Different Fe-N-C Catalysts in High Temperature Proton Exchange Membrane Fuel Cells – Effect of Catalyst and Catalyst Layer on Performance*, 537, 231529.

J. Müller-Hülstede et al., J. Power Sources **2022**, *Implementation of Different Fe-N-C Catalysts in High Temperature Proton Exchange Membrane Fuel Cells – Effect of Catalyst and Catalyst Layer on Performance*, 537, 231529.

J. Müller-Hülstede et al., Int. J. Hydrog. Energy **2023**, *What determines the stability of Fe-N-C catalysts in HT-PEMFCs?*, 50, Part C, 921.

• Different initial performances

26

- − Catalyst layer inhomogeneity of biomass based Fe-N-Cs
- Rapid loss of voltage within first 24 h of operation for all MEAs (~ 27 %)
- Further losses 4-10 % mainly attributed to reactive oxygen species formation due to Fenton-like reaction

→Need for improved metal site and metal site incorporation and optimisation of catalyst layer

HT-PEM Single

Hybrid HT-PEM Electrodes

-
- Pt content reduction through incorporation of catalytic active filler \rightarrow Studying the effect of Fe-N-Cs in Pt-alloy cathodes

Hybrid HT-PEM Electrodes

Voltage increase in case of conventional Pt-based MEA immediately after electrochemical measurements

29

Slow voltage increase caused by electrolyte redistribution in presence of Fe-N-C

J. Müller-Hülstede et al., ChemSusChem **2023**, *Towards the Reduction of Pt Loading in High Temperature Proton Exchange Membrane Fuel Cells – Effect of Fe-N-Cs in Ptalloy Cathodes*, e202202046.

HT-PEM FC – MEMBRANES

DIR

and American contr

 ϵ 2-8

Silicon carbide based HT-PEM membranes Initial Performance

- Celtec[®]-based study with BASF
	- Standard Celtec[®] P1200 as reference
	- Addition of 2 wt% SiC to patented PPA based membrane fabrication
- SiC-based MEA better performance

D. Schonvogel et al., J. Power Sources **2024**, *Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes*, 591, 233835.

Silicon carbide based HT-PEM membranes Degradation over Time

- 1,000 h of load cycling
	- \bullet 4 min at 0.6 A/cm² & 16 min at 1.0 A/cm²
	- SiC-based lower degradation rates (<65 μ V h⁻¹ for SiC, >100 μ V h⁻¹ for Celtec)
	- But: Lower OCVs in case of SiC
- **EXECT:** Lower acid losses in case of SiC

HT-PEM single cell testing: 160 °C, contact pressure 0.75 MPa, dry H₂/Air (1.5/2.0).

D. Schonvogel et al., J. Power Sources **2024**, *Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes*, 591, 233835.

Silicon carbide based HT-PEM membranes Computer Tomography with Machine Learning

- Cooperation with UNSW Sidney
- Lower membrane thinning using SiC
- Evidence of mobility and redistribution of SiC particles

HT-PEM Single

D. Schonvogel et al., J. Power Sources **2024**, *Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes*, 591, 233835.

HT-PEM FC – GAS DIFFUSION LAYERS

Ex-situ GDL Ageing under HT-PEM Conditions Method Development

GDE half-cell test at 160 °C in conc. H_3PO_4 with O_2 flow of 1.5 L min⁻¹

Post mortem analysis: ICP-MS, confocal microscopy, contact angle, CT, C-AFM, SEM-EDS

- Effect of higher temperature (oxidation / higher hydrophilicity)
- **EXEDENT Increasing corrosion with higher** potential and /or cycling
- Independence of gas atmosphere

Ex-situ GDL Ageing under HT-PEM Conditions Surface Analysis after Aging

 \rightarrow Loss of PTFE as hydrophobic component **AND / OR**carbon corrosion

Surface change after 0.8 V visible using CT

GDL Study

Conc. H3PO⁴ 160 °C

ACKNOWLEDGMENTS

Collaborators

UNSW Sydney: Quentin Meyer, Chuan Zhao BASF Catalysts and Trigona: Jörg Belack, Carsten Henschel, Jurica Vidakovic DLR Institute of Material Research: Marina Schwarn, Barbara Milow CvO University of Oldenburg: Michael Wark University of Bremen: Michaela Wilhelm Leibniz University Hannover: René Lucka, Franz Renz FZ Jülich: Marc Heggen

Projects

QM-GDL HT-PEM 2.0 LaBreNA DisCO_{2very}

Federal Ministry for Economic Affairs and Climate Action

Federal Ministry for Digital and Transport

NOW-GMBH.DE

JUNSW

 $\dot{=}$ ZBT

4SW

Leibniz

Universität

Hannover

Federal Ministry of Education and Research

THANK YOU FOR YOUR ATTENTION!