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Prolonging a discrete time crystal by quantum-classical feedback
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Nonequilibrium phases of quantum matter featuring time crystalline eigenstate order have been realized re-
cently on noisy intermediate-scale quantum (NISQ) devices. While ideal quantum time crystals exhibit collective
subharmonic oscillations and spatiotemporal long-range order persisting for infinite times, the decoherence time
of current NISQ devices sets a natural limit to the survival of these phases, restricting their observation to a
shallow quantum circuit. Here we propose a time-periodic scheme that leverages quantum-classical feedback
protocols in subregions of the system to enhance a time crystal signal significantly exceeding the decoherence
time of the device. As a case of study, we demonstrate the survival of the many-body localized discrete time
crystal phase in the one-dimensional periodically kicked Ising model, accounting for decoherence of the system
with an environment. Based on classical simulation of quantum circuit realizations we find that this approach is
suitable for implementation on existing quantum hardware and presents a prospective path to simulate complex
quantum many-body dynamics that transcend the low depth limit of current digital quantum computers.

DOI: 10.1103/PhysRevResearch.6.033092

I. INTRODUCTION

The exploration of nonequilibrium phases of matter has be-
come a central focus in current many-body physics research,
attracting significant attention and driving numerous research
endeavors [1,2]. The fast development in the field has been
motivated by the stunning degree of control achieved in exper-
imental settings involving trapped ions [3,4], ultracold atoms
[5,6], light-induced superconductors [7] and ultrafast topol-
ogy switching [8], to name a few. More recently, the growing
interest on making use of available noisy-intermediate scale
quantum (NISQ) devices [9] has opened the path for intensive
research in the field of digital quantum simulation applied to
complex nonequilibrium phenomena.

Understanding the capabilities of current digital quantum
simulators for realizing nonequilibrium phases of matter is
a problem on demand [10–15]. It is widely accepted that
NISQ devices suffer from a major limitation to perform quan-
tum computations due to their intrinsic decoherence times.
In digital quantum. simulation, where the study of many-
body quantum dynamics is based on generic Trotterization
schemes, this translates into a pronounced loss of fidelity as
the number of gates composing a quantum circuit is increased
[16,17]. These findings naturally lead to questions about the
potential of NISQ machines beyond the constraints of low
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circuit depth, particularly in terms of simulating quantum
many-body systems and detecting emergent phases of matter
that are out of equilibrium.

Recent experiments performed on quantum computers sug-
gest that error mitigation techniques can successfully push
the applicability of current NISQ devices to perform quantum
simulations [18], while the long-term goal for achieving full
quantum error correction [19] is still under investigation. In
parallel, research has been conducted in the field of monitored
quantum dynamics [14] to understand how the application
of local measurement operations affects the evolution of a
quantum system, particularly concerning its entanglement dy-
namics [20–32]. A less-explored approach in this domain is
to employ the outcomes obtained from measurements to con-
struct feedback protocols that steer the evolution in a desired
direction. Such quantum-classical feedback schemes are be-
ginning to be considered in superconducting qubit platforms
as a way to improve current qubit fidelities [33]. Along these
lines, we pose the following question: Can we use in-circuit
quantum-classical feedback protocols to simulate quantum
many-body dynamics beyond the intrinsic decoherence time
of the device?

To address this question, we look at an example of a
genuine nonequilibrium phase of matter implementable on
a quantum device [34]; the quantum time crystals [35–38].
These systems have been observed recently in experiments
to feature spontaneous symmetry breaking of time translation
either in a continuous [39,40] or in a discrete fashion [41–58],
the discrete case corresponding to the so-called discrete time
crystals (DTC) [59–64]. DTC manifest emergent spatiotem-
poral long-range order, and an overall subharmonic response
with infinitely long-lived oscillations [37,38,59–85] in the
presence of an external drive. In disordered and interacting
systems, the combination of many-body localization (MBL)
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FIG. 1. Quantum-classical feedback scheme for the stabilization of an MBL-DTC on a quantum computer. (a) Quantum circuit realization
for a chain of L = 8 qubits. At initialization, an arbitrary product state with factorized density matrix ρ0 is prepared in the computational basis.
The evolution of the state is studied under three different protocols (i), (ii), and (iii), with each protocol step containing different layers. The
layers are applied in a periodic fashion during n steps (circuit depth). We distinguish three different layers: a unitary layer UF , a dissipative
layer in the form of a quantum channel �, and a nonunitary layer composed of a measurement M and a correction C operation, highlighted
in gray background. For the measurement operation M, a domain wall of M qubits at an arbitrary position along the chain is measured in
the z basis; M = 3 in the example. Measurement outcomes are recorded and processed classically to compute the correlation matrix between
all measured qubits Cn(i, j), which is compared with its value at initialization C0(i, j) for the same subset of qubits forming the domain wall.
The qubit experiencing the most sign flips is identified and corrected. (b) A discrete time crystal (DTC) responds subharmonically in the
presence of a external drive. The DTC can be regarded as an infinitely extended spatiotemporal lattice with period-doubled oscillations along
the time dimension, with arbitrary couplings Jj and local fields hj in space (different colors represent different coupling and field strengths).
(c) The three different time-evolution protocols: (i) a closed quantum system, (ii) an open quantum system, and (iii) an open quantum system
subjected to a measurement and a correction operation M and C, respectively. In the panels, we show the time evolution for the z-projection
magnetization of the qubits 〈σ z

j 〉, for a single realization of the circuit with L = 12, M = 3 in (a) under protocols (i), (ii), and (iii).

[86–89] and DTC has resulted in the emergence of a genuine
nonequilibrium phase of matter in the framework of eigenstate
order [61,90–92]; the resulting phase has been termed a many-
body localized discrete time crystal (MBL-DTC) [34,59,60].
The existence of the MBL-DTC has been supported by ex-
periment [93] and its recent realization on NISQ hardware
[94,95]. However, due to decoherence effects experienced by
the qubits forming a quantum circuit, the MBL-DTC has been
observed only for a few number of cycles on NISQ computers.
It is indeed expected that when the system is coupled to a
Markovian environment, the overall subharmonic response
characterizing the DTC phase gets eventually lost. Under-
standing the general conditions under which DTC phases
might survive in open quantum systems is still a subject of
intensive research [96–102].

In this work, we propose a stabilization protocol di-
rectly implementable in quantum circuits, that combines

measurements on the system with a classical error correction
code. The protocol is based on the periodic application of
projective measurements in randomly located domain walls
across subregions of the system, with the in-circuit classical
computation of correlations taking place after a measurement
event. More explicitly, we employ a correction scheme that
identifies single-qubit flips based on the construction of the
correlation matrix of measurement outcomes and the compari-
son with its value at initialization. The outcome obtained from
the classical processing is then employed to determine the tar-
get qubit undergoing a correction operation [see Fig. 1(a) and
Appendix A 5 for details on the specific correction protocol
employed].

We focus on the particular case of the MBL-DTC phase
recently observed in Ref. [94], and whose model is schemat-
ically represented in Fig. 1(b). We test and verify our
scheme employing classical simulation of quantum circuits
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realizations, comparing the unitary protocol (i), the open
quantum system (ii), and the stabilization protocol in the open
system (iii), all of which are represented in Fig. 1(c).

II. MODEL AND PROTOCOL

As a typical example for an MBL-DTC we consider the
one-dimensional periodically kicked Ising model. The model
consists of a one-dimensional chain of L qubits with open
boundary conditions and nearest-neighbor interactions, sub-
jected to an external periodic drive of period T . The Floquet
unitary operator has the form [34,60,94,95]:

UF = e−i T
4

∑L−1
j=1 Jjσ

z
j σ

z
j+1 e−i T

2

∑L
j=1 h jσ

z
j e−i πg

2 T
∑L

j=1 σ x
j , (1)

where σ x
j , σ

z
j are the x, z Pauli matrices at site j of the chain,

respectively. The parameter T represents the Floquet period
of the external drive, which we set to T = 1. The parameter
g is the pulse parameter, with g = 1 representing a perfect π

pulse on the Bloch sphere. The coupling parameters Jj and the
magnetic fields h j are randomly sampled from uniform dis-
tributions [94] with Jj ∈ [−1.5π,−0.5π ] and h j ∈ [−π, π ].
With this choice of the parameters, the model in Eq. (1)
is exactly equivalent to the one in Ref. [94] and has been
implemented recently on NISQ hardware [94,95]. The model
has three different phases (paramagnetic, thermal, and MBL-
DTC) depending on the values of g [34]; here we focus on the
MBL-DTC phase of the model, which has been reported to
exist for values of g � 0.82 [34,94].

Protocol (i) corresponds to unitary evolution of the state
in a closed quantum system. For protocols (ii) and (iii), we
assume that the system is open and coupled to a dissipative
Markovian environment modelled as a quantum channel �

depending on a single noise parameter p (see Appendix A 3
for details on the noise model employed). The coherent errors
that might take place on a real setup can generally be mapped
to incoherent error models through the Kraus formalism in
the spirit of Ref. [103]. We thus assume here an incoherent
noise model, noting that the application of more sophisti-
cated and realistic noise models are possible by employing
such approaches. All time-evolution protocols are carried out
employing tensor networks and by representing the state of
the system as a matrix product density operator (MPDO), see
Appendices A 1, B 4 and B 5 for details. Due to the existence
of an infinite number of local conservation laws [88,104],
closed systems featuring MBL effects generically obey an
unbounded logarithmic growth of the entanglement entropy
[105,106] in the thermodynamic limit. For a one-dimensional
system, such area-law behavior of entanglement translates
into an efficient representation of these systems employing
matrix product state (MPS) methods [107].

III. RESULTS

A. Stabilization for different initial states

Characterizing a true MBL-DTC phase requires indepen-
dent results regardless of the choice of any initial product state
[34,37]. Here we study the time evolution of the model in
Eq. (1) under protocols (i), (ii), and (iii) for a set of different
initially prepared product states: the Néel state |10〉⊗L/2, the

zeros state |0〉⊗L, the wall state |1〉⊗L/2|0〉⊗L/2, and a random
bit-string |random〉.

Our first observation is that results are independent of
the initial preparation of the state. In Fig. 2(a), we have
represented the disorder averaged magnetization for the four
product states considered. The application of protocol (iii)
leads to an overall restoring of the MBL-DTC phase in all
cases, which is otherwise rapidly lost under protocol (ii) due
to repeated action of the quantum channel [34] at each step
n. This is our main result: The correction scheme enhances
the subharmonic response beyond the intrinsic decoherence
time of the device. We note that with the proposed correction
scheme in protocol (iii), qubits located at the edges of any
finite chain have a lower probability of correction than qubits
deep in the bulk, an effect that is appreciated in Fig. 2(a).
This effect is due to the open boundary conditions employed
in the correction protocol (iii), for which an edge qubit has
a probability 1/(L − M ) of being part of a domain wall. On
the other hand, bulk qubits have a probability of M/(L − M )
of belonging to a randomly located domain wall and thus of
being corrected. This effect is expected to be absent for bigger
system sizes, i.e., when addressing the thermodynamic limit.

In order to quantify the effect of the correction scheme
onto the subharmonic response, we show in Fig. 2(b) the
spatially and disorder averaged autocorrelation 〈〈C(n)〉〉 (see
Appendix A 6). Employing protocol (iii) greatly enhances the
subharmonic response of the system when compared to the
pure dissipative case of protocol (ii). The qubit-qubit correla-
tions between the midchain qubit and the rightmost qubit of
the chain have been represented in Fig. 2(c). The results for
protocol (iii) show a saturation to a finite value for increasing
number of steps, a behavior in accordance with the unitary
protocol (i), independent of the initial state.

To further investigate the robustness of the results with
respect to different initial (product states) preparations, we
proceed to calculate the Edwards-Anderson spin-glass order
parameter χSG. This extensive quantity identifies the amount
of spatial spin-glass order developing in the system. As the
initial condition, we prepare a set of random product states in
the computational basis, keeping the same values for L, p, and
M in all cases.

The spin-glass order parameter is represented in Fig. 3. In
accordance with previous results [94], protocol (i) shows a
clear transition from the thermal to the MBL-DTC phase of
model Eq. (1), when averaged over different initial (short-
ranged) states and different disorder realizations. Under
protocol (ii), glassy spatial order is absent for the considered
noise model due to decoherence, showing a value χSG ∼ 1.
The application of protocol (iii) shows a restoring of the χSG

order parameter to values indicating a high degree of spatial
correlation between qubits, i.e., the appearance of glassy spa-
tial patterns as in the unitary case of protocol (i). Tuning the
value of g towards the thermal phase becomes computation-
ally expensive due to the growth of entanglement; thus, we
limit ourselves to results with g � 0.9.

B. Scaling and relevance of the correction scheme

A key question to address concerns the scaling of protocol
(iii) with increasing system size L and noise level p, as well

033092-3



GONZALO CAMACHO AND BENEDIKT FAUSEWEH PHYSICAL REVIEW RESEARCH 6, 033092 (2024)

FIG. 2. Time-evolution simulation for different initial product states. The system size is fixed to L = 24 sites, g = 0.97, p = 0.025
[protocols (ii) and (iii)], employing a total of 80 steps on each protocol, and results are averaged over Ndis = 1280 disorder realizations in
all cases, with (b) and (c) only showing data for the initial state |10〉⊗L/2. The domain wall size in protocol (iii) is fixed to M = 6 qubits, where
at most one of them experiences a correction [see Fig. 1(a) and Appendices A 4 and A 5 for details]. (a) The disorder averaged magnetization
for the four different initial states (columns), for the three different time-evolution protocols (rows), for different qubit positions and time
steps n. (b) Disorder and spatially averaged autocorrelation. Legends correspond to those in (c). (c) The qubit-qubit correlations along the z
projection, between the qubit in the middle of the chain and that located at the rightmost edge.

as the verification of the relevant role played by the correction
scheme in the observed behavior. Hence, we prepare the initial
state to |10〉⊗L/2, studying variations of the L and p param-
eters, as well as a different number of qubits undergoing a
correction operation.

In Figs. 4(a) and 4(b) [Figs. 4(c) and 4(d)], we repre-
sent the autocorrelation (the qubit-qubit correlation) for two
different noise levels. With increasing system size, we ob-
serve that for moderate noise levels p = 0.025, employing
the correction protocol leads to robust subharmonic response
and stabilization of correlations compared to protocol (ii).
The enhancement of correlations in the p = 0.025 case is a
consequence of the specific design of the correction scheme
employed in protocol (iii), which relies on the classical pro-
cessing of the correlation matrix between qubits forming the
domain wall. As the correlation matrix increases its size, the

identification of a defective qubit based on the total number
of sign flips becomes more accurate (see Appendix A 5 for
details on the correction protocol). The finite value of corre-
lations between qubits indicates a restoring of spatial order.
For strong noise p = 0.1, we observe that protocol (iii) is
incapable of overcoming noise, and the system evolves very
close to the dissipative case in protocol (ii).

In Figs. 4(e) and 4(f), we observe a pronounced growth
of the midchain operator entanglement entropy (see Ap-
pendix A 6 section for the definition of this quantity) for the
two noise levels of p under protocol (ii). The application
of protocol (iii) leads to an overall slow growth in the dy-
namics of entanglement, with the case p = 0.025 showing
closer behavior to the unitary case. We note that the employed
correction scheme does not lead to a complete saturation of
entanglement in any case. In Figs. 4(g) and 4(h) we include
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FIG. 3. Glassy spatial order enhancement. The spin-glass order
parameter χSG as a function of the pulse parameter g, obtained by
averaging over random initial product states and disorder realizations
for L = 24 qubits, and p = 0.025 for protocols (ii) and (iii). We
generate a total of Ndis = 1280 disorder realizations for all protocols.
Following Ref. [94], we employ a total of 60 time steps. χSG is
obtained by averaging the values between steps 48 and 60. The
horizontal dashed line corresponds to χSG = 1. The straight line
joining data points in protocol (i) has been included as a guide to
the eye.

statistics on the single-qubit probability of correction under
protocol (iii). Increasing the value of the noise level leads to
a higher probability of correction, with all curves saturating
to finite values in the long-time limit. The relation between
saturation values for the correction probability and system
size for both noise levels is included in the inset in Fig. 4(g).
For moderate values of p, the probability eventually stabilizes
to a finite value dependent on the system size L, with bigger
L showing higher correction probabilities, as expected due
to the increased possibility of detecting a bit-flip event after
measuring bigger domain walls.

The results indicate that the correction scheme in protocol
(iii) is able to correct to a certain degree erroneous outcomes
of the qubits experiencing a measurement operation M. In the
context of monitored quantum dynamics in random circuits
with repeated local measurements, a field where quantum-
classical feedback remains uncharted [14], we now seek to
address whether the measurement operations in M alone can
restore the subharmonic response without the necessity of
a correction scheme. To further verify that the restoring of
the DTC behavior takes place due to the applied correction
scheme, we have represented in Fig. 5 the autocorrelation
and the qubit-qubit correlations for protocol (iii) employing
a different number of corrected qubits in C. We observe that
the absence of a correction protocol (zero corrected qubits) is
not enough to restore the subharmonic response of the system,
i.e., local measurement operations M alone do not on average
preserve the MBL-DTC phase. Moreover, we observe that the
repeated application of measurements alone lead to a slightly
faster decay than in the pure dissipative case of protocol (ii);
compare Fig. 4(a). In contrast, the composed operation C ◦ M

with at least one corrected qubit in C is able to partially restore
the subharmonic response of the system. We conclude that the
correction scheme employed here outperforms a pure Zeno
effect in the presence of dissipation.

C. Long-time limit

Here we address the question of the survival of the MBL-
DTC under protocol (iii) in the large circuit depth limit, under
the tuning of several parameters, namely the system size, the
noise level, and the pulse parameter.

In Figs. 6(a) and 6(b) we have represented the absolute
value for both the autocorrelation and the qubit-qubit correla-
tion function for different system sizes and domain wall sizes.
We observe that under protocol (iii), there is a pronounced
enhancement of the subharmonic response of the system, with
a much slower decay in 〈〈C(n)〉〉 with increasing value of the
domain wall M, confirming that the proposed correction pro-
tocol is able to accurately identify qubit flips that destroy the
subharmonic pattern following a local measurement operation
for a noise level p = 0.01.

In Figs. 6(c) and 6(d) we report results for the long-time
behavior under variations of the parameters p and g, fixing the
system and domain wall sizes. For a noise level of p = 0.01,
protocol (iii) is able to restore spatiotemporal order for times
way beyond the decoherence scale in the model, with increas-
ing values of p posing a strong limitation in the application
of the correction protocol. The tuning of g towards values
approaching the thermal region plays a minor role compared
to the effect of noise.

The results in Fig. 6 indicate that even in the presence of
small noise, the protocol approaches the classical limit at the
point g = 1, where perfect subharmonic response is expected,
but no quantum entanglement develops in the system. This
occurs as a consequence of the application of local projective
measurements in protocol (iii), leading to an overall decrease
of entanglement of the state evolution, while at the same time
increasing the purity.

IV. DISCUSSION

In this work, we have proposed a scheme to overcome
dissipation effects in the MBL-DTC phase recently observed
in NISQ devices [94,95]. Our approach is based on the ap-
plication of a periodic quantum-classical feedback protocol,
where single-qubit correction based on classical processing
of measurement outcomes is able to enhance spatiotemporal
order, eventually restoring the discrete time crystal signal well
beyond the decoherence time of the device. We demonstrate
the capabilities of the protocol by systematically investigating
the dependence on initial state, system size, and noise level,
while addressing the question of how do feedback schemes
based on local projective measurements affect the monitored
dynamics of open quantum systems [14].

The increase in the subharmonic response with increasing
system size, Fig. 6, suggests a complete stabilization of the
MBL-DTC in the thermodynamic limit. This cannot be proven
rigorously with the system sizes we can simulate classically.
Demonstrating the stabilization effect on a real NISQ de-
vice therefore presents a rare opportunity to obtain a deeper
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FIG. 4. System-size scaling and noise dependence. Comparison of the different time-evolution protocols starting from the initial state
|10〉⊗L/2 for g = 0.97 and p = 0.025, 0.1 and different system sizes L. All results were obtained averaging over Ndis = 5120 disorder
realizations. Straight lines between data points in all figures are included as a guide to the eye. [(a) and (b)] The spatially and disordered
averaged autocorrelation at stroboscopic times. [(c) and (d)] The qubit-qubit correlations between the midchain qubit and the qubit located
at the rightmost edge of the chain. [(e) and (f)] The midchain operator entanglement entropy (see Appendix A 6). Under protocol (iii), the
measurement protocol operations lead to an overall slow growth of the operator entanglement entropy. [(g) and (h)] Probability of performing
a single-qubit correction under protocol (iii), for different system sizes and noise levels. The inset in (g) shows the values marked by the dashed
lines as a function of 1/L for the two noise levels considered.

understanding about quantum many-body dynamics from a
digital quantum computer.

There are several directions and extensions that can be
explored using similar stabilizing schemes. From the theory
perspective of DTC, we motivate further studies that em-
ploy more sophisticated noise models, different measurement
schemes, and alternative classical (or quantum) error correc-
tion protocols, all in the context of how spatiotemporal order

gets affected by such local controlled operations. We believe
that a particularly interesting question to address concerns the
extension of the method to multiqubit correction schemes em-
ploying more than a single domain wall in the measurement
process. Providing further insight from a fundamental point
of view in order to better understand the observed collective
behavior is also highly desirable, particularly regarding the
general conditions necessary for the observation of discrete

FIG. 5. Verification of enhancement due to correction scheme: autocorrelation (a) and qubit-qubit correlations (b) for L = 24, g = 0.97,
p = 0.025, M = 6, and Ndis = 5120 samples for protocol (iii) when a different number of qubits are corrected under the operation C. The
absence of the correction protocol C (i.e., the case with zero corrected qubits) does not lead to an enhancement of subharmonic response, with
both spatial and temporal correlations showing a rapid decay.
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FIG. 6. Long-time limit under different tuning of parameters. [(a) and (b)] Absolute value of (a) the autocorrelation and (b) the qubit-qubit
correlation function, for different L, M, g = 0.97, p = 0.01, and a total of 300 time steps. Data corresponding to protocol (iii) was averaged over
Ndis = 1280 disorder realizations; for protocol (ii), results are averaged over Ndis = 256 for 80 time steps and L = 24. For protocol (iii), data
markers have been included every 10 time steps. The inset in (a) shows the subharmonic oscillations obtained for 〈〈C(n)〉〉 in the cases M = 3
(orange) and M = 6 (purple) under protocol (iii). Legend labels in (b) apply to (a). [(c) and (d)] Absolute value of (c) the autocorrelation and
(d) the qubit correlation function under protocol (iii), for L = 24, M = 6, averaging over Ndis = 1280 disorder realizations, for different values
of g and p. Data markers have been included every 10 steps. The inset in (d) shows the subharmonic response obtained in the autocorrelation
in (c) for the cases p = 0.05, g = 0.99 (purple) and p = 0.01, g = 0.97 (orange). Legend labels in (c) apply to (d).

time crystals in more general open quantum systems [38,96].
In this case achieving full control over the phase is essen-
tial for developing efficient and long-lived quantum memory
devices.

Due to its conceptual design the approach is suitable for
immediate implementation on current quantum hardware. The
correction protocol discussed in this work needs sufficient
idle times in the qubits in order to perform the readout and
classical processing following a projective measurement. We
note that such functionality is at the heart of quantum er-
ror correction schemes, constituting a very active area of
research regarding improved coherence qubit times [33]. In
superconducting qubit platforms [108] as well as trapped
ion platforms [109], employing feedback schemes is now
possible, making our protocol feasible in state-of-the-art
devices.

A potential application concerns the stabilization of phases
of quantum matter in digital quantum devices, where the
use of current NISQ devices finds strong limitations due to
decoherence processes. An interesting direction concerns the

investigation of related in-circuit feedback protocols in the
simulation of diverse many-body quantum systems, in
particular regarding the study of recently realized
measurement-induced quantum phases in trapped ion
quantum computers [110]. We highlight the potential
application of these methods in simulating quantum systems
defined in higher-dimensional spaces, with qudit-based
processors [111] standing out as candidates where such
stabilization protocols could lead to the observation of novel
out of equilibrium phases of quantum matter.

The data supporting the findings of this study are available
from Zenodo [112] and also on request from the correspond-
ing author.
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APPENDIX A

1. Matrix Product Density Operators (MPDO)

We represent the state of the system ρ in terms of a finite
number of variational parameters, in the form of a MPDO
[114,115]:

ρ =
∑

σ1,σ
′
1,...,σN ,σ ′

N

Mσ1σ
′
1 · · · MσN σ ′

N ,

M
σ jσ

′
j

D j Dj+1
=

K∑
r=1

A
σ j ,r
χ jχ j+1 ⊗ Ā

σ ′
j ,r

χ ′
jχ

′
j+1

, (A1)

where the matrices Mσ1σ1′
Dj Dj+1

have dimensions Dj = χ jχ
′
j and

Dj+1 = χ j+1χ
′
j+1, with r representing an auxiliary space

index. To carry out the time evolution of the state, we em-
ploy the time evolving block decimation (TEBD) method
[115–119] extended to open quantum systems, in the spirit
of Ref. [120], where local updates of the tensor ρ are per-
formed employing a series of singular value decompositions
(SVD). The dimension χ plays the role of the bond dimension
employed in the unitary evolution of MPS [115]. The error
on SVD decompositions after application of unitary entan-
gling gates is controlled by a TEBD tolerance parameter ε.
We increase dynamically the value of the bond dimension
χ whenever the tolerance ε is exceeded after every SVD
decomposition.

The dimension K , which is identified with the Kraus
dimension of the channel, generally grows as a result of
subsequent SVD decompositions [120,121] performed in the
auxiliary indices. On application of a nonunitary gate, only
the lowest K singular values are retained. Thus, there are
two main sources of error, one associated with the growth
of entanglement in the system, and one associated with the
statistical noise error due to the channel employed. For the
data displayed in the main text, we fix ε = 10−4, K = 10. We
have checked that choosing smaller (larger) values of ε (K) do
not affect the results in a significant way (see Appendix B 4).
As a technical detail, projective measurement operations are
realized as nonunitary local quantum gates, which are known
to destroy the Schmidt decomposition in the standard TEBD
method [116]. This can be overcome by the application of
identity operations sweeping across the chain, in analogy
with the approach followed in the imaginary time-evolution
TEBD.

2. State initialization and time-evolution protocols

Any initially prepared state is represented by a product
state with factorized density matrix ρ0 in the computational
basis:

ρ0 = ρ1 ⊗ ... ⊗ ρ j ⊗ ... ⊗ ρL,

ρ j = |0〉〈0| ∨ |1〉〈1|. (A2)

To study disorder ensembles with different couplings in
Eq. (1), we generate a total of Ndis disorder realizations, each
realization corresponding to a different circuit of the form
represented in Fig. 1(a) and having its own initial state ρ0.
We study each disorder realization independently, with results
being averaged over all disordered samples in the end. Note

that for a single realization of the coupling parameters, any
measurements carried out in real quantum hardware would
need to be repeated several times for those same values of
the couplings in order to reduce shot noise.

We focus on the time evolution of the state ρ at strobo-
scopic times n under three different time-evolution protocols
schematically represented in Fig. 1(c) in the main text.

In protocol (i), the system is closed, and the unitary evo-
lution is carried out by direct action of the Floquet unitary
UF . In protocol (ii) the system is open, and we model deco-
herence effects in the system by applying a dissipation layer
� immediately after the action of the unitary layer UF , with
each qubit experiencing a quantum channel. The full quantum
channel acts over the state as a mapping �(ρ) chosen to
be a completely positive and trace-preserving map (CPTP).
Under protocol (iii), the dissipative layer is followed by the
application of a nonunitary layer formed by a measurement
operation M on a subset of the qubits, which is chosen to
be a domain wall of size M that is randomly located at any
time step n. The second operation C consists of a (classical)
correction protocol where the outcome of the measured qubits
is processed in a classical way (see the correction operation
section below).

The three different time-evolution protocols and their cor-
responding operations over the state of the system at a given
time step n are as follows:

(1) Unitary evolution of the state:

ρn = U n
F ρ0(U †

F )n.

(2) Unitary step followed by quantum channel �:

ρn = �(UF ρn−1U
†
F ).

(3) Unitary step, followed by quantum channel �, mea-
surement M and a correction operation C:

ρn = C ◦ M ◦ �(UF ρn−1U
†
F ).

Note that the order of operations is taken from right to left,
with each composed operation taking place at any step n.

3. Dissipative layer

We focus on arguably one of the simplest noise channel to
represent the dissipative layer �, namely the bit-flip channel.
We consider that each of the qubits experiences a bit-flip
channel immediately after application of the Floquet unitary
[see Fig. 1(a) in the main text]. This noise model assumes
only local decoherence effects in the qubits. For the DTC
considered in this work, the assumption of local bit-flip effects
is a natural choice; however, extensions of the method to more
realistic noise models is straightforward.

The quantum channel is described by a CPTP map �,
whose action over the state ρ is represented by a set of Q
Kraus operators Ki:

�(ρ) =
Q−1∑
i=0

KiρK†
i ,

∑
i

K†
i Ki = I, (A3)

where I is the identity matrix. The single-qubit bit-flip channel
depends on a single noise parameter p, and it is defined by two
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Kraus operators:

K0 =
√

1 − pI, K1 = √
pσ x. (A4)

This quantum channel corresponds to a bit-flip occurring with
probability p on each qubit. Since all qubits experience a local
bit-flip channel in our case, this translates into a set of Q = 2L

Kraus operators by virtue of Eq. (A3). For single-qubit gates,
current technology estimates [34] of the noise parameter are
p ∼ 10−3.

Further generalizations for the noise models to be em-
ployed are possible. We have included the case of a fully
depolarizing channel model in Appendix B 3.

4. Measurement operation

A set of M < L qubits forming the domain wall are mea-
sured at a given time step n under the action of the M
operation. Calling x(n)

0 the coordinate of the leftmost qubit
forming the domain wall at time step n, the domain wall
indices at that time step is given by the set of integers:

S (n) = {
x(n)

0 , x(n)
0 + 1, . . . , x(n)

0 + M − 1
}
. (A5)

Note that the domain wall S (n) is dynamic and changes coor-
dinates at any time step n in a random fashion.

We distinguish between two different projective measure-
ment protocols, each represented by projectors P̂0 and P̂1 in
the computational basis:

P̂0 = |0〉〈0|, P̂1 = |1〉〈1|. (A6)

To simulate a measurement operation at time step n, we pro-
ceed as follows: For a selected qubit with index i ∈ S (n), we
calculate the expectation value of the z component of the Pauli
matrix at that particular qubit location 〈σ z

i 〉 ∈ [−1, 1]. We

define mi = 1−〈σ z
i 〉

2 , and generate a random number ri ∈ [0, 1]
from a uniform distribution. If ri > mi, then we apply the
measurement protocol with P̂0, simulating a collapse of the
qubit over the |0〉 state; otherwise, we employ the protocol
with P̂1, simulating a collapse over the |1〉 state. For each dis-
order realization we then follow the trajectory of measurement
outcomes that is determined by the generated random num-
bers. Note that these operations are nonunitary. The resulting
measurement outcomes are recorded into a classical register
with M values, where each value being either +1 or −1 for
any index in S (n). The measurement values are recorded into
an M-entry vector:

�v(n) = (σx0 , σx0+1, . . . , σx0+M−1)|σ j ∈ {+1,−1},
σ j ∈ {+1,−1} j ∈ S (n). (A7)

Note that the vector depends implicitly on the coordinates of
the domain wall. For that particular domain wall indices set,
there is an associated vector at initialization, �v(n = 0), which
is known from the initial preparation of the product state. The
above measurement procedure is repeated at any time step n
and with the associated domain wall S (n).

5. Correction operation

Here we present the correction operation C. Due to the
probabilistic nature of a measurement, the value obtained for a

given qubit might be erroneous (i.e., it breaks the subharmonic
response pattern characterizing the DTC). To overcome this,
the correction protocol C is applied immediately after the
measurement operation M, with C being solely based on the
initial-state configuration ρ0 and the obtained measurement
outcomes at the time step n; we refer again to Fig. 1(a) for a
schematic representation of this operation.

The initial correlation matrix between qubits at positions
given by S (n) is known at time n = 0, and it is defined as the
outer product of the associated vector at initialization:

C0(i, j) = �v(0) ⊗ �v(0), i, j ∈ S (n). (A8)

The associated correlation matrix of the recorded outcomes
for the domain wall S (n) at time n is

Cn(i, j) = �v(n) ⊗ �v(n), i, j ∈ S (n). (A9)

Both matrices, which are the result of a classical computation,
are compared by their element-wise product:

δi j (n) = int
(

1
2 (Ji j − C0(i, j) ∗ Cn(i, j))

)
, (A10)

where int represents the integer part, Ji j is the matrix of ones
of dimension M × M, and ∗ indicates element-wise multipli-
cation. Note that δi j (n) is a real, symmetric matrix with integer
entries. In the case where noise levels are moderate and we are
deep in the DTC phase with g ∼ 1, it is expected that repeated
measurements yield entries for �v(n) that follow the subhar-
monic pattern characterizing the MBL-DTC phase. Thus, we
mask those elements that do not experience a sign change in
the components δi j (n). This way, the nonzero entries of the
matrix correspond to qubits experiencing a sign flip respect to
C0(i, j). We define the position of the qubit to be corrected at
that time step n as i(n), given by:

i(n) = max

( ∑
j

δi j (n)

)
. (A11)

Unless otherwise stated, we correct one qubit out of the total
M measured qubits forming the domain wall. If more than
one qubit is corrected, then the indices follow the criteria
employed in Eq. (A11) from bigger to smaller values of i(n).

6. Observables

We identify the relevant observables that characterize the
MBL-DTC phase following Refs. [34,37]. We represent a
spatially and disordered averaged operator by a double angle
bracket. For any operator that can be decomposed as a sum of
local terms O = ∑L

j=1 O j , the averaging over L lattice sites
and Ndis disorder realizations at stroboscopic times n is given
by:

〈〈O(n)〉〉 = 1

LNdis

L∑
j=1

Ndis∑
m=1

tr
(
O jρ

(m)
n

)

:= 1

LNdis

L∑
j=1

Ndis∑
m=1

〈O j〉ρ (m)
n

, (A12)

where tr denotes the trace and ρ (m)
n represents the state of the

system for the mth disorder realization of the circuit at time
step n.
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A quantity of experimental relevance
[39,41,42,44,94,95,122] to describe the DTC phase is the
spatially and disorder averaged autocorrelation, defined by:

〈〈C(n)〉〉 = 〈〈σ z(0)σ z(n)〉〉. (A13)

The disorder averaged, equal-time qubit-qubit correlations
between qubits at positions L/2 and L of the chain is given by:

∣∣〈σ z
L/2σ

z
L

〉∣∣(n) = 1

Ndis

Ndis∑
m=1

∣∣〈σ z
L/2σ

z
L

〉
ρ

(m)
n

∣∣. (A14)

A quantity of relevance to determine the existence of glassy
spatial patterns is the Edwards-Anderson spin-glass order
parameter [34,94]:

χSG = 1

L

∑
i, j

〈
σ z

i σ z
j

〉2
. (A15)

This parameter is averaged over the total number of disorder
realizations Ndis.

The midchain entanglement entropy measures the amount
of entanglement for a bipartition of the system into two equal
size subregions A, B. Averaged over disorder realizations, it is
given at stroboscopic times n by:

SL/2(n) = 1

Ndis

Ndis∑
m=1

tr
( − ρ

(m)
n,A ln ρ

(m)
n,A

)
,

ρA = trBρ. (A16)

For pure states, this quantity can be computed easily by
representing the state as a MPS in canonical form [115,116]
(inner sums indicating contractions are implied):

|ψ〉 = 
σ1�1 · · ·
σL/2�L/2

σL/2+1 · · · �L−1


σL . (A17)

The entanglement entropy of the bipartition in this case is
associated with the singular values encoded in �L/2 as:

Sunitary
L/2 (n) = −tr

(
�2

L/2 log �2
L/2

)
. (A18)

For mixed states represented by a MPDO, calculating the
entanglement of the bipartition poses a challenging computa-
tional task [123,124]. Since local updates of the MPDO only
occur in the A

σ j ,r
χ jχ j+1 in Eq. (A1), we associate, in analogy

with the unitary case, all updates of singular values in the
middle bond of the chain as a measure of quantum correlations
in the state, i.e., as a measure to characterize entanglement
dynamics in the MPDO. We therefore extend the definition of
entanglement to mixed states, with the midchain entanglement
entropy in Eq. (A18) corresponding to the limiting case under
unitary evolution for pure states. We call this generalization
the operator entanglement entropy. We stress that this def-
inition does not necessarily represent the entanglement of
the bipartition of the chain in the MPDO case [123,124],
but rather serves as a proxy to the development of quantum
correlations in the state even in the presence of nonunitary
operations.

FIG. 7. Operator entanglement and probability of correction dy-
namics: (a) The disorder averaged midchain operator entanglement
entropy SL/2(n). Protocol (i) shows a very slow growth of entangle-
ment compared to the pure dissipative case of protocol (ii). Appli-
cation of nonunitary operations under protocol (iii) leads to a much
slower growth rate for the midchain operator entanglement entropy.
The inset represents the averaged qubit purities. (b) The probability
of applying the correction scheme described in protocol (iii). We
observe saturation to a value close to 0.5 independent of the initial
state. All parameters correspond to those of Fig. 2 in the main text.

APPENDIX B

1. Operator Entanglement growth and Probability of
Correction for Different Initial States

Following the discussion on the initial-state independence
of results in the main text, here we report additional data
regarding the midchain operator entanglement entropy, the
probability of correction and the averaged qubit purities, for
the four different product states considered in Sec. III A.

2. Stabilization for different initial states

The average amount of entanglement for a single qubit with
index j respect to the rest of a quantum system is represented
by the purity of the reduced density matrix ρn, j at stroboscopic
times n, defined by the partial trace over the system degrees
of freedom excluding qubit j:

ρn, j = tr�, j /∈�(ρn), (B1)

where � represents the system excluding the qubit at the lat-
tice index j. The spatially and disorder averaged qubit purities
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FIG. 8. Long-time dynamics of operator entanglement entropy and probability of correction: (a) Midchain operator entanglement entropy
SL/2 and (b) the probability of performing a correction under protocols (ii) (L = 24, M = 6, and Ndis = 256) and (iii) (Ndis = 1280 and different
system sizes), for fixed p = 0.01, g = 0.97. (c) Midchain operator entanglement entropy SL/2 and (d) the probability of performing a correction
under protocol (iii), for different values of p and g, fixing L = 24, M = 6.

are defined by:

〈〈P〉〉(n) = 1

LNdis

L∑
j=1

Ndis∑
m=1

tr
((

ρ
(m)
n, j

)2
)
. (B2)

In Fig. 7(a) we represent the midchain operator entangle-
ment entropy. We observe nearly identical behavior of the
entanglement growth for the set of selected initial states. Due
to the nonunitary operations in protocol (iii), the operator
entanglement entropy grows at a much slower rate compared
to protocol (ii); we argue that such slow growth could be
logarithmic. The (unbounded) logarithmic growth of entan-
glement is a characteristic feature of quenched product states
in one-dimensional MBL phases in the thermodynamic limit.
In Fig. 7(b), we have represented the probability of perform-
ing a single-qubit correction in protocol (iii) at different time
steps. The results suggest that this probability is independent
of the initially prepared state.

3. Long-time behavior of operator entanglement entropy
and probability of correction

In Fig. 8 we have represented the midchain operator en-
tanglement entropy, along with the probability of performing
a correction operation in protocol (iii), for different tuning
of the parameters. In Figs. 8(a) and 8(b), increasing system

size leads to a decrease in the growth rate of the operator
entanglement entropy, while at the same time the probability
of correction saturates. The behavior of the operator entangle-
ment entropy is in accordance with the behavior observed in
the autocorrelator in the main text. In Figs. 8(c), 8(d) the major
role played by the noise level p respect to the pulse parameter
g is manifest. Colors in Fig. 8(d) apply those in the legend in
Fig. 8(c).

4. Fully depolarizing noise model

We have in addition tested the protocol under a fully de-
polarizing noise model, in which each qubit experiences a
depolarizing channel given by Kraus operators:

K0 =
√

1− pI, Ks=1,2,3 =
√

p/3σ s, σ s=1,2,3 = σ x,y,z. (B3)

We note that under this definition of the quantum channel, the
value of the noise parameter p is not equivalent to the one
employed for the bit-flip channel.

The results are represented in Fig. 9. We observe that the
main results remain robust under depolarizing noise channel
for the values of noise parameter p reported, with spatial
and temporal correlations showing a clear amplification for
different system sizes under protocol (iii).
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FIG. 9. Results for the depolarizing noise model in protocols (i), (ii), and (iii), for different system sizes L, at noise levels of p = 0.025, 0.08
for Ndis = 5120 disorder realizations.

5. Numerical convergence

Here we provide evidence that variation of the tolerance
threshold parameter ε and the Kraus auxiliary dimension K
in the time evolution of the MPDO does not lead to different
results (see Appendix A1 for a definition of these parameters).

To test this, we focus on a single circuit realization of the
system for L = 24 qubits, ns = 60 and g = 0.97. The same
realization of the circuit is employed in all simulations for

FIG. 10. Convergence of results for protocols (ii) and (iii)
for L = 24, g = 0.097, p = 0.025, Ndis = 1 for the autocorrelator
[(a) and (b)] and the qubit-qubit correlation [(c) and (d)], for varia-
tions of ε and K (see Appendix A1), for a single disorder realization
and the same set of measurement outcomes in all cases, as explained
in the text. Results reported in the main text correspond to ε = 10−4

and K = 10. The jumps observed under protocol (iii) correspond to
the successive application of projective measurements.

variations of both ε and K . For protocol (iii) we must, in
addition of using the same circuit realization, employ the same
measurements and corrections in all the cases; i.e., for any
pair (ε, K ), both the locations of the domain wall at any step
n and the simulated measurement outcomes are the same. We
exclude protocol (i) because this protocol does not depend on
the Kraus dimension K due to unitary evolution of the state.

In Fig. 10, results for the autocorrelator and the qubit-qubit
correlation show nearly identical values in all cases, with
the exception of K = 8, which is slightly deviated from the
reference case ε = 10−5, K = 12. Note that results reported
in the main text correspond to ε = 10−4 and K = 10.

FIG. 11. Comparison of the MPDO method against the exact
evolution of the state for a chain of size L = 8, with g = 0.97,
p = 0.025, and M = 3 for the size of the domain wall. The fig-
ure represents the local magnetization 〈σ z

i 〉 at different sites i of the
chain.

033092-12



PROLONGING A DISCRETE TIME CRYSTAL BY … PHYSICAL REVIEW RESEARCH 6, 033092 (2024)

FIG. 12. Comparison of the MPDO method against the exact
evolution of the state for a chain of size L = 8, with g = 0.97,
p = 0.025, and M = 3 for the size of the domain wall. The fig-
ure represents the qubit-qubit correlations 〈σ z

L/2σ
z
L/2+i〉 at different

distances i from the middle of the chain.

6. Exact evolution benchmark

In order to benchmark the MPDO approach and the ap-
plication of nonunitary gates as measurements, here we show

comparison of the MPDO evolution of the state against the
exact evolution of the density matrix operator for small chain
sizes. We fix L = 8 as our system size and create a single
disorder realization for the couplings. We also create all
measurement events at any time step before executing both
algorithms so that the evolution of the state is exactly equiva-
lent under both methods.

The method is benchmarked employing the noise model
advertised in the main text (see Appendix A3). This noise
model applies a mapping over the density matrix ρ with a total
of 2L possible outcomes for the state. In the exact simulation,
constructing the associated Kraus operators acting on C2L

can be done employing the computational basis states. For a
given state in the computational basis, any site is associated
with a Kraus operator K0 = √

1 − pI (K1 = √
pσ x) for the

zero state (one state), where I, σ x are the identity and the
Pauli sigma x matrices acting on the site Hilbert space of
local dimension C2. Thus, a single outcome ρ{s} out of the
2L possibilities is given by:

ρ{s} = KρK†,

K = Ks
1 ⊗ Ks

2 ⊗ ... ⊗ Ks
j ⊗ ... ⊗ Ks

L,

Ks
j =

√
1 − pIj ∨ √

pσ x
j . (B4)

The comparison between both methods is shown in
Figs. 11 and 12.
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