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Outline
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▪ Presentation of selected topics and results

▪ Summary and outlook
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Computational Fluid Dynamics
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▪ Computational Fluid Dynamics (CFD) is an 

important, established tool in the aircraft industry

In order to significantly increase further capabilities and prediction accuracy, 

more and more complex models and larger computational meshes are required.

In particular scale resolving (e.g. large eddy simulation, direct numerical

simulation) and unsteady computations are unfeasible for industrial test cases

on classical computer hardware, even under very optimistic assumptions.
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How much acceleration is still possible with classic methods?

Increasing complexity of the algorithms

▪ Multigrid (linear and nonlinear)

▪ Multistage implicit Runge-Kutta schemes

▪ Combination of linear solvers: 

▪ GmRes

▪ Jacobi and Gauss-Seidel Iterations

▪ LU-Solvers

▪ Truncation criteria for all the components

▪ ….
The developed algorithms show a 

severe loss of parallel efficiency

→It is becoming more and more difficult to achieve a significant acceleration with the 

classic approaches
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Can quantum computers be used to design future aircraft?

Is quantum computing a game changer for the aerospace industry?

2020

?

Motivation

Industry requirements:

▪ Real-time simulation of full aircraft

▪ Optimization and certification before first flight

▪ Scale resolving simulations

Significantly more efficient aircraft are 
required to achieve climate goals

Stefan Langer, Institute of Aerodynamics and Flow Technology, 01.10.2024
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Toulouse, 10 December 2020
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Toulouse, 10 December 2020

Challenges:

1) Aircraft Climb Optimization

2) Computational Fluid Dynamics on Quantum Computers

3) Quantum Neural Networks for Solving Partial Differential Equations

4) Wingbox Design Optimisation

5) Aircraft Loading Optimisation

→ A new Quantum Computing challenge is raised in 2024 by BMW and Airbus

Direct reference 

to the project
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Goals and Perspective

Dealing with scientific and technical issues in order to determine the 
potential of quantum computing and machine learning in aviation

Possibility to permanently establish participating institutions as a partner, 
supporter and pioneer of the German and European aviation industry for 
questions regarding the use of quantum computing in the context of 
digitalization

Establish close relationships between aviation industry and DLR in questions
regarding machine learning and quantum computing
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Short overview of some of the topics

and a selection of results
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Topics

▪ Correcting the discretization error of coarse grid CFD simulations with 

Machine Learning

▪ Physics-Informed neural networks for solving compressible flow equations

▪ Quantum machine learning for partial differential equations

Stefan Langer, Institute of Aerodynamics and Flow Technology, 01.10.2024
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CORRECTING THE DISCRETIZATION ERROR OF 
COARSE GRID CFD SIMULATIONS WITH MACHINE 
LEARNING
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▪ Take fast but comparatively inaccurate CFD simulations, such as:

▪ Coarse grid finite-volume method (FVM) solution

▪ Low-order discontinuous Galerkin (DG) solution

→ And then, try to improve accuracy with data-driven methods

Motivation
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Investigated topics

1. Post-Processing Correction of Coarse Grid FVM Solutions

2. Post-Processing Correction of Lower-Order DG Solutions

3. Correcting Unsteady DG Simulations

4. External Source Term Correction and Reinforcement Learning

→ Talk of Anna Kiener



Physics-Informed Neural Networks for Compressible 
Flows
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Solving Differential Equations with Physics-Informed
Neural Networks

𝑥

𝑡

boundary value problem

𝒟 𝑢 𝑥, 𝑡 , 𝑥, 𝑡 = 0, in Ω × [0, 𝑇)
ℬ(𝑢 𝑥, 𝑡 , 𝑥, 𝑡) = 0, on 𝜕Ω × [0, 𝑇)
ℐ(𝑢(𝑥, 0), 𝑥) = 0, in Ω

𝑢 𝑥, 𝑡 =? ?

arg𝜃(min ℒ(ො𝑢𝜃 )

ℒ = ඵ

Ω×(0, 𝑇)

𝒟 ො𝑢 2d𝑥 d𝑡 + ඵ

𝜕Ω×(0,𝑇)

ℬ ො𝑢 2d𝑠 d𝑡 + න

Ω

ℐ ො𝑢 2d𝑥

≈

𝑖=0

𝑛

𝒟 ො𝑢(𝑥R, 𝑖 , 𝑡R, 𝑖)
2
+

𝑖=0

𝑛

ℬ ො𝑢(𝑥B, 𝑖 , 𝑡B, 𝑖)
2
+

𝑖=0

𝑛

ℐ ො𝑢(𝑥I,𝑖 , 𝑡I,𝑖)
2

𝑥

𝑡
ො𝑢

𝜃

𝑢 𝑥, 𝑡 ≈ ො𝑢𝜃(𝑥, 𝑡)

neural network as global 

ansatz function for solution

find optimal parameters 

for network

ෝ=
find solution

(𝑥R, 𝑖 , 𝑡R, 𝑖)
(𝑥I,𝑖 , 𝑡I,𝑖)

(𝑥B, 𝑖 , 𝑡B, 𝑖)

calculate partial derivatives with 

automatic differentiation

𝜕𝑥 ො𝑢(𝑥R, 𝑖 , 𝑡R, 𝑖),

𝜕𝑡 ො𝑢(𝑥R, 𝑖 , 𝑡R, 𝑖),

𝜕𝑥 ො𝑢(𝑥B, 𝑖 , 𝑡B, 𝑖), 

…

training
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Unphysical Results with Naive PINN Implementation

Naive/direct PINN 

implementation yields 

unphysical results!

(a)-(b) reference finite volume solution

(c)-(d) naive PINN results
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How to avoid unphysical results? 

▪ From the theory of finite volume methods we 

know that artificial dissipation is necessary to 

stabilize compressible flow simulations

▪ For PINNs we can add a dissipative/viscous 

regularization term to the PDE

▪ Similarly to a simplistic scalar valued artificial 

viscosity in finite volume methods the 

dissipation is locally scaled based on the 

spectral radius of the Euler equations

𝜂 = 𝜈 ⋅ 𝑎 + 𝒒

▪ First, we determine initial 𝜈 empirically and 

reduce during training

2D Compressible Euler Equations with

artificial dissipation:

𝝏𝑾

𝝏𝒕
+
𝝏𝑭𝒙
𝝏𝒙

+
𝝏𝑭𝒚

𝝏𝒚
= 𝜼𝛁𝟐𝐖

𝑾 =

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

, 𝑭𝒙 =

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝐸𝑢

, 𝐅𝐲 =

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝐸𝑣

,
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Initial Results with Global Viscosity

FV reference PINN

Unphysical results can be avoided!

• Accuracy is still relatively low (e.g. slight asymmetries in solution were observed)

• Training time is of the order of multiple hours

• Once trained, evaluation is possible in < 1s

→ What are possible advantages compared to classical solvers besides QC ?
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Extension with Parametric Boundary Conditions

𝑥

𝑦

𝑀∞

𝜌

𝑢

𝑣

𝐸

• For parametric problems the parameter 

can be added to the input space of the NN

• A single PINN is trained in a continuous 

parameter space

→ Talk of Simon Wassing



Solving Transport Equations on Quantum 
Computers
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Solving transport equations on quantum computers
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Goal: Compare performance of Physics-Informed Neural Networks (PINN) and 

its quantum computing analogon, the Physics-Informed Quantum Circuit (PIQC).

Challenge: Very limited availability and access to quantum hardware. 

→ Computations are performed on a simulator

→ Simplistic 1D problems

Outline:
➢ PINNs and PIQCs

➢ Experimental Setup

➢ Results

Stefan Langer, Institute of Aerodynamics and Flow Technology, 01.10.2024



Physics-Informed Neural Network (PINN)
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AD

𝜕𝑡 ො𝑢, 𝜕𝑥 ො𝑢, 𝜕𝑥𝑥 ො𝑢, …

Optimize 𝜃 by minimizing ℒ

ℒ(ෝ𝒖 𝑥, 𝑡 , 𝒙, 𝑡) =

||𝜕𝑡ෝ𝒖 + 𝒟 ෝ𝒖 𝒙, 𝑡 ||2

||ℬ ෝ𝒖 𝒙, 𝑡 , 𝒙, 𝑡 ||2
+

+

Loss

||ℐ ෝ𝒖 𝒙, 0 , 𝒙, 0 ||2

𝒙

𝑡
ෝ𝒖

ෝ𝒖(𝒙, 𝑡, 𝜃)

𝜃

𝜃

𝜃

Boundary Value Problem:

𝜕𝑡𝑢 + 𝒟 𝑢 = 0, in Ω × [0, 𝑇)
ℬ(𝑢 𝑥, 𝑡 , 𝑥, 𝑡) = 0, in 𝜕Ω × [0, 𝑇)
ℐ(𝑢(𝑥, 𝑡), 𝑥, 𝑡) = 0, in Ω

▪ û(𝑥, 𝑡, 𝜃) approximates 

solution 𝑢 𝑥, 𝑡
▪ Loss terms measure the 

agreement with PDE, 

initial cond. ℐ and 

boundary cond. ℬ
▪ Automatic Differentiation 

(AD) is used to calculate 

derivatives in loss

▪ Network parameters 𝜃 are 

optimized based on the 

calculated loss
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Physics-Informed Quantum Circuit (PIQC)
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PSR

𝜕𝑡 ො𝑢, 𝜕𝑥 ො𝑢, 𝜕𝑥𝑥 ො𝑢, …

Optimize 𝜃 by minimizing ℒ

ℒ(ෝ𝒖 𝑥, 𝑡 , 𝒙, 𝑡) =

||𝜕𝑡ෝ𝒖 + 𝒟 ෝ𝒖 𝒙, 𝑡 ||2

||ℬ ෝ𝒖 𝒙, 𝑡 , 𝒙, 𝑡 ||2
+

+

Loss

||ℐ ෝ𝒖 𝒙, 0 , 𝒙, 0 ||2

Boundary Value Problem:

𝜕𝑡𝑢 + 𝒟 𝑢 = 0, in Ω × [0, 𝑇)
ℬ(𝑢 𝑥, 𝑡 , 𝑥, 𝑡) = 0, in 𝜕Ω × [0, 𝑇)
ℐ(𝑢(𝑥, 𝑡), 𝑥, 𝑡) = 0, in Ω

▪ û(𝑥, 𝑡, 𝜃) approximates 

solution 𝑢 𝑥, 𝑡
▪ Loss terms measure the 

agreement with PDE, 

initial cond. ℐ and 

boundary cond. ℬ
▪ Parameter Shift Rule 

(PSR) is used to calculate 

derivatives in loss

▪ Network parameters 𝜃 are 

optimized based on the 

calculated loss

û(𝑥, 𝑡, 𝜃)
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𝑥

𝑡 𝑢 𝑥, 𝑡
𝜕𝑥𝑢
𝜕𝑡𝑢

calculate partial derivatives with 

automatic differentiation

calculate partial derivatives with 

circuit differentiation using shift 

rules

ℒ(𝑢 𝑥, 𝑡 , 𝑥, 𝑡) =

||𝜕𝑡𝑢 + 𝒟 𝑢 𝑥, 𝑡 ||2

||ℬ 𝑢 𝑥, 𝑡 , 𝑥, 𝑡 ||2
+

+

Loss

||ℐ 𝑢 𝑥, 0 , 𝑥, 0 ||2

Train and update the neural 

network

Update the variational 

parameters of the quantum circuit

PINN

PIQC



How we compare Accuracy and Convergence
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▪ Repeating runs for varying quantum 

circuit size and neural network shape

▪ Consider the mean absolute error 𝜀:

𝜀 =
1

𝑁𝑣𝑎𝑙
σ
𝑖=1
𝑁𝑣𝑎𝑙 | ො𝑢𝜃 𝑥𝑖 , 𝑡𝑖 − 𝑢 𝑥𝑖 , 𝑡𝑖 |

▪ Compare PINNs and PIQC by measuring:

1) No. of epochs required to reach a 

threshold value of 𝜀
2) Error 𝜀 reached after set number of 

epochs

▪ Use same optimization parameters (e.g. 

learning rate) for fair comparison



Considered Problems
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𝑑2𝑢

𝑑𝑥2
= 1 𝑥 ∈ [−1, 1]

Problem I: Ordinary Differential Equation Problem II: Linear Transport of a Gauss Pulse

∂𝑢

∂𝑡
+ 𝑐

∂𝑢

∂𝑥
= 0

Initial Conditions:

𝐼 𝑥 = 𝑒−𝑥
2/0.1

𝑥 × 𝑡 ∈ −1, 1 × 0, 0.5
𝑐 = 0.5

Analytical Solution:

𝑢 𝑥, 𝑡 = 𝐼(𝑥 − 𝑐𝑡)

Problem III: Burgers Equation (Non-Linear)

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
= 𝜗

∂2𝑢

∂𝑥2
𝑥 × 𝑡 ∈ −1, 1 × 0, 1

𝜗 = 0.01

Analytical Solution:

𝑢 𝑥, 𝑡 =
𝑥
𝑡+1

1 + 𝑡+1
𝑡0
𝑒

𝑥2

4𝜗(𝑡+1)

𝑡0 = 𝑒
1
8𝜗

Boundary Conditions:

𝑢 𝑥 = −1 = 𝑢 𝑥 = 1 = 0

Analytical Solution:

𝑢 𝑥 =
1

2
(𝑥2 − 1)

𝑡 = 0

𝑡 = 0.45
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Problems I-III can be well represented by 

PINNs and PIQCs



Results: Number of Epochs
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PINN PIQC

▪ Both approaches need < 10 epochs for most runs

▪ PINNs converge slightly faster

▪ PIQCs show clear trend with 𝑛param
▪ PINN has training inconsistencies over 

whole range of 𝑛param

▪ PIQC shows faster convergence as soon as 

𝑛param > 350.

Stefan Langer, Institute of Aerodynamics and Flow Technology, 01.10.2024



Summary

▪ PINNs and PIQCs reach similar accuracies

▪ PIQCs depend more on 𝑛param

▪ PIQCs converge more consistently for problem II & III

▪ PIQCs converge faster for large enough 𝑛param for problem III

▪ The PIQC simulation is very time-consuming, allowing only for simple 

problems

28
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Summary and outlook
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Software and Simulation Framework, availability in SMARTy
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NN Module

PyTorch

Deep learning 

framework

Gradients

&

NNs/circuits

PennyLane

Quantum machine 

learning framework

Loss function

&

Optimization
PyTorch L-BFGS PyTorch L-BFGS

QC Module

The Surrogate Modeling for AeRo data Toolbox Python Package [1]
▪ Capabilities developed in the project are 

available in SMARTy and can be used

▪ Physics-informed Neural Networks

▪ Correction of Coarse Grid 

Solutions

▪ Quantum Circuits

▪ Interactive Workshops on some topics 

have been provided

▪ Reach out to Anna Kiener, Simon 

Wassing or smarty@dlr.de for further 

information

mailto:smarty@dlr.de
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The Future of Aircraft Simulation
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XX.XX.2(0)XX 

I'm sure it will be on a Monday, but 

please don't ask me about the year!

What‘s next?
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ML4PDE ToQuaFlics

The Future of Aircraft Simulation

01.04.2021 – 31.03.2024 01.01.2024 – 31.12.2026

XX.XX.2(0)XX 

I'm sure it will be on a Monday, but 

please don't ask me about the year!

What‘s next?

Funded by

Vorstandsreserve VO-L

Funded by DLR QC-I

32

Many challenges, but

potential is huge



Availability of quantum computers - assumptions in BDLI Roadmap 2021

+5 years (2026): 

First commercial quantum 
computers & hybrid quantum HPC 

methods in use; 

middleware products for hybrid use 
of QC and established optimization 

and AI algorithms exist

+10 years (2031):

NISQ computers (Noisy 
Intermediate-Scale Quantum) 

achieve >100 Qbit; 

low-error QC systems

+15-20 years (2036-
2040):

Error-corrected, universally 
programmable quantum 

computers in commercial use 

Various applications in the 
field of aviation

2021: 
IBM quantum processor
„Eagle“ 127-qubit
2022:
IBM "Osprey“ 433-Qubit

2023: 
• IBM Condor 1.121 qubit
• IBM Heron 133-qubit tunable-coupler QPU (eliminates crosstalk 

errors)
• IBM Quantum System Two (modular utility-scaled quantum

computer system)

2029-2033:
fully error-corrected systems, capable of running 
100 million operations in a single quantum circuit 
in 2029, and a billion operations by 2033 (100,000 
physical qubits form 2,000 logical qubits)

Reality check: IBM roadmap:

33
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Goals of the project

▪ Perspective how to exploit potential of quantum computers for applications in 

aerodynamics

▪ Identification which parts of a solution algorithm can gain from bringing it on 

a quantum computer

▪ Estimate how many QuBits are required to solve relevant test cases

representing industrial problems

▪ Investigation of error propagation in Quantum algorithms to formulate

requirements on accuracy for hardware

34 Stefan Langer, Institute of Aerodynamics and Flow Technology, 01.10.2024
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Thank you for your attention!

📧 stefan.langer@dlr.de
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