
Accurate Architectural Threat Elicitation From Source Code

Through Hybrid Information Flow Analysis

Bernd Gruner

Secure Software

Engineering Group

DLR-Institute of Data Science

bernd.gruner@dlr.de

Information Flow Graph Reconstruction & Threat Elicitation
I propose an approach for reconstructing and refining information flow graphs from

the source code of a software project to be used as input for threat elicitation.

References
[1] NVD „CVE-2015-8213 Detail“ www.nvd.nist.gov/vuln/detail/CVE-2015-8213 Retrieved 2024-04-04.

[2] Tuma, Katja, et al. "Automating the early detection of security design flaws." Proceedings of the 23rd ACM/IEEE International Conference on Model Driven.

 Engineering Languages and Systems. 2020.

[3] Deng, Mina, et al. "A privacy threat analysis framework: supporting the elicitation and fulfillment of privacy requirements." Requirements Engineering 16.1 (2011).

[4] Shostack, Adam. Threat modeling: Designing for security. John Wiley & Sons, 2014.

[5] Under review as a registered report at ACM-TOSEM.

Why to Trace Information Flows?
Software processes a vast amount of sensitive data, such as passwords, certificates, or configurations.

However, tracing information flows within complex programs poses challenges but could help to

identify and mitigate threats. On the right-hand side, an information flow graph of a Django application with

a known vulnerability [1] is depicted. In this scenario, an unintended information flow occurs between

sensitive content from the configuration file and the user, caused by the malicious date format. Existing

approaches using fuzzing, taint analysis, or symbolic verification do not address such threats.

Evaluation
I investigate the following research questions (RQ):

1. How many and which elements of the information flow graph

can be reconstructed and correctly assembled?

2. Can FlowFuzz effectively identify information flows and what is

its efficiency?

3. Considering the reconstructed and refined information flow

graph, what is the nature and number of threats elicited?

For evaluation, I create a dataset comprising ten open-source

repositories with information flow graphs and threat models,

manually supplementing any missing artifacts.

Reconstructing Information Flow Graphs

I have divided the extensive reconstruction task into subtasks (see left side). Most of the

challenges will be addressed through static analysis, including detecting external entities,

data stores, trust boundaries, and information flows. Additionally, I will incorporate

clustering techniques to identify abstract processes and natural language processing-

based methods to name the graph elements.

Pre-Print LinkedIn

Refinement with Information Flow Fuzzing

Information flow fuzzing is an approach I introduce to steer a fuzzer toward

identifying information flows between a source (input) and a sink (output). It is used to

validate the statically discovered information flows and to uncover missed ones. My

implementation is named FlowFuzz [5] and functions with any coverage-guided fuzzer.

Mapping Threats to Information Flow Graph Elements

The reconstructed and validated information flow graph will be used to elicit threats,

for example, insecure information flows or unencrypted data stores. I will develop an

automated, rule-based system by building upon previous research [2] using threat

mapping rules from the threat analysis approaches Linddun [3] and Stride [4].

Guidance

Moreover, I present a guidance strategy to explore

information flows more effectively. In this strategy, the

fuzzer not only strives to maximize coverage but also

focuses on inducing changes in program state

between the two consecutive runs (step 4).

Detect data stores

and external

entities

Find abstract

processes

Name

elements

Identify

data flows

Recognize

trust

boundaries

Software Project

Reconstruction & Refinement

Code + Artifacts

Refinement

Validation

Extension

Output

Target Type

Database Information disclosure

Tampering

Service ...

Threat Mapping Rules

Information disclosure

Tampering ….

Threat Mapping

Malicious Information Flow in a

Django Web Application

Oracle

For each input from the fuzzer, the program is executed in

the original state R, and subsequently, the secret under-

goes a controlled and isolated mutation before a sec-

ond execution R’ of the program (steps 1 & 2). An altera-

tion in the sink after the mutation of the secret data sig-

nifies the presence of an information flow (steps 5 & 6).

Django Example

FlowFuzz is capable of tracing information flows in the

above-provided Django web application example. In this

process, the chosen input is the date format, and the con-

figuration file undergoes mutation. If the input matches our

secret key in the configuration file the outputs can look as

follows:

• R: "002023-05-05T00:00:00Fri, 5 May 2023 00:00:00 +000031"

• R’: "00x2023-05-05T00:00:00Fri, 5 May 2023 00:00:00 +000031"

This change in the outputs is reported by FlowFuzz as information flow.

Bernd Gruner, Secure Software Engineering Group, DLR Institute of Data Science

Functioning of FlowFuzz

Supervisors:

Andreas Zeller (CISPA)

Clemens-Alexander Brust (DLR)

