

WRAP-UP SOLAR PROCESS HEAT AND THERMAL DESALINATION

Solar Process Heat is in the focus

- Track "Solar Industrial Process Heat and Thermal Desalination"
- 43 submissions \rightarrow 9% of all conference submissions
- Process heat also subject of presentations in other tracks
- 3 oral sessions with 15 presentations organized by the session chairs:
 - WED 8:30 Tobias Hirsch, DLR
 - THU 16:30 Fabienne Sallaberry, CENER
 - FRI 10:45 Navina Konz, DLR
- Poster session with 27 posters

Some statistics

Broad range of applications:

Food & beverages, gypsum, cement, textile, crude oil distillation, space heating&cooling, ... **Technologies:**

mainly parabolic trough and linear Fresnel.

3

Commercial plants

Solar Steam with Thermal Energy Storage for Renewable Fuel Production

Philip Gleckman¹, Brandon Hathaway¹

¹Sunvapor, Inc.

Developments in Solar Heat Applications

Bärbel Epp¹, <u>Dirk Krüger</u>², Zimo Zippler³, Jakob Leicht⁴, Gregor Bern⁵, Martin Scheuerer⁶, Mark Schmitz³, Navina Konz², Stefan Mehnert⁵

Evaluation of Flow Patterns for Direct Steam Generation

Navina Konz¹, Eckhard Schleicher², Mohammed Smeirah³, Marwan Mokhtar³, Dirk Krüger¹

- California
- Linear Fresnel System
- DME destillation
- 34 bar/240 °C
- 7 hours storage
- 700 kW
- Heineken, Seville, Spain
- Parabolic trough
- 210 °C pressurized water
- 43.000 m2 aperture area
- ~50% solar share
 - Flow patterns in a direct steam generation linear Fresnel plant

Component development - Collectors

Techno-economic Comparison Between the Parabolic Trough Collector and a Novel Rotatory Fresnel Collector

Magdalena Barnetche¹, Luis F. González-Portillo¹, Rubén Abbas¹

¹Universidad Politécnica de Madrid

Installation and start-up of two modular rotary collectors for SHIP: first experimental results

<u>Ruben Abbas</u>¹, Magdalena Barnetche¹, Julio San Millán², Juan José Roncal¹, Iman Golpour³, David J D Souza³

¹Universidad Politécnica de Madrid, ²Fundación para el Fomento de la Innovación Industrial, ³Universidad Nacional de Educación a Distancia

Customising Linear Fresnel receivers to industrial processes

María José Montes¹, Rubén Barbero¹, Antonio Rovira¹

¹ Universidad Nacional de Educacion a Distancia (UNED)

- Rotary Linear Fresnel
- Single / dual axis tracking
- Techno-economic evaluation

- Rotary Linear Fresnel
- Single / dual axis tracking
- Experimental results

 Linear Fresnel collector with compact heat exchanger as absorber

Component development – Thermal storage

Power-to-Heat Thermal Energy Storage for Hybrid CST: Magaldi Solid Particles Fluidized-Bed System

<u>Fulvio Bassetti</u>¹, Carla Bevilacqua¹, Mario Cilento¹, Daniele Coppola¹, Mario Magaldi¹, Raffaello Magaldi¹, Rocco Sorrenti¹, Piero Salatino², Maurizio Troiano², Roberto Solimene³

¹Magaldi Power, ²Univeristy of Naples, "Federico II", ³Istitute STEMS, CNR, Naples

- Fluidized bed sand storage
- Storing up to 1000 °C
- Charging by electricity or solar irradiation

Development of Sulfur Thermal Energy Storage for Solar Industrial Process Heat

Parker Wells¹, Hamarz Aryafar¹, Karthik Nithyanandam¹

¹Element 16 Technologies, Inc.

- Liquid sulfur based storage for applications up to 300 °C
- Charged by electricity or solar

Case studies

Concentrated solar heat to reduce carbon emissions of industrial chemical processes: the case of crude oil distillation

Claudia Prestigiacomo¹, Alberto Giaconia², Federica Proietto¹, Giampaolo Caputo², Irena Balog², Egnazio Ollà³, Chiara Freni Terranova³, Onofrio Scialdone¹, <u>Alessandro Galia¹</u> ¹Università degli Studi di Palermo, ² ENEA-Casaccia Research Center, via Anguillarese 301, 00123, Rome, Italy, ³ Raffineria di Milazzo SCPA (RAM) - Contrada Mangiavacca, Milazzo,

Hybrid Concentrated Solar Thermal and Wind Resistive Heating Systems as Key for Competitive Low Emission Industrial Process Heat Generation

Marco Colombi¹, Paolo Colbertaldo¹, Matteo Carmelo Romano¹, Marco Binotti¹

¹Politecnico di Milano

Thermal desalination & Standardization

Innovative ZLD desalination process for minerals recovery using solar and geothermal energy

Kristofer Poirier¹, Kumar Patchigolla¹, Liam Koh²

¹Net Zero Industry Innovation Centre, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK, ²Solar Water Plc, 201 Great Portland Street, London WIW 5AB, UK

Road-map of Standardization for Concentrating Solar plants in Industrial Processes

<u>Fabienne Sallaberry</u>¹, Alberto García de Jalón¹, Egoitz San Miguel¹, Ana Maria Mariblanca², Sandra Cubero³, Loreto Valenzuela⁴

 $^1\mathrm{CENER}$ (National Renewable Energy Centre), $^2\,\mathrm{UNE}$, $^3\,\mathrm{Protermosolar}$, $^4\,\mathrm{CIEMAT}$ Plataforma Solar de Almería

3

General topics

First Solar Thermal Energy Planner (STEP 1) Overview: A new decision support tool for solar industrial process heat applications.

<u>Jeffrey Gifford</u>¹, Jaret Kadlec¹, Jeremy Sment², Kaden Plewe², Braden Smith², Luis Garcia Maldonado², William Hamilton¹, Janna Martinek¹, Alex Zolan¹, Zhiwen Ma¹

¹National Renewable Energy Laboratory, ²Sandia National Laboratory

Decarbonizing Industrial Heat - A Comparison of Embodied Carbon for PV and Enclosed Parabolic Trough Systems

Gerhard Weinrebe¹, Verena Göcke¹, <u>Markus Balz¹</u>

¹GlassPoint Technology Center GmbH

9

Take-away from all presentations

- Potential for decarbonization in industry is huge.
- Concentrating solar thermal can significantly contribute.
- Low gas/CO₂ price still hinders business cases in many regions
- Many authors compare their CST solution to a photovoltaic alternative (PV+e-heater+TES). General findings:
 - LCOH is lower for CST pathway compared to PV (especially when electricity is transported via public grid)
 - Areal energy density of CST is 2...3 times higher than for PV (especially true for higher temperatures where heat pumps cannot help)
 - CO₂ emissions of CST more than 50% lower than PV