Molten Salt Electric Heaters: Lessons Learned from DLR's TESIS Facility and Intensive Prototype Testing

Marco Prenzel¹, Thomas Bauer¹, Willy Kamnang², Björn Fernholz³, Jana Stengler⁴

- ¹ German Aerospace Center (DLR), Institute of Engineering Thermodynamics, 51147 Cologne, Germany
- ² Vulcanic GmbH, 63452 Hanau, Germany
- ³ Schniewindt GmbH & Co. KG, 58809 Neuenrade, Germany
- ⁴ German Aerospace Center (DLR), Institute of Solar Research, 70569 Stuttgart, Germany

Motivation: Electric heater required for hybrid CSP/PV

Application in hybrid CSP/PV plants:

- Excess PV electricity can be converted to thermal energy
- Proven 2-tank molten salt storage system is applied for both CSP and PV

Required research objectives:

- Development towards higher temperatures and module sizes
- Improve reliability and serviceability
- Promote competition and lower prices

Methods: Resistive flow heaters

Source: Schniewindt GmbH & Co. KG (https://schniewindt.de/index.html)

Methods: DLR's electric heater experience

TESIS:com test facility

- Qualification of molten salt components
- In operation since 2019
- <u>420 kW electric heater</u> as integral part of TESIS:com

E-Heat project

Supported by:

on the basis of a decision by the German Bundestag

FKZ 03EE5062A-D 01.03.21 - 28.02.25

- Heat transfer with molten salt in cross-flow configuration
- Experiments with two 360 kW electric heater prototypes
- Critical design criteria and development needs

Methods: TESIS:com test facility

TESIS: com test facility specifications

- Solar salt (60% NaNO₃ and 40% KNO₃)
- 290 °C 560 °C inlet temperature
- 0.5 kg/s 8.0 kg/s mass flow rate
- <u>420 kW electric heater</u> to maintain hot tank temperature
- <u>360 kW prototypes</u> installed in test section (project E-Heat)

Methods: Experimental setup of E-Heat project

Heater specifications

- Electric power: 360 kW_{el}
- Length: 4.0 4.5 m
- Diameter: 0.3 0.4 m
- Insulation thickness: 0.15 m
- Inclination: 2° (for drainage)
- Max. salt temperature: 560 °C

Results: Cycle tests

Exemplary thermal cycle:

- Temperature increase 525/530 °C \rightarrow 560 °C
- Max. heating power 340-350 kW
- Mass flow rate 6,1-6,2 kg/s

Final results:

7

- 3 months testing per heater
- Constantly exposed to molten salt at > 500 °C
- Each heater completed > 5,000 cycles at different inlet temperatures and flow rates
 - Corresponds to 14 years of operation*

Results: Steady State test

Steady State test conditions (average values):

- Temperature increase 533 °C \rightarrow 560 °C
- Heating power 265 kW
- Mass flow rate 6,3 kg/s

Conclusion:

- Test condition not perfectly ideal
 - Varying mass flow rate and inlet temperature
 - Fluctuating heating power
- Data fluctuations are compensated by averaging

$$\eta = \frac{\dot{m}(u_{\text{out}}(T_{\text{out}}) - u_{\text{in}}(T_{\text{out}}))}{P_{\text{el,heater}}}$$

<u>Calculated efficiency: 98%</u>

Results: Scanning electron microscopy

General information on the SEM analysis:

- Heating elements are machine-made and not perfect test samples, e.g. surface roughness
- Condition before and between tests is unknown
 → only snapshot after E-Heat experiments

Sample 1.4571 (316Ti) observations:

- SEM image shows the steel shell of a heating element
- Uneven steel shell and oxide layer
- Oxide layer thickness roughly 5-10 μm
- Frequent cracks in the oxide layer

Results: Scanning electron microscopy

Sample 2.4858 (Alloy 825) observations:

- Uneven steel shell and oxide layer similar to 1.4571 sample
- Oxide layer thickness < 5 μm
 Thinner oxide layers typical for Nickel alloys
- In total fewer cracks compared to 1.4571

Main conclusions:

- Oxide layers displays many cracks regardless of steel shell material
- Continuous temperature changes (>5,000 cycles) are likely to be the cause for cracks
- No reasonable predictions possible about lifetime of heating elements

Results: Design and operating criteria

SolarPACES 2024 • Marco Prenzel, Institute of Engineering Thermodynamics • October 11th, 2024, Rome, Italy

11

12

- Molten salt electric heaters are crucial components in hybrid CSP/PV plants
 - → Important aspects are: Temperature, module size, reliability, serviceability and price
- Main results of the E-Heat project
 - Electric heater tests successfully completed
 - > 5.000 thermal cycles with each heater at temperatures > 500 °C
 - SEM analysis shows an intact oxide layer with visible cracks
 - Cracks probably caused by continuous thermal cycles during tests
- Design and operating criteria of electric heaters are manifold and should be thoroughly considered to achieve high performance and long service life

Thank you for your attention!

Institute of Engineering Thermodynamics, Cologne Email: <u>marco.prenzel@dlr.de</u>

