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Abstract

Circular cylinders or prisms with square cross-sections in a uniform, steady cross-flow are in-
herently coupled with large regions of massive, large-scale flow separation, a broad base region
containing highly unsteady, recirculating flow and low pressures, and eddy shedding in the
near wake. This not only produces a high total drag on the bluff body, but leads also to the
well-known Kármán vortex street in its wake. The eddy shedding occurs over a wide range
of Reynolds numbers and causes pressure fluctuations on those bluff bodies both parallel and
transverse to the oncoming flow. In case they are mounted elastically, these prisms or cylinders
can thereupon experience various types of flow-induced vibrations with significant additional
increases in the mean drag and the lift fluctuations, with galloping being the most dangerous
fluid-elastic instability owing to the increase in the amplitude of the limit cycle oscillation with
increasing flow velocity.

Modern, high-fidelity Computational Fluid Dynamics (CFD) and reduced-order models al-
ready play nowadays a central role in optimising appropriate countermeasures, either passive or
active, in the design process to avoid or suppress flow-induced structural excitations. A robust
and accurate prediction modelling of the effect of vibration control methods on the (highly)
unsteady and complex flow over square-section prisms and circular cylinders, based on sophis-
ticated nonlinear dynamic models, requires even to this day precise statistical validation data
that can only be obtained by experiments beforehand. Tests on full-scale structures are costly,
not seldom have to be conducted under difficult conditions and time pressure, and are mostly
accompanied with a priori unknown and highly dynamic flow conditions, such as impacting
waves, atmospheric turbulence, wind gusts, or strong spatial variations in wind shear. Small-
scale parametric studies in a laboratory environment, on the other hand, have the advantage
of a virtually "unlimited" measurement time and can be performed at well-defined and repro-
ducible boundary conditions.

The present monograph deals with the detailed analysis of the impact of various governing
and influencing model and flow parameters on the flow over2D prismatic bluff bodies with
square cross-sections, arranged either as isolated or as a pair in a tandem configuration in a
cross-flow. Eleven experimental measurement campaigns were conducted in the High-Pressure
wind tunnel facility Göttingen in a low subsonic flow at Reynolds numbers in the range of
1.0ˆ105 to 1.0ˆ107. Besides the Reynolds number, the wide range of studied parameters also
includes the incidence angle, the lateral edge roundness, the surface roughness, and, in the
case of two prisms placed in-line, additionally the spacing between them. Isolated, in pairs,
and in combinations of three or more parameters, their influence on the mean and fluctuating
aerodynamic forces on the prisms as well as on the eddy shedding frequency is evaluated. Ad-
ditional mean surface pressure distributions provide information on the locations of boundary
layer separation and free shear layer reattachment. In this way, it is assessed to what extent
these parameters enable potential valuable countermeasures that can successfully be applied in
a passive way to reduce undesired flow-induced excitations.
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Zusammenfassung

Kreisförmige Zylinder und Prismen mit quadratischen Querschnitt in einer gleichmäßigen, sta-
tionären Querströmung sind von Natur aus mit großen Bereichen massiver, großflächiger Strö-
mungsablösung, einem breiten Totwassergebiet mit stark instationärer, rezirkulierender Strö-
mung und niedrigen Drücken, sowie mit Wirbelablösung in der Nachlaufströmung gekoppelt.
Dies führt nicht nur zu einem hohen Gesamtwiderstand des stumpfen Körpers, sondern auch
zu der bekannten Kármán Wirbelstraße in seinem Nachlauf. Die Wirbelablösung tritt über
einen großen Bereich von Reynolds-Zahlen auf und verursacht Druckfluktuationen auf diese
stumpfen Körper sowohl parallel als auch quer zur Anströmung. Wenn sie elastisch gelagert
sind, können diese Prismen und Zylinder daraufhin verschiedene Arten strömungsinduzierter
Schwingungen mit signifikanter zusätzlicher Erhöhung des mittleren Widerstandes als auch der
Fluktuationen im Auftrieb erfahren, wobei Galloping die gefährlichste fluidelastische Insta-
bilität aufgrund der Zunahme der Amplitude der Grenzzyklusschwingung mit zunehmender
Strömungsgeschwindigkeit ist.

Moderne numerische Strömungssimulationen (CFD) und "reduced-order models" spielen
heutzutage bereits im Entwurfsprozess eine zentrale Rolle bei der Optimierung geeigneter pas-
siver oder aktiver Gegenmaßnahmen, um strömungsinduzierte Strukturanregungen zu vermei-
den oder zu unterdrücken. Eine robuste und genaue Vorhersagemodellierung der Wirkung
von Schwingungsregelungsmethoden auf die (stark) instationäre und komplexe Strömung über
Prismen mit quadratischen Querschnitt und Kreiszylindern, welche auf anspruchsvollen nicht-
linearen dynamischen Modellen basiert, erfordert auch heute noch präzise statistische Vali-
dierungsdaten, die nur durch Experimente im Vorfeld gewonnen werden können. Versuche
an Strukturen im Originalmaßstab sind kostspielig, müssen nicht selten unter schwierigen
Bedingungen und unter Zeitdruck durchgeführt werden und gehen meist mit a priori un-
bekannten instationären Strömungsbedingungen einher, wie z. B. aufprallenden Wellen, atmo-
sphärischen Turbulenzen, Windböen oder starken räumlichen Variationen der Windscherung.
Parametrische Studien in kleinem Maßstab in einer Laborumgebung haben dagegen nicht nur
den Vorteil, dass die Messzeit nahezu "unbegrenzt" ist, sondern auch, dass sie unter genau
definierten und gut reproduzierbaren Randbedingungen durchgeführt werden können.

Die vorliegende Monographie befasst sich mit der detaillierten Analyse der Auswirkung ver-
schiedener maßgeblicher und beeinflussender Modell- und Strömungsparameter auf die Strö-
mung über 2D prismatische stumpfe Körper mit quadratischem Querschnitt, die entweder
isoliert oder als Paar in einer Tandemkonfiguration innerhalb einer Querströmung angeordnet
sind. Elf experimentelle Messkampagnen wurden im Hochdruck-Windkanal Göttingen in einer
Unterschallströmung bei Reynolds-Zahlen im Bereich von 1.0ˆ105 bis 1.0ˆ107 durchgeführt.
Zu den untersuchten Parametern gehören neben der Reynolds-Zahl auch der Anstellwinkel, die
seitliche Kantenabrundung, die Oberflächenrauhigkeit und bei zwei hinter einander angeord-
neten Prismen zusätzlich der Abstand zwischen ihnen. Isoliert, paarweise und in Kombina-
tionen von drei oder mehr Parametern wird ihr Einfluss auf die mittleren und fluktuierenden
aerodynamischen Kräfte auf die Prismen sowie auf die Wirbelablösefrequenz bewertet. Zusät-
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zliche gemittelte Druckverteilungen auf der Oberfläche geben Aufschluss über die Positionen der
Grenzschichtablösung und des Wiederanlegens der freien Scherschichten. Auf diese Weise wird
abgeschätzt, inwieweit diese Parameter potentiell wertvolle Gegenmaßnahmen ermöglichen, die
passiv zur Reduzierung unerwünschter, strömungsinduzierter Anregungen erfolgreich eingesetzt
werden können.
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Chapter 1

Introduction

1.1 Overview

Flows around bluff bodies, and in particular those having circular, square, or rectangular cross-
sectional shapes, occur in many different fields related to aerospace, civil, and mechanical
engineering, as well as in marine sciences and on- and offshore wind engineering. Stand-alone
or arranged in small or large groups, these cylindrical and prismatic structures can be found,
among others, as struts of landing gears and wings of aeroplanes, as constructions like high-rise
buildings, cooling towers, chimney stacks, and radio and television towers, as towers of on- and
offshore wind turbines, foundation elements of fixed or floating offshore renewables and oil and
gas rigs, as bridge pylons and decks, as trains and road trains, ships and their wind-assisted
propulsion devices, and as heat-exchanger tubes and solar panels (Figure 1.1). They exist not
only as rigid structures, but can just as well be found as flexible elements like cables of suspen-
sion bridges, overhead transmission bundles, mooring lines of floating offshore constructions,
deep sea risers, submarine power and data cables, submerged pipelines, etc. Investigations of
circular cylinder flows have also gained an increasing importance in sports like speed skating
(Oggiano et al. [171], Timmer and Veldhuis [246]), cycling (Malizia and Blocken [144]), and
downhill skiing or snowboarding (Oggiano and Sætran [170]), in order to optimise the flow over
parts of the athlete’s body and sport equipment such that a minimum amount of total drag is
achieved. Even in nature, flows over cylindrical elements are frequently encountered, leading
to various phenomena such as the motion of leafless tree branches and Ammophila (marram or
beach grass) every time the wind picks up or the waving of long tentacle plate corals by the
water current, e.g. Hearn [96], Samson et al. [205], Samson and Miller [206].

Flows over cylindrical or prismatic structures are in most common cases unavoidable. They
could even be (highly) undesirable, since in the worst case they may lead to a possible par-
tial structural damage or a complete failure of the structure resulting from the occurrence of
vortex- or motion-induced vibrations. In particular situations, though, these induced vibrations
are actually intentional and even enhanced in their amplitude, e.g. the enhanced cooling of
microchips by heat sinks with internal micro cylindrical pins (Yan et al. [284]) or the harvesting
of clean energy through ocean current-induced oscillations of an elastically suspended floating
circular cylinder (Barrero-Gil et al. [21], Zhang et al. [298]).
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(a) Landing gear of Bombardier
Dash8-Q402

(b) Skyscraper in Manhattan,
New York City, USA

(c) RWE Power plant in Nieder-
aussem, Germany

(d) Kaknästornet in Stockholm,
Sweden

(e) Semi-submersible floating
production unit of Chevron

(f) MHI Vestas assembly facility
of wind turbines at the Port of Es-
bjerg, Denmark

(g) Viaduc de Millau, France (h) Tarik Ibn Ziyad Oil Tanker in
dry dock in Lisbon, Portugal

(i) Flettner rotor on Enercon’s E-
Ship 1

(j) U Tube bundle Heat Ex-
changer

Figure 1.1: Examples of structures having a bluff cross-sectional shape, e.g. circular, square,
or rectangular. (a)-(d), and (g): Photo from Pixabay; (e): Photo from Chevron Corporation;
(f): Photo by courtesy of Vestas Wind Systems A/S; (h): Photo by Ibrahimuo (2015) from
Wikimedia Commons; (i): Photo by A. Jamieson (2010) from Wikimedia Commons; (j): Photo
from Cixi Fly Pipe Equipment Co.,Ltd.
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1.2 Flow-induced vibrations of circular cylinders and rectangular prisms in cross-flow

1.2 Flow-induced vibrations of circular cylinders and rect-
angular prisms in cross-flow

Flows over two-dimensional, i.e. "infinite" circular cylinders or prisms with square or rectangular
cross-sections are characterised by boundary layer separation from their surfaces, interactions
between the resultant free shear layers, and the regular formation and shedding of vortices in
the wake. When mounted elastically to allow rotational or linear motions, those rigid bluff
bodies can undergo fluid-structure interactions in a uniform, oscillating, or unsteady flow.
The development of an uneven pressure distribution between the upper and lower surface(s)
of a bluff body, induced either by the (periodic) shedding of vortices in its wake or by the
motion of the structure, results in alternating out of plane pressure forces which can have such
considerable magnitudes, that – dependent on its cross-sectional shape – the structure can
experience different types of flow-induced vibrations (Naudascher and Rockwell [155], Blevins
[32], Païdoussis et al. [179], Kaneko et al. [120]).

1.2.1 Vortex-induced and turbulence-induced vibrations of circular
cylinders

Long, slender circular cylinders, placed in a steady cross-flow, are for example in particular
prone to vortex-induced vibrations (VIV), an instability-induced excitation according to the
classification of flow-induced oscillation phenomena by Naudascher and Rockwell [155]. De-
pending on the amount of degrees of freedom of the flexible-mounted cylinder, these vibrations
are possible either in-line, transverse to the flow, or in both main directions. The vibrations
parallel to the flow are caused by the overall fluctuating drag force and their dominant frequency
equals twice the Kármán eddy shedding frequency. In contrast, the cross-flow vibrations are
induced by the fluctuating lift force and have a dominant frequency that is equivalent to the
Kármán eddy shedding frequency. Since the magnitude of the fluctuating drag is generally
much smaller than that of the fluctuating lift force, the latter vibration mode is much more
dominant. In the case the frequency with which the eddies are shed from the circular cylinder
approaches or equals the transverse or longitudinal natural frequency of the structure, reso-
nance, also called wake capture takes place. In that case the eddy shedding frequency "locks"
into the structural natural frequency of the system fn (Feng [77]). Hence, a synchronisation of
both frequencies occurs. Figure 1.2(a) shows the typical behaviour of both the eddy shedding
frequency and the frequency of the transverse vibration of the cylinder with the reduced ve-
locity in the vicinity and within the "lock-in" regime. The reduced velocity is thereby defined
as

Ur “
U8

fnLref
(1.1)

where Lref equals the diameterD. Such a "lock-in" can occur in cross-flow and in flow direction,
meaning that the lift and drag force oscillate with the cylinder motion and twice its value,
respectively. In this "lock-in" regime, both the drag and lift force, as well as the vibration
amplitudes show a considerable increase in magnitude, as is examplary shown in Figure 1.2(b)
for the ampliutude in cross-flow direcion. The reason for this is twofold. On the one hand, the
larger cylinder oscillation in transverse direction increases the correlation of the eddy shedding
process in spanwise direction (Figure 1.3), as it organises the three-dimensional wake along
the span of the cylinder which thus becomes more two-dimensional (Toebes [247], Novak and
Tanaka [167]). On the other hand, the strengths of the shed vortices become larger as well,
since the time scale of the process of eddy formation is similar to the reciprocal of the cylinder’s
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(a) Dimensionless vibration and eddy shedding fre-
quencies

(b) Dimensionless vibration amplitude A{D

Figure 1.2: Evolution of the eddy shedding (˝) and vibration (`) frequencies (a) and the non-
dimensional vibration amplitude (b) of an elastically supported circular cylinder with reduced
flow velocity (Mutlu Sumer and Fredsøe [149]).

vibration frequency (Bishop and Hassan [29], Davies [56]). Sarpkaya [207] furthermore stated
that the vertical projected area of the cylinder in cross-flow, being subjected to a transverse
vibration at or near the shedding frequency, is over a full oscillation cycle larger than the
projected area of a stationary cylinder. This also results in an amplification of the mean drag
force with vibration amplitude, as observed by Tanida et al. [243] and Torum and Anand [248] at
different Reynolds numbers and presented in Figure 1.4 as ratio of the mean drag coefficients
with and without vibration amplitude. A similar observation, but regarding the fluctuating
drag force, was made already fourteen years previous in an experimental study by Bishop and
Hassan [29]. Last, but not least, a synchronisation leads to a change in the eddy shedding
modes, hence, the sequence, phase, and pattern (Figure 1.5) of the shed vortices in the wake

Spanwise Spacing, diameters 

Figure 1.3: Correlation of eddy shedding process along the span of a rigid circular cylinder at
"lock-in" (Toebes [247]).
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1.2 Flow-induced vibrations of circular cylinders and rectangular prisms in cross-flow

Figure 1.4: Growth of the mean drag force acting on a rigid circular cylinder with trans-
verse vibration amplitude at resonance with the frequency of eddy shedding (Blevins [32]). ˝:
ReD = 4 000 (Tanida et al. [243]); ˝: ReD = 8 000 (Sarpkaya [207]); 4: ReD = 15 000 (Torum
and Anand [248]).

(e.g. Zdravkovich [291], Öngören and Rockwell [169], Williamson and Roshko [273]). It can
furthermore be observed, that the larger the amplitude of the vibration as a result of a smaller
structural damping, the broader the frequency range in which resonance does occur (Figure
1.6). Other variables that influence the cylinder vibrations are the mass ratio being equal to
the ratio of the sum of the structural and "added" mass to the mass of the fluid it displaces, the
Reynolds number, and the surface roughness of the cylinder (Mutlu Sumer and Fredsøe [149]).

Interestingly, circular cylinders in a turbulent cross-flow can even be caused to vibrate
when the structural eigenfrequency is well separated from the (dominant) shedding frequency.
Provided that the turbulence level of the oncoming flow is high enough, a turbulence-induced
vibration, i.e. buffeting can be "imposed" on the cylinder through its excitation by wind-band

Figure 1.5: Effect of a variation in the vibration amplitude and frequency on the vortex pattern
in the wake of a rigid cylinder under forced harmonic transverse motion (Williamson and
Govardhan [274]).
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components of the turbulence spectrum that lie the closest to the eigenfrequency of the structure
(e.g. So et al. [227]). Naudascher and Rockwell [155] assigned this latter excitation to the
extraneously induced excitations in their classification of flow-induced oscillation phenomena,
since they are "caused by fluctuations in flow velocities . . . that are independent of any flow
instability originating from the structure considered and independent of structural movements
except for added-mass and fluid-damping effects."

Figure 1.6: Dependency of the eddy shedding frequency and vibration amplitude in cross-
flow direction on the structural damping of a rigid cylinder that is both spring-supported and
damped (Feng [77]).
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1.2 Flow-induced vibrations of circular cylinders and rectangular prisms in cross-flow

1.2.2 Rectangular prisms in cross-flow: vortex- and turbulence-induced
vibrations and galloping

Similar to circular cylinders, prisms with rectangular or square cross-sections in cross-flow can
undergo both turbulence-induced and vortex-induced vibrations. In both cases, the physical
mechanism is similar to the case of a circular cylinder in cross-flow. Resonance or "lock-in",
both transverse to as well as in flow direction, of the eddy-shedding frequency to the structural
natural frequency may also occur for prisms with a rectangular or square cross-section when
the former approaches the latter frequency. As a result, the structural vibration frequency and
oscillation frequency of the lift and/or drag force that act on the structure equal the structural
natural frequency (or twice its value in the case of a transverse vibration) as well. Regarding
turbulence-induced vibrations, it is noteworthy to mention that the magnitudes of the vibration
amplitudes are for prisms with rectangular or square cross-sections generally larger than found
for circular cylinders (Naudascher and Rockwell [155]). The main influencing parameters for
both vibration types are the flow characteristics, i.e. Reynolds number and turbulence intensity
of the oncoming flow, the cross-sectional shape (angle of incidence, aspect ratio, and corner
modification), the surface texture of the prism, and – in the case of vortex-induced vibrations
– the characteristics of the prism itself, like structural mass, eigenfrequency, and damping in
the flow, cross-flow, and rotational directions.

In contrast to circular cylinders, the variation of the fluid force experienced by stationary
bluff bodies having a non-circular cross-section is a direct result of the body’s orientation to the
oncoming flow, i.e. its angle of incidence. When the prismatic bluff body vibrates in transverse
direction to the flow or performs an periodic angular rotation along its longitudinal central axis
that lies perpendicular to the oncoming flow, its angle of incidence changes periodically as well
and the fluid force on the body oscillates. In the least favourable case in which the structure
is fluid-dynamically unstable, the oscillating fluid force that acts on the structure amplifies the
vibration. The resultant amplitudes can reach very large magnitudes and may therefore even
cause structural failure.

This third category of possible excitations of flexibly mounted primsatic bluff bodies that
are subjected to a cross-flow is called "galloping", a motion-induced excitation that arises from
the motion of the vibrating body itself and is thus self-excited (Blevins [32], Amandolese and
Hémon [18], Païdoussis et al. [179]). Flexible structures with circular cross-sections, like cables
of suspension bridges or isolated overhead transmission lines, are generally unsusceptible to this
vibration. However, under certain circumstances also they can become prone to galloping. Ice
and rain leads to a deviation of their cross-sectional shapes from circular and thus a change
in the aerodynamic and aeroelastic loads (Hikami and Shiraishi [99], Flamand [79], Demartino
et al. [59], Demartino and Ricciardelli [60]). This may result in ice-accreted or rain-wind in-
duced vibrations. The same counts for deep sea risers and submarine power and data cables
as a result of marine fouling (Wolfram [276], Wright et al. [277], Yang et al. [285], Spraul et
al. [237]). Even dry galloping of stay cables with a pure circular cross-section has been reported,
being the result of both non-zero incidence and yaw angles with respect to the oncoming wind
(Virlogeux [265], Nikitas and Macdonald [157]). Besides the non-circular cross-section, a sec-
ond prerequisite for galloping to occur is that the structure needs to have at least one degree
of freedom, i.e. either in rotational or transverse direction. This means that galloping is not
necessarily limited to either an angular or a translational motion, since structures can also be
free to rotate and translate simultaneously. When the elastic axis of the structural cross-section
does not coincide with the axis that goes through the centre of mass, translation and torsion of
the structure are inertially coupled. The result is a two-degree-of-freedom galloping, whereby in
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most cases torsional galloping is combined with transverse galloping (e.g. Slater [225], Blevins
and Iwan [33], Modi and Slater [148]).

At its initial rest position, the body experiences small oscillations in translational and tor-
sional direction around its static equilibrium position, induced by the fluctuating lift and drag
forces and pitch moment, respectively. Provided that in this rest position the free shear layers
do not reattach to any of the faces of the prismatic bluff body up to its trailing edge, the
resultant of the lift and drag force or the torsional moment can act in the same direction of
the vibration or angular velocity. This leads to a dynamically instable situation, since the
periodic motion itself induces a negative dynamic damping as per oscillation cycle more energy
is taken out of the fluid and transferred to the vibrating structure than vice versa. Hence,
the fluctuating fluid force or torsional moment that acts on the structure tends to increase the
body’s motion. The vibration amplitude thus steadily increases over each vibration cycle until
a limit cylce oscillation (LCO) has been reached which can possess very large amplitudes. It is
therefore not surprising that galloping ends not seldom in a failure of vibrating parts or a total
collapse of the structure (Gupta et al. [90], Valentín et al. [251]).

Compared to vortex-induced vibrations, the frequency with which the structure vibrates
is in the case of galloping much lower than the structural eigenfrequency, as is shown later
on in this section. Both for VIV and galloping to appear, a lower threshold of the reduced
velocity has to be exceeded; however, in the case of galloping this critical flow velocity has
a much higher value than for the self-excited vibration by the Kármán eddy shedding. Once
exceeded, the maximum possible vibration amplitude at a certain reduced velocity is limited
for both flow-induced vibrations (Blevins [32], Païdoussis et al. [179]). But, whereas the range
of reduced velocities in which VIV can occur is bounded by an upper limit as well (Figure
1.6), the galloping amplitude increases with increasing reduced velocities (Figure 1.7). At a
fixed reduced velocity above the onset velocity, the maximum possible vibration amplitude
is self-limited, though, which results in the appearance of the LCO. In the case of plunge,
i.e. transverse galloping, the galloping body does not only experience a steady increase in its
transverse vibration amplitude during each oscillation cycle, but also in its transverse velocity.
Hence, the maximum instantaneous angle between the velocity vectors of the steady, i.e. con-
stant free stream and of the fluid relative to the moving body increases per oscillation cycle.
At a certain point, the value of the transverse velocity is that high that a reattachment of one
of both free shear layers to the surface of the body does occur. For prisms with sharp-edged
square cross-sections in cross flow, for example, free-shear-layer-reattachment takes place at
an angle of incidence of about 13˝ (Lee [130], Rockwell [193], Obasaju [168], Igarashi [108],
Knisely [126], Van Oudheusden et al. [260], Huang et al. [106], Huang and Lin [105], Yen
and Yang [286]). At that instantaneous angle of incidence, the maximum resultant aerody-
namic force in transverse direction is reached. A further increase in incidence angle leads to
an upstream movement of the reattachment point along the surface and induces in that way
a smaller resultant aerodynamic force that acts in the vibration direction on the body. In the
case all boundary conditions remain constant once the maximum possible amplitude has been
reached, the prism will continue to perform a limit cycle oscillation with a constant frequency
and amplitude. In a similar manner, the maximum occurring angular amplitude is self-limited
for torsional galloping at each reduced velocity above the threshold value. The lower threshold
in reduced velocity for onset of galloping, the growth rate of the vibration amplitude, and the
value of the maximum amplitude for a certain reduced velocity, as well as the steepness of the
amplitude incline with increasing reduced velocity all depend on the same physical parameters
as previously mentioned for turbulence-induced and vortex-induced vibrations. Among those,
the most prevailing and thus mostly studied ones with respect to prisms with square or rectan-
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1.2 Flow-induced vibrations of circular cylinders and rectangular prisms in cross-flow

Y s
 

Figure 1.7: Dimensionless transverse galloping amplitude versus reduced flow velocity for
a sharp-edged square prism (Parkinson and Smith [183]). ´ ´ ´: experimental unstable
limit cylce; ´: theoretical stable limit cylice. Experimental data [183]: ˆ: ζ = 0.00107; ˝:
ζ = 0.00196; 4: ζ = 0.00364; 5: ζ = 0.00372; +1: ζ = 0.0012; +2: ζ = 0.0032. Reynolds
number range: ReD = 4¨103–2¨104.

gular cross-sections are the aspect ratio – including the shape of the afterbody, the latter being
the remaining part of the bluff body downstream of the points of boundary layer separation –
and the turbulence intensity of the oncoming flow (Novak [161], Novak and Davenport [162],
Laneville and Parkinson [128], Novak [163], Novak [164], Novak [165], Novak and Tanaka [166],
Parkinson [181]).

When focussing in particular on prisms with shard-edged rectangular cross-sections, a prone-
ness to galloping exists for a sufficiently small ratio of the width d to height h (i.e. the ratio of
the lengths of the faces in flow direction and cross-flow direction) of the prism’s cross-section.
For aspect ratios of 0.75 ď d{h ď 3.0–3.2 the prisms are categorised as soft oscillators, which
means they will oscillate from rest in a laminar and steady oncoming flow once the reduced
onset velocity for 1D plunge galloping has been exceeded (Brooks [36], Smith [226], Parkin-
son [181], Bearman et al. [26], Parkinson [182]). As presented in Figure 1.8, within this range, a
steady decrease of the maximum ratio of reduced galloping amplitude to reduced velocity occurs
for larger values of d{h, induced by the previously described self-limitation of the maximum
amplitude. For tall prisms with d{h ă 0.75, the afterbody of the prism is too short for it to be
susceptible to galloping from its rest position. Nonetheless, under certain condition galloping
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Figure 1.8: Influence of aspect ratio d{h of sharp-edged rectangular prism on maximum trans-
verse galloping amplitude pYs{Uqmax, dimensionless eddy shedding frequency S, and mean drag
coefficient CD (Parkinson [181]).

is also possible for these short prisms. This occurs when a sufficiently large initial impulse in
the form of a perturbation in transverse direction is supplied to the prism, for example by a
sudden strong wind gust, above the threshold amplitude and, at that same instant, the reduced
velocity of the oncoming flow lies above the onset of galloping. These kind of prisms are there-
fore categorised as hard oscillators. On the contrary, sharp-edged prisms with a long afterbody
above d{h = 3.0–3.2 are stable with regard to galloping, since the free shear layers that have
separated from both windward edges of the prisms are able to reattach to the trailing edges
of the afterbody’s side surfaces and therefore "provide a pressure loading on the afterbody that
opposes small transverse disturbances" (Païdoussis et al. [179]). Interestingly, the impingement
of leading edge vortices – hence, distinct vortices resultant from the roll-up of the free shear
layers above both side surfaces – onto the side faces upstream of the trailing edge of prisms
with long afterbodies up to approximately d{h = 10 can give rise to impinging leading-edge
vortex excitations instead (Deniz and Staubli [62]). A change in turbulence intensity (T.I.) of
the oncoming flow strongly influences the plunge galloping behaviour of sharp-edged rectan-
gular prisms in several ways. An increase in its value leads not only to a narrower range of
d{h values within which soft galloping can occur, but also shifts both its boundaries towards
lower values, as seen in Figure 1.9. In addition, the decline of the maximum ratio of reduced
galloping amplitude to reduced velocity with increasing d{h becomes larger, since the values of
this maximum ratio at the lower and upper bounding d{h-value increase, respectively, decrease.
As a result of both phenomena, short prisms that were hard oscillators in a laminar and steady
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1.2 Flow-induced vibrations of circular cylinders and rectangular prisms in cross-flow

Figure 1.9: The effect of the turbulence intensity of the free stream Tu on the transverse
galloping amplitude pYs{Uqmax and the limits (i.e. vertical dashed lines) of the soft- and hard-
galloping ranges for various aspect ratio d{h of a sharp-edged rectangular prism (Parkinson
[182]).

oncoming flow, now suddenly become susceptible to galloping at their rest position and can
gallop with increased amplitudes at much lower onset velocity, as shown in Figure 1.10 for a
sharp-edged rectangular prism with d{h = 1/2, while soft oscillators with longer afterbodies
are now stabilised against galloping (Novak [164], Parkinson [182]). The reason can be found
in the earlier reattachment of the free shear layers on the side faces of the prisms for larger
turbulence intensities. The increased entrainment of the fluid into the separated flow region
leads to thicker free shear layers. Their inner boundaries therefore approach the side faces faster
and can as such interfere with and reattach to them already at shorter afterbody lengths.

Based on a quasi-steady fluid dynamic approach, Glauert [88] and Den Hartog [61] pro-
posed independently from one another a criterion that has to be fulfilled for a bluff body to be
potentially susceptible to plunge, i.e. transverse galloping:

BCy
Bα

ˇ

ˇ

ˇ

ˇ

α0

“ ´
BCL
Bα

ˇ

ˇ

ˇ

ˇ

α0

´ CDpα0q ą 0 (1.2)

where dCy/dα|α0
and dCL/dα|α0

are the change of the force coefficient in transverse direction
(Cy, positive downwards) and of the lift coefficient, respectively, with angle of incidence α
at the angle of incidence at rest α0, and CD the drag coefficient. Hence, in case the slope
of the CL(α)-curve is negative and steeper than the value of the drag coefficient at α0, the
transverse fluid force Fy induces an amplification of the bluff body’s plunge motion. However,
the additional condition that the negative of the magnitude of the fluid dynamic damping is
larger than the structural damping has to be met as well for the motion to be self-excited
from rest. For the quasi-steady theory to be applicable to transverse galloping, Blevins [31]
stated that the frequency of the limit cycle oscillation must be smaller than half the eddy
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Figure 1.10: Characteristics of the coefficient of the transverse force Cy with angle of incidence α
of a sharp-edged rectangular prism with d{h = 1/2 for various free-stream turbulence intensities
Tu. Experimental data (Laneville and Parkinson [128]): N: Tu = 0.07%; 5: Tu = 6.7%; ‚:
Tu = 9.0%; ˝, ˝: Tu = 12%.

shedding frequency. Translated to a reduced galloping frequency V /(fgalh) in which V equals
the free-stream velocity and fgal the galloping oscillation frequency, its value should be larger
than 10. This criterion is in accordance with the conclusion drawn by Fung [85] two decades
previous. Later on, this condition has been sharpened by Bearman et al. [26], who stated that
the ratio of oscillation to galloping frequency should be at least lower than 1/3, i.e. V /(fgalh)
> 30. Otherwise, disturbances that have been introduced into the flow by the motion of the
bluff body at a certain phase of the oscillation, i.e. at a specific incidence angle of the body
to the oncoming flow, have not been carried far enough downstream with the flow in the near
wake behind the body and are therefore still able to directly influence the flow around the bluff
body at exactly the same vibration phase one oscillation period later (Fung [85]). With respect
to torsional or rotational galloping, also known as called 1-DoF flutter, a similar criterion has
been derived (e.g. Slater [225], Nakamura and Mizota [151]). Based once again on a linear
quasi-steady analysis, a susceptibility to this instability may be present for a bluff body, when

BCM
Bα

ˇ

ˇ

ˇ

ˇ

α0

ă 0 (1.3)

where CM equals the coefficient of the torsional moment M . Additionally, the total damping
has to become negative. Analogue to transverse galloping, this is the case when the fluid
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1.3 Control methods of flows around 2D circular cylinders and rectangular prisms

dynamic damping exceeds the structural damping. Is equation (1.3) not satisfied, divergence,
a steady instability, may occur instead (e.g. Richardson et al. [191]). At this stage, it has to
be remarked that equation (1.3) can only be used to obtain a preliminary verification of the
possible proneness of a bluff body to rotational galloping in quite a fast way with relatively
low effort. For a more precise and reliable confirmation, the unsteady fluid dynamic theory has
to be used, since it takes into account the unsteady effects that appear as a result of a phase
lag between the motion of the bluff body and the surrounding viscous flow (Nakamura and
Mizota [152], Nakamura [150]). The latter follows from the time delay in adjustment of the
flow around and thus the surface pressures on the body to the change of the body’s position in
the flow field during the oscillation, as described in detail by Païdoussis et al. [179].

1.3 Control methods of flows around 2D circular cylinders
and rectangular prisms

From the aforementioned outline of the various flow-induced vibrations that may occur, it can
be derived that there exists an urgent vital need for the efficient flow control and in particular
the influence of the eddy shedding process in the wake of cylindrical and prismatic structures
in the broad regime of engineering applications. Theoretically, vortex-induced vibrations can
be completely suppressed and thus avoided; in practice, the measures that have to be taken
for a complete avoidance of this excitation are often too expensive and thus noneconomic. In
case of turbulence-induced excitations, a total elimination is even impossible, independent of
the countermeasures taken. On the other hand, as much effort as possible should be invested in
the overall avoidance of galloping, since the maximum amplitude of the limit cycle oscillation
of the structure increases linearly with increasing reduced velocity above the onset velocity.

Two main categories of control methods of flows around bluff bodies can be distinguished:
passive, and active control methods, of which the latter one can be further subdivided into active
open-loop and closed-loop (Choi et al. [51]). Whereas for active open-loop control methods the
motion of the flow is monitored by an actuator based on pre-defined commands, additional
sensors, positioned in the flow field, are used in the case an active closed-loop that monitor and
feed back the effect of the actuator on the flow around a bluff body in real-time. In the review
articles by Zdravkovich [290], Choi et al. [51], Chen et al. [48], and Ran et al. [187] a very detailed
overview is given regarding the various passive, respectively active flow controls methods applied
to circular cylinders to manipulate the flow around them such that the oscillating transverse
fluid dynamic force on the body and thus the alternating eddy shedding are effectively decreased
or even almost fully suppressed. In the following, a brief summary on those controls methods
is presented, together with active and passive countermeasures to prevent transverse galloping
of prismatic structures with rectangular cross-sections.

1.3.1 Passive vibration control methods

Independent of the cross-sectional shape of two-dimensional cylindrical or prismatic bluff bodies,
the majority of commonly used suppression methods of flow-induced vibrations are passive.
Because they do not depend on or require actuators and control loops and therefore have no
need for a continuous input of external power, they are more straightforward, the required
financial and technical investment is relatively minor, and their implementation is easy and
fast. There exist three methods of controlling flow-induced vibrations in a passive way:
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(a) Increase of stiffness by exter-
nal X-bracing

(b) Fairing of landing gear of
Piper PA28 Warrior II

(c) Boat-tailing of rear of truck

(d) Splitter plate behind a circu-
lar cylinder in cross-flow

(e) Guiding plates at rear of truck (f) Spoiler on top of truck

(g) Helical strakes on ocean risers (h) Fins on marine riser (i) Edge roundness on foundation
of King’s Quay semi-submersible

(j) Damping through marine foul-
ing

(k) Passive vibration damper in-
side JP Tower Nagoya, Japan

(l) Tuned mass damper inside
Skyscraper Taipei 101, Taiwan

Figure 1.11: Examples of passive vibration control methods of structures with bluff cross-
sections. (a): Photo from Pixabay; (c): Photo from NASA (d): Ain et al. [10]; (e): Photo
from ZF Friedrichshafen AG; (f): Photo from Pixabay; (g) and (h): Photos from Lankhorst
Engineered Products B.V.; (i): Photo from Murphy Oil Corporation; (j): Photo by John
Turnbull from Flickr (CC BY-NC-SA 2.0); (k): Inoue et al. [111]; (l): Yucel et al. [288].
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1.3 Control methods of flows around 2D circular cylinders and rectangular prisms

(a.) decrease of the reduced velocity through modification of the structure to alter the struc-
tural dynamics of the system.

The purpose of the applied countermeasures is to keep the reduced velocity by all means
at a value below the critical value for onset of vibrations at all possible flow conditions
that the complete structure or the critical structural components may experience. Ac-
cording to equation (1.1), this is achieved by increasing either the natural frequency of
the system fn, or the reference length Lref (i.e. the diameter D in case of a circular
cylinder and the height h for prisms with rectangular cross-sections), or a combination of
both. Higher structural natural frequencies are realised by a stiffening of the structure,
e.g. by bracing(Figure 1.11(a)). A drawback of this method is that a stiffening may
be accompanied with a possible increase of the structural mass as well, because of their
mutual influence, and can therefore usually not be adjusted separately from each other.
The mass increase may shift the natural frequency of the structure to lower values, which
would result in an increase of the reduced velocity towards the critical value for the onset
of vibrations instead of its decrease. In case the previously mentioned control mechanisms
cannot be implemented, a synchronisation of the resonance frequencies of the structure
with the eddy shedding frequency has to be prevented as good as possible to keep the
structural vibration amplitude small. Hence, the structure should be designed such that
its natural frequencies clearly lie outside the range of expected or experienced excitation
frequencies by eddy shedding.

(b.) control of the eddy shedding process.

Of the three categories of passive control methods, the current one is the most economical
and effective control method. It aims at a weakening or elimination of the aerodynamic or
hydrodynamic excitation forces by altering, hence, controlling the flow around the struc-
ture and thus the eddy shedding behaviour in its near wake. As formulated by Naudascher
and Rockwell [155] "it requires thorough knowledge of the basic flow-structure interactions
and it involves, typically, a modification of the geometry of the structural flow boundaries
or the use of appropriate fittings". In terms of the control mechanisms, Ran et al. [187]
distinguish between three main categories.

(1.) Those methods that belong to the first category all aim at a hindrance of the com-
munication between the distinct eddies that are alternatingly formed on the upper
and lower surface of the body. The recirculation region in which the fully decoupled
free shear layers roll up into eddies can in that way be extended further downstream,
thereby inducing a smaller negative static pressure in the base region and thus a
lower mean drag force on the bluff body. Additionally, since a symmetric pattern
of the shed vortices appears in the wake, a reduction or partial elimination of the
fluctuating components of the transverse aerodynamic or hydrodynamic force that
is responsible for the excitation of the structure in this direction can be achieved.
To the common passive control methods in this category count those that modify
the geometry of the downstream section of the body and those that alter the flow
structure in the base by additional external elements. Examples of the former are
a fairing (Figures 1.11(b)), tapering, or stepwise boat-tailing (Figures 1.11(c)) of
the bluff body’s rear section, i.e. a surface prolongation further downstream and a
reduction of the effective surface on which the low base pressure acts, and a chamfer-
ing or bevelling of the rear end which induces a vortex bursting in the base region.
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Splitter plates – solid, porous, hinged, pivoted, flexible, or with a wavy trailing
edge – either touching the base surface of the body at the rear stagnation point
or positioned at a certain distance downstream of it (Figure 1.11(d)), guide plates
(Figure 1.11(e)), streamlined fairings, sawtooth fins, and bleed fluid injection into
the wake by self-issued jets from the interior of the body through slits in its surface
or communication channels between the windward and leeward stagnation points
count to the latter group of common passive control methods.

(2.) A (partial) disruption of the boundary layer on the surface of the cylinder or prism
and a reduction or even complete prevention of the spanwise correlation of the eddy
shedding process around the bluff body characterises the mechanism of the control
methods that belong to the second category. Depending on the surface coverage
ratio of the control method, a mixture of weak and strong vortices is formed, of
which the latter quickly burst into many smaller and thus weaker ones, upon which
their energy can quickly dissipate in the wake. Spoilers (Figure 1.11(f)), vortex
generators, helical strakes (Figure 1.11(g)) and wires, curved separation lines on
the surface, ribbons, spanwise grooves, rectangular fins, (staggered) straight fins
(Figure 1.11(h)) or straight separation wires that extend along (part of) the span
of the cylinder or prism are just a few of the many possible control methods that
are nowadays applied worldwide.

(3.) The last category comprises those control methods that induce a delayed separation
of the boundary layer from the surface. They shift the location at which the laminar-
turbulent transition takes place in upstream direction, hence a pronounced increase
in the momentum exchange in the boundary layer with the outer flow can occur,
resulting in a boundary layer that can withstand the adverse pressure gradient over
a longer distance along the surface of the body before its separation. Devices that
are widely used in case of circular cylinder flows are perforated shrouds with circular
or square holes, arrays of axial rods encircling the cylindrical structure, as well as
fine mesh gauzes. For prisms with rectangular cross-sections stable aerodynamic
or hydrodynamic contours are obtained by rounding or chamfering their spanwise
edges (Figure 1.11(i)). The continuous curvature of the surface allows a smooth
downstream shift of the boundary-layer separation locations along the two forward-
directed edges of the prism, as well as along both downstream-directed edges for
the secondary separation points in case of a reattachment of the free shear layers
on one or both side surfaces. In contrast to its sharp-edged counterpart, a delayed
separation from the prism’s surface is thus achieved. An increased surface texture
through a (partial) coverage with dimples, grooves, or roughness elements, the latter
being either intentional or natural (i.e. soft and hard marine fouling, Figure 1.11(j)),
can also be used as a means of flow control.

(c.) increase of the reduced damping.

The critical velocity for the onset of both transverse and torsional galloping instability
are proportional to the product of the transverse or rotational structural damping and the
structural mass or polar mass moment of inertia of the structure. The resultant galloping
amplitudes are, then again, inverse proportional to those parameters. A similar relation
exists between the resonant vibration amplitude and the structural mass and damping
coefficients in the case of vortex-induced excitation of the structure. Hence, an increase of
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the reduced damping by an increase of either the structural damping, the structural mass,
or a combination of both are effective methods of controlling flow-induced vibrations. As
was previously mentioned, one should take care that a higher structural mass may have a
negative impact on the reduced velocity of the vibrating system through a decrease of the
natural frequency of the structure. A higher structural damping factor can be achieved in
several ways, depending, among others, on the accessibility of the structural parts which
vibration needs to be damped, and whether the system is already in operation. Dissipa-
tive dampers are based on the energy extraction from the vibrating structure or structural
parts and are usually positioned at those locations at which a relative motion between
vibrating parts occurs (Figure 1.11(k)). Materials with a high internal energy dissipation,
like viscoelastic materials, rubber, wood, etc., are very common as a damping method,
but also fluid damping through radiation to a surrounding fluid, viscous dissipation, or
fluid sloshing through high-resistance passages, and structural damping due to impact,
scraping, or friction are well-proven and reliable damping approaches. An alternative to
dissipative dampers are tuned mass dampers (Figure 1.11(l)). These dynamic vibration
absorbers consist of an additional mass that is attached to the structure by one or more
helical or torsional spring systems. They are commonly placed at positions at which the
maximum vibration amplitude of the structure is to be expected. In case of excitation
by a structural vibration, they will vibrate at the natural frequency of the structure, but
with a phase shift with respect to the structure itself and extract in that way energy from
the vibrating system.

1.3.2 Active vibration control methods

Compared to passive flow control methods, active ones are controllable, adjustable, and ma-
noeuvrable. This means, that when positioned properly in the flow field, their implementation
can not only manipulate the dynamic and complex fluid dynamic processes such as boundary
layer transition and separation, free shear layer reattachment, eddy shedding, etc., but also
establish an optimal and effective reduction and, in some applications, even a complete sup-
pression of flow-induced vibrations. A disadvantage of active control technologies is the need
for significantly complex and expansive actuators to execute the required flow control in real-
time, and, in case of closed-loop methods, extra cost functions and an optimisation strategy for
the feedback control. In closed-loop control methods, the feedback signals from both the flow
field around the structure and the (vibrating) structure namely have a central function in the
efficient and optimised performance of those flow control systems.

Fuid jets (Figure 1.12) or steady fluid suction and/or blowing (Figure 1.13) are active
control methods that, similar to the passive counterpart of bleed fluid injection into the wake
by self-issued jets, induce an attenuation of the eddy shedding process and thus of the (mainly
transverse) excitation of the structure by a modification of the shear layers and an alteration
of the pattern of the shed vortices appearing in the wake from asymmetric to symmetric, i.e. a
stabilisation of the wake flow. Suction induces furthermore a delay of the boundary-layer sep-
aration, thereby narrowing the near wake behind the bluff body and reducing the drag force,
whereas blowing leads to the exact opposite. Parameters that influence the effectiveness of this
control method are, among others, the frequency, duty cycle, phase shift, waveform (e.g. sinu-
soidal, square, triangular, or sawtooth), and flux momentum of the pulsating jet(s), the location
and cross-section of the cavities on the surface, the azimuthal angle, as well as the amount and
velocity of steady suction and/or blowing. Apart from those, application of an electromagnetic
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Figure 1.12: Visualisation of the effectiveness of a fluid actuation at the leading edge of a square-
section prism with an leading edge curvature of r/D = 0.05 – where r is the dimensional edge
radius – on the size of the detached flow area above the side surface and the reattachment
location of the free shear layer (Minelli et al. [146]).

force, heating of the body, and acoustic excitation can also be used to attenuate the fluid-
induced vibrations of a bluff body in an active way. While by heating of the structure the
resultant buoyancy force, induced by a change of the density of the surrounding gas or liquid,
is the key driver to an effective means for suppression of the structural flow-induced vibration,
acoustic excitation benefits from an enhancement and drastic reduction of, respectively, the lift
and drag force, the latter due to an elongation of the near wake. The large-scale eddies that
are shed from the structure are modified into smaller ones, the frequency with which they are
shed is shifted, and the velocity fluctuations in the wake behind the bluff body are significantly
suppressed. An optimal control effect by acoustic excitation can be attained by adjusting the
same influencing parameters as mentioned previously for the control methods based on fluid jets
or steady fluid suction and/or blowing. Electromagnetic forcing or plasma actuators generate
a Lorentz force to active control the flow, as this force induces a modification of the wake from
an asymmetric to a symmetric one and in that way an elimination of the eddy shedding and
(transverse) excitation of the structure (Figure 1.14). Although this control method is easy in
use and robust, it requires an extensive and continuous energy input. In case of circular cylin-
ders, oscillating or non-oscillating angular motions of the primary structure or of additional
rods are proven practical active flow control instruments as well. The angular rotation affects
the boundary layer on the cylinder as it generates a deceleration of the flow on one side of the
cylinder and an acceleration on the other such that the flow separation locations are shifted to
a position further upstream or downstream. In that way, an additional lift force on the cylinder
is generated and the characteristics of the near wake are altered.
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Figure 1.13: Smoke visualisation images of the modification of the instantaneous flow field in
the base region and near wake of a porous circular cylinder at subcritical Reynolds numbers
through continuous blowing or suction (Fransson et al. [83]). (left): natural case; (upper centre
and upper right): continuous suction; (lower centre and lower right): continuous blowing. Γ:
dimensionless suction (negative value) and blowing (positive value) rate.

Figure 1.14: Suppression of the unsteady separation and thus the appearance of the Kármán
vortex street by application of a downstream-directed Lorentz force (Weier et al. [268]). (left):
baseline; (right): active electromagnetic force.
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1.4 Objectives, contribution, and content of this mono-
graph

The significant complexity of flow-induced vibrations of two-dimensional circular cylinders and
prisms with rectangular cross-sections makes it difficult to extract the desired information from
both the highly unsteady flow field and the excited structure that is required for the optimi-
sation of the cost functions and the continuous adjustment of the active control strategy of
closed-loop control methods by the sensors’ feedback signals. Moreover, when multiple bodies
are involved, that are placed that close together such that they have a common flow field,
the fluid-dynamic interference between them alters the fluctuating surface pressures and shear
stresses acting on their surfaces and the resultant time-mean and fluctuating aero- or hydrody-
namic forces and moments. In addition, the flow structures both around the separate bodies
and in their separate or common near and far wake(s) are also modified, which has an impact
on their excitation and vibration behaviour. Hence, in particular in case of such a mutual
interference many monitor probes are required that are not only able to measure the various
fluidic and structural parameters (e.g. pressure, force, position, velocity, acceleration, bending,
torsion, etc.), but gather those data also at such a high speed that a real-time analysis of the
incoming signals and a transmission of the feedback signals back into the active control system
is guaranteed. On top of that, it is very time-consuming and above all costly to explore the
isolated effect of a variation in the value of each of the previously mentioned influencing param-
eters on the instability-induced or motion-induced excitation of the complete structure or the
critical structural components and their resultant vibrations, as well as on the formulation of
the feedback signals of the control system(s) at all possible flow conditions, since all influencing
key parameters are linked together in some complex way. A change in the oncoming flow veloc-
ity, for example, influences not only the properties of the boundary layer and the flow topology
in the base region and near wake, but may shift the value of the reduced frequency towards the
critical value for onset of flow-induced vibrations, or in case of galloping to values at which the
critical vibration amplitude for a possible collapse of the structure is exceeded. Recent tech-
nologies that are based on Artificial Intelligence (AI) can provide a remedy for this problem,
since they have the capacity to deal with highly complex and multi-dimensional fluid-dynamic
problems in an efficient way and provide possible optimisation solutions for both open-loop
and closed-loop control strategies. Nonetheless, before such methods like (deep) reinforcement
learning can be adopted their algorithms require an enormous amount of fluid-dynamic data,
obtained by high-fidelity computational studies or experimental investigations, for their internal
learning and optimisation purposes. A fruitful application of those numerical codes or reduced-
order models requires precise statistical validation data as well, that are once again provided
by experiments beforehand. Since those experimental studies mainly focus on the (un)steady
fluid dynamics of bluff bodies and their susceptibility and response to flow-induced excitations
at relatively low Reynolds numbers and laminar flow conditions, the derived control strategies
are mostly limited to those flow states as well.

These limitations have provided the motivation for this monograph, which aims at the physi-
cal description of the various fluid-dynamic processes taking place around rigid two-dimensional
square-section prisms with (in)finite edge roundness in cross-flow in both a single, i.e. isolated,
and as tandem or in-line constellation in a Reynolds-number range of high up to very high. In
an attempt to provide the reader not only with a unified overview and a profound understand-
ing of flows over two-dimensional square-section prismatic bluff bodies, but also with a large
detailed database of validation data for future developments of mathematical models to be
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implemented in numerical codes, the following aspects of those bluff body flows are addressed:

(1.) angle of incidence of isolated square-section prisms,

(2.) edge roundness value of isolated square-section prisms,

(3.) surface roughness value of isolated square-section prisms with and without applied edge
roundness,

(4.) longitudinal spacing between two tandem square-section prisms at incidence.

Flow phenomena taking place around two-dimensional rigid circular cylinders and their sus-
ceptibility to vortex- and instability-induced vibrations have been treated by a variety of engi-
neering disciplines, thereby focussing on particular physical aspects that are of specific interest
in each scientific field. Even after many decades, numerical, experimental, and/or analytical
research is still being performed intensively on, among others, the behaviour of the surface
boundary layer, the fluid dynamic forces acting on the cylinder, the parameterisation of the
unsteady flow in its base region and near wake (e.g. the formation, growth rate, shedding
frequency, and strength of the distinct vortices, the mean and fluctuating three-dimensional ve-
locity field, the pattern of the shed vortices, etc.), and the response in terms of amplitude and
frequency to a flow-induced excitation in the case of "lock-in" with the structural natural fre-
quency of the cylinder. Depending on the value of the Reynolds number, being the most crucial
governing flow parameter for flows over smooth circular cylinders, and the associated changes
in the condition and behaviour of the surface boundary layer, various characteristic Reynolds-
number flow regimes have been classified. On the other hand, 2D sharp-edged square-section
prisms are known for their fixed boundary layer separation points, the large drag force acting
on them, and, as mentioned previously in section 1.2.2, their proneness to the motion-induced
galloping excitation. In contrast to circular cylinders, their fluid dynamics is largely Reynolds-
number independent, but therefore dominated by the angle of incidence with respect to the
free-stream velocity vector owing to a reattachment of the free shear layer on the side surface
exposed to the wind and subsequent re-separation at its trailing edge above the critical angle
of incidence. Hence, depending on the angle of incidence the flow around such a prism can be
assigned a certain flow regime. An extensive review of the various fluid-mechanical phenomena
associated with flows over these two kinds of bluff bodies and the experienced fluid-dynamic
loading, as well as their changes caused by the application of two passive vibration control
methods, namely surface roughness and edge roundness – the latter only for square-section
prisms –, each in response to a variation of various influencing flow and structural parameters,
is presented in Chapter 2.

The separation of the boundary layer from the surface of a sharp-edged square-section
prism, positioned at 0˝ angle of incidence, at both its upstream-directed lateral edges governs
the structure of the flow around the prism and in its recirculation region directly downstream
of the base surface. These in turn dominate the pressure and shear forces on the faces of the
prism and thus the mean and fluctuating loads in both flow and cross-flow direction. At the
critical incidence angle αcr « 13˝, the reattachment and subsequent re-separation of one of
both free shear layers modifies the overall structure of the flow field around the prism from a
symmetric to a highly asymmetric one, resulting in abrupt and sharp changes in not only the
fluid-dynamic forces and moments, but also in the frequency and strength of the shed eddies.
By introducing a rounding of the edges, the fixed separation locations of the laminar or tur-
bulent boundary layer from the surface are released, as they are enabled to meander along the
continuously curved edge surface. This leads to a return of the Reynolds-number dependency
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of the flow field and fluid dynamics for this kind of square-section prisms in cross-flow. The
extent to which the edges of these two-dimensional prisms are rounded plays in this case an
important role, as it can be used to optimise both the prism’s fluid-dynamic and fluid-structural
excitation properties, based on the selection of the positive flow characteristics of each of both
generic cross-sections, i.e. circular and square with sharp corners, as is shown in Chapter 3.

A roughening of the surface of a bluff body can on the one hand be intentional, for exam-
ple to artificially simulate high-Reynolds-number flow phenomena at physically low Reynolds
numbers in water or wind tunnel studies or as a passive vibration control method, or on the
other hand caused naturally as a result of mainly possible external influencing factors, like rust,
impact of bugs, precipitation, ice and snow accumulation, erosion, surface paint, or soft and
hard marine growth. No matter the cause, its main result is an alteration of the properties of
the surface boundary layer (e.g. the locations of both the laminar-turbulent transition and the
separation) and of the free shear layers, such as a possible reattachment to the surface and the
resultant size of the laminar separation bubble(s) over the surface. Computational modelling of
such flows is even today still very challenging owing to many factors, including the requirement
to encompass laminar, transitional, and turbulent flow and the necessity of a very fine numer-
ical grid in the vicinity of the surface for resolving even the smallest unsteady flow features
that appear due to the presence of the roughness. The effect of a change in the mean surface
roughness height, by a variation of the mean diameter of uniformly distributed grainy rough-
ness elements, on the fluid dynamics of both 2D circular cylinders and square-section prisms
have therefore been explored experimentally over a wide range of Reynolds numbers and, in
the case of the prisms, furthermore in dependence of the incidence angle and edge roundness.
The outcomes are presented in Chapter 4.

Pairs of rounded square-section prisms possess a common flow field when placed in-line
at close distance. The upstream one of the two experiences an undisturbed oncoming free
stream, whereas the downstream one faces a clearly altered inflow, its exact appearance being
a function of, among other factors, the gap size between both prisms, the incidence angle, and
the Reynolds number. The latter two parameters lead to a distinct modification of both the
flow topology around the downstream prism and the induced fluid dynamic loads. However,
as a result of their proximity, these fluid dynamic changes can be fed back to the upstream
prism as well; hence, a mutual interference between the two bluff bodies occurs that leads to
changes in the topology of the flow around the upstream body and thus in the fluid-dynamic
forces and moments as well. This may give rise to the manifestation of additional flow-induced
vibrations, such as wake galloping or resonance between both structures. Chapter 5 focuses
on the configuration of the two in-line square-section prisms and the changes in their fluid dy-
namic characteristics depending on the surface roughness value, angle of incidence, longitudinal
spacing, and Reynolds number.
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Chapter 2

Theoretical background on the fluid
dynamics of isolated, two-dimensional
cylindrical and square-section prismatic
bluff bodies in a uniform, laminar
cross-flow

2.1 Flow over circular cylinders with and without surface
roughness

Of all possible bluff bodies, no other one has attracted so much interest and has been studied
so intensively as the circular cylinder, both as a three-dimensional body, i.e. with a free ending
as found in the vast majority of common applications, and as its "strong" simplification as
an "infinite" body, i.e. two-dimensional. Their unsteady flow phenomena have been subject
of a numerous amount of experimental, numerical, and theoretical investigations, of which
a detailed overview can for example be found in the works of Niemann and Hölscher [156],
Williamson [272], Zdravkovich [294], and Mutlu Sumer and Fredsøe [149], owing to which the
underlying valuable physics of the time- and phase-dependent aero- or hydrodynamics of these
bluff bodies can nowadays be described and modelled in quite a detailed extent (e.g. Catalano
et al. [46], Ong et al. [177], and Cheng et al. [49]).

Because of its continuously curved surface and axisymmetric cross section, both the be-
haviour of the flow over a single two-dimensional smooth circular cylinder and the resultant
loading it experiences are governed by the Reynolds number when the cylinder is placed in a
laminar, i.e. disturbance-free, or low-turbulence oncoming flow field. In this monograph, the
Reynolds number ReL,ref is defined as

ReL,ref “
ρU8Lref

µ
(2.1)

where ρ equals the density of the fluid, U8 the free stream velocity of the oncoming flow, Lref
the diameter D of the circular cylinder, and µ the dynamic viscosity of the fluid. As will be
shown hereafter, an increase in Reynolds number introduces tremendous changes in the flow
field. However, as stressed by Zdravkovich [294], in real applications a wide variety of so-called
influencing parameters can disturb the flow as well, thereby affecting the non-dimensional
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quantities like force and pressure coefficients and Strouhal number, hence, the normalised eddy
shedding frequency, to a certain extent. By exceeding a certain threshold, each one of these
influencing parameters can alter in its own way the Reynolds number at which the laminar-
turbulent transition takes place and has, in that case, thus become a governing parameter as
well. Zdravkovich categorised the "most frequently encountered influencing parameters" into
various groups:

(a.) irregular disturbances, among which the free stream turbulence intensity T.I. and the
surface roughness are the two most commonly encountered ones. The latter one is char-
acterised by both the texture (i.e. the shape and/or distribution of the roughness elements
over the surface) and the ratio of the mean size of the roughness k to the reference length
Lref , here the diameter D of the cylinder. Often, this ratio is expressed by the ratio ks{D
where ks represents the dimensional equivalent sand-grain surface roughness;

(b.) steady disturbances. These include, among other things, the geometric wind or water
tunnel blockage ratio D{H, where H is the dimensional height of the test section of the
respective tunnel at the location of the circular cylinder, the aspect ratio L{D of the
cylinder with longitudinal length L, and the proximity of the cylinder to the test section
wall (hence, the gap size S) in case of a positioning of the cylinder out of the centre of
the test section, expressed by S{D;

(c.) periodic disturbances, such as the regular cylinder vibrations, both in-line and transverse
to the flow. In the case of resonance within the "lock-in" regime, the structural vibration
frequency and amplitude can not only become governing parameters, but also even the
most pronounced ones.

Regarding the flow around an isolated two-dimensional circular cylinder, the focus lies in this
monograph on the effect of the Reynolds number as the governing parameter in combination
with the surface roughness as the selected influencing parameter on the mean and fluctuating
fluid dynamic loading and on the eddy shedding frequency.

2.1.1 Classification of the characteristic flow regimes based on smooth
circular cylinders

By variation of the Reynolds number from ReD „ 0 up to its theoretically maximum value
of ReD Ñ 8, the flow over a circular cylinder passes through several distinct states: from a
fully laminar state at very low ReD values, over the three transition states with a laminar-
to-turbulent transition in the wake, in the free shear layers, or in the boundary layer on the
surface of the cylinder, up to the fully turbulent state at very high Reynolds numbers. In the
following, only a brief summary on these various states or flow regimes is presented, based on
the works by Roshko [197] and Schewe [209]. The main emphasis in the current overview is on
the two upper flow transition states. A very extensive treatment of each of the characteristic
flow regimes for circular cylinders is provided by Zdravkovich [294].

In case of a laminar oncoming flow, the thin boundary layer on the surface of the circular
cylinder is laminar at the forward stagnation point and increases in thickness as it develops
along the cylinder’s circumference towards its shoulders and beyond them. While for Reynolds
numbers up to about 5, i.e. Stokes flow or creeping flow as shown in the Figure 2.1, the laminar
flow remains attached to the surface of the bluff body up to the downstream stagnation point
(Kim and Karrila [124]), a separation of the boundary layer from the smooth cylinder’s surface
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Figure 2.1: Streamline visualisation of the creeping flow around a circular cylinder in a laminar
cross-flow for ReD = 0.16 (Photo by S. Taneda in Van Dyke [252].

characterises the flow field around this bluff body at higher Reynolds numbers. Regarding the
exact location of flow separation, as well as the nature of the boundary layer at that point and
of the resultant free shear layers, the value of the Reynolds number plays a dominant role, as
is presented hereafter. The exact point of flow separation on the circular cylinder is defined by
the local velocity gradient normal to the cylinder’s surface, at the surface, which equals zero at
this point, thereby inducing a zero wall shear stress. Owing to the no-slip condition at the wall
of the cylinder, a gradual velocity gradient normal to the cylinder’s surface from zero at the
wall to the free stream velocity in the outer flow is present in the boundary layer. Inside the
boundary layer, the flow experiences a strong viscous flow resistance that leads to a relatively
low flow momentum. The boundary layer is therefore sensitive to an external pressure gradient.
At the stagnation point the kinetic energy of the fluid particles is converted into pressure and
the local flow velocity of the fluid is thus zero. While wandering from this point in downstream
direction along the continuously curved surface of the cylinder towards its shoulders, the surface
boundary layer experiences a negative, hence favourable, pressure gradient as a result of the
steady flow acceleration, as shown in Figure 2.2. Simultaneously, the velocity of near-wall fluid
elements decreases as a result of the tangential shearing of those fluid particles along the surface
of the cylinder. This also reduces the velocity gradient near the wall. By passing the shoulders
of the cylinder, the decreasing local projected area of the cylinder induces an increase in the
effective cross section of the flow. The adverse (positive) pressure gradient that is present in
this region induces a deceleration of the flow over the first section of the downstream-directed
face of the cylinder. The kinetic energy of the near-wall fluid particles is no longer sufficient to
overcome both the friction force and the static pressure rise. Their velocity gradually reduces
until the point is reached at which the velocity and the velocity gradient are both equal to
zero. At this location, the viscous shear force at the wall must thus also equal zero. From this
point on, an additional pressure increase causes the flow direction of the near-wall particles to
reverse, hence they are forced back against the actual oncoming flow direction, and the wall
shear stress changes direction as well. This results in the occurrence of a local backflow area,
the attached boundary layer can no longer progress along the surface, and the laminar flow is
forced to detach itself from the surface of the cylinder, as illustrated in Figure 2.3(a).

Once the laminar flow has separated from the cylinder’s surface, the behaviour of the flow
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Figure 2.2: Velocity distribution on the cross-sectional surface of a circular cylinder in cross-
flow (Groh [89]). The boundary layer is assumed to be laminar at least up to its separation
from the cylinder surface.

(a) Laminar boundary layer separation (b) Turbulent boundary layer separation

Figure 2.3: Comparison of the separation of a laminar (top) and turbulent (bottom) boundary
layer from a convex surface (Photos from Head [95] in Van Dyke [252]).

directly behind the cylinder, i.e. its base region, in the near wake, and in the far wake remain
mainly Reynolds-number dependent. For 5 ă ReD ă 40, the steady two free shear layers con-
verge to meet at a certain distance behind the cylinder (its exact location shifting downstream
in the near wake with increasing Reynolds number, Van Dyke [252]), thereby forming a closed
near-wake region in which two fixed, nearly symmetric recirculating eddies are captured, as
presented in Figure 2.4.

A further increase in Reynolds number induces an instability in the recirculation region be-
hind the circular cylinder, which leads to a loss in symmetry between both recirculating flows
and the appearance of a sinusoidal oscillation of the shear layers, at first with a small amplitude
and in the far wake (Figure 2.5(a)). For higher Reynolds numbers up to ReD „ 200 the initial
location at which the oscillation starts wanders upstream towards the base of the cylinder.
Simultaneously, the amplitude of the oscillating flow increases, the free shear layers start to roll
up into eddies along the trail, thereby increasing their size whilst being carried downstream
(Figures 2.5(b) and 2.5(c)). At the end of this third flow regime the eddies are shed alternately
at either side of the cylinder, thereby forming a laminar Kármán vortex shedding street in the
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(a) Reynolds number: 9.6 (b) Reynolds number: 26

(c) Reynolds number: 41

Figure 2.4: Streamline visualisation of the separated flow around a circular cylinder in a laminar
cross-flow with two recirculating eddies fixed in its steady near wake for ReD = 9.6 (top), 26
(centre), and 41 (bottom) (Photos by S. Taneda in Van Dyke [252]).

(a) Reynolds number: 55 (b) Reynolds number: 65

(c) Reynolds number: 102 (d) Reynolds number: 161

Figure 2.5: Formation of the laminar eddy shedding in the wake of smooth circular cylinder
with increasing Reynolds number (Homann [101]).

wake behind the cylinder (Figure 2.5(d)).

At Reynolds numbers around ReD = 200, a transition from laminar to turbulent occurs
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far downstream in the laminar periodic wake region, due to the random initiation and growth
of irregularities. While increasing the Reynolds number even further, this transition location
moves upstream along the laminar wake towards the base of the cylinder (Figure 2.6), until at
ReD „ 300 – the upper boundary of the current flow state – the laminar-turbulent transition
has spread that far upstream that its location can actually be found on the eddies during their
formation. Hence, at the moment of shedding from the cylinder, each eddy is already turbulent.

Figure 2.6: Transitional vortex street behind a smooth circular cylinder at ReD = 270 within
the TrW flow state (Photo by Beluche in Coutanceau and Defaye [53]). The arrows mark the
positions at which the transverse flow between eddies becomes turbulent.

Zdravkovich [294] has named this first characteristic transition state the Transition-in-the-wake
state of flow (TrW ). In contrast to the categorisation by Mutlu Sumer and Fredsøe [149], he
prolongs this flow state up to ReD = 350 to 400 and divided it further into an lower and upper
transition regime, depending on whether the laminar eddies are regular or irregular whilst being
formed. While in the laminar flow states with Reynolds numbers up to ReD = 200, the process
of eddy shedding is highly two-dimensional, i.e. constant along the span of the cylinder, it be-
comes increasingly three-dimensional in the current flow state (Gerrard [87], Williamson [271])
with multiple cells (each with a different longitudinal length) appearing in spanwise direction.
Although the characteristics of the eddy shedding within each cell are constant, variations in
shedding frequency and phase between neighbouring cells do occur. As cells may also break up,
disappear, and reappear, the number of cells and their lengths along the span of the cylinder
vary continuously in time.

The boundary between the first and the second transition state of the flow over a smooth
circular cylinder is located around ReD = 300 (Mutlu Sumer and Fredsøe [149]) or 350 to 400
(Zdravkovich [294]) and characterised by a turbulent wake. The term adopted for this flow
state in this monograph is the subcritical flow regime, in agreement with Wieselsberger [270].
This flow state continues up to a Reynolds number of 2ˆ105 to 3ˆ105. After separation of
the still laminar boundary layer from the cylinder surface, the transition to turbulence takes
place in the initially laminar free shear layers in the near wake. This means, that at the instant
both free shear layers alternately roll up into eddies, they are already turbulent. With growing
Reynolds number, the transition location progressively wanders along the free shear layers in
upstream direction in the direction of the boundary layer separation points on the surface of the
cylinder. This persuaded Zdravkovich [294] to split the overall subcritical flow regime into three
sub-regimes for different phases of transition, i.e. from lower subcritical for Reynolds numbers
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(a) Lower subcritical; Reynolds number: 2ˆ103 (b) Upper subcritical; Reynolds number: 1.1ˆ105

(c) Upper subcritical; Reynolds number: 1.5ˆ105

Figure 2.7: Transition in the free shear layers behind a smooth circular cylinder in cross-flow.
(a): ReD = 2ˆ103 within the lower subcritical regime (Gerrard [87]); (b): ReD = 1.1ˆ105

within the upper subcritical regime (Photo by Dymont in Van Dyke [252]); (c): ReD = 1.5ˆ105

within the upper subcritical regime (Werlé [269]).

up to ReD = 1ˆ103 to 2ˆ103 in which "the transition waves appear first as undulations of the
free shear layers" and "stabilize the near wake" (Figure 2.7(a)), over intermediate subcritical
where "the transition eddies are formed as a chain along free shear layers....before becoming
turbulent and then roll up in alternate eddies", up to upper subcritical in which "the transition
to turbulence is reduced to a spot of a sudden burst in free shear layers close to the cylinder" and
"is accompanied by a very short near wake" at 2ˆ104–4ˆ104 ă ReD ă 1ˆ105–2ˆ105 (Figures
2.7(b) and 2.7(c)). The nature of the flow in this last sub-regime is defined as quasi-invariable,
as a result of the stabilizing effect produced on the transition location in the free shear layers in
this range of Reynolds numbers. The latter may result from an acceleration of the flow alongside
the near wake, induced by a combination of a short eddy formation region, a consequential wide
near wake, and a resultant relocation of the free shear layers into the flow that surrounds the
cylinder (Zdravkovich [294]).

In the ensuing Reynolds-number flow regime, designated as the critical flow regime, the
transition location can be found close to the surface of the cylinder in the first portion of the
free shear. In this flow regime, the aforementioned stabilising effect of the transition region
gradually weakens with increasing Reynolds number and the transition to turbulence in the
free shear layers resumes its progressive advancement towards the points of boundary layer
separation on the cylinder. This flow state is the last one, in which the boundary layer is
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still laminar at separation. Upon separation, the fast growth of the instabilities in the free
shear layers and the subsequent transition to turbulence allows a reattachment of the separated
and now turbulent free shear layers onto the cylinder surface, as portrayed in Figure 2.8.
Below the free shear layer, a laminar separation bubble (LSB) with a enclosed recirculation

Figure 2.8: Schematic of the transition to turbulence over a laminar separation bubble above
the surface of a smooth circular cylinder (Horton [103]).

is formed on the surface (e.g. Bearman [24], Schewe [209, 210], Lehmkuhl et al. [131]), and
the "secondary" separation of the reattached turbulent boundary layer is delayed to a point a
substantial distance downstream of the cylinder shoulders (Figure 2.3(b)). For a narrow band of
Reynolds numbers around ReD = 3ˆ105–3.8ˆ105, the appearance of such a laminar separation
bubble is limited to either one of the two sides of the smooth circular cylinder (e.g. Eisner [70],
Fage [73], Fage and Falkner [75], Achenbach [1], Bearman [24], Achenbach and Heinecke, [5],
Farell and Blessmann [76], Schewe [208,209], Almosnino and McAlsiter [17], Higuchi et al. [98],
Fujita et al. [84], Singh and Mittal [223], Vaz et al. [262], Lehmkuhl et al. [131], Miau et
al. [145], Rodríguez et al. [194]). The exact values of both bounding Reynolds numbers strongly
depend even on the smallest variations in the values of the influencing parameters, listed at
the beginning of this chapter, owing to which a rather large scatter in the data is observed
among the different studies. Following the argumentation presented by Schewe [209], the onset
of this flow condition is initiated by the appearance of critical, low-frequency fluctuations in the
microstructure of the flow that locally perturb the free shear layer on one side of the cylinder
and invoke a transition to turbulence in this free shear layer. In his experiments on a perfectly
smooth circular cylinder, he showed that the side at which the LSB appears is arbitrary, as it
depends on the location in the oncoming flow at which the first disturbances are present that
trigger the transition to turbulence (Schewe [209, 210]). After reattachment of the turbulent
free shear layer onto the cylinder surface, the presence of the LSB leads to an acceleration of
the flow on this side of the cylinder, whereas a flow deceleration occurs on the opposite side
that induces a delay of the transition to turbulence. In combination with a relocation of the
stagnation point away from the bubble (Kamiya et al. [119], Schewe [208]), which leads to a
longer laminar surface boundary layer up to its separation from the surface on the bubble side
and a shorter one on the other side, this results not only in a stable laminar separation bubble,
but also in a delay of the formation of a (second) separation bubble on the opposite side. Hence,
although the separation bubble may randomly occur at either side of the cylinder, once formed,
it locally stabilises and fixes the asymmetric flow field. Because there are two stable states with
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Figure 2.9: Flow visualisation of the near wake behind a smooth circular cylinder in a steady
flow at ReD = 3.38ˆ105 within the bistable flow regime (Almosnino and McAlsiter [17]).

a nearly equal probability of occurrence, this flow state is called the bistable asymmetric flow
state. Bearman [24], on the other hand, reported that in his experiments the laminar separation
bubble appeared each time at the same side of the cylinder. Although he mentioned that he
was not aware of any obvious asymmetry in his experimental test setup, it can be argued that
there must have been some sort of asymmetry present that caused the persistent occurrence of
the LSB at one particular side of the circular cylinder. The presence of cells along the span of
the circular cylinder results furthermore in a variation of the bubble occurrence and spanwise
length over neighbouring sections (Schewe [209]). The large difference in angular positions
at which the upper (turbulent) and lower (laminar) boundary layer separate from the surface
results in a distinct asymmetric and narrower near wake compared to the previous subcritical
flow regime, as shown in Figures 2.9 and 2.10(a).

The strong sensitivity of this bistable flow state to the Reynolds number is noticed clearly
when the value of the latter is only slightly increased. Schewe [209] noted that the upper
boundary of the critical flow regime is marked by the re-appearance of critical, low-frequency
fluctuations in the microstructure of the flow. Hence, on that side of the cylinder on which the
flow behaviour was essentially still subcritical in the critical flow regime, the laminar free shear
layer is from this instant on also locally perturbed. This leads to a transition to turbulence in
this laminar free shear layer just after separation from the cylinder surface as well, owing to
which a laminar separation bubble is also formed on that side of the cylinder. Since a separation
bubble is now present at both sides of the cylinder, the cylinder experiences a symmetric flow
field (Bearman [24], Schewe [209]). However, Lehmkuhl et al. [131] reported that at a Reynolds
number of 3.8ˆ105 (Figure 2.10(b)), i.e. well within the critical flow regime, "the combined
effects of flow separation, transition to turbulence and the increase in the shear-stresses, makes
the flow to reattach causing the formation of (two) asymmetric LSBs and delaying the final
separation of the flow". With a small further increase in the Reynolds number, the flow insta-
bilities close to the surface and the two separation bubbles both become increasingly symmetric
(Figure 2.10(c)), until the point is reached at which all topological changes of the flow around
the smooth circular cylinder from subcritical to supercritical have been accomplished and the
critical flow transition has thus been completed (Figures 2.10(d)). Their observation of the
appearance of two (slightly) asymmetric LSBs at the end of the critical flow regime is most
probably caused by an artefact of their numerical scheme, as it clearly contradicts the experi-
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(a) Reynolds number: 2.5ˆ105 (b) Reynolds number: 3.8ˆ105

(c) Reynolds number: 5.3ˆ105 (d) Reynolds number: 6.5ˆ105

Figure 2.10: Instantaneous velocity magnitude profiles in the near wake behind a smooth
circular cylinder at Reynolds numbers in the range of 2.5ˆ105–6.5ˆ105 (Lehmkuhl et al. [131]).
(a): ReD = 2.5ˆ105; (b): ReD = 3.8ˆ105; (c): ReD = 5.3ˆ105; (d): ReD = 6.5ˆ105.

mental results by Bearman [24] and Schewe [209].

As soon as symmetric conditions between both sides of the cylinder have been regained,
the supercritical flow regime starts. It continues up to a Reynolds number of approximately
ReD = 1.5ˆ106 and is characterised by, among other things, both a smaller recirculation zone
behind the cylinder and near-wake width in comparison to the subcritical flow regime. The
cause of the latter results from a combination of the presence of both separation bubbles and
the state of the reattached surface boundary layer, which is now turbulent up to the moment
of its secondary separation from the cylinder surface. Contrary to a laminar boundary layer,
which ceases to exist soon after it experiences a positive external pressure gradient, a turbulent
boundary layer has the ability to sustain a high adverse pressure gradient over a long circum-
ferential distance before its separation takes place. Because of the strong velocity fluctuations
both in flow and cross-flow direction in this turbulent boundary layer, the continuous mixing of
fluid elements promotes the interchange of momentum between the upper and lower regions of
the boundary layer. Not only produces this mixing process a faster increase in thickness of the
turbulent boundary layer compared to a laminar one, but high-energy fluid elements are in this
way also transported from the outer flow regions to the regions close to the surface and therefore
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continuously supply new kinetic energy to the fluid particles near the wall. Hence, the mean
flow velocity of those fluid particles possesses a higher tangent component. The resultant larger
velocity gradient directly at the surface of the cylinder enables the thick turbulent boundary
layer to counteract the adverse pressure gradient over a longer distance. Its separation from
the surface of the cylinder therefore shifts to a position further downstream, i.e. well past
the maximum thickness of the cylinder, as can be clearly observed by comparison of the flow
fields in the Figures 2.7(b) (high subcritical) and 2.10(d) (low supercritical). Interestingly, the
process of laminar boundary layer separation, transition in the free shear layer, and reattach-
ment onto the cylinder surface induces additional velocity fluctuations in cross-flow direction in
the turbulent boundary layer upon reattachment. The boundary layer can therefore withstand
an even stronger pressure increase over a longer circumferential distance along the cylinder
surface compared to a "normal" laminar-turbulent transition in the attached boundary layer
(Roshko [198]). The final separation is therefore postponed to the highest possible angular
positions on the leeward side of the cylinder and generates in that way a small recirculation
zone and a narrow near- and far-wake.

In the following state of the flow over a smooth circular cylinder, the so-called upper tran-
sition, that exists up to a Reynolds number of approximately 4.5ˆ106, the location of the
transition to turbulence pursues its migration along the surface of the cylinder in upstream
direction with increasing Reynolds number. This leads to a continuous decrease in size of
both laminar separation bubbles, which then successively become unstable, disrupt and frag-
ment along the span of the cylinder as the transition reaches the primary laminar separation
line (Bearman [24], Loiseau and Szechenyi [135]). With each further increase in Reynolds
number, the transition location creeps further upstream along the surface, thereby overtaking
the primary separation, upon which the laminar separation bubbles vanish, and a "normal"
laminar-turbulent transition takes place in the attached boundary layer. The boundary layer
can therefore no longer withstand the strong pressure increase on the downstream-directed
face of the cylinder and the primary boundary-layer separation locations advance towards both
shoulders of the cylinder. The recirculation zone behind the cylinder becomes wider and the
near wake opens again. Similar to the critical flow state, this flow transformation occurs in an
asymmetric manner between the upper and lower sides of the cylinder. The amount of asym-
metry is once more strongly affected by the values of the influencing parameters, which results
in a rather large scatter in the measurement data. In addition, the highly three-dimensional,
irregular state of the turbulent free shear layers can cause a suppression of the regular eddy
shedding process in the wake of the cylinder at certain Reynolds numbers (Bearman [24]).

For Reynolds numbers above 4.5ˆ106, the flow field around the smooth circular cylinder is
characterised by a relatively wide recirculation zone and near-wake region, as well as by a regular
vortex shedding (Roshko [197], Cincotta et al. [52], Loiseau and Szecheny [136], Schewe [209]).
The laminar-turbulent transition is situated between the stagnation and separation points in the
attached boundary layer and slowly, but steadily continues its motion towards the stagnation
point for increasing Reynolds numbers. This implies, that the complete wake, the free shear
layers, and large amounts of the boundary layer are turbulent in this ultimate transcritical flow
regime. The two separation locations on the cylinder are located over the shoulders and show
only minor variations with Reynolds numbers. The latter therefore also counts for the widths
of the base region and the near- and far wake.
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2.1.2 Fluid dynamic forces on smooth circular cylinders

In the preceding section, the variation of the state of the flow over a circular cylinder with
changing Reynolds number was discussed in detail. With the exception of the Stokes flow for
ReD ď 5, the cylinder experiences in each of the flow regimes a total drag force that results
from the asymmetric pressure distribution on the windward and leeward side of the cylinder
and the viscous friction force – the latter induced by the wall shear stress along the surface –
that both act on the cylinder surface. Since in this monograph the primary focus is placed on
the range of Reynolds numbers of 105 ă ReD < 107, i.e. from high subcritical up to moderate
transcritical, the component of the viscous friction force on the resultant fluid dynamic force
on the cylinder is low. Achenbach [1], for example, showed that at these Reynolds numbers less
than 3% of the total drag experienced by a circular cylinder in a steady cross-flow results from
friction forces on the cylinder surface. The friction force component can therefore be omitted
without introducing large errors. In the following discussion on the fluid-dynamic forces, only
the drag component by the pressure force on the cylinder is therefore taken into account.

Upon the final separation of the laminar or turbulent boundary layer from the cylinder
surface, the flow region that is formed immediately downstream of the base of the cylinder
contains reversed flow and is characterised by a relatively low, but constant pressure (Figure
2.2). This circulation zone or near wake is bounded by the cylinder surface and the free shear
layers. In this zone, eddies are formed alternatingly on both sides of the cylinder as a result
of the interplay between the reversed and forward-directed flows that induces a roll-up of the
shear layers. During the formation of such an eddy, portrayed schematically in Figure 2.11, it
is fed by circulation from its connected shear layer, and can thus gradually increase both in
strength and size. Once its strength is sufficiently large, the eddy draws the opposing free shear

Figure 2.11: Instantaneous vorticity and velocity field around a smooth circular cylinder in a
steady cross-flow (Shirayama and Ohta [221]). The shear layer roll-up and the eddy formation
region can clearly be recognised.

layer across the near wake. The latter therefore starts to roll up into an eddy as well and, since
it is simultaneously fed by vorticity, it also grows in strength and size. Once this approaching
and oppositely rotating eddy is strong enough, it cuts off the further supply of circulation of
the former eddy. As a consequence, the latter thereupon detaches from the surface and has now
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Figure 2.12: Variation of surface pressure coefficient Cp, as well as lift (blue arrow), drag (red
arrow), and resultant force (gree arrow) on a circular cylinder in a steady cross-flow during one
shedding cycle at ReD = 1.1ˆ105 (Drescher [63]).

become a distinct vortex. This so-called eddy shedding generally takes place in an alternating
manner between the sides of the cylinder. Upon formation and shedding of the eddy, each
distinct vortex is convected downstream by the flow and gradually decays along the (far) wake,
thereby forming in this way the well-known Kármán vortex street.

The process of the alternating shedding of counter-rotating eddies introduces a regular
fluctuation of the pressure distribution on the cylinder surface that leads to a similar regular
variation in the lift and drag component – for the former both in direction and amplitude, for the
latter solely in amplitude – of the resultant fluid-dynamic force, shown in Figure 2.12. From this
figure it becomes evident that the frequency of the lift force equals the Kármán vortex shedding
frequency, whereas the drag force fluctuates with a dominant frequency that equals twice that
value. It is therefore not surprising, that the same ratio in frequencies exists between the
transverse and in-line vortex-induced vibrations experienced by an elastically-mounted circular
cylinder in a steady flow.
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2.1.2.1 Mean drag and lift forces

The distribution of the mean, i.e. time-averaged, surface pressure coefficient, defined as

Cp “
p´ p8
1
2
ρU2

8

(2.2)

where p equals the mean local static pressure on the surface and p8 the static pressure in the
free stream, are presented in Figure 2.13 for different Reynolds numbers from subcritical up
to transcritical. The characteristic pressure distributions on the windward side of the cylinder
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Figure 2.13: Cross-sectional mean pressure distribution on the surface of a circular cylinder for
different Reynolds numbers in the subcritical to transcritical flow regimes. (a): experimental
data by Cantwell [41] (from Zdravkovich [294]); (b): adapted from Nakayama [154].

show only minor variations with increasing Reynolds number and neatly follow the pressure
distribution obtained from the potential flow theory, given by

Cp,pot “ 1´ 4sin2ϕ (2.3)

where ϕ is the circumferential angle. On the rear side of the cylinder a strong deviation from the
potential flow theory occurs as a result of the separation of the flow from the cylinder surface.
The presence of a recirculation zone adjacent to the base of the cylinder with a relatively flow
velocity induces the plateau of the surface pressure coefficient across the cylinder wake. With
growing Reynolds number, the value of the mean minimum pressure coefficient Cp,min gradually
lowers in the subcritical flow regime (ReD ď 2.39ˆ105 in Figure 2.13(a)), subsequently drops
drastically in the critical flow regime (ReD = 2.74ˆ105 and 3.37ˆ105, Figure 2.13(a)), shows
a gradual recovery in the upper transition, and finally settles at a relatively constant transcrit-
ical value of about Cp,min = –2 (ReD = 8.4ˆ106 in Figure 2.13(b)). The drastic fall in Cp,min
over the critical flow regime is combined with a steep increase in the adverse pressure recovery
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along the cylinder circumference directly downstream of the angular location at which Cp,min
occurs, as well as an increase of the plateau of Cp at the base of the cylinder. This becomes
clearly visible in Figure 2.13(b) when comparing the pressure distributions at ReD = 1.1ˆ104

(subcritical) and ReD = 6.7ˆ105 (supercritical).

Based on the mean surface pressure distribution, the mean (two-dimensional) cross-sectional
pressure drag and lift coefficient, Cd and Cl, respectively, can be determined according to

Cd “
d
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ρU2
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where d and l equal the mean cross-sectional drag and lift force on the cylinder, ϕ the angular
coordinate, s the circumferential location on the cylinder surface, n the local normal vector on
the cylinder surface, and X and Z the directed axes in downstream and cross-flow (positive
upward) direction, respectively, with respect to the centre location of the cylinder. Figure 2.14
presents a compilation of experimental data of the cross-sectional drag coefficient Cd for ReD
ě 105. As expected from the behaviour of the mean surface pressure distribution, the drag
coefficient possesses a very clear and distinct Reynolds-number dependent variation as well.

(a) Subcritical to supercritical flow regimes (b) Subcritical to transcritical flow regimes

Figure 2.14: Evolution of the mean cross-sectional drag coefficient for subcritical to transcritical
Reynolds numbers (Zdravkovich [294]). (a): ˝: Bearman [24], 4: Güven et al. [91], ˝: Farell
and Blessmann [76]; (b): O: Polhamus [186], ˝: Roshko [197], d: Schmidt [214], 4: Jones et
al. [116], full symbols: James et al. [114].

For subcritical Reynolds numbers up to about 1ˆ105 to 2ˆ105 the mean drag coefficient is
practically constant with a value of around 1.2. The laminar boundary layer separates around
an angular position of ϕS = 80˝, i.e. upstream of each shoulder of the cylinder (Figure 2.15).
As a consequence, a strong deflection of the streamlines and a distinct spreading of the free
shear layers in cross-flow direction occur. The eddies are therefore formed relatively close to
the base surface of the cylinder, which is mirrored in a high negative base pressure coefficient
in the range of Cpb = –1.0 to –1.2, as illustrated in Figure 2.16(a). At the end of the subcritical
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Figure 2.15: Behaviour of the attached boundary layer on a circular cylinder in cross-flow for
6ˆ104 ď ReD ď 4ˆ106 (Zdravkovich [294]). (a): Angular location of the laminar-turbulent
transition (Achenbach [4]); (b): Angular separation location (Achenbach [1], Ruscheweyh [199]).

(a) Subcritical to supercritical flow regimes (b) Supercritical to transcritical flow regimes

Figure 2.16: Dependency of the mean cross-sectional base pressure coefficient for subcritical to
transcritical Reynolds numbers (Zdravkovich [294]). (a): ˝: Bearman [24] 4: Güven et al. [91],
˝: Farell and Blessmann [76]; (b): all symbols: Warschauer and Leene [267].
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flow regime, a gradual, but steady decrease of the drag coefficient is obtained. It results from
the elongation of the low-pressure region, situated adjacent to the base of the cylinder, in which
the eddies are formed (Peltzer [185]). This leads to a decrease in the negative mean base pres-
sure coefficient (Figure 2.16(a)) and a shift of the angular separation location of the laminar
boundary layer from the windward to the leeward side of the cylinder shoulders (Figure 2.15).
The latter demonstrates, that the near wake does not only gradually become longer, but at the
same time also somewhat smaller at those Reynolds numbers.

The formation of the laminar separation bubbles, first at one side of the cylinder, subse-
quently also at the other side in the critical flow regime induces a strong drop of the mean drag
coefficient that includes two discontinuous downward steps. These two discontinuities in the
mean drag coefficient occur at those Reynolds numbers at which either the first or the second
LSB does appear. The main driving parameter behind the sharp decrease in Cd is the com-
bination of the relocation of the final separation location of the attached boundary layer from
ϕS = 95˝–100˝ at ReD = 3ˆ105 to ϕS = 140˝ at ReD = 3.5ˆ105 and the state of the boundary
layer at separation that changes from laminar to turbulent. As a result of displayed secondary
separation, the near wake becomes increasingly smaller, which leads to a sharp decrease of
the negative base pressure coefficient (Figure 2.16(a)) and thus a major and abrupt decrease
in the drag force experienced by the cylinder. In the discussion of the critical flow regime in
section 2.1.1, it was mentioned, that although the single separation bubble may randomly occur
at either side of the cylinder, once formed, it locally stabilises and fixes the asymmetric flow
field within the narrow bistable asymmetric flow state. The resultant asymmetric mean surface
pressure distribution introduces a mean steady lift force on the cylinder. Kamiya et al. [119] ob-
tained in their experiments a mean cross-sectional lift coefficient of CL = 0.8 and 1.2, the value
being dependent on whether they passed this bistable flow state by increasing or decreasing the
Reynolds number (Figure 2.17(a)). The steady increase/decrease of CL at the beginning and
the end are an indication for the presence of a light asymmetry in their experimental test setup.
Schewe [208, 209], on the other hand, measured a spanwise-integrated mean lift coefficient of
CL = 1.3 which was independent of the Reynolds-number sequential order (Figure 2.17(b)). In

(a) Steady mean cross-sectional lift coefficient (b) Steady mean spanwise-integrated lift coeffi-
cient

Figure 2.17: Steady mean lift coefficient on a circular cylinder in cross-flow for Reynolds num-
bers in the bistable flow state. (a): cross-sectional lift coefficient (Kamiya et al. [119]); (b):
spanwise-integrated lift coefficient (Schewe [209]).

addition, both authors observed a clear hysteresis in the abrupt appearance and subsequent dis-
appearance of the steady mean lift force with increasing or decreasing Reynolds numbers. This
demonstrates, that the sequential formation of the two laminar separation bubbles takes place
at two somewhat higher Reynolds numbers than the burst of both LSBs when the Reynolds
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number is successively decreased from supercritical to subcritical values.
The lowest, relatively constant mean cross-sectional drag coefficient of approximately Cd = 0.2

is obtained throughout the supercritical flow regime (Figure 2.14). At most of the supercritical
Reynolds numbers, i.e. up to about 1ˆ106, the transition to turbulence along the span of the
cylinder is located within the separation bubble around ϕT = 106˝. Only at the end of this flow
regime, near to the beginning of the upper transition, a gradual upstream motion of the tran-
sition location in the attached surface boundary layer can be seen to commence (Figure 2.15).
The presence of the two laminar separation bubbles leads to a high value of the adverse pressure
recovery, defined as Cpb – Cp,min, in comparison to those at subcritical Reynolds numbers, as
shown in Figure 2.13(b). Güven [91] measured, for example, a strong jump of a factor 10 for the
value of the adverse pressure recovery over the critical flow regime. Following the mechanism
of laminar-turbulent transition over the separation bubble, the reattached turbulent boundary
layer can withstand this strong adverse pressure gradient on the leeward side of the cylinder
over a long circumferential distance along the cylinder surface, owing to which the secondary
separation location remains at a steady angular value of ϕS = 140˝. The following short and
narrow recirculation zone behind the cylinder and the near wake keep the negative mean base
pressure coefficient at a low negative value of Cpb = –0.2 to –0.25 (Figure 2.16), which results
in the low mean drag coefficient.

In the last portion of the supercritical flow regime a discontinuous step in the separation
angle to ϕS = 125˝ was measured by Achenbach [1], that is followed by a continuous decrease
towards ϕS = 115˝ in the subsequent upper transition (Figure 2.15). This decrease in ϕS results
from the shrinkage and subsequent disappearance of the two laminar separation bubbles, owing
to which a "normal" laminar-turbulent transition takes place in the attached boundary layer.
During its steady shift along the surface of the cylinder in the direction of the stagnation point
with increasing Reynolds number, Figure 2.15, the transition location overtakes the angular
location of the primary turbulent separation. The boundary layer can no longer withstand the
large adverse pressure gradient on the downstream-directed face of the cylinder, the primary
separation location thus has to advance upstream, thereby approaching both shoulders of the
cylinder, but with a much lower angular velocity than the transition point. The upstream
motion of the separation leads to a widening of the recirculation zone behind the cylinder and
an increase of the negative mean base pressure (Figure 2.16(b)). The magnitude of the adverse
pressure recovery decreases (Achenbach [1], Roshko [197], Jones [116], Güven [91]) and the
near wake opens itself again. All of these factors combined cause the increase in the mean drag
coefficient, as presented in Figure 2.14(b). The scatter of the experimental data for Cd and Cpb
in this upper transition, as well as the scatter of the Reynolds number at which this flow regime
starts and the value of Cd that is reached at its upper bounding Reynolds number result from
the different values of the influencing parameters in the listed tests.

In the final transcritical flow regime for ReD ą 4.5ˆ106, the laminar-turbulent transition
is situated in the attached boundary layer in the vicinity of the stagnation point. Ruscheweyh
[199] measured a separation of the turbulent boundary layer around a steady angle of ϕS = 105˝
at high transcritical Reynolds numbers of 107. Since the separation occurs at the leeward sides
of both cylinder shoulders, the nearly regular near wake is for these Reynolds numbers smaller
as the laminar near wake in the subcritical flow regime. This reflects in lower, but highly
Reynolds-number independent values of Cpb and thus also of Cd at transcritical Reynolds num-
bers.
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2.1 Flow over circular cylinders with and without surface roughness

2.1.2.2 Fluctuating drag and lift forces

As already discussed at the beginning of this section, the process of alternating roll-up of the
free shear layers into eddies at either side of the cylinder in the base region and the subsequent
shedding of the distinct counter-rotating vortices introduces a regular change of the pressure
distribution on the surface of the cylinder (Figure 2.12). The circular cylinder experiences
thereupon a resultant fluid-dynamic force that varies regularly with time and can be split up
into a its lift and drag force components. The characteristic Reynolds-number-dependent vari-
ation of the mean parts of the lift and drag force has been discussed in detail in the previous
section, where it was shown, that a circular cylinder with a smooth surface experiences a mean
non-zero lift force only in a very small range of Reynolds numbers within the critical and upper
transition flow regimes. However, from Figure 2.12 it becomes evident, that, independent of
the Reynolds number, this same cylinder experiences regular fluctuations in both lift and drag
– even when the mean lift force equals zero – over each shedding cycle, provided that a (regular)
eddy shedding does actually take place in the near wake behind the cylinder at that specific
Reynolds number.

A compilation by Hallam et al. [93] of the magnitude of the oscillating (RMS) parts of

the cross-sectional lift and drag force on a circular cylinder, denoted by
b

pC
12
l q and

b

pC
12
d q,

respectively, are presented in Figure 2.18 as function of the Reynolds number. It has to be
mentioned at this point, that there exist many different methods to measure the RMS values of
the lift and drag forces. One must distinguish between sectional forces, for which the considered
segment length l in spanwise direction on which the forces are measured is small compared to
the total span L of the cylinder, and global forces that act on the complete span of the cylinder.
Since the coherence of the flow structures (or sectional forces) is decreasing in spanwise direction,
the integration of the measured forces over the spenwise section leads to lower RMS values when
L/D is increased. From this figure, it is obvious that the trends of the RMS values of both

l  

(a) Fluctuating cross-sectional lift coefficient

d  

(b) Fluctuating cross-sectional drag coefficient

Figure 2.18: Fluctuating cross-sectional force coefficients (RMS) on a smooth circular cylinder
in a steady cross-flow (Hallam et al. [93]). (a): cross-sectional lift coefficient; (b): cross-sectional
drag coefficient.

Cl and Cd follow the general curve of the mean drag coefficient with Reynolds number given
in Figure 2.14: the highest values are obtained in the subcritical flow regime, followed by a
drastic change with a large and steep decrease over the critical flow regime, before attaining
extremely low values at supercritical Reynolds numbers. In the subsequent upper transition, a
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gradual increase in both
b

pC
12
l q and

b

pC
12
d q takes place, whereby the latter parameter shows

a stronger recovery than the former and thus obtains higher nearly constant values in the final
transcritical flow regime. The combination of an extremely high boundary layer separation
angle of ϕS = 140˝ at supercritical Reynolds numbers (Figure 2.15) and the fact that this
boundary layer is turbulent at its final separation results in a weak interaction between the
eddies in the very narrow recirculation zone at the base of the cylinder. The induced pressures
on the surface of the circular cylinder show therefore only small fluctuations over each shedding
cycle, which explains the extremely small RMS values in the supercritical flow state. Their
values and variations in the other flow regimes can be explained in a similar manner by reference
to the pressure distributions in Figure 2.13, the transition and separation angles given in Figure
2.15, and the state of the boundary layer at separation.

The values of the
b

pC
12
l q and

b

pC
12
d q can be considered a measure of the influence of the

eddies on the fluidelastic behaviour of the circular cylinder. The higher the values, the stronger
the eddies interact with the base of the cylinder in the recirculation zone and the larger the
vortex-induced oscillations. The difference of about a factor 10 between the RMS values of the
lift and the drag force over all flow regimes furthermore explains the much higher amplitude
of the vortex-induced vibration in transverse (i.e. lift) direction that an elastically-mounted
smooth 2D circular cylinder experiences in a steady cross-flow, as has already been mentioned
in Section 1.2.2.

2.1.2.3 Strouhal number

The power spectral densities (PSD) of the time-dependent signals of the lift and drag forces,
obtained with piezoelectric platform dynamometers, of the velocity fluctuations, measured with
hot wires, or of the surface pressure signals can be used to extract the main frequency or
frequencies of the eddy shedding process. The resultant normalised eddy shedding frequencies
in cross-flow and flow direction, denoted hereafter as the Strouhal numbers StL and StD,
respectively, are defined as

StL “
fs,LLref
U8

(2.5a)

StD “
fs,DLref

2U8
(2.5b)

where fs,L and fs,D are the main frequencies in the PSDs in flow and cross-flow direction,
respectively. Figure 2.19 illustrates the variation of the Strouhal number StL with Reynolds
number for a smooth circular cylinder. Following an initial increase of the Strouhal number
from StL = 0.1 at ReD = 40 to a value of about 0.2 around ReD = 300, i.e. at the lower
bound of the subcritical flow regime, its value remains nearly constant throughout this latter
flow regime. As shown in paragraph 2.1.2.1, the separation angle of the laminar boundary layer
shifts at the end of this flow regime from the windward (ϕS « 75˝) to the leeward (ϕS = 95˝–
100˝) side of both shoulders of the cylinder, which indicates a slight lateral convergence of
the two free shear layers in the near wake (Figure 2.15). A small increase in the value of the
Strouhal number would thus be expected, which is contradicted by the experimental data in
Figure 2.19 though. The cause is found in the simultaneous increase of the length of the near
wake, Lf , that counteracts the induced effect by the approaching shear layers in the near wake
and keeps the Strouhal number in that way at a relatively constant value (Peltzer [185]).

The formation of the laminar separation bubble at one side of the cylinder in the ciritcal
flow regime and the resultant shift of the secondary, final separation of the turbulent boundary
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Figure 2.19: Variation of the Strouhal number StL for a smooth circular cylinder in a steady
cross-flow (Adapted from Naudascher and Rockwell [155]). The Strouhal number is computed
with the main eddy shedding frequency in the power spectral density.

layer to ϕS = 140˝ at that cylinder side introduce an asymmetric near wake (Figures 2.9 and
2.10(a)). The reduction of the spacing between both free shear layers leads to a sudden jump
in the Strouhal number to StL = 0.32. With the appearance of the LSB at the other cylinder
side around ReD = 3.5ˆ105, a second jump in the StL(ReD) curve occurs to the high value
of StL = 0.45 to 0.5, upon which it remains at this value over a large part of the following
supercritical flow regime. The extremely narrow near wake and the resultant proximity of both
shear layers in this region result in a higher interaction rate between the two shear layers,
which explains the high shedding frequency. Although the rate of interaction between both
shear layers is high at these supercritical Reynolds numbers compared to the subcritical flow
regime, the lowest values of the RMS of Cl and Cd in the supercritical flow regime (Figure
2.18) demonstrate that the strengths of the resultant vortices are low, being the result of the
downstream displacement of the near wake.

The cross-over from the supercritical flow regime to the upper transition aroundReD = 1.5ˆ106

is characterised by another discontinuity in the StL(ReD) curve and is caused by the step in the
separation angle ϕS from 135˝ to 120˝ (Figure 2.15). In section 2.1.1, it has been mentioned,
that in the upper transition (1.5ˆ106 ă ReD ă 4.5ˆ106) the transformation of the flow field
around the smooth circular cylinder from supercritical – with the presence of a separation bub-
ble on each side of the cylinder over which the transition to turbulence occurs – to transcritical
– where a "normal" laminar-turbulent transition takes place in the attached boundary layer –
may develop asymmetrically between both cylinder sides. If this is the case, the asymmetry
has then also an effect on the final separation location on the surface at both sides, which in
turn affects the symmetry of the eddy formation in the near wake. In combination with the
highly three-dimensional, irregular state of the turbulent free shear layers, their interaction is
only weakly and partially. The result is an irregular eddy shedding throughout the complete
upper transition, as well as a partial suppression of the regular eddy shedding process in the
wake of the cylinder.

A highly regular eddy shedding marks the start of the transcritical flow regime. Constant,
highly Reynolds-number-independent Strouhal numbers of StL = 0.25–0.30 are obtained at
these high Reynolds numbers.
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2.1.3 Surface roughness and Reynolds number as alternating govern-
ing parameters

The previous section has demonstrated, that the flow around a smooth circular cylinder mainly
depends on the locations of the laminar-turbulent transition and the primary (and secondary)
separation of the laminar or turbulent boundary layer from the surface of the cylinder. Not
only do they determine the instantaneous pressure distribution on the cylinder surface and
thus the resultant mean and fluctuating lift and drag forces, they also characterise the size of
the recirculation region adjacent to the cylinder base, the complete process of eddy formation
and shedding taking place within this zone, and the flow pattern in the near- and far-wake.
In case of a smooth circular cylinder in a steady laminar oncoming flow, the classification of
the characteristic flow regimes, presented in section 2.1.1, clearly demonstrate the Reynolds
number as the primary governing parameter. At the beginning of this chapter, the surface
roughness has been designated as one of the various possible influencing parameters that can
disturb the flow to a certain extent as well. The boundary layer thickness δ, in the case of a
laminar boundary layer, is defined by Schlichting and Gersten [213] as

δlam
Lref

“ O
`

Re´
1{2
˘

(2.6)

The influence of an intentionally applied or natural surface roughness on the flow around a
circular cylinder now becomes evident. At a constant Reynolds number, an increase in surface
roughness height will progressively intensify the perturbation of the boundary layer from the
inside. Once the roughness height value lies in the vicinity of the boundary layer thickness,
it is effective in triggering transition to turbulence, thereby altering the Reynolds number at
which the transition takes place. At that moment it has thus become a governing parameter as
well. The other way around, an increase in the Reynolds number leads to a gradual thinning
of the laminar surface boundary layer (eq. (2.6)) on a circular cylinder with a fixed surface
roughness texture. Hence, as soon as the boundary layer thickness approaches or subceeds the
surface roughness height, the latter is once again a governing parameter. The advantage of a
turbulent boundary layer is its more than twice as large thickness in comparison to its laminar
counterpart at an equal Reynolds number

δturb
Lref

“ O
`

Re´
1{5
˘

(2.7)

This means that a much higher surface roughness with respect to the thickness of the boundary
layer is required before its influence on the laminar-turbulent transition and thus on the fluid
dynamics of the circular cylinder becomes noticeable. Referring to section 1.3.1, this connec-
tion between boundary layer state – and resultant thickness – on the one hand and surface
roughness height on the other is in particular important in case the latter is intentionally ap-
plied on a cylindrical structure for utilisation as a passive flow control method to reduce the
vortex-induced vibrations by a delayed separation of the turbulent boundary layers from the
surface in the perceived range of Reynolds numbers.

In no other industry sector has surface roughness and its influence on the flow over cylindri-
cal structures been studied as intensively as in the offshore industry. The immersed foundation
elements of offshore constructions like wind turbines or oil and gas drilling rigs are colonised
over the years by a bright variety of marine fouling microorganisms (e.g. Forteath et al. [82],
Langhamer et al. [129], Kerckhof et al. [123], Fitridge et al. [78]). Consequently, the flow around
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2.1 Flow over circular cylinders with and without surface roughness

these parts is steadily being altered during their lifetime. Although they actually function in
this way as artificial reefs, bio colonisation has a number of effects on the hydrodynamic prop-
erties of the immerged slender structures that can eventually result in large economical and
technical problems.

The settlement of biofouling leads, for example, to an increased structural diameter that not
only induces larger mean and fluctuating lift and drag forces (Wolfram and Theophanatos [275]),
but also increases both the actual structural weight and the hydrodynamic added mass. Com-
bined, these phenomena can lead to a massive hydrodynamic overloading of the foundation of
offshore platforms (Theophanatos [245], Jusoh and Wolfram [118], Schoefs and Boukinda [215],
Shi et al. [219]). They can furthermore give rise to a considerable decrease of the tendon force
on vertical taut mooring lines, resulting in the so-called slack tendon event, at which point a
tendon loses all tension and undesirable snap loading can occur (Wright et al. [277]). Is the
latter harmonic event present over a longer period of time, it drastically lowers the fatigue life
of the mooring lines (Yang et al. [285]). The weight increase, in combination with the larger
hydrodynamic added mass, furthermore lowers the natural frequency of the structure (Henry
et al. [97], Jahjouh [113]). Once again particularly for mooring lines, with their relatively small
diameters compared to the main columns of the floating structure, this can move their struc-
tural responses to resonance (Spraul et al. [237]). The added surface roughness also affects the
mechanism of eddy formation, thereby increasing both the vortex strength and their spanwise
coherence, thus giving rise to even higher regular lift forces (Wolfram [276]) which may lead to
a further increase of the susceptibility towards vortex-induced vibrations.

The three main categories of marine growth that can be distinguished are hard growth
(e.g. oysters, tubeworms, mussels), soft growth, like sponges, anemones, algae, sea-squirts, sea-
weeds, and kelp growth, a long flapping weed (Langhamer et al. [129], Kerckhof et al. [123])
Special reference should also be made to the very detailed overview by Theophanatos [245].
One way of representing hard marine fouling in wind tunnel, water tunnel, or towing tank
experiments is by covering the outer surfaces of the (scaled) structure with a roughness which
is characterised through its non-dimensional equivalent sand-grain surface roughness ks{Lref
(Adams et al. [7]). On a critical note, it must right away be pointed out as well, that Theo-
phanatos [245] discussed in his Ph.D. thesis, that the characterisation of hard marine growth
by a single parameter k{Lref (or ks{Lref ) is not the most suitable solution. His experiments
have shown, that other parameters, like the limitation of roughness scaling to model sizes, the
percentage of coverage, overall thickness and element size of the simulated fouling, the non-
uniformity of the thickness, the axial distribution, and the orientation to the direction of the
oncoming flow all have a large influence on the hydrodynamic loading and thus on the resultant
fluid-structure interactions.

The influences of the texture, relative height, and/or location of the surface roughness on
the fluid-dynamic behaviour of 2D circular cylinders in a steady cross-flow have been examined
in numerous experimental and numerical studies, whereby the main emphasis was put on the
dynamic loading experienced by those cylinders and the flow topology around them (Fage and
Warsap [74], Achenbach [2], Batham [23], Szechenyi [239], Achenbach [3], Güven et al. [91],
Achenbach and Heinecke [5] , Buresti [39], Nakamura and Tomonari [153], Basu [22], Niemann
and Hölscher [156], Zdravkovich [293], Ribeiro [190], Bearman and Harvey [27], Shih et al. [218],
Adachi [6], Yamagishi and Oki [281–283], Behara and Mittal [28]). However, in the majority
of these well-documented fundamental studies, the applied surface roughness was in fact only
used as a passive instrument to provoke a triggering of the laminar-turbulent transition in the
surface boundary layer. In that way, it gave the authors the possibility to artificially simulate
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Figure 2.20: Effect of the surface roughness height on the mean cross-sectional drag coefficient
(upper graph) and the Strouhal number (lower graph) as function of the Reynolds number for
a circular cylinder in a steady cross-flow (Adapted from Achenbach and Heinecke [5]).

and investigate high-Reynolds-number flow phenomena at physically low Reynolds numbers in
low-speed wind and water tunnel experiments.

Fage and Warsap [74] were one of the first to experimentally investigate how surface rough-
ness influenced the drag on a circular cylinder. They observed that with increasing surface
roughness height the occurrence of the drag crisis (paragraph 2.1.2.1) in the critical flow regime
was progressively shifted to smaller Reynolds numbers. They attributed this phenomenon to
the increased retardation of the boundary layer by the roughness elements that results in a
forward motion of the separation points, as a consequence of which the drag of the cylinder
is increased. By applying uniformly distributed dimples and grooves at the cylinder surface,
Achenbach [2,3], Achenbach and Heinecke [5], Bearman and Harvey [27], Adachi [6], and Yamag-
ishi and Oki [281–283] investigated the effect of those roughness elements on the flow behaviour
over a circular cylinder up to the supercritical / upper transition flow regime. In most of these
studies, the main focus was put on the change in the values of the mean drag force and the eddy
shedding frequency. Their findings showed that also for circular cylinders with an increased
surface roughness height the same characteristic flow regimes could be identified. Whereas the
subcritical flow regime seemed to be unaffected by the roughness height, both the minimum
value of the mean drag coefficient Cd,min at the cross-over from the critical to the supercritical
flow regime and the constant transcritical mean drag coefficient were both found to highly
depend on the roughness conditions (Figure 2.20). For ks{D ě 3ˆ10´3, the switching from one
flow regime to another furthermore occured in a very short range of Reynolds numbers. They
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2.2 Flows around prisms with sharp-edged square cross-sections

attributed these changes to the behaviour of the boundary layer induced by the relocation of
the transition and separation points on the cylinder surface. These trends were later confirmed
in experimental wind tunnel studies by Buresti [39] and Niemann and Hölscher [156]. They
furthermore observed that, compared to the results for a smooth cylinder, the length of the
critical, supercritical, and upper transition flow regimes decreased with increasing roughness.
In addition, the unstable and bistable flow states, which characterise the critical flow regime
for smooth cylinders, disappeared for larger roughness heights.

Besides the mean drag coefficient, the eddy shedding frequency also shows a significant
dependence not only on the Reynolds number, but also on the value of the surface roughness
height. In their experimental data for five different values of ks{D in the range of "smooth"
up to "very rough" (ks{D = 3ˆ10´2), presented in Figure 2.20, Achenbach [2] and Achenbach
and Heinecke [5] observed a strong decrease in the distance of the jump in the Strouhal number
within the critical flow regime (Figure 2.20). At high roughness values, only a very weakly
developed jump could still be identified without the cessation of the eddy shedding. The exper-
iments performed by Buresti [39] shows an equal behaviour of both fluid-dynamic quantities.
He observed a disappearance of the peak in the frequency spectra between the low values of
the Strouhal number in the subcritical flow regime and high values in the supercritical flow
regime for 3ˆ10´3 ă ks{D ď 7ˆ10´3. No suppression of the shedding frequency was observed
for ks{D = 1.2ˆ10´2, though.

Ribeiro [190] placed sand paper, wire mesh screens, or span-wise roughness stripes, the
latter either at a single angular position or at multiple circumferential angles, on the cylin-
der surface to investigate "which types of surface roughness are more efficient in triggering a
transition of the flow so as to simulate the mean and fluctuating pressures occurring at ultra-
critical Reynolds numbers". He concluded, that, among those roughness elements, the use of
ribs as a transition-triggering mechanism led to mean force and surface pressure coefficients
that were the most comparable to those obtained for a smooth circular cylinder. Regarding
the fluctuating parts of the force components, the ribs model was still the most favourable
one, although the RMS values of the lift and drag forces were found to be higher than for
the smooth counterpart in equal flow regimes. In a later numerical study by Behara and Mit-
tal [28] a roughness element, similar to the ribs model by Ribeiro [190], was used to promote
early transition of the boundary layer on the upper half of a smooth cylinder. It should be
pointed out, however, that the three-dimensional flow domain in their simulations only covered
one cylinder diameter in spanwise direction and was built up by 11 uniformly spaced sections of
the two-dimensional mesh. To reach higher Reynolds numbers in their experiments, Fage and
Warsap [74], Batham [23], Szechenyi [239], and Güven et al. [91] covered the complete cylinder
surface with solid particles, like glass beads, or with large sheets of glass or sand paper. The
data of all of these studies clearly show, that not only the (ir)regular texture and the relative
height of the surface roughness, but also its location on the surface has a significant effect on
the loading on circular cylinders, in particular in the critical and supercritical flow regimes.

2.2 Flows around prisms with sharp-edged square cross-
sections

Whereas cylindrical bluff bodies with their continuous, finite surface curvature can be found
at one outer boundary of the wide spectrum of possible cross-sectional shapes, prisms with
square (or rectangular) cross-sections and sharp edges (hence, an "infinite" surface curvature)
are positioned at the exact opposite outer boundary. Similar to the circular cylinder, the flow
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topology around and the fluid-dynamic loading on this particular kind of prisms exhibit distinct
characteristics with a variation of the Reynolds number. Hence, flows over two-dimensional
square-section prisms are governed by the Reynolds number as well. In the following paragraph,
it will be presented, that, in contrast to flows over circular cylinders, the governing influence
of ReD is limited to relatively low Reynolds numbers up to about ReD = 104 only. This
limitation results from the fixed location of the primary separation at the sharp leading edges
of the prism at an incidence angle of α = 0˝ for higher Reynolds numbers, which has been
demonstrated by the many different experimental and numerical studies by, among others,
Delany and Sorensen [58], Vickery [263], Bearman and Trueman [25], Lee [130], Okajima [174],
Norberg [159], Lyn et al. [143], Tamura and Miyagi [242], Dutta et al. [69], van Oudheusden et
al. [260,261], Huang et al. [106], and Huang and Lin [105].

Independent of the Reynolds number and in contrast to the circular cylinder flow, the stable
separation of the wall boundary layer at the windward sharp edges of these prisms introduces an
additional influencing flow parameter on their fluid-dynamic behaviour, namely the dependency
on the orientation of the prism to the free-stream velocity vector, e.g. Delany and Sorensen [58],
Polhamus [186], Bearman and Trueman [25], Lee [130], Norberg [159], Luo et al. [142], Dutta et
al. [69], van Oudheusden et al. [260,261], Huang et al. [106], and Huang and Lin [105], Yen and
Yang [286], Carassale et al. [45], Sohankar et al. [233]. As has been mentioned at the beginning
of this chapter, an influencing parameter can become a governing one once it has exceeded a
certain lower threshold value. Regarding the angle of incidence of square-section prisms, no
such lower threshold is present though. As soon as its value equals non-zero, the influence of
α on the surface pressure distribution, the instability and development of the separated free
shear layers, and the shedding process of the eddies is so pronounced that the incidence angle
can be defined as an additional governing parameter. For Reynolds numbers above 104, it even
becomes the sole governing parameter, as the former loses from that point on its governing
influence on the fluid dynamics altogether.

2.2.1 Classification of the characteristic flow regimes based on sharp-
edged square-section prisms

Based on extensive and detailed experimental and numerical investigations (see for example [20]
and references therein) on the characteristic Reynolds-number-dependent trends of various flow
parameters of square-section prisms with sharp edges at an incidence angle of 0˝, Bai et al. [20]
distinguished between five main flow regimes.

The first one is named the steady flow regime and spreads up to ReD ă 50. Similar to
the flow around circular cylinders for 5 ă ReD ă 40 (Figure 2.4), a closed near-wake region
is formed behind the prism, in which two fixed, counter-rotating eddies are captured (Erturk
and Gökçöl [71]). The formation of a Kármán vortex shedding street in the wake is therefore
prevented. The streamwise length of the two-dimensional steady recirculation zone increases
steadily from Lr = 0.6D to 3.5D with growing Reynolds number (Figure 2.21). The value of
the base pressure therefore becomes less negative, which results in a gradual decrease of the
mean drag coefficient experienced by the prism (Figure 2.22).

The subsequent laminar wake regime exceeds from ReD = 50 up to about ReD = 160. It
is characterised by an unsteady laminar flow over the cross-section plane of the square-section
prism, a boundary layer separation from both trailing edges for ReD < 120 and from both
leading edges at ReD > 120, an alternating roll-up of the free shear layers in the recirculation
zone behind the prism, and a Kármán vortex shedding street in the wake. In addition, the
eddy formation length in the near-wake region decreases rapidly from Lf = 5D to 2.2D with
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cross-flow (Adapted from Bai and Alam [20]).

increasing Reynolds number (Figure 2.21). The width of the near wake shrinks as well, but
its decline is less vigorous, i.e. from W = 1.5D to 0.95D, and spread over the complete range
of Reynolds numbers (Figure 2.23). The combined decrease of those two characteristic lengths
leads to an increasing interaction between the eddies that are formed alternatingly on both
sides of the prism in the base region, which is mirrored in the steady increase of the Strouhal
number from StL = 0.11 to 0.16 between ReD = 50 and 160 (Figure 2.24). Meanwhile, the mean
drag coefficient continues its steady decline in this laminar wake regime (Figure 2.22), driven
by the decrease of the wake width W . At the same time, the coefficients of the fluctuating lift
and drag forces experience both an exponential increase, whereby the former has a steeper rate
than the latter (Sohankar [228]).

The appearance of spanwise instability modes A and B, the first on at the critical Reynolds
number of about ReD,cr1 = 160 and the second one at ReD,cr2 = 220, mark the two boundaries of
the following two- to three-dimensional transition flow regime (Robichaux et al [192], Sohankar
et al. [236], Saha et al. [202], Luo et al. [138]). The transition from two- to three-dimensionality
occurs in the near wake behind the prism. Streamwise vortices arise with spanwise wavelengths
of around 5D in the mode A instability at ReD,cr1 and of a reduced value of 1.2D in the mode B
instability at ReD,cr2. Luo et al. [138] confirmed a similarity between the vortical structures in
the modes A and B for a square-section prism and a circular cylinder. They therefore concluded,
that the instabilities are in both cases generated by similar mechanisms, although their appear-
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Figure 2.22: Dependence of the mean cross-sectional drag coefficient Cd on the Reynolds number
for a square-section prism with sharp edges in a steady cross-flow (Adapted from Bai and
Alam [20]).

ances occur at higher Reynolds numbers for a circular cylinder, as has been mentioned in the
discussion on the upper transition and lower transition regimes (Zdravkovich [294]) in section
2.1.1. The eddy formation length remains constant at about Lf = 2.2D (Figure 2.21), while
the wake width and the mean drag coefficient both reach their minimum values of W = 0.95D
and Cd = 1.4 to 1.5 , see Figures 2.23 and 2.22, respectively. As a result, the Strouhal number
tips at its maximum of StL = 0.14–0.165 (Figure 2.24). In contrast, the exponential increase
of the RMS values of Cl and Cd that started in the laminar wake regime remains unchanged
(Sohankar [228]).

The occurrence of the instability mode B marks the cross-over to the shear layer transition I
regime, which extends over a range of Reynolds numbers of 220 ă ReD ă 1ˆ103 (Okajima [174],
Sohankar et al. [236], Saha et al. [200,202], Luo et al. [138,141]). At the beginning of this flow
regime, the laminar-turbulent transition appears far downstream of the base surface of the prism
at about Lt = 2.2D, where Lt is measured from the spanwise centre axis of the two-dimensional
prism (Figure 2.25). Similar to what can be observed for a circular cylinder flow, the transition
location progressively wanders with growing Reynolds number along the free shear layers in
upstream direction in the direction of the boundary layer separation points on the surface of
the prism (Figure 2.25). At ReD = 1ˆ103, i.e. the upper boundary of the current flow regime,
Lt has declined exponentially to a value of 0.5D, indicating that the transition has reached the
base surface of the prism. This induces an alternating reattachment of the free shear layers
at the sharp trailing edges of the prism. The increase in Cd with Reynolds number from its
absolute minimum at ReD = 220 up to Cd = 2.2 at ReD = 1ˆ103, clearly evident from Figure
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Figure 2.24: Variation of the Strouhal number StL for a square-section prism with sharp edges
in a steady cross-flow (Adapted from Bai and Alam [20]).

2.22, is a direct consequence of the combination of a progressive increase of W from 0.95D to
1.15D (Figure 2.23) and a sharp decrease of Lf towards a value of about 1D at the end of this
flow regime (Figure 2.21). The continuous decrease of the Strouhal number from its maximum
value in the range of StL = 0.14 to 0.165 down to 0.13 at the upper boundary of the flow regime
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the spanwise centre axis of the prism and the transition location.

in Figure 2.24 is therefore apparent as well. The RMS values of Cl and Cd show in this flow

regime the steepest increase, the former from
b

pC
12
l q = 0.2 at ReD = 220 to approximately 1.4

at ReD = 1ˆ103, while the latter grows from about
b

pC
12
d q = 0.015 to 0.23 (Sohankar [228]).

The final shear layer transition II regime exists for ReD ą 103. In this flow regime, the
transition to turbulence occurs upstream of both sharp trailing edges (Lt ă 0.5D) and is lo-
cated in the first portion of the free shear layers above the side surfaces of the prism. This
allows the free shear layers to reattach alternately on those side surfaces. The turbulent wake
of the square-section prism is therefore fully developed. Figure 2.25 shows that, with increasing
Reynolds number, the transition pursues its upstream shift in the direction of the primary
separation locations of the boundary layer at both windward-directed sharp edges with increas-
ing Reynolds number. In comparison to the shear layer transition I regime, the reduction
rate of Lt slows down at ReD ą 1ˆ103 and approaches its asymptotic value of 0 at Reynolds
numbers larger than 4ˆ104. The decrease of the vortex formation length decelerates as well,
upon which an asymptotic value of about Lf = 1D is reached around ReD = 1ˆ104 (Figure
2.21). At about the same Reynolds number, both W and Cd also attain approximately con-
stant values, i.e. W « 1.15D and Cd « 2.2 (Figures 2.23 and 2.22). The coefficient of the

fluctuating lift reaches its maximum value of
b

pC
12
l q = 1.55 to 1.60 around ReD = 1ˆ104

and shows a subsequent slight decrease towards ReD = 5ˆ104, before obtaining a relatively
constant plateau at about 1.5 to 1.6. The magnitude of the oscillating part of the drag force

has settled at
b

pC
12
d q = 0.23 at the end of the shear layer transition I regime and remains

unchanged throughout the shear layer transition II regime (Sohankar [228]). In the range
ReD = 1.0ˆ103 to 4.0ˆ103, a slight recovery of the Strouhal number is seen to take place, be-
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fore also this parameter reaches its constant value of StL « 0.13, as shown in Figure 2.24. Since
for ReD ą 4ˆ104 the various flow parameters have thus all reached approximately constant val-
ues, it can be argued, that the Reynolds number ceases to exist as being a governing parameter.

It is this last flow regime that has been extensively investigated in the last couple of decades,
in particular for flows at intermediate Reynolds numbers of O(104) to O(105). Brun et al. [37]
and Minguez et al. [147] carried out measurements with Laser Doppler Velocimetry (LDV) at
ReD = 2ˆ104 to 3ˆ105 and ReD = 1.4ˆ104, respectively, to analyse the fluctuating behaviour of
the flow in the vicinity of the prism with square cross-section. The development of the coherent
structures in the separated shear layer above the side surfaces of the prism, in particular the
small-scale Kelvin-Helmholtz type vortical structures, and the large-scale von Kármán vortex
street in the near wake were observed in detail. Accompanying Large Eddy Simulations (LES)
at relatively low Reynolds numbers of 500 ď ReD ď 2000 were carried out by Brun et al. [37,38]
to describe the Reynolds-number-dependent behaviour of these Kelvin-Helmholtz structures in
the separated shear layers more precisely. Experiments on the variation of the eddy shedding
frequency were performed by Okajima [174] in the Reynolds-number range of 70 to 2ˆ104,
whereas Durão et al. [68] conducted LDV measurements in a water tunnel at ReD = 1.4ˆ104

to quantify the turbulent, hence random, and regular, non-turbulent motions of the near-
wake flow. Lyn et al. [143] obtained the ensemble-averaged statistics at constant phase of the
turbulent near-wake flow, the differences in the length and velocity scales of the flow in the
base region on one hand and in the near wake on the other, and the characterisation of the
vorticity saddles and streamline saddles at ReD = 2.14ˆ104, using the LDV technique in a
water tunnel as well. Based on these detailed reference studies, a large amount of research
effort has been put into numerical simulations of the small- and large-scale flow structures at
this specific Reynolds number of ReD = 2.2ˆ104, using either high-order LES approaches by
Minguez et al. [147] and Cao and Tamura [42], Direct Numerical Simulations (DNS) by Saha
et al. [201] and Trias et al. [249], or by Reynolds Averaged Navier-Stokes (RANS) and hybrid
LES/RANS simulations (e.g. by Ke [122]). Furthermore, the fluctuating and time- and phase-
averaged characteristics of the flow structures in the base region and in the near and far wake,
like the velocity distributions in flow and cross-flow direction, the various length scales of the
eddy-formation region, the eddy shedding frequency, the two-dimensional distributions of the
vorticity, turbulent kinetic energy and the Reynolds stresses, were reported for a wide range
of Reynolds numbers of ReD = 1ˆ103 to 5ˆ106 using experimental techniques like Hot-Wire
Anemometry (Saha et al. [200], Hacişevki and Teimourian [92], Bahrami and Hacişevki [19]),
Particle Image Velocimetry (Hu et al. [104]), or a combination of those two measurement
techniques (Bai and Alam [20]), or through numerical simulations based on DNS (Sohankar et
al. [236]) or LES (Sohankar et al. [231], Sohankar [228], Li et al. [133]).

2.2.2 Incidence angle of the square-section prism as governing para-
meter

The majority of numerical and experimental studies on the effect of a variation of the incidence
angle on the fluid dynamics of prisms with square cross-sections and sharp edges in cross-flow
describes two main aspects. On the one hand, investigations have focussed on the loading on
the prism at incidence, like the surface pressure distributions, the (resultant) mean and fluc-
tuating lift and drag forces, and the shedding frequency of the eddies. The formation of the
eddies and their shedding process in the near-wake region, as well as the characteristics of both
the near and far wake, such as the topology and instantaneous and time- and phased-averaged
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velocity distributions, were then again analysed by others.

Early measurements of the Strouhal number as function of the angle of incidence by Lee
[130], Rockwell [193], Obasaju [168], and Knisely [126] show, that a minimum mean cross-
sectional drag coefficient in combination with a sharp rise of the Strouhal number to its max-
imum value occurs around the critical angle of incidence. The latter was found to be located
within a limited range of incidence angles of α = 13˝ to 17˝, its exact value being dependent
on the free-stream turbulence level and the (low) Reynolds number (Lee [130] and Chen and
Liu [47]). Both observed phenomena are related to a reattachment of the separated shear layer
onto the downstream portion of the windward-directed side face close to its sharp trailing edge
(Figure 2.26). This reattachment causes a strong pressure recovery on this side face (Chen and
Liu [47]) that leads to a strong asymmetric flow field around the prismatic body. The resultant
deflection of the shear layer induces the formation of a weaker eddy – in comparison to those
formed at lower angles of incidence – in the base region. The negative base pressure reaches
a lower value and the drag force on the prism reduces, while the eddy shedding frequency in-
creases. These observations have later been confirmed by Dutta et al. [69] through wind tunnel

(a) α = 13˝ (b) α = 15˝

(c) α = 20˝ (d) α = 22.5˝

Figure 2.26: Visualisation of the change in size of the separation bubble on the windward-
directed side face with increasing incidence angle (13˝ ď α ď 22.5˝) of a sharp-edged square-
section prism in a steady cross-flow of ReD = 6776 (Sohankar et al. [233]).
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experiments on the flow topology around a square-section prism and the two component time-
varying velocity in its wake for angles of incidence between 0˝ and 60˝ and Reynolds numbers of
1340, 4990, and 9980 by application of Hot-Wire anemometers and the smoke-wire visualisation
technique. They concluded, that for α ą 0˝ a downstream shift of the separation points and a
widening of the wake in combination with a reduction of the eddy formation length take place.
This leads then to a reduction of the mean cross-sectional drag coefficient and an increase in the
Strouhal number. The eddy shedding frequency furthermore dominates the velocity spectrum.

By making use of the PIV-technique, the instantaneous vorticity, as well as its phased- and
time-averaged values, the mean streamline pattern, and the two-dimensional distributions of
the mean and fluctuating velocities in the near wake of a square prism in cross-flow have been
resolved by Van Oudheusden et al. [260] for α = 0˝, 5˝, 10˝, and 15˝ and by Ozgoren [178] for
α = 0˝ and 45˝. Eddy-formation lengths in the base region were discussed, while Van Oud-
heusden et al. additionaly applied the Proper Orthogonal Decomposition (POD) technique
to the instantaneous PIV-images to extract the characteristics of the coherent large-scale flow
unsteadiness associated with the eddy shedding process and the effect of the angle of incidence
upon it.

Igarashi [108] used a combination of the surface oil-flow visualisation technique and smoke
visualisation to study the flow pattern around a sharp-edged square-section prism at angles of
incidence of 0˝ to 45˝. The Reynolds number was varied between ReD = 3.85ˆ103 and 7.7ˆ104,
hence, all tests were performed in the shear layer transition II regime. Based on the smoke
images and the trends of multiple aerodynamic parameters with increasing angle of incidence,
his classification of the flow over the prism according to the incidence angle between α = 0˝
and 45˝ is the following:

(1.) subcritical or perfect separated flow regime for α ă αcr = 12˝–15˝. The forward boundary
layer separation is in this flow regime pinpointed at both leading sharp edges of the prism.
He divided this regime further into two subcategories:

(1a.) symmetric flows for α = 0˝ to 5˝ (Figures 2.27(a) and 2.27(b)), and

(1b.) asymmetric flows for 5˝ ă α ă 12˝ to 15˝ (Figures 2.27(c) and 2.27(d)).

Igarashi observed, that in the former subcategory the free shear layers, having separated
from the two leading edges of the prism, "rolled up, reattached on the rear face, passed
around the trailing edge corners further, and then reattached on the side faces". At those
small incidence angles, a high symmetry in the flow around the prism, as well as in the
mean and fluctuating pressures on the prism surface remains. In the latter subcategory,
no such reattachment of the separated shear layer on the upper side face of the prism
could be detected in the oil-flow-pattern images.

(2.) reattachment or separation flow regime, which extends from a lower bounding incidenc
angle of about α = 12˝ to 15˝ up to the upper boundary of α = 35˝. It is characterised
by the formation and subsequent gradual decrease in size of a recirculation bubble on the
prism’s side face exposed to the wind as a result of the one-sided reattachment of the free
shear layer following its separation from the leading edge of this side face (Figure 2.26
and Figures 2.27(e) to 2.27(g)). The flow around the prism and the mean and fluctuating
pressures on the prism faces are highly asymmetric.
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(a) α = 0˝ (b) α = 5˝

(c) α = 10˝ (d) α = 15˝

(e) α = 20˝ (f) α = 25˝

(g) α = 30˝ (h) α = 45˝

Figure 2.27: Visualisation of instantaneous flow patterns over a sharp-edged square-section
prism at an angle of incidence between α = 0˝ and 45˝ in a steady cross-flow of ReD = 6776
(Sohankar et al. [233]).

56



2.2 Flows around prisms with sharp-edged square cross-sections

(3.) wedge or attached flow regime for α ą 35˝, where an attached flow is present on both
upstream-directed faces of the prism and the boundary layer primary separation occurs
at their trailing edges. With increasing incidence angle towards 45˝, symmetry in both
the flow and the surface pressures is gradually restored (Figure 2.27(h)).

Huang et al. [106] and Yen and Yang [286] performed detailed studies on the flow behaviour
on the four faces of a square prism in cross-flow and the flow characteristics around the prisms
at angles of incidences from 0˝ to 45˝ within the shear layer transition II regime at Reynolds
numbers of ReD = 1.3ˆ104 to 9.4ˆ104 and ReD = 4.0ˆ103 to 3.6ˆ104, respectively. The
purpose of the wind tunnel tests was to study the physical mechanism occurring in the vicinity
of the critical angle of incidence and the associated effects on the wake properties. Through
a combination of the surface pressure distribution and several flow visualisation techniques to
obtain the prominently different features of the topological flow patterns they could identify
the same flow regimes as had been observed by Igarashi [108] three decades earlier. In addition,
they could link the characteristics of the cross-sectional lift and drag coefficients, the Strouhal
number, and the base pressure coefficient as function of the angle of incidence to the various flow
regimes. In the perfect separated flow regime (α ă αcr) the fluctuating and mean cross-sectional
lift coefficient (Figure 2.28(b)), the mean cross-sectional drag coefficient (Figure 2.28(a)), and
the mean base pressure coefficient all possessed a negative slope and reached their minimum
values around αcr, whereas the Strouhal (Figure 2.29) and the longitudinal length of the eddy
formation region both increased with increasing incidence angle and obtained their maximum
values around the critical angle of incidence. This was followed by a steady increase of
the fluid-dynamic coefficients, a moderate decrease of the Strouhal number, and only a small
recovery of the eddy formation length in the reattachment or separation bubble flow regime,
before each of them reached a relatively constant value in the wedge or attached flow regime
(Norberg [159], Luo et al. [142], Chen and Liu [47], Tamura and Miyagi [242], Van Oudheusden
et al. [261], Huang et al. [106], Yen and Yang [286], Carassale et al. [45]).

(a) Mean cross-sectional drag coefficient (b) Mean cross-sectional lift coefficient

Figure 2.28: Effect of a variation in incidence angle between 0˝ ď α ď 45˝ on the mean cross-
sectional force coefficients of a sharp-edged square-section prism in a steady cross-flow (Yen and
Yang [286]). (a): mean cross-sectional drag coefficient; (b): mean cross-sectional lift coefficient.
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Figure 2.29: Variation of the Strouhal number (St “ pfs,LLref q{U8) and projected (hence,
based on the frontal wetted area) Strouhal number (Std “ pfs,LLref,projq{U8) as function of
the angle of incidence of a square-section prism with sharp edges in a steady cross-flow (Yen
and Yang [286]).

2.3 Résumé Chapter 2

The aim of this chapter was to present in detail the fluid-dynamic properties of rigid, two-
dimensional, stationary bluff bodies in a steady cross-flow. As cross-sections of those isolated
structures, those two were selected which lie at the two opposite extremes of the whole spec-
trum of possible cross-sectional shapes: circular and square with sharp edges of 90˝.

The curved and smooth surface shape of circular cylinders allows a continuous meandering
of the transition points, the primary boundary layer separation locations, and – if applicable
– the reattachment points of the free shear layers and the secondary separation points on
the surface of the cylinder. This introduces a flow over the cylinder which is therefore very
sensitive to a variation in the Reynolds number. A change of Reynolds number from ReD
„ 0 to its theoretically maximum value of ReD Ñ 8 causes the fluid dynamics of a smooth
circular cylinder to pass through a total of nine different flow regimes, from the creeping or
Stokes flow for extremely low Reynolds numbers of ReD ă 5 to the transcritical flow regime
for high to ultra-high values of ReD ą 4ˆ106. Their properties are mainly determined by the
local state, i.e. partially or fully laminar or turbulent, of the surface boundary layer and the
free shear layers. This namely influences not only the position of the primary boundary layer
separation, but also whether a reattachment of the free shear layers and a subsequent secondary
separation occurs and at which angular positions on the surface they are located. The resultant
surface pressure distribution and the extent of two- and three-dimensionality of the flow over
the cylinder in the spanwise direction define the values of the mean and fluctuating loads on
the cylinder, the size of the recirculation zone adjacent to the base of the cylinder in which
the free shear layers alternatingly roll up on both sides of the cylinder and form eddies, the
frequency with which these eddies are shed, and the flow topology of the near and far wake.
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In contrast, the "infinitely curved" sharp edges of prisms with square cross-sections fixes
the primary separation points at their windward-directed edges. Nevertheless, even for this
type of bluff body, there is a variation of the flow over the prism with increasing Reynolds
number at an angle of incidence of α = 0˝. Up to a Reynolds number of about 4ˆ104, the fluid
dynamics of sharp-edged square-section prisms goes through five different flow regimes. Above
this value, however, all fluid-dynamic coefficients have reached approximately constant values
at a constant incidence angle, so that from that point on the Reynolds number ceases to exist
as a governing parameter. The angle of incidence – non-existent as an influencing parameter for
flows over smooth circular cylinders – plays a major role in the mean and fluctuating loading
on the prism, the shedding frequency of the eddies, and the flow topology around the prism and
in its near and far wake. Between α = 0˝ and 45˝, four different "angle-based" flow regimes
can be distinguished , in which the flow changes from symmetric at α 0˝ in the subcritical
or perfect separated flow regime to highly asymmetric in the reattachment or separation flow
regime (αcr = 12˝–15˝ ď α ď 35˝) as a result of the occurrence of a recirculation bubble on
the prism’s side face exposed to the wind, and back to symmetric for α ą 35˝ in the wedge or
attached flow regime. Depending on its exact value in combination with the Reynolds number,
the incidence angle behaves either as a pure influencing parameter, as an additional governing
parameter besides the Reynolds number, or as the sole governing parameter when the Reynolds
number is in the shear layer transition II regime, i.e. for ReD ą O(104).
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Chapter 3

Cross-sectional edge roundness of isolated
square-section prisms

In the previous chapter, the strong dependence of the flow over two-dimensional circular cylin-
ders on the Reynolds number was presented. It was discussed, that the resultant mean and
fluctuating forces on the cylinder, as well as the strengths of the eddies and the frequency with
which they are shed from the cylinder therefore all show large variations with changing Reynolds
number. At subcritical Reynolds numbers, for example, a circular cylinder experiences a high
global mean drag force of about CD = 1.2 and large force fluctuations in cross-flow direction of

in the range of
b

pC
12
L q = 0.35 to 0.45, the latter occurring with a low non-dimensional frequency

of StL = 0.2, though (Schewe [209]). In the supercritical flow regime exactly the opposite is

found: the mean drag and fluctuating lift forces are low, CD = 0.2 and
b

pC
12
L q = 0.02, respec-

tively, while the non-dimensional shedding frequency of the eddies has reached its maximum
value of StL = 0.47. Cylindrical constructions that are placed in a uniform flow with a con-
stant velocity can be structurally optimised in such a way, that not only the best combination
of mean and fluctuating loading and shedding periodicity is obtained, but also its proneness
to vortex-induced vibrations is reduced to a minimum. In case of its placement in a flow with
large velocity fluctuations, like in the earth boundary layer or in the ocean, such passive or
active countermeasures as described in section 1.3 are mostly only partly effective, since they
are commonly tuned on those flow velocity ranges that prevail over time.

For Reynolds numbers above O(104), prisms with square cross-sections and longitudinal
sharp edges, placed in a steady cross-flow at 0˝ angle of incidence, possess constant fluid-
dynamic parameters: a high global mean drag coefficient of CD = 2.15 to 2.2, fluctuating lift
and drag values of about 1.0 and 0.1 to 0.15, respectively, and a Strouhal number of 0.11 to 0.13.
Their independence on the Reynolds number is in strong contrast to the distinct flow alteration
they experience with changing angle of incidence, though. Similar to circular cylinders, they are
susceptible to vortex-induced vibrations. However, as discussed in Chapter 1, they possess an
additional proneness to self-excited translational or plunge galloping, a motion-induced vibra-
tion that has the potential of being much more harmful to the structure than VIV (see section
1.2.2) because of the linear increase of the vibration amplitude of limit cycle oscillation of the
structure with growing reduced velocity, see section 1.2.2. Since VIV and galloping appear at
completely different and thus fully separated ranges of the reduced velocity, a huge effort has to
be invested to alter the internal and external structural properties of prismatic structures with
sharp-edged square cross-sections in such a way that both classes of flow-induced vibrations
are fully suppressed. Referring once again to oncoming flows with large velocity fluctuations,
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the modification of the structure should therefore mainly focus on the prevention of galloping,
thereby taking into account that vortex-induced vibrations may still occur occasionally.

The interesting question that naturally rises at this stage, is whether it is be possible to
combine the positive fluid-dynamic effects of each of the two bluff bodies and eliminate (part
of) the negative ones through an optimisation of the aero- or hydrodynamic structural design.
Adding a finite roundness to the edges of non-circular cross-sections of prisms is nowadays a
common means to lower not only their proneness to the aforementioned types of flow-induced
vibrations, but also the experienced mean and fluctuating fluid-dynamic loads. Because this
cross-section can be seen as transition geometry between the two extreme cases, it is evident
that the behaviour of the flow around square-section prisms with rounded longitudinal edges is a
combination of the flow over circular cylinders and sharp-edged square-section prisms, whereby
the extent to which the edges are rounded plays an important role. Hence, contrary to the
two latter cross-sectional shapes, an edge roundness introduces a flow dependence on both the
Reynolds number and the angle of incidence.

Pioneering work in the field of flows over prismatic structures with rounded longitudinal
edges was performed in the fifties of the last century by Delany and Sorensen [58] and Pol-
hamus [186]. They presented wind tunnel data on the mean cross-sectional drag and lift co-
efficients, together with Strouhal numbers of two-dimensional cylindrical and prismatic bluff
bodies, the latter with various cross-sectional shapes, for a wide range of Reynolds numbers
up to 2ˆ106. Regarding the square-section prism, they reported that an increase in the non-
dimensional cross-sectional edge radius results in the appearance of the critical flow regime
with its characteristic drag crisis and hysteresis effects, both well-known from studies on circu-
lar cylinders in cross-flow. In addition, their data show, that apart from the transcritical flow
regime, the trend of the CD(ReD) curve is similar to the one found for a circular cylinder. The
critical flow regime, however, shifts to lower Reynolds number with increased r{D values, and
particular in the critical and supercritical flow regimes a reduction of the mean cross-sectional
drag coefficient can be observed. The latter phenomenon has at a later stage been confirmed for
various flow regimes in an experimental and numerical study by Tamura et al. [241] (r/D = 0
and 0.167 at ReD = 104 and 106) and through CFD simulations by Dalton and Zheng [54]
(r/D = 0.125, ReD = 250 and 1000). In addition, they demonstrated that this increase in the
mean cross-sectional drag coefficient is accompanied by a shift of the fluctuating lift force to
higher values, both of which they attributed to a decrease of the mean pressure in the near-wake
region. They furthermore observed, that with increasing Reynolds number a narrowing of the
wake behind the square-section prism takes place. Consequently, a better communication of
the separated shear layers in the near wake occurs, giving rise to higher eddy shedding fre-
quencies (Bokaian and Geoola [34], Hu et al. [104]). The data obtained through wind tunnel
tests on square-section prisms by Carassale et al. [44, 45] revealed, that by increasing the edge
radius the aerodynamic behaviour of these prisms can be strongly modified as a result of the
promoted flow reattachment on the lateral faces. They observed an increase of the Strouhal
number over the complete investigated range of incident angles of 0˝ to 45˝. An increase in
Reynolds number in the supercritical flow regime for ReD ě 1ˆ105 results furthermore in a
shrinkage of the separation bubbles at both side surfaces towards the leading edge and a re-
covery of the base pressure at α = 0˝. Tamura and Miyagi [242], Letchford and Mason [132],
Carassale et al. [44,45] all measured, that for higher free-stream turbulence levels a larger edge
radius promotes the reattachment of the separated shear layers on the side surfaces even at an
angle of incidence of 0˝.
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The previous overview shows, that the emphasis of most studies has been placed on a proper
determination of the edge roundness effect on the fluid dynamics of square-section prisms at
low to moderate Reynolds numbers. To date, the investigations by Delany and Sorensen [58],
Polhamus [186], and Tamura et al. [241] are the only ones in which the Reynolds number was
increased up to values of ReD = O(106). Hence, little attention has been directed to the range
of Reynolds numbers above one to two million, i.e. covering the supercritical to transcritical
flow regimes, which is actually quite surprising, as it is of considerable relevance to many
applications in, for example, the marine, aeronautical, and civil engineering fields.

3.1 Effect of edge roundness of square-section prisms at
α = 0˝ for Reynolds numbers up to 107

3.1.1 Experimental setup

Low-speed experiments at different pressure levels were conducted in the Göttinger-type High-
Pressure wind tunnel facility (HDG) at the German Aerospace Center in Göttingen. The
main purpose of this unique test facility is the realisation of maximum Reynolds numbers of
O(107) in model-scale tests through a combination of an internal pressurisation of the HDG
up to p0 = 10 MPa and a variation of the free stream velocity in the range 4 ď U8 ď 35 m/s
(Försching [80], Försching et al. [81]). The closed test section has a square cross-section of
0.6ˆ0.6 m2 (= 10Lrefˆ10Lref ) and measures 1 m (= 16.67Lref ) in length (Figure 3.1). It can
be removed out of and put back into the wind tunnel by means of an airlock system, in that
way allowing the modification or exchange of the model and instrumentation outside the wind
tunnel without the need of de- and re-pressurisation of the tunnel itself. The relative dynamic
pressure variation across the working section at the model’s position is below 0.3%.

The properties of the studied smooth cylindrical and prismatic models are listed in Table
3.1. Each model was mounted horizontally in the test section and spanned its complete width
from one side wall to the other, whereby both free model ends passed through the side walls
of the test section (Figure 3.1). A labyrinth seal was used to minimise the amount of flow
leakage through the small ring gaps between the model and the sidewalls. The time-dependent
global lift and drag forces on the model, Lptq and Dptq, respectively, were obtained by two
rigid piezoelectric platform dynamometers, one at each model’s end (Schewe [209]). In com-

Table 3.1: Structural properties of the investigated smooth cylindrical and prismatic wind
tunnel models.

Edge roundness, r{Lref

Parameter 0 0.16 0.29 0.50:

Material stainless steel
Length, L / m 0.6
Reference length, Lref (face width or diameter) / m 0.06
Aspect ratio, AR 10
Geometric blockage ratio at α = 0˝, Lref {htest_sec (%) 10
Equivalent sand-grain surface roughness, ks{Lref 40˘4ˆ10´6 4.5˘0.7ˆ10´6 4.5˘0.7ˆ10´6 O(10´5)
Natural frequency in lift direction, fn,L / Hz 340 298 298 –
Natural frequency in drag direction, fn,D / Hz 316 312 312 385
: data by Schewe [209].
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Figure 3.1: Experimental setup in the High-Pressure wind tunnel facility for isolated 2D-model
tests: side view of test section with model, piezoelectric platform dynamometers, and wake
rake (Adapted from Van Hinsberg [257]).

parison the balances based on strain gauges, the piezoelectric platform dynamometers have
the huge advantage of a very high stiffness. Their resultant high natural frequencies in flow
and cross-flow direction allow the measurement of high eddy shedding frequencies. The values
of Lptq and Dptq were used to determine the global time-mean and fluctuating quantities of
the lift and drag coefficients. A brief reminder to the reader, that all measured RMS values
of CL and CD presented hereafter are based on the total spanwise length of the investigated
bluff bodies, hence, L = 0.6 m. From the PSDs of the time series of the lift force, the main
eddy shedding peaks and corresponding shedding frequencies were derived. A vertical pressure
rake with 6 static pressure tubes and 52 Pitot pressure tubes was installed at 6.25Lref behind
the model’s spanwise centre axis to obtain the non-dimensional mean pressure loss in the near
wake, as shown in Figure 3.1. This quantity is defined as ∆p = pp0 ´ piq{q8, where pi equals
the total pressure at the tube location i (= 1, 2,..., 51, 52) in the near wake. The shape of the
curve was analysed to extract the qualitative measure of both the (a)symmetry of the wake
flow with respect to the model’s horizontal spanwise axis and of the width of the near wake at
this location. The latter is defined as the distance between the two most outer Pitot pressure
tubes for which the value of the non-dimensional pressure loss lies above the threshold of 4%
of the maximum non-dimensional pressure loss, hence ∆ pthr = 0.04∆pmax.

The initial pressure level inside the wind tunnel of p0 = 0.35 MPa was increased in seven
steps with various increments (∆ p0 = 500 kPa, 1 MPa, and 2 MPa) up to the final pressure
level of p0 = 10 MPa. At each of these constant pressure levels, the flow velocity was increased
from 4 m/s up to 34 m/s by increments of 1 m/s. In that way, the complete range of Reynolds
numbers between 105 and 107 was covered. For the detailed investigation of the hysteresis in
the fluid dynamics for increasing and decreasing Reynolds numbers that cover the transition
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3.1 Effect of edge roundness of square-section prisms at α = 0˝ for Reynolds numbers up to 107

from the subcritical to supercritical flow regime and vice versa, the increments of the velocity
were reduced to ∆U8 = 0.3 m/s at a constant pressure level, which corresponds to a change
in Reynolds number of about ∆ReD = 1ˆ104 for both increasing and decreasing Reynolds
numbers. Per measurement point a constant integration time of T = 30 s was set for all recorded
signals. The global aerodynamic forces were thereby scanned with a sampling frequency of
fscan = 5 kHz at a resolution of 16 bit.

3.1.2 Mean fluid-dynamic loads

Beginning with the mean fluid-dynamic loads, the distributions of the mean global drag coeffi-
cient CD and the mean cross-sectional, hence local, base pressure coefficient at the mid-section
of the prism Cpb with increasing Reynolds number are shown in Figure 3.2 for square-section
prisms with edge roundness values r{D of 0, 0.16, and 0.29 at an incidence angle of α = 0˝. In
addition, the global drag coefficients of a smooth circular cylinder, obtained by Schewe [209]
in the same wind tunnel under equal boundary and flow conditions as listed in table 3.1, have
been included in this figure for both comparison reasons and completeness.
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Figure 3.2: Effect of edge roundness r/D on the mean global drag coefficient (a) and mean
cross-sectional base pressure coefficient (b) of a 2D square-section prism at α = 0˝ for Reynolds
numbers in the range of 1ˆ105 to 1ˆ107 (Van Hinsberg et al [254], Van Hinsberg [258]).
Reference: ` Schewe [209] (r{D = 0.5).

The direct comparison of the different curves in both graphs clearly shows that the trends
and the values of the two mean aerodynamic coefficients are not only predominated through
the Reynolds number, but in an equal manner also through the edge roundness value, the latter
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thus clearly having changed from an influencing to a governing parameter. While the curve of
CD for the sharp-edged square section prism is characterised by a complete independency on
the Reynolds number up to 107 (i.e. CD = 2.08˘0.04), a distinct variation in the drag coefficient
with increasing Reynolds number is observed for the two square-section prisms with r{D = 0.16
and 0.29. Interestingly, both latter curves show a similar behaviour: relatively constant and
high drag coefficient values in the subcritical flow regime, a clear drag crisis with a sharp drop
in CD in the critical flow regime, a discontinuous step at the cross-over from the critical to
the supercritical flow regime, and a flat plateau at a low drag coefficient that reaches up to
ReD = 107. The absolute values of CD, the Reynolds number at which the discontinuous step
in CD occurs, and the boundaries of the various flow regimes all steadily shift to significantly
lower values with increasing edge roundness. In other words, the CD(ReD) curve gradually
approaches the curve of the circular cylinder for increasing r{D. For r{D = 0.29, even a clear
overlap appears with the curve for r{D = 0.5 at low Reynolds numbers of ReD ă 3ˆ105 and
at high Reynolds numbers above approximately 3 million. For 2ˆ105 ă ReD ă 3ˆ105 within
the lower of those two ranges that are both bounded at one end only, the mean global drag
that is experienced by the square prism with r{D = 0.29 is even slightly smaller than that one
obtained for the circular cylinder. This means, that for α = 0˝ the effect of the edge radius on
the global mean drag coefficient weakens the closer the cross-section of the prism resembles a
circle.

For the three square-section prisms, the same, but inverted trend of the Cpb(ReD) curve with
respect to the corresponding curve of the global mean drag coefficient is obtained at α = 0˝, as
shown in Figure 3.2b. Furthermore, for both non-zero edge roundness values a discontinuous
step in the mean base pressure coefficient appears at the cross-over from the critical to the
supercritical flow regime; hence, at the exact same Reynolds numbers as for CD in Figure 3.2a.
This common behaviour of both aerodynamic coefficients is not really surprising, though, as a
change in the (mean) base pressure alters the net (mean) pressure force that acts on the prism
in flow direction. A higher suction at the base may thus lead to a larger mean drag force,
whereas a decrease in the mean base pressure may induce a smaller mean drag force on the
prism.

The variation of the global mean drag and cross-sectional mean base pressure coefficients
with Reynolds number for the square-section prisms with edge roundness vales of r{D = 0, 0.16,
and 0.29 are presented once more in Figure 3.3, together with the experimental and numerical
drag coefficient and base pressure data from many reference studies on two-dimensional smooth
square-section prisms with sharp and rounded edges and circular cylinders. The values of CD of
the sharp-edged square-section prism for the present investigation are in good agreement with
the data of both Lee [130] and Letchford and Mason [132], but slightly higher than those of Li
et al. [133] and Vickery [263] as well as lower than the numerical results by Sohankar [228]. The
reference data for square-section prisms with non-dimensional edge radii close to zero – i.e. with
r{D = 0.021 (Delany and Sorensen [58]) and r{D = 0.0937 to 0.011 (James and Vogel [115])
– are also found to be Reynolds-number independent and lie between CD = 1.86 and 2.0 for
1.10ˆ105 ď ReD ď 1.24ˆ106. The previously described trend of the global mean drag coeffi-
cient with increasing non-dimensional edge roundness for the present investigation, presented
in Figure 3.2a, fits well in the overall image that is obtained from Figure 3.3a. A near to perfect
match is achieved between the present drag coefficient values for r{D = 0.16 and the data by
Delany and Sorensen [58] for their square-section prism with edge radius of r{D = 0.167 for
subcritical and low supercritical Reynolds numbers. The same holds for the value of the critical
Reynolds number at about ReD = 6.4ˆ105. Interestingly, an additional coverage exists with the
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Figure 3.3: Dependence of the mean global drag coefficient (a) and mean cross-sectional base
pressure coefficient (b) on the Reynolds number for 2D square-section prisms at α = 0˝ with
edge roundness values between r{D = 0 (sharp-edged) and 0.5 (circular cylinder). Van Hinsberg
et al [254] and Van Hinsberg [258]: ˝: r{D = 0; ˝: r{D = 0.16; ˝: r{D = 0.29. References:
‚ Achenbach and Heinecke [5] (r{D = 0.5), ˛ Delany and Sorensen [58] (˛: r{D = 0.021; ˛:
r{D = 0.167; ˛: r{D = 0.333), Ÿ James and Vogel [115] (Ÿ: r{D = 0.00937; Ÿ: r{D = 0.0109;
Ÿ: r{D = 0.011; Ÿ: r{D = 0.0625; Ÿ: r{D = 0.0729; Ÿ: r{D = 0.075; Ÿ: r{D = 0.125; Ÿ:
r{D = 0.15; Ÿ: r{D = 0.1875), Ź Jones et. al [117] (r{D = 0.5), � Lee [130] (r{D = 0), 4
Letchford and Mason [132] (4: r{D = 0; 4: r{D = 0.12), N Li et al. [133] (r{D = 0), ‹
Polhamus [186] (‹: r{D = 0.08; ‹: r{D = 0.245; ‹: r{D = 0.5), ˙ Roshko [197] (r{D = 0.5),
` Schewe [209] (r{D = 0.5), ˆ Schmidt [214] (r{D = 0.5), ˝ Shih et al. [218] (r{D = 0.5), §
Sohankar [228] (r{D = 0), đ Vickery [263] (r{D = 0), – Wieselberger [270] (r{D = 0.5).

drag curves of the square-section prisms with r{D = 0.125 and 0.15 by James and Vogel [115]
for ReD ď 5.25ˆ105 and 3.18ˆ105, respectively. The CD(ReD) curves for r{D = 0.245 and
r{D = 0.333 by Polhamus [186] and Delany and Sorensen [58], respectively, nicely enclose the
mean drag coefficient of the present square-section prism with edges of r{D = 0.29.

At a given Reynolds number, the measured and simulated data in Figure 3.3a show a large
variation with changing edge roundness. A prediction of the CD value for a square-section
prism with a certain edge roundness other than those presented by interpolation may therefore
be not as accurate as desired, in particular in the critical flow regime in which the largest
effect of r{D occurs. In conformity with the suggestion by Polhamus [186], an empirical factor
of pr{Dq1.31 has been applied to the Reynolds number to force the drag crisis of the various
curves to overlap, as shown in Figure 3.4. With the exception of the curves for the sharp-edged
square-section prisms and circular cylinders, the curves for all edge roundness values between
r{D = 0 and 0.5 show a rather good overlap of their critical flow regimes. The spreading of
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Figure 3.4: Effect of Reynolds number – based on edge roundness of r{D = 0 to 0.5 – on the
mean global drag coefficient of 2D square-section prisms at α = 0˝. Van Hinsberg et al [254]
and Van Hinsberg [258]: ˝: r{D = 0; ˝: r{D = 0.16; ˝: r{D = 0.29. References: ‚ Achenbach
and Heinecke [5] (r{D = 0.5), ˛ Delany and Sorensen [58] (˛: r{D = 0.021; ˛: r{D = 0.167; ˛:
r{D = 0.333), Ÿ James and Vogel [115] (Ÿ: r{D = 0.00937; Ÿ: r{D = 0.0109; Ÿ: r{D = 0.011;
Ÿ: r{D = 0.0625; Ÿ: r{D = 0.0729; Ÿ: r{D = 0.075; Ÿ: r{D = 0.125; Ÿ: r{D = 0.15; Ÿ:
r{D = 0.1875), Ź Jones et. al [117] (r{D = 0.5), � Lee [130] (r{D = 0), 4 Letchford and
Mason [132] (4: r{D = 0; 4: r{D = 0.12), N Li et al. [133] (r{D = 0), › Polhamus [186] (›:
r{D = 0.08; ›: r{D = 0.245), ˙ Roshko [197] (r{D = 0.5), ` Schewe [209] (r{D = 0.5), §
Sohankar [228] (r{D = 0), đ Vickery [263] (r{D = 0), – Wieselberger [270] (r{D = 0.5).

the data, partly also at an equal prism’s edge roundness value, results from the variation in the
influencing parameters between the different reference studies. The graph shows that the value
for CD at any edge radius between sharp-edged and circular can be obtained with a rather good
accuracy by vertical interpolation.

The high global mean drag coefficient of CD = 2.08˘0.04 (Figure 3.2a) for the sharp-edged
prism is due to a combination of three phenomena: (1 ) the fixed separation of the laminar
boundary layer on the prism’s surface at both windward-directed sharp edges, (2 ) a distinct
lateral spacing of the resultant free shear layers (presented, among others, in Luo et al. [142],
Van Oudheusden et al. [260], Sohankar [228,233], Cao and Tamura [42], Bai and Alam [20], and
Cao et al. [43] for various Reynolds numbers) that leads to an even larger effective aerodynamic
blockage ratio than the geometric blockage ratio of 0.10 (Table 3.1), and (3 ) the relatively
high negative cross-sectional base pressure coefficients of Cpb = –1.50˘0.06 (Figure 3.2b). A
clear indication for the occurrence of the second phenomenon is given by the wake width that
is defined as the vertical distance in between those two points Z1,2{Lref at which the total
pressure decay along the wake rake equals 4% of the maximum occurring total pressure decay,
hence (p ´ p0){(pmin ´ p0) = 0.04 with p the static pressure at the locations Z1,2, p0 the total
pressure, and pmin the minimum occurring static pressure at the specific Reynolds number. For
the sharp-edged prism at α = 0˝, a large and constant value of the wake width of Z{Lref = 6 is
still present even at a distance of 5.75Lref downstream of the prism’s base surface, as shown in
the Figures 3.5a and 3.5b. Polhamus [186] stated that the decrease of both CD and the critical
Reynolds number ReD,cr, the latter marking the cross-over from the critical to the supercritical
flow regime, is caused by the promotion of a smoother separation of the boundary layers as a
result of an increased severity of the adverse pressure gradients along the rounded surface of
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Figure 3.5: Effect of Reynolds number on the mean vertical wake profiles at X{Lref = 6.25
behind the mid-span of two-dimensional square-section prisms at α = 0˝. (a)-(b): r{D = 0;
(c)-(d): r{D = 0.16; (e)-(f ): r{D = 0.29.

the prism for enlarged edge radii. This interpretation was later confirmed by Hu et al. [104]
who studied the vortex behaviour in the near wake of square-section prisms with different edge
radii in the range of r{D = 0 to 0.5 by using PIV and LDA. Although the Reynolds number
in their test was much lower (ReD = 6000) than in the study by Polhamus, they also observed
that an increase in edge radius leads to a lower lateral movement of the separated shear layers
and thus a weaker deflection of the streamlines along both side faces of the square-section
prism. This is due to the continuously curved surface at the edges of the prism that allows
– similar to the flow around circular cylinders – a downstream motion of the boundary layer
separation location along both upwind rounded edges with increasing Reynolds number in the
critical flow regime. This is confirmed by the wake profiles in Figure 3.5c to f for r{D = 0.16
and 0.29, for which a clear shrinkage of the near wake with growing edge radius is seen to take
place for increasing Reynolds numbers from the subcritical to the supercritical flow regime.
In combination with a progressive upstream wandering of the transition location along the
free shear layers in the direction of the boundary layer separation points, a reattachment of
the free shear layers at the two downstream rounded edges can occur at the critical Reynolds
number. The subsequent secondary separation of the turbulent boundary layer at those two
edges initiates a sharp decrease in the width of the near wake, as a result of which the negative
value of the base pressure is lowered (Figure 3.2b). Owing to this decrease of Cpb for larger edge
roundness values, the separated boundary layers are less rapidly immersed into the prism’s base
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region, i.e. a weaker interaction of the forming eddies takes place at the base. In combination
with a lower spreading of the separated shear layers, this leads to a growth of both the eddy
formation length and the wake closure length. A longer, but smaller near wake is thus formed,
which then again results in a sharp reduction of the drag coefficient at the end of the critical
flow regime (Hu et al. [104]). Since the positions of the primary and secondary separation on
the surface of the prism are rather fixed in the subsequent supercritical flow regime, only minor
variations in CD, Cpb, the mean vertical wake profile, and the mean wake width occur within
the supercritical flow regime.

3.1.3 Fluctuating fluid-dynamic loads

Figure 3.6a presents the variation of the coefficient of the global fluctuating lift,
b

pC
12
L q, with

Reynolds number for a 2D square-section prism with various edge roundness values (r{D = 0,
0.16, and 0.29) and for the 2D circular cylinder. Note once more that the presented RMS-values
are based on the global forces that are obtained by integration along the complete span of the
prisms and of the circular cylinder, i.e. L = 10D. Regarding both the trend of each curve with
increasing Reynolds number and the overall trend of the RMS-values of the lift coefficient with
respect to an increasing r{D-value, a very similar behaviour to the CD(ReD) curves, presented
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Figure 3.6: Effect of edge roundness r/D on the fluctuating global lift coefficient (a) and the
lift-based Strouhal number (b) of a 2D square-section prism at α = 0˝ for Reynolds numbers
in the range of 1ˆ105 to 1ˆ107 (Van Hinsberg et al [254], Van Hinsberg [258]). Reference:
` Schewe [209] (r{D = 0.5). In case of the occurrence of two peaks in the power spectra
at a Reynolds number, the more dominant Strouhal number is indicated by an open symbol,
whereas a dot within the symbol belongs to the secondary peak.
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in Figure 3.2a, can be identified. Hence, constant high values of the fluctuating lift at r{D = 0
and a decreasing trend with increasing edge roundness at an arbitrary fixed Reynolds number.
For r{D ą 0, each curve is characterised by a steady decrease within the subcritical and critical

flow regime, that is followed by a plateau of low
b

pC
12
L q values at supercritical Reynolds num-

bers, being relatively strong Reynolds-number independent up to ReD = 107 for r{D = 0.16
and 0.29. For the circular cylinder, a light increase in the fluctuating lift occurs in the upper
transition, thereby reaching a second plateau with relatively constant values in the subsequent
transcritical flow regime.

A comparison with experimental and numerical data from various references for two-dimensional
sharp-edged square-section prisms and circular cylinders in Figure 3.7a shows two interesting
points. Regarding the data for circular cylinders, a common behaviour with increasing Reynolds
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Figure 3.7: Dependence of the fluctuating global lift coefficient (a) and non-dimensional eddy
shedding frequency (b) on the Reynolds number for 2D square-section prisms at α = 0˝ with
edge roundness values between r{D = 0 (sharp-edged) and 0.5 (circular cylinder). Van Hinsberg
et al [254] and Van Hinsberg [258]: ˝: r{D = 0; ˝: r{D = 0.16; ˝: r{D = 0.29. References:
‚ Achenbach and Heinecke [5] (r{D = 0.5), � Brun et al. [37] (r{D = 0), ˛ Delany and
Sorensen [58] (r{D = 0.333), İ Huang et al. [106] (r{D = 0), Ź Jones et. al [117] (r{D = 0.5),
� Lee [130] (r{D = 0), N Li et al. [133] (r{D = 0), ˙ Roshko [197] (r{D = 0.5), ` Schewe [209]
(r{D = 0.5), § Sohankar [228] (r{D = 0), đ Vickery [263] (r{D = 0), O Zan and Matsuda [289]
(r{D = 0.5).

number is present; nonetheless, a non-negligible variation in the fluctuating lift can be observed
at a given Reynolds number, which is in particular in the critical flow regime quite significant.
Leading the attention to the data of sharp-edged square-section prisms, a very wide spreading
can be observed. Most reference data show an overprediction of the fluctuating lift, except for

71



Chapter 3: Cross-sectional edge roundness of isolated square-section prisms

the data by Li et al. [133] that are as much as a factor 6 lower than the present values.

While the lift fluctuations can be seen as a measure of the intensity of the eddy shedding
process in the direct wake behind the bluff body, the Strouhal number expresses the frequency
at which those eddies are alternatingly formed and shed on the upper and lower surface of the
body. Figure 3.6b shows the relation of the Strouhal number, StL, with Reynolds number for the
same four square-section prisms with edge values of r{D = 0, 0.16, 0.29, and 0.5. The presented
Strouhal numbers are based on the main and, when applicable, also the secondary frequency
peak in the PSDs of the time series of the lift L(t), presented in Figure 3.8 for various Reynolds
numbers from 1ˆ105 to 1ˆ107. For the sharp-edged prism, the location of the main peak of
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Figure 3.8: Power spectral density of the time series of the global lift force on two-dimensional
square-section prisms at α = 0˝ at selected Reynolds numbers between 1ˆ105 and 1ˆ107.
(a)-(b): r{D = 0; (c)-(d): r{D = 0.16; (e)-(f ): r{D = 0.29. The corresponding Strouhal
numbers are indicated by the symbols on the curves and the numbers inside each graph. In
case of multiple occurring Strouhal numbers at equal Reynolds number, the dominant Strouhal
number is indicated by (1st) and is followed by the Strouhal number of the secondary peak. M
in the Reynolds number equals "million".

each power spectrum in the Figures 3.8a and 3.8b is found at fLD{U8 = StL = 0.123˘0.003.
Both this Reynolds-independent behaviour of the non-dimensional eddy-shedding frequency
and the values of the Strouhal number agree well with data by other references in Figure 3.7b.
With decreasing bluffness, i.e. larger r{D-values, of the prism, an increasing range in Strouhal
numbers is covered within the Reynolds-number range of 105 to 107. The occurrence of only
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3.1 Effect of edge roundness of square-section prisms at α = 0˝ for Reynolds numbers up to 107

three flow regimes for the square-section prisms with r{D = 0.16 and 0.29 becomes once more
clearly visible in the corresponding StL(ReD) curves. The subcritical flow regime is charac-
terised by low Strouhal numbers, their values showing only weak changes with increasing r{D.
The interesting phenomenon in the subsequent critical flow regime is the occurrence of two
Strouhal numbers at one single Reynolds number: StL = 0.13 and 0.28 for r{D = 0.16 and
StL = 0.14 and 0.32 to 0.33 (dependent on the exact Reynolds number) for r{D = 0.29. The
Strouhal number that belongs to the higher and thus more dominant peak in each spectrum in
Figure 3.8c to 3.8f is represented by an open symbol in Figure 3.6b, whereas the open symbols
with an inner dot belong to the secondary peaks. Since the lower of the two occurring Strouhal
numbers can be linked to the subcritical flow regime and the higher one to the supercritical
flow regime, a clear indication is given that at those critical Reynolds numbers the flow around
the prism jumps continuously back and forth between both flow regimes. Interestingly, for
r{D = 0.16 the subcritical flow regime is the more dominant one of the two flow regimes, while
for r{D = 0.29 the supercritical flow regime dominates. The alternating flow behaviour extends
up to the end of the critical flow regime, at which a permanent cross-over to the supercriti-
cal flow regime takes place and the Strouhal number settles at a relatively flat supercritical
plateau of StL = 0.31 and 0.27 for r{D = 0.16 and 0.29, respectively. In good agreement with
the general trend of the Strouhal number with increasing edge roundness, the latter value is
slightly lower than those obtained by Delany and Sorensen [58] for their square-section prism
with r{D = 0.333 at low supercritical Reynolds numbers. The most pronounced variation of
the Strouhal number with Reynolds number is obtained for the circular cylinder, since all five
flow regimes from subcritical to transcritical occur in the shown range of Reynolds number
in Figure 3.6b. The trend of this curve has been described in detail by Schewe [209] and in
paragraph 2.1.2.3. A comparison with data from other references in Figure 3.7b confirms the
general trend, although a large scatter – being the result of different values for the various
influencing parameters – is observed for 1ˆ106 ă ReD ă 3ˆ106 in the upper transition.

Durão et al. [68], Lyn et al. [143], and Van Oudheusden et al. [260] presented that the
highest activity of the RMS of the horizontal and vertical velocity fluctuations in the flow field
around sharp-edged square-section prisms at α = 0˝ occur along the separated shear layers
and at the wake centreline just downstream of the four-way wake saddle point at which both
wake division streamlines meet, respectively. As a consequence of the large-scale eddy shedding
in the near wake, maximum velocity fluctuation levels as high as 60% for urms{U8 and 80%
to 90% for vrms{U8 were measured. These strong velocity fluctuations in cross-flow direction
in the base region enhance the entrainment of fluid into the wake during the eddy formation

process and cause large periodic changes in the lift force on the prism, e.g.
b

pC
12
L q = 1.02˘0.07

in Figure 3.6. This high value agrees well with the results obtained by Carassale et al. [45]. In
addition, the large lateral spacing of the free shear layers promotes a strong interaction between
the alternatingly shed eddies in the base region that leads to a low shedding frequency, i.e. low
Strouhal numbers.

Because the parameter
b

pC
12
L q can be seen as a measure of the vigorousness of the eddy

shedding process, it becomes clear that the major reduction in the fluctuating lift when varying
the prism’s cross-section from one extreme (hence, squared with sharp edges) to the other
(i.e. circular) is associated with a much weaker interaction of each eddy with the base flow at
the opposite base side from which it has separated, as well as the interaction between each
two subsequent counter-rotating eddies. This is also the cause for the increase in the eddy
shedding frequency for larger edge roundness values at equal Reynolds numbers. The latter
is consistent with the experimental data by Tamura and Miyagi [242] and Hu et al. [104] for
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Chapter 3: Cross-sectional edge roundness of isolated square-section prisms

steady prisms and by Ajith Kumar et al. [11] for transversely oscillating prisms. Although the
investigated Reynolds numbers in these references are much lower, i.e. O(103) to O(104), the
relation between the edge radius and the Strouhal number is identical, owing to which it is
arguable that similar underlying physical phenomena in the flow are responsible.

3.2 Effect of edge roundness of square-section prisms at
α = 45˝ for Reynolds numbers up to 107

This section deals with the influence of the edge roundness of two-dimensional smooth square-
section prisms positioned at the second "symmetric" incidence angle of 45˝. Besides the mean
and fluctuating fluid-dynamic loading on those bluff bodies and the non-dimensional eddy-
shedding frequency in their near wake for the equal range of Reynolds numbers as in the
previous section for α = 0˝, a detailed analysis of the flow behaviour in the critical flow regime
is presented. It is shown, that within this flow regime not only circular cylinders possess an
asymmetry in the surrounding flow field with a distinct non-zero lift force, but that a similar
fluid-dynamic behaviour also appears for square-section prisms when rounding their longitudinal
edges. The same counts for the hysteresis effects that become visible for increasing or decreasing
critical Reynolds numbers.

3.2.1 Mean fluid-dynamic loads

In comparison to α = 0˝, the square-section prism with sharp edges experiences at α = 45
merely a 6% higher global mean drag (Figure 3.9a). Apparently, the large increase in the ge-
ometric blockage ratio from Lref{htest_sec = 10% at α = 0˝ to 14.5% at α = 45˝ is to a great
extent compensated by the change of the flow field around the prism. After separation of the
surface boundary layer from the upper and lower edge of the prism, the shear layers experience
a wide spreading in cross-flow direction (e.g. Dutta et al. [69], Ozgoren [178], Huang et al. [106],
Yen and Yang [286], Sohankar et al. [233]) that induces an even larger effective aerodynamic
blockage ratio and larger eddies in the near wake than at α = 0˝ (Huang et al. [106], Yen and
Yang [286]). The data by Huang et al. [106] reveal that for ReD ď 7.7ˆ104 the wake width at a
distance of about 0.5Lref downstream of their sharp-edged prism is 1.25D and 1.67D for α = 0˝
and 45˝, respectively. Using the smoke visualisation technique in their wind tunnel experiments,
Sohankar et al. [233] obtained similar values at D/4 downstream of their sharp-edged prism for
Reynolds numbers between 6.8ˆ103 and 8.2ˆ103. Interestingly, at a location of X{Lref = 6.25
behind the mid-span of the present sharp-edged square-section prism this difference in lateral
spreading of the free shear layers between both incidence angles no longer exists, as the equal
mean vertical wake profiles at α = 0˝ (Figures 3.5a and 3.5b) and 45˝ (Figures 3.10a and 3.10b)
clearly demonstrate. Figure 3.9b presents the behaviour of the coefficient of the suction force
at the base of the prism with varying Reynolds number for 45˝ angle of incidence. With a
constant mean value of Cpb = –1.19 for ReD = 1ˆ105 to 1ˆ107, it has reduced by as much
as 21% compared to α = 0˝. It can thus be pinpointed as being primarily responsible for the
compensation of the large effective aerodynamic blockage ratio and thus the merely small rise
of CD.

With increasing edge roundness, the mean global drag coefficient progressively approaches
the values for circular cylinders. Contrary to their counterparts at α = 0˝, the shapes of both
CD(ReD) curves for r{D = 0.16 and 0.29 possess a limited supercritical flow regime that is
subsequently followed by an upper transition and a left-bounded transcritical flow regime, the
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Figure 3.9: Effect of edge roundness r/D on the mean global drag coefficient (a) and mean cross-
sectional base pressure coefficient (b) of a 2D square-section prism at α = 45˝ for Reynolds
numbers in the range of 1ˆ105 to 1ˆ107 (Van Hinsberg et al [254], Van Hinsberg [258]).
Reference: ` Schewe [209] (r{D = 0.5).

last one characterised by constant high values of CD that have approached the subcritical level.
The main reason behind this different shapes of the CD(ReD) curves between α = 0˝ and 45˝

is the change in the position on the rounded edges at which the laminar or turbulent boundary
layer separates from the prism’s surface. At an incidence angle of 45˝, the decreasing curva-
ture of the upper and lower (shoulder) edges of the prism allows a stronger meandering of the
primary – and, in the case of a laminar separation bubble, also of the secondary – separation
positions along those rounded edges with a variation of the Reynolds number. Similar to what
is known for flows over circular cylinders, the critical flow regime of the prisms with r{D = 0.16
and 0.29 exhibits a drastic drag crisis that is initiated by the steady wandering of the primary
separation locations from the windward-directed section towards to leeward-directed part of
both shoulder edges. This relocation of the separation points leads to a reduction of the width
of the near wake (Figure 3.10c to 3.10f), which then again lowers the suction force at the base
of the prism. Within a narrow band of Reynolds numbers, an asymmetric flow state appears,
being the result of the formation of a laminar separation bubble over one of the two rounded
shoulder edges only. The resultant asymmetric mean pressure distribution on the surface of
the prism introduces a mean steady lift force, as presented in Figure 3.11. Two interesting
points can be derived from this figure: for a larger edge roundness value (1 ) the limited range
of Reynolds numbers at which a steady non-zero lift force occurs both shifts to lower values
and decreases in width, and (2 ) the maximum peak of |CL| increases. Both phenomena are
relatively obvious, as the whole critical flow regime shifts to lower Reynolds numbers for larger
r{D-values (e.g. Figure 3.9) and a larger laminar separation bubble can be formed on a sur-

75



Chapter 3: Cross-sectional edge roundness of isolated square-section prisms

−5

−2.5

0

2.5

5

∆ p / q

Z
/

L
r
e
f

−5

−2.5

0

2.5

5

∆ p / q

Z
/

L
r
e
f

−5

−2.5

0

2.5

5

Z
/

L
r
e
f

−5

−2.5

0

2.5

5

Z
/

L
r
e
f

−0.2 0 0.2 0.4 0.6 0.8 1.0−0.2 0 0.2 0.4 0.6 0.8 1.0−5

−2.5

0

2.5

5

Z
/

L
r
e
f

(c)

(e)

(a) α = 45°, r/D = 0

α = 45°, r/D = 0.16

α = 45°, r/D = 0.29

ReD = 1.55 × 105 
ReD = 3.08 × 105 

ReD = 5.44 × 105 
ReD = 5.87 × 105 

ReD = 5.01 × 105 

ReD = 1.51 × 105 
ReD = 3.08 × 105 

ReD = 5.26 × 105 
ReD = 5.86 × 105 

ReD = 4.66 × 105 

ReD = 1.61 × 105 
ReD = 3.06 × 105 

ReD = 5.45 × 105 
ReD = 5.75 × 105 

ReD = 4.95 × 105 

(d)

(f)

(b) α = 45°, r/D = 0

α = 45°, r/D = 0.16

α = 45°, r/D = 0.29

ReD = 7.58 × 105 
ReD = 1.26 × 106 

ReD = 2.58 × 106 
ReD = 8.98 × 106 

ReD = 8.55 × 105 
ReD = 1.27 × 106 

ReD = 2.53 × 106 
ReD = 8.88 × 106 

ReD = 7.57 × 105 
ReD = 1.26 × 106 

ReD = 2.53 × 106 
ReD = 8.81 × 106 

Figure 3.10: Effect of Reynolds number on the mean vertical wake profiles at X{Lref = 6.25
behind the mid-span of two-dimensional square-section prisms at α = 45˝. (a)-(b): r{D = 0;
(c)-(d): r{D = 0.16; (e)-(f ): r{D = 0.29.
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face that possesses a longer curvature. The latter induces a stronger asymmetric pressure field
around the bluff body and thus a higher lift force.

Based on the data for CD, Cpb, and the mean vertical wake profile, it can be argued that
similar variations in the flow behaviour around both rounded square-section prisms at α = 45˝
as for circular cylinders are transited one after another with increasing Reynolds numbers in
the supercritical to transcritical flow regime. It is assumed that at supercritical Reynolds
numbers a laminar separation bubble has firmly settled over both rounded shoulder edges and
a secondary separation of the turbulent boundary layer occurs further downstream on both
leeward-directed faces of the prism. The more the edge roundness approaches the value of
r{D = 0.5, the further downstream this secondary separation takes place. This not only lowers
the effective aerodynamic blockage ratio, but it also induces a small and short near wake (Fig-
ures 3.10d and 3.10f) that reduces in size with increasing r{D-value. As a result, low negative
base pressure coefficients are obtained, as presented in Figure 3.9b, which are then mainly re-
sponsible for the lowest CD-values in the supercritical flow regime. The increase in the mean
global drag coefficient in the following upper transition is the outcome of the steady shift of the
transition location upstream over both shoulder edges, which leads to a subsequent progressive
size reduction and – at the moment the transition overtakes the primary separation location –
the disappearance of both LSBs with increasing Reynolds number. With the absence of those
laminar separation bubbles, the turbulent boundary layer separates earlier at both shoulder
edges, the lateral spreading of the separated shear layers in the near wake increases, and the
high suction force on the two downstream-directed faces of the prism re-appears. In the final
transcritical flow regime, the boundary layer separation points mainly remain at a fixed posi-
tion. Only very light fluctuations in both the shape of the mean vertical wake profile and the
width of the near wake at X{Lref = 6.25 can be observed, the effective aerodynamic blockage
ratio can thus be expected to be constant, which explains the constant values for Cpb and CD.
Their values in Figure 3.9 furthermore show that the smaller the value of the edge roundness,
the higher the plateau of both coefficients in the transcritical flow regime and the more these
values approach the subcritical plateau.

The Figures 3.12 and 3.13 present the same data as in Figure 3.9a; this time, however,
complemented with data for square-section prisms with 0 ď r{D ă 0.5 and for circular cylinders
from other reference studies. In contrast to the first of both figures, the second shows the
behaviour of CD as function of the Reynolds number multiplied by an empirical factor of
pr{Dq1.31 (Polhamus [186]). The present values of the mean global drag coefficient for the
sharp-edged prism coincide well with the data by Lee [130], but are underpredicted by those of
Letchford and Mason [132]. Regarding the subcritical flow regime, the present data fit relatively
well within the overall trend of the CD(ReD) curves for increasing r{D-value. Unfortunately,
the amount of reference data for the other flow regimes is too scarce to obtain an accurate and
sound comparison. Several conclusions can nevertheless be drawn from those data. The drag
coefficients for r{D = 0.167 by Delany and Sorensen [58] are, for example, significantly higher
than the present ones for r{D = 0.16. They furthermore remain at a relative constant high
level up to ReD = 1.25ˆ106, while the present data for r{D = 0.16 show a distinct drag crisis
in the range of approximately 7ˆ105 ď ReD ď 1ˆ106 and subsequent low values at supercritical
Reynolds numbers. Regarding their data for r{D = 0.333, it is observed that the trend of the
CD(ReD) curve agrees well with those of r{D = 0.16 and 0.29, but also for this configuration
drag coefficients were measured by Delany and Sorensen [58] that lie above those of the present
prism configuration with r{D = 0.29. On the other hand, the experimental data by James
and Vogel [115] for r{D = 0.15 and 0.1875 not only significantly underpredict the present drag
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coefficients for r{D = 0.16, the data for r{D = 0.1875 even coincide almost perfectly with
those for r{D = 0.29. Last, but not least it should be mentioned that the values of CD for
r{D = 0.245 (Polhamus [186]) are not only flanked by the present data for r{D = 0.16 and
0.29, but all three curves also possess a similar trend with Reynolds number.

Despite the large scatter of the data, the additionally applied empirical factor of pr{Dq1.31

allows a rather good overlap of the critical flow regime, as presented in Figure 3.13. In contrast
to α = 0˝, the large scatter of the data at α = 45˝ does unfortunately not allow a sound vertical
interpolation of the data at a fixed Reynolds number to obtain an accurate prediction of the
drag coefficient for a square-section prism with an arbitrary edge roundness.

3.2.2 Fluctuating fluid-dynamic loads

The fixed, and therefore Reynolds-number independent position of the separation of the surface
boundary layer at both sharp shoulder edges induces a wide and long near wake behind the
base surface of the prism with r{D = 0 at 45˝ angle of incidence. Although the shape of the
mean vertical wake profile in the Figures 3.10a and 3.10b resembles at each Reynolds number
the respective curve at α = 0˝ (Figures 3.5a and 3.5b), the higher maximum value of ∆p{q and
the smaller negative values of Cpb (Figure 3.9b) at 45˝ angle of incidence are an indication that
the recirculation regions have shifted further downstream, i.e. away from the two base faces
of the prism. The reason for this is most probably the turning of one of the two side faces of
the prism into the wake. The two leeward-directed faces can be seen as an afterbody that is
extruded downstream into the base region. It is assumed that its presence not only shifts the
region with the highest vertical components of the velocity fluctuations on the wake centreline
in downstream direction, but also causes a decrease in the amount of fluid that is entrained
into the wake. The combined effect leads to a weaker intensity with which the eddies are shed
from the prism, which explains the smaller periodic changes in the lift force on the prism of
b

pC
12
L q = 0.47˘0.05 (Figure 3.14a) to 1.04˘0.07 (Figure 3.6a) for α = 45˝ and 0˝, respectively.

The Figures 3.15a and 3.15b present the power spectra of the time-dependent lift force at nine
Reynolds numbers between ReD = 105 and 107, together with values of the Strouhal numbers
that belong to the main peak in each spectrum. The frozen separation location of the surface
boundary layer is clearly recognised in the immobile position of the main peak at StL = 0.11.

A reduction of the prism’s bluffness by increasing the roundness of its edges introduces
a gradually increasing variation of both fluid-dynamic parameters with Reynolds number,

whereby for larger r{D-values the curves for
b

pC
12
L q and StL progressively approach those

ones of the circular cylinder. While only small variations with r{D occur in the subcritical and
transcritical flow regimes, distinct changes take place in the flow regimes in-between. Both
for r{D = 0.16 and 0.29, the critical flow regime is characterised by a sharp decrease of the
fluctuating lift and a rise of the shedding frequency in two steps. Similar to the circular cylinder
flow, the intermediate, short plateau of approximately constant Strouhal numbers of StL = 0.15
to 0.16 at ReD = 8.6ˆ105–9.1ˆ105 for r{D = 0.16 and StL = 0.2 at ReD = 5.7ˆ105–5.8ˆ105

for r{D = 0.29 results from the formation of a laminar separation bubble over one of the two
rounded shoulder edges only. At these Reynolds numbers, a clear asymmetrical flow exists over
the prism that influences both the strengths of the eddies – and thus the fluctuating lift – and
the frequency with which these eddies are shed. The latter is evident from the shift of the main
peak in the PSDs in the Figures 3.15c to 3.15f. The simultaneous existence of two Strouhal
numbers at one single critical Reynolds number is limited to the prism with r{D = 0.16 and
appears only at both outer regions of the asymmetric flow state, as is shown in the following
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of 1ˆ105 to 1ˆ107 (Van Hinsberg et al [254], Van Hinsberg [258]). Reference: ` Schewe [209]
(r{D = 0.5).

section together with the occurrence of hysteresis effects for increasing or decreasing critical
Reynolds numbers.

The presence of a laminar separation bubble over both shoulder edges and the resultant
narrow near wake at supercritical Reynolds numbers are responsible for the lowest occurring
coefficients of the fluctuating lift and the highest Strouhal numbers. As expected, the higher the
value of r{D, the nearer the supercritical values of both fluid-dynamic parameters are located
to the curve of the circular cylinder. Interesting to note at this point is the even almost perfect
overlap of the supercritical parts of the fluctuating lift curves for r{D = 0.29 and 0.5, while the
values of StL still differ significantly at those Reynolds numbers.

As soon as the laminar-turbulent transition location overtakes the separation points of the
surface boundary layer in the upper transition, the separation location of the turbulent bound-
ary layer migrates upstream along the shoulder edges and the near wake gradually widens

again. This process is accompanied with a significant increase in
b

pC
12
L q for r{D = 0.16 and

0.29 towards the subcritical plateau, although the manner in which this increase occurs differs
remarkably between both configurations, whereby the sharp rise of the curve for r{D = 0.16

up to
b

pC
12
L q = 0.69 at ReD = 3.9ˆ106 and subsequent decrease are the most remarkable

phenomena. The behaviour of the Strouhal number with increasing Reynolds number differs as
well between both r{D values in this flow regime. Whereas the StL(ReD) curve for r{D = 0.29
possesses a discontinuous step down to StL = 0.15–0.16 at the cross-over from the supercriti-
cal flow regime to the upper transition and subsequently remains at this level throughout the
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Figure 3.15: Power spectral density of the time series of the global lift force on two-dimensional
square-section prisms at α = 45˝ at selected Reynolds numbers between 1ˆ105 and 1ˆ107.
(a)-(b): r{D = 0; (c)-(d): r{D = 0.16; (e)-(f ): r{D = 0.29. The corresponding Strouhal
numbers are indicated by the symbols on the curves and the numbers inside each graph. In
case of multiple occurring Strouhal numbers at equal Reynolds number, the dominant Strouhal
number is mentioned first, followed by the Strouhal number of the secondary peak. M in the
Reynolds number equals "million".

complete upper transition and adjacent transcritical flow regime, a steady, gradual decrease
characterises the StL(ReD) curve for r{D = 0.16.

In contrast to circular cylinder flows, the amount of reference data for sharp-edged and
rounded square-section prisms at α = 45˝ for ReD ě 105 is extremely scarce, so that a compar-
ison with the present data is hardly possible. While no such reference data exist at all for the
fluctuating lift, as presented in Figure 3.16a, reference data for the Strouhal number have been
included in Figure 3.16b for prisms with r{D = 0 (Huang et al. [106] and Lee [130]) and 0.333
(Delany and Sorensen [58]). The present Strouhal numbers for the sharp-edged prism agree
well with those by Huang et al. [106] and Lee [130], although their data unfortunately cover
a range of Reynolds numbers of ReD = 1ˆ105–2ˆ105 only. Regarding the Strouhal numbers
of the present rounded prism with r{D = 0.29, a reasonable match with those by Delany and
Sorensen [58] for r{D = 0.333 is obtained for Reynolds numbers from high subcritical up to the
end of the supercritical flow regime.
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Figure 3.16: Dependence of the fluctuating global lift coefficient (a) and non-dimensional eddy
shedding frequency (b) on the Reynolds number for 2D square-section prisms at α = 45˝ with
edge roundness values between r{D = 0 (sharp-edged) and 0.5 (circular cylinder). Van Hinsberg
et al [254] and Van Hinsberg [258]: ˝: r{D = 0; ˝: r{D = 0.16; ˝: r{D = 0.29. References: ‚
Achenbach and Heinecke [5] (r{D = 0.5), ˛ Delany and Sorensen [58] (r{D = 0.333), İ Huang
et al. [106] (r{D = 0), Ź Jones et. al [117] (r{D = 0.5), � Lee [130] (r{D = 0), ˙ Roshko [197]
(r{D = 0.5), ` Schewe [209] (r{D = 0.5), O Zan and Matsuda [289] (r{D = 0.5).

3.2.3 Hysteresis in the fluid-dynamic loads and Strouhal number for
increasing and decreasing Reynolds numbers in the critical flow
regime

In the previous section, reference was already made to the appearance of hysteresis effects
when comparing the fluid dynamics of rounded square-section prisms at α = 45˝ while passing
through the drag crisis with increasing or decreasing Reynolds numbers. Figure 3.17 presents
the outcomes of the mean global drag force, absolute mean global lift coefficient, and Strouhal
number for the present square-section prisms with r{D = 0.16 and 0.29, as well as the reference
data by Schewe [209] for the circular cylinder obtained in the same High-Pressure wind tunnel
facility. For each shown model configuration, the branches of rising and declining Reynolds
numbers cover the range between the upper part of the subcritical flow regime and the lower
part of the supercritical flow regime.

The various graphs show that each of the three configurations experiences a hysteresis; how-
ever, the extent of this hysteresis on the presented fluid-dynamic quantities differs significantly
among them. The square-section prism with rounded edges of r{D = 0.16 experiences only
a very weak hysteresis effect that is limited to both boundaries of the asymmetric flow state.
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Figure 3.17: Hysteresis effects for the transition from the subcritical flow regime to the super-
critical flow regime (increasing ReD) and vice versa (decreasing ReD) on the mean global drag
force D in Newton (a), absolute mean global lift coefficient (b), and Strouhal number (c) of
2D square-section prisms with edge roundness at an incidence angle of α = 45˝. Reference: `
and O Schewe [209] (r{D = 0.5).

Small differences in the values of D and |CL| between the two branches can be recognised at
ReD = 8.9ˆ105 and 9.5ˆ105. Increasing the radius of the prism edges to 0.29 and 0.5 leads
to the appearance of a much more pronounced hysteresis. In particular the shift towards lower
values of the two Reynolds numbers (on the decreasing branch) at which a transition from a
symmetric flow state into an asymmetric one and back to the symmetric case takes place, are
clearly visible. Interestingly, the values of D, |CL|, and StL in the asymmetric flow state and
in both bounding symmetric flow regimes are hardly affected by the hysteresis.

In the following, a detailed review of the hysteresis effects of the smooth square-section prism
with r{D = 0.29 at α = 45˝ is presented. The reader should take notice, that the observations
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described hereafter depend to a large extend on the roughness of the prism’s faces. A different
value of the equivalent sand-grain surface roughness than the present one of ks{Lref = 4.5ˆ10´6

not only modifies the pressure distribution on the prism’s surface and thus the values of all
fluid-dynamic parameters, but also shifts the various flow regimes to different Reynolds num-
bers. These aspects are part of a thorough analysis in section 4.2 for square-section prisms with
edge roundness values of r{D = 0 to 0.5.

Figure 3.18 presents the changes in the experimentally obtained values of CD, Zw{Lref , StL,
and |CL| with both increasing and decreasing Reynolds number within and in the direct vicinity
of the drag crisis. In the top graph, the two branches are accompanied by lower case letters
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Figure 3.18: The individual stages within the critical flow regime with hysteresis effect for a
2D square-section prism with rounded edges of r{D = 0.29 at an incidence angle of α = 45˝
(Adapted from Van Hinsberg et al. [254]). (a): mean global drag coefficient; (b): non-
dimensional mean wake width at X{Lref = 6.25; (c): Strouhal number based on the lift
fluctuations; (d): absolute mean global lift coefficient. ˝: increasing Reynolds number; ˝:
decreasing Reynolds number. The lower case letters in graph (a) denote the individual stages
of the flow state with a-g being the transition from the subcritical flow regime to the super-
critical flow regime and h-n the transition from the supercritical flow regime to the subcritical
flow regime).

that mark several specific stages of the flow. The letters a-g characterise the gradual transition
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from the subcritical to the supercritical flow regime, the letters h-n correspond to the declining
branch. To understand the physical phenomena that appear and disappear when traversing
form one stage to another along one of the two branches, the corresponding probability density
distributions and power spectra of the lift fluctuations are displayed in the Figures 3.19 and
3.20. With the exception of the distribution of the absolute mean lift coefficient, the three
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Figure 3.19: Probability density distributions of the lift fluctuations in the critical flow
regime with hysteresis effect for a two-dimensional square-section prism with rounded edges
of r{D = 0.29 at α = 45˝ (Adapted from Van Hinsberg et al. [254]). The lower case letters in
each graph correspond to the individual stages of the flow state in Figure 3.18a. The letters
a-g characterise the transition from the subcritical flow regime to the supercritical flow regime
and h-n the transition from the supercritical flow regime to the subcritical flow regime. The
solid black line represents the Gaussian distribution.

plateaus (marked as dashed lines) that correspond to the subcritical flow regime, the asymmet-
ric flow state, and the supercritical flow regime can clearly be identified in Figure 3.18. Since
a non-zero mean lift force only exists in the asymmetric flow state, only two clearly separated
levels can be recognised for this coefficient. Points a and b both represent the subcritical flow
regime, although small differences are obtained between both stages. Passing from a to b, the
decrease in CD and the slightly smaller width of the near wake indicate a small repositioning
in downstream direction of the primary separation points along the surface of both rounded
shoulder edges. Although the probability density functions for a and b in Figure 3.19a match
the Gaussian distribution well, the increasing deviation of the skewness and excess kurtosis
values for point b from the values for a perfect Gaussian distribution in Table 3.2 reveal a
change in the flow around the prism. The combination of the appearance and growth of the
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Figure 3.20: Power spectra of the lift fluctuations in the critical flow regime with hysteresis
effect for a two-dimensional square-section prism with rounded edges of r{D = 0.29 at α = 45˝.
The lower case letters correspond to the individual stages of the flow state in Figure 3.18a
with a-g characterising the transition from the subcritical flow regime to the supercritical flow
regime and h-n the transition from the supercritical flow regime to the subcritical flow regime.

broadband low-frequency critical fluctuations and the decrease of the main peak in the PSD of
point b in Figure 3.20a furthermore reveal that the state of the flow progressively gets unstable.

Figure 3.21 portrays the experimentally obtained temporal distribution of the global lift
coefficient on the prism for the individual flow stages b to e. While the lift coefficient fluctuates
in point b (ReD = 5.25ˆ105) around its mean value of CL = 0, a sudden and sharp jump in CL
down to a mean value of CL = –0.74 occurs at about t = 15.4 s (i.e. TU8/D = 7120) in the
times serie for point c, after which it remains at this new level. At this stage a small disturbance
in the oncoming flow (e.g. a tiny increase of its velocity) is apparently enough to tackle the flow
in a definite way and induce a stable asymmetric flow condition. This step marks the transition
of the flow from subcritical to the stable asymmetric state at ReD = 5.45ˆ105, initiated by the
formation of a local laminar separation bubble over the upper rounded shoulder edge, thereby
introducing an highly asymmetric pressure field on the prism’s surface. This change in the state
of the flow is reflected in a sudden reduction of the mean global drag coefficient from CD = 1.04
(point c) to CD = 0.77 (point c1), and a decrease of the wake width by 10%. By comparing
the power spectra at the points c and c1 in Figure 3.20a, an increased peak at low frequencies
and a distinct shift of the main peak from fLD{U8 = StL = 0.151 to 0.210 can be identified.
A similar observation is made for the respective probability density distribution (Figure 3.19a)
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Table 3.2: Skewness and excess kurtosis of the probability density distribution at the stages a-g
(increasing Reynolds number) and h-n (decreasing Reynolds number) in the hysteresis range
of the smooth square-section prism with r{D = 0.29 at α = 45˝.

Stage Reynolds number Skewness Excess kurtosis

a 4.94ˆ105 0 –0.21
b 5.25ˆ105 –0.26 0.55
c 5.45ˆ105 –0.28 0.81
c1 5.45ˆ105 1.50 3.62
d 5.65ˆ105 0.69 0.27
e 5.75ˆ105 –0.04 –0.65
e1 5.75ˆ105 0.01 –0.16
f 5.85ˆ105 0.01 –0.17
g 6.11ˆ105 0 –0.09

h 6.10ˆ105 0.02 –0.19
i 5.66ˆ105 0.02 –0.12
j 5.54ˆ105 0.31 0.29
k 5.34ˆ105 –0.09 –0.44
l 5.15ˆ105 –0.11 –0.49
l1 5.15ˆ105 –0.03 0.07
m 4.95ˆ105 –0.04 –0.23
n 4.66ˆ105 –0.02 –0.34

Gaussian – 0 0

that changes from a centric distribution around C
1

L = 0 (point c) to a strong asymmetric
distribution around C 1

L = –9.7 (point c1). The values of the skewness (sk = 1.50) and excess
kurtosis (ex.kt = 3.62) for point c1 are even higher than those known from circular cylinder
experiments. It can be argued that the appearance of a second intermediate asymmetric flow
stage around CL = –0.4, occurring around the time steps t = 17.5 s, t = 20 s, t = 24 s,
and t = 27 s in Figure 3.21b, is responsible for these high values of sk and ex.kt. At this
intermediate asymmetric stage, the LSB at the upper side of the prism covers most probably
not the complete span of the prism. It is assumed that the flow over the prism is highly three-
dimensional, whereby part of the flow over the upper two faces of the prism jumps back into
the subcritical flow regime for a limited time period of only a couple of milliseconds, which can
explain the short occurrence of a smaller negative lift coefficient. This results in a probability
density distribution being asymmetric with a tail at its right side and higher values for the
skewness and excess kurtosis (Table 3.2). The time series for points d and e illustrate that
– within the asymmetric flow state – an increase in the Reynolds number augments both the
number of occurrences of this intermediate stage and their durations. At point e at the upper
boundary of the asymmetric flow state, the probability density distribution even possesses a
double peak (i.e. a small bimodal shape) around its centre at C 1

L = –5.2, with both peaks
having unequal heights (Figure 3.19b).

Upon formation of the LSB over the upper rounded shoulder, the steady decrease of the four
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Figure 3.21: Time series of the lift coefficient for a two-dimensional square-section prism with
rounded egdes of r{D = 0.29 at α = 45˝ at various stages in the critical flow regime that
correspond to Figure 3.18a (Adapted from Van Hinsberg et al. [254]). The non-dimensional
timescale TU8{D is valid for all curves. (a): stage b, ReD = 5.25ˆ105; (b): stages c and c1,
ReD = 5.45ˆ105; (c): stage d, ReD = 5.65ˆ105; (d): stages e and e1, ReD = 5.75ˆ105; (e):
stage f, ReD = 5.85ˆ105.

fluid-dynamic quantities between the points c1 and e in Figure 3.18 indicates a gradual, but
continuous decrease of the amount of asymmetry between the flow over the upper and the lower
faces of the prism. A confirmation of this process is given by the probability density distribution
that gradually shifts from a strong asymmetric distribution around C 1

L = –9.7 towards a more
centric distribution around C 1

L = 0 and the decline of the corresponding values for the skewness
and excess kurtosis of those curves in Table 3.2. The shape of the mean vertical wake profile
for point d in Figure 3.22 clearly shows that at this asymmetric flow state a subcritical flow
(point b) is still present over both lower faces of the prism, whereas over the upper two prism
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Figure 3.22: Mean vertical wake profile at X{Lref = 6.25 behind the mid-span of two-
dimensional square-section prisms at α = 45˝ for the stages b, d, and f in the critical flow
regime according to Figure 3.18a (Adapted from Van Hinsberg et al. [254]).

faces the local flow has transitioned already into the supercritical flow regime (point f ).

With increasing Reynolds number in the direction of the second transition at point e, the
low-frequency critical fluctuations steadily grow in strength. At the upper bounding Reynolds
number of the asymmetric flow state, ReD = 5.75ˆ105, the flow around the prism is once more
highly unstable and jumps locally back and forth between two subsequent flow states. The
boundary layer on the lower side of the prism that remained separated in the asymmetric flow
state, now becomes unstable and locally reattaches as well, thereby forming also a laminar sepa-
ration bubble over the lower rounded shoulder. This leads to the termination of the asymmetric
flow state and the appearance of the supercritical flow regime, the latter being the second sym-
metric flow state. As previously mentioned, the probability density distribution of point e in
Fig. 3.19b has a small bimodal shape, the cause of which can be explained by studying the
temporal distribution of the global lift coefficient as presented in Figure 3.21d. The first 18.7
seconds, up to about TU8/D = 9550, of the measured signal belong to the asymmetric flow
state. In this part, the flow around the prism jumps back and forth between the asymmetric
flow state with CL = –0.75 and the intermediate asymmetric flow state with CL = –0.4. In
the probability density distribution, each of the two flow states is mapped as a single distinct
peak, whereby the height of the peak denotes the probability of occurrence in this part of the
total signal of CL. At t = 18.7 s, the global lift coefficient switches sharply to values close
to CL = 0 and resides at this level over time. Hence, the second transition of the flow from
asymmetric to supercritical has just taken place. This shorter, second part of the signal is
characterised by narrowband fluctuations of the global lift coefficient, owing to which only one
sharp and narrow peak appears in the probability density function of the lift fluctuations at
point e1 in Figure 3.19b. The sudden occurrence of a steady reattachment of both free shear
layers along the complete span of the prism and the associated secondary separation of the
turbulent boundary layer on both downstream-directed faces of the prism at ReD = 5.75ˆ105

leads to a discontinuity in each curve in Figure 3.18. Both the width of the near wake and the
mean global drag coefficient decrease by about 25%, while the Strouhal number jumps up from
StL = 0.2 at point e to 0.285 at point e1 as a result of the shift of the main peak in the power
spectra of the fluctuating lift (Figure 3.20b). Within the following supercritical flow regime,
the shape of the probability density distributions for the points f and g in Figure 3.19b are
once again nearly Gaussian with values for the skewness and excess kurtosis close to zero. As
described in the previous sections, the values of all fluid-dynamic parameters remain stable over
the complete supercritical flow regime.
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The hysteresis of the flow around this prism manifests itself in a shift of the critical Reynolds
numbers at which the transitions from one flow stage to another occur from ReD,cr = 5.45ˆ105

and 5.75ˆ105 of the increasing Reynolds-number branch towards ReD,cr = 5.15ˆ105 and 5.65ˆ105

for the decreasing branch. This implies, that for decreasing Reynolds numbers the supercritical
flow regime and asymmetric flow state can be maintained at lower Reynolds numbers. The
data in Figure 3.18 show that perfectly equal values for the shown fluid-dynamic quantities are
obtained at the three flow stages for increasing and decreasing Reynolds numbers. This clearly
demonstrates, that the fine structures that subsequently take place from point h towards point
n are not only identical to those described above for increasing Reynolds numbers, but also
take place in an equal, albeit inverted manner when passing the drag crisis in reversed order.

3.3 Résumé Chapter 3
The present chapter has aimed at providing a deep insight into the separate and combined
influences of the Reynolds number and the edge roundness on the steady-state performance of
two-dimensional square-section prisms. In order to determine the unsteady and mean fluid-
dynamic behaviour of this type of bluff bodies, wind tunnel experiments were performed on
smooth square-section prisms with non-dimensional edge radii of r{D = 0 (i.e. sharp edges),
0.16, and 0.29. They were placed in a cross-flow at the two "symmetric" angles of incidence of
α P {0˝, 45˝}. Regarding the Reynolds number, the focus was on a limited range of 105 to 107.
In combination with the experimental data by Schewe [209] for a smooth circular cylinder in
cross-flow, obtained in the same wind tunnel facility and under equal boundary conditions, a
comparative analysis of the various governing and influencing parameters on the fluid dynamics
of the prism was performed. It allows a first modest estimation of the influence of the prism’s
cross-sectional shape on the transverse vibrations to be expected at a certain Reynolds num-
ber in the case of the occurrence of the flow-induced excitations on an identical, but flexibly
mounted prism.

It has been demonstrated that a drastic reduction in the global mean drag force on a rounded
square-section prism at α = 0˝ is achieved by increasing the Reynolds number into or beyond
the drag crisis. The change in edge roundness is noted to cast an additional positive effect on
CD, because the lower the applied edge curvature of the prism (i.e. the more its cross-sectional
shape resembles a circle), the more this drag crisis shifts to lower Reynolds numbers, which
is in close agreement with other reference studies. Hence, the sooner the supercritical flow
regime – characterised by the lowest possible global drag force and manifesting itself even up to
ReD = 107 for r{D = 0.16 and 0.29 – is reached when increasing the Reynolds number. Within
the supercritical flow regime, the largest gain in global drag reduction is then again achieved
for small values of the non-dimensional edge roundness, while for 0.16 ď r{D ď 0.5 only small
additional changes in the global drag force are obtained. A clear exception is the sharp-edged
prism configuration, which not only has the highest global drag at all Reynolds numbers, but
its value is also constant for all Reynolds numbers above 104.

At an incidence angle of 45˝, the complete drag curve shifts to lower values as the edges
of the prism are rounded. Also at this incidence angle, the greatest gain in drag reduction is
achieved at supercritical Reynolds numbers. However, in contrast to α = 0˝, this Reynolds-
number regime is now limited and followed by a significant recovery of the drag force for
Reynolds numbers Ñ 107. The trend of the curves has shown that a gradual increase of the
edge roundness leads to a steady approach of the mean drag force towards a subcritical level
at those very large Reynolds numbers.
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The fluid-dynamic parameters related to the eddy shedding process, i.e. the fluctuating lift
and the Strouhal number, show opposite trends that emerge at both incidence angles. The
changes in the fluctuating lift with increasing Reynolds number as well as with increasing edge
roundness closely resemble those for the global mean drag force. The eddy shedding frequency,
on the other hand, has a constant low level that is hardly dependent on the edge roundness
at subcritical Reynolds numbers, which is followed by a discontinuous jump to a high plateau
in the critical flow regime and remains there up to ReD = 107 for α = 0˝. The height of this
second supercritical plateau increases for larger roundness values. Deviations from this overall
trend are found for both outer boundaries of the entire spectrum of possible cross-sectional
shapes. While the sharp-edged square-section prism exhibits a constant low Strouhal number
over the complete Reynolds-number range of 105 to 107, pronounced changes with large jumps
up and down in the eddy shedding frequency characterise the flow around circular cylinders
during the transition from one Reynolds-number regime to the next. This latter behaviour of
the Strouhal number is also found for all prism configurations with non-zero edge-roundness
values at α = 45˝, albeit in a slightly lesser extent with weaker sudden steps in the eddy
shedding frequency. Corresponding to the mean global drag and the fluctuating lift forces, the
Strouhal number attains at extremely high Reynolds numbers of ReD = 107 similar values as
those around 105, i.e. in the subcritical flow regime.

The identification of the level of rise and plunge of the eddy shedding frequency and the
Reynolds numbers at which they occur as function of the edge roundness of the square-section
prism at each one of the two "symmetric" incidence angles is important information. Obviously,
it is essential to be aware of these jumps with respect to a possible vortex-induced excitation
of the structure. At subcritical, i.e. "low" Reynolds numbers, a flexibly supported prism, which
is allowed to oscillate freely in the direction transverse to the oncoming flow, will most likely
oscillate harmonically at a relatively low frequency (i.e. low values for StL) that is hardly
affected by the bluffness of the prism’s cross-section. However, the excitation amplitude is in
that case expected to be quite significant, as can be derived by the high values of the fluctuating
lift force, and will most probably increase as the edges become sharper.

During the transition from the critical flow regime to higher Reynolds numbers, e.g. at
higher wind speeds or water currents, a severe drag reduction is obtained, but also the vibration
properties possess sharp changes, with most probably a significant reduction in oscillation
amplitude that is combined with a sudden jump to much higher vibration frequencies. While
for α = 0˝ exactly this vibration state persists at least up to ReD = 107, a recovery of the
subcritical vibration state occurs at transcritical Reynolds numbers for α = 45˝. It is thus
obvious that the fluid-elastic response of rounded square-section prisms actually results from
an interplay of mainly the mean drag, the fluctuating lift, and the eddy shedding frequency,
with both the Reynolds number and the edge roundness as governing parameters. Therefore,
already during the design of a structure, a trade-off has to be made and compromises have
to be found between the maximum acceptable vibration amplitude on the one hand and the
vibration frequency on the other at all possible flow conditions that may occur over time.
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Chapter 4

Surface-roughness effects on isolated
square-section prisms with rounded edges
at incidence

It is a common assumption in existing literature that surface roughness passively modifies the
flow over 2D circular cylinders in such a way that post-critical, i.e. supercritical to even trans-
critical values of the fluid-dynamic parameters, belonging to 2D smooth circular cylinders, are
obtained at physically low Reynolds numbers. The idea and physical mechanism behind this
theory is that the transition from a laminar to a turbulent boundary layer is now triggered
by the surface roughness at (significantly) smaller Reynolds numbers than is the case for the
cylinder configuration with a smooth surface, provided, of course, that the height of the surface
roughness is sufficiently large to actually influence the state of the boundary layer. In this way,
the various flow regimes are shifted to lower Reynolds numbers; hence, as discussed in section
2.1.3, the right-bounded flow regimes appear already at relatively low Reynolds numbers that
can still be achieved in low-speed wind and water tunnel facilities without the need for a mod-
ification of, for example, the diameter of the cylinder. The latter could, in fact, result in large
geometric and effective aerodynamic blockage ratios and undesired wall effects, which then have
to be corrected for in the post-processing of the measurement data, as well as a reduction in
the cylinder’s aspect ratio, thereby jeopardising the two-dimensional flow around the cylinder.

The interchangeability in effect between Reynolds number and surface roughness, which is
often given as a justification for examining high-Reynolds number flow phenomena, is, how-
ever, questionable and should therefore be taken with caution. Particularly in the critical,
supercritical and upper transition flow regimes is the outcome of a measurement sensitive to
even the smallest disturbances in the flow conditions and in the local model surface topology
(Schewe [210], Niemann and Hölscher [156], Zdravkovich [293]). This is for example the case
for the transition and separation positions of the boundary layer on the surface of the cylinder,
the resultant surface pressure distribution, and the three-dimensionality of the flow along the
span of the cylinder. Because of their dependence on those quantities, the overall induced
fluid-dynamic forces, the eddy formation in the base region, and the subsequent shedding in
the near wake are also affected and altered.

This chapter addresses the effects of the presence and height of surface roughness on the
fluid dynamics of not only 2D circular cylinders, but also of 2D sharp-edged and rounded
square-section prisms, all of them placed in a steady cross-flow at Reynolds numbers ranging
form 105 to 107. All measurements were once more performed in the High-Pressure wind tunnel
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facility by using exactly the same test setup as described in section 3.1.1. Hence, except for
the height of the surface roughness, none of the other boundary conditions were changed. In
the previous chapter, it has been shown that the flow over smooth square-section prisms with
edge roundness values of r{D = 0.16 or 0.29, placed at α = 45˝ or smooth circular cylinders
has reached the transcritical regime well before ReD = 107. This means that, in contrast to
most reference studies, no changes in one or more boundary conditions need to be made during
the experiments to be able to physically reach this flow regime at low-subsonic velocities and
for low geometric blockage ratios. This made it possible to study the mere effect of a change
in Reynolds number on one side and of the surface roughness height on the other in one single
experiment as a fully decoupled system. The focus of the experimental investigations – of which
the results are presented and discussed hereafter – could therefore be placed solely on the actual
physical influence of the surface roughness on the fluid dynamics of these kinds of bluff bodies.
In the area of offshore wind engineering and maritime engineering, this enables, for example,
the analysis of the impact of biofouling (i.e. soft and hard marine growth) and its accumulation
in time on the unsteady and mean flow around foundation elements of floating structures over
all flow regimes from subcritical to transcritical.

Three different aspects are addressed hereafter. Section 4.1 demonstrates the impact of a
variation in the surface roughness height on the global mean and fluctuating force coefficients
and on the shedding frequency of the eddies in the near wake of a square-section prism with
a fixed edge roundness of r{D = 0.16. The non-dimensional equivalent sand-grain surface
roughness height has therefore been varied in the range of ks{D = 10´6 (hereafter denoted as
"smooth") up to 10´3 ("very rough"). It is presented that in this case the Reynolds number and
the roughness height can both be treated as governing parameters, since they both have a strong
effect on the behaviour of the flow around the prism at the two "symmetric" angles of incidence,
i.e. α P {0˝, 45˝}. The discussion of the results is accompanied by a first explanation of the
physical background of the flow changes induced by those two parameters through analysis of
the cross-sectional pressure distribution on the surface of the prism.

In Chapter 3, it was shown that the spanwise edge rounding of smooth square-section prisms
has a distinct effect on their fluid-dynamic behaviour. Based on the outcomes of the preceding
experimental study on the effect of ks{D on the flow over a rounded square-section prism
with r{D = 0.16, presented in section 4.1, the roughness height of ks{D = 1ˆ10´3 (hereafter
denoted as "rough") has been selected and applied on the surface of each of the previous four
prismatic and cylindrical bluff bodies. Depending on the combination of the amount of edge
rounding and the incidence angle, the rough configurations experience different fluid-dynamic
loads and eddy-shedding frequencies compared to their smooth counterparts, in particular in
the supercritical up to transcritical flow regimes. These results are presented in section 4.2.

Finally, section 4.3 discusses the combined effect of variations in both the Reynolds number
and the incidence angle on the fluid dynamics of a square-section prism with r{D = 0.16 and
ks{D = 4.5ˆ10´4 (hence, "slightly rough") for angles of incidence in the range of –3.25˝ to
45˝. A thorough analysis of the cross-sectional surface pressure distribution gives insight into
the behaviour of the boundary layer on the prism and of the free shear layers. The stability
criterion by Den Hartog for a susceptibility to transverse galloping and the criterion for torsional
galloping, both presented in section 1.2.2, are applied to the measurement data. It is shown
that, according to the two criteria that are based on the quasi-steady theory, this specific square-
section prism is expected to be prone to both motion-induced vibrations in specific single- or
double-bounded ranges of Reynolds numbers.

94



4.1 From smooth to very rough: influence of surface roughness height on the fluid dynamics of a
square-section prism with r{D = 0.16 at α = 0˝ and 45˝

4.1 From smooth to very rough: influence of surface rough-
ness height on the fluid dynamics of a square-section
prism with r{D = 0.16 at α = 0˝ and 45˝

4.1.1 Mean loading

Figure 4.1a presents the variation of CD, Cpb, and |CL| with Reynolds number for an isolated 2D
prism with rounded edges of r{D = 0.16 at α = 0˝ and 45˝. The value of the surface roughness
height was varied between ks/D = 4.5ˆ10´6 ("smooth") and 1.4ˆ10´3 ("very rough"). The
curves for the smooth prism have already been discussed in Chapter 3 and are therefore taken as
reference. A distinct effect of the surface roughness on the fluid-dynamic coefficients is found for
both incidence angles. However, the way in which those coefficients are influenced by a variation
in ks{D strongly differs between the two angles of incidence. At both angles, an increase in the
roughness height induces a common shift of the various flow regimes towards lower Reynolds
numbers in combination with a decrease of their widths, i.e. the covered Reynolds-number
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Figure 4.1: Impact of increasing non-dimensional equivalent sand-grain surface roughness height
on the mean global drag (upper row), mean cross-sectional base pressure (centre row), and abso-
lute mean global lift (lower row) coefficients for a 2D square-section prism with edge roundness
of r{D = 0.16 at α = 0˝ and 45˝ at Reynolds numbers between 105 and 107 (Van Hinsberg et
al. [254,255], Van Hinsberg [257]).
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range per flow regime. This leads to the interesting phenomenon, that Reynolds numbers which
belong to the subcritical flow regime for the smooth prism have shifted to the transcritical flow
regime for O(10´3). These trends are in good agreement with the changes in flow behaviour
over circular cylinders with increased surface roughness height, as presented in section 2.1.3.
At α = 45˝, this similarity in flow behaviour between the rounded prism and the circular
cylinder covers also the independence of CD and Cpb on the roughness height in the subcritical
flow regime, the continuous increase of the minimum value of the mean global drag coefficient
CD,min and of the mean cross-sectional base pressure coefficient Cpb,min with increasing ks{D at
the cross-over from the critical to the supercritical flow regime, and their constant transcritical
values that extend over a very long range of Reynolds numbers. The same holds for the
gradual decrease of the mean steady lift force that appears in the short asymmetric flow state
within the critical flow regime, see Figure 4.1f. All of these changes indicate an increasing
independence of the flow around the prism on the Reynolds number. This trend is also visible
by a direct comparison of the shapes of the mean vertical wake profile at selected subcritical to
transcritical Reynolds numbers for all four surface roughness heights, shown in the right column
of Figure 4.2. With increasing Reynolds number, significant changes in ∆p{q along the complete
vertical plane, as well as in the derived mean non-dimensional wake width Zw{D and in the
maximum total non-dimensional pressure loss

`

∆p{q
˘

max
(listed in Table 4.1) occur for the

smooth prism. In contrast, only minor changes in the values of
`

∆p{q
˘

max
around Z{Lref = 0

and of Zw{D occur with increasing Reynolds number for larger surface roughness heights.
The status of the Reynolds number as a governing parameter thus reduces with increasing
surface roughness height, thereby showing the increased influence of the latter parameter which
gradually transitions from an influencing parameter to the main governing one. Interestingly,
this is, however, not the case at α = 0˝. At this incidence angle, an increase of the surface
roughness height by a factor of 100 (i.e. from "smooth" to "slightly rough") has practically no
influence on the values of CD, Cpb, and |CL| in the subcritical, critical, and supercritical flow
regimes (Figure 4.1). The same holds for the mean vertical wake profile in Figure 4.2 (left
column), the mean non-dimensional width, and the maximum total non-dimensional pressure
loss (Table 4.1). For both surface-roughness values, the cross-over from the critical to the
supercritical flow regime is accompanied by a sudden step in the CD(ReD) and Cpb(ReD) curves,
in contrast to the respective curves at α = 45˝ for which no such plunge of both coefficients
is visible. A further doubling of the value of ks{D from "slightly rough" to "rough" leads
then again to the appearance of an upper bound of the supercritical flow regime and the
occurrence of both an upper transition, characterised by a strong recovery of both CD and
Cpb, and subsequent transcritical flow regime. This results in an increased Reynolds-number
dependence of the various fluid-dynamic quantities for 1.4ˆ105 ď ReD ď 3.8ˆ105. The most
striking difference with the results for α = 45˝ is that the roughness height itself has barely
any effect on CD,min and Cpb,min, on the absolute values of the fluid-dynamic quantities at
subcritical and supercritical Reynolds numbers, and on the strong changes associated with the
drag crisis in the critical flow regime. Surprisingly, the mean cross-sectional base pressure
coefficient depends only weakly on ks/D for ReD ě 3ˆ106, regardless of the actual flow regime
at those Reynolds numbers. For both incidence angles, an increase of ks{D beyond 1ˆ10´3

has little to no additional impact on the fluid dynamics and wake properties of this rounded
square-section prism. This indicates that around ks{D = O(10´3q the upper threshold has
been reached where the surface boundary layer on the prism is still modified by an increasing
roughness height. Achenbach [3] found in his experimental study on the loading on 2D smooth
and rough circular cylinders a similar behaviour. He related this independence on the surface
roughness to the fact that at very high roughness values the tops of the roughness elements are
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located outside of the surface boundary layer and therefore generate no additional disturbing
effect.

4.1.2 Fluctuating loads due to eddy formation and shedding

The fluid-dynamic coefficients associated with the shedding of the eddies in the near wake,
i.e. the fluctuating global drag and lift that act on the prism and the Strouhal number, possess
qualitatively similar trends with increasing surface roughness height over all flow regimes as
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Figure 4.2: Effect of non-dimensional equivalent sand-grain surface roughness height on the
mean vertical wake profile at X{Lref = 6.25 behind the mid-span of a two-dimensional square-
section prism with edge roundness of r{D = 0.16 for selected Reynolds numbers in the various
flow regimes. Left column: α = 0˝; right column: α = 45˝. --: subcritical flow regime; --:
critical flow regime; --: supercritical flow regime; --: upper transition; --: transcritical flow
regime.
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Table 4.1: Mean non-dimensional width Zw{D and maximum total non-dimensional pressure
loss

`

∆p{q
˘

max
= pp0´ pmaxq{q8 of the wake at 6.25 prism widths downstream of the spanwise

centre axis of a square section prism (r{D = 0.16, ks{D = 4.5ˆ10´6 to 1.4ˆ10´3, α = 0˝ and
45˝) at Reynolds numbers belonging to the various flow states.

Incidence Dimensionless Flow regime Reynolds number Mean wake width Maximum total
angle α / ˝ surface roughness ReD Zw{D non-dimensional

height pressure loss
ks{D

`

∆p{q
˘

max

0 4.5ˆ10´6 subcritical 1.16ˆ105 6.0 0.53
critical 5.48ˆ105 5.1 0.50

supercritical 5.91ˆ106 3.8 0.31

4.5ˆ10´4 subcritical 1.16ˆ105 5.8 0.48
critical 3.48ˆ105 4.5: 0.33
critical 4.05ˆ105 3.9: 0.46

supercritical 5.98ˆ106 3.8 0.38

1.0ˆ10´3 subcritical 1.13ˆ105 6.2 0.57
critical 1.87ˆ105 3.0 0.30

supercritical 2.33ˆ105 3.8 0.46
upper transition 2.62ˆ105 4.7 0.55

transcritical 5.91ˆ106 5.1 0.65

1.4ˆ10´3 subcritical 1.12ˆ105 6.0 0.53
critical 1.57ˆ105 4.3: 0.45
critical 1.63ˆ105 4.0: 0.52

supercritical 2.41ˆ105 3.8 0.39
upper transition 3.01ˆ105 3.3 0.58

transcritical 6.05ˆ106 4.9 0.63

45 4.5ˆ10´6 subcritical 1.32ˆ105 5.5 0.78
critical 9.22ˆ105 5.1 0.57

supercritical 1.03ˆ106 4.7 0.38
upper transition 2.19ˆ106 5.3 0.53
upper transition 3.23ˆ106 5.5 0.61

transcritical 6.05ˆ106 5.5 0.68

4.5ˆ10´4 subcritical 1.38ˆ105 5.5 0.73
critical 5.49ˆ105 5.1 0.71

supercritical 5.70ˆ105 5.1 0.72
upper transition 6.33ˆ105 5.3 0.69
upper transition 7.43ˆ105 5.5 0.67

transcritical 6.07ˆ106 5.5 0.74

1.0ˆ10´3 subcritical 1.32ˆ105 5.8 0.82
critical 2.32ˆ105 5.5 0.69

supercritical 2.42ˆ105 5.5 0.69
upper transition 2.59ˆ105 5.5 0.76

transcritical 6.17ˆ106 5.5 0.79

1.4ˆ10´3 ssubcritical 1.39ˆ105 5.5 0.80
critical 2.36ˆ105 5.3 0.75

supercritical 2.60ˆ105 5.1 0.72
upper transition 2.81ˆ105 5.5 0.74

transcritical 5.87ˆ106 5.5 0.76
: asymmetric flow state with one-sided separation bubble.

were obtained for CD and Cpb at the two "symmetric" incidence angles (Figure 4.3). At α = 0˝,
particularly noteworthy are once more the strong overlap between the curves for the two smallest
roughness heights, the significant changes that occur when increasing the surface roughness from
ks{D = 4.5ˆ10´4 to 1.0ˆ10´3, and the near-perfect overlap of the curves for the rough and
very rough prism configurations. In addition, the independence on ks{D of the subcritical flow
regime at both incidence angles also shows up in the results of both fluctuating fluid-dynamic
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Figure 4.3: Impact of increasing non-dimensional equivalent sand-grain surface roughness height
on the Reynolds-number-dependent fluctuating global lift (upper row) and drag (centre row)
coefficients, as well as the Strouhal number (lower row) for a 2D square-section prism with edge
roundness of r{D = 0.16 at α = 0˝ and 45˝ (Van Hinsberg et al. [254,255], Van Hinsberg [257]).

forces and the Strouhal number. Moreover, the same can be said about the minimum values
of the fluctuating global forces at the cross-over from the critical to the supercritical flow
regime and their subsequent supercritical values, both at α = 0˝. Subtle differences with the
previously described trends of CD and Cpb with Reynolds number and surface roughness height
do nonetheless emerge. For instance, the steep drops that occur in various CD(ReD) curves in
the critical flow regime in Figure 4.1a are in the corresponding curves of the fluctuating global
drag and lift coefficients (Figures 4.3a and 4.3c) either only moderate or even non-existent at
the same Reynolds numbers. The same applies to the somewhat weaker steps that appear in
the upper transition for the rough and very rough prism configurations, as well as the recovery

of
b

pC
12
L q in this same flow regime that is much less pronounced compared to CD. Interestingly,

the influence of ks{D on the fluctuating global drag is only weak at α = 0˝. An exception forms
the transcritical flow regime where stronger variations with both ks{D and ReD take place.
The nearly perfect match of the values of the fluctuating global lift coefficient and Strouhal
number for the smooth and slightly rough prism and for the rough and very rough one can
be explained by looking at the underlying power spectra of the time series of the global lift
forces at selected Reynolds numbers in the Figures 4.4a to 4.4d. Per prism pair, very similar
spectral distributions with a main peak at a nearly equal value of fLD{U8 (see also Table 4.2)
and with similar heights have been obtained for each flow regime. Hence, not only the shedding
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frequencies of the eddies coincide, but also the intensity with which they are shed as the latter
can be derived from the values of the fluctuating lift and drag forces.

Compared to α = 0˝, much larger fluctuations in the global lift and drag forces occur for all
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Figure 4.4: Effect of non-dimensional equivalent sand-grain surface roughness height on the PSD
of the time series of the global lift force for a two-dimensional square-section prism with edge
roundness of r{D = 0.16 for selected Reynolds numbers in the various flow regimes (Partially
adapted from Van Hinsberg [256]). (a)-(d): α = 0˝; (e)-(h): α = 45˝. —: subcritical flow
regime; —: critical flow regime; —: supercritical flow regime; —: upper transition; —:
transcritical flow regime. The corresponding Strouhal numbers are indicated by symbols on
the curves and listed in Table 4.2. In case of the occurrence of two Strouhal numbers at equal
Reynolds number, both have been highlighted in the graphs.
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4.1 From smooth to very rough: influence of surface roughness height on the fluid dynamics of a
square-section prism with r{D = 0.16 at α = 0˝ and 45˝

Table 4.2: Values of the Strouhal numbers – based on the main, and when applicable also the
secondary, frequency peak in the PSDs of the time series of the lift L(t) in Figure 4.4 – for
selected Reynolds numbers in the various flow regimes. Properties of the square-section prism:
r{D = 0.16, 4.5ˆ10´6 ď ks{D ď 1.4ˆ10´3, and α = 0˝ and 45˝.

Edge Incidence Surface roughness Flow regime Reynolds number Strouhal number(s):
roundness angle height ReD StL,1 StL,2

r{D α / ˝ ks{D

0.16 0 4.5ˆ10´6 subcritical 1.16ˆ105 0.136 –
critical 5.48ˆ105 0.136 0.274

supercritical 5.91ˆ106 0.266 –

4.5ˆ10´4 subcritical 1.16ˆ105 0.135 –
critical 3.48ˆ105 0.132 0.257
critical 4.05ˆ105 0.160 –

supercritical 5.98ˆ106 0.253 –

1.0ˆ10´3 subcritical 1.13ˆ105 0.135 –
critical 1.87ˆ105 0.121 0.257

supercritical 2.33ˆ105 0.246 0.122
upper transition 2.62ˆ105 0.134 –

transcritical 5.91ˆ106 0.142 –

1.4ˆ10´3 subcritical 1.12ˆ105 0.134 –
critical 1.57ˆ105 0.129 0.264
critical 1.63ˆ105 0.188 0.128

supercritical 2.41ˆ105 0.248 –
upper transition 3.01ˆ105 0.134 0.251

transcritical 6.05ˆ106 0.141 –

45 4.5ˆ10´6 subcritical 1.32ˆ105 0.123 –
critical 9.22ˆ105 0.157 –

supercritical 1.03ˆ106 0.182 –
upper transition 2.19ˆ106 0.145 –
upper transition 3.23ˆ106 0.135 –

transcritical 6.05ˆ106 0.130 –

4.5ˆ10´4 subcritical 1.38ˆ105 0.120 –
critical 5.49ˆ105 0.139 –

supercritical 5.70ˆ105 0.144 –
upper transition 6.33ˆ105 0.137 –
upper transition 7.43ˆ105 0.132 –

transcritical 6.07ˆ106 0.127 –

1.0ˆ10´3 subcritical 1.32ˆ105 0.122 –
critical 2.32ˆ105 0.131 –

supercritical 2.42ˆ105 0.135 –
upper transition 2.59ˆ105 0.133 –

transcritical 6.17ˆ106 0.128 –

1.4ˆ10´3 subcritical 1.39ˆ105 0.122 –
critical 2.36ˆ105 0.132 –

supercritical 2.60ˆ105 0.132 –
upper transition 2.81ˆ105 0.129 –

transcritical 5.87ˆ106 0.128 –
: StL,1 and StL,2 correspond to the dimensionless vortex-shedding frequencies at the main and secondary peak, respectively.

surface roughness heights at α = 45˝. The decreased dependence on the Reynolds number with
increasing surface roughness height, previously discussed for CD and Cpb, is also clearly visible in
the curves for the fluctuating global lift and drag coefficients and the Strouhal number in Figure
4.3. While for the smooth prism large changes occur over a wide range of Reynolds numbers
that covers the critical to upper transition flow regimes, only a small (fluctuating global lift)
to moderate (fluctuating global drag) dip in the curves appears in the same flow regimes for

101



Chapter 4: Surface-roughness effects on isolated square-section prisms with rounded edges at
incidence

the very rough prism configuration. The same is true for the StL(ReD) curves: the "hill" over
those flow regimes at ks{D = 4.5ˆ10´6 has diminished to a wake bump at ks{D = 1.4ˆ10´3.
The underlying power spectra at selected Reynolds numbers in Figure 4.4e for the smooth
prism show both a shift of the main peak and a variation in its height among the various
flow regimes. With increasing roughness height, the range of non-dimensional frequencies in
which the main peak wanders shrinks gradually – i.e. the variation in the Strouhal number with
Reynolds number reduces, as is also listed in Table 4.2 – and only a variation of the peak height
remains. This explains the clear changes in the values of the fluctuating lift and drag forces
with Reynolds number that still occur even for the very rough prism within ReD = 2ˆ105 to
3ˆ105 in Figure 4.3b and 4.3d. The recovery of the fluctuating global lift coefficient over the
upper transition is then again much more pronounced at α = 45˝ than at α = 0˝, resulting in
transcritical values that correspond to those present in the subcritical flow regime.

4.1.3 Mean surface pressure distributions

In the previous section, the very weak dependence on the surface roughness height of the var-
ious fluid-dynamic coefficients and wake parameters (i.e. the shape of the mean vertical wake
profile and the associated mean non-dimensional wake width, as well as the maximum total
non-dimensional pressure loss) for subcritical to supercritical Reynolds numbers at α = 0˝, to-

gether with the values of CD,min, Cpb,min,
b

pC
12
L qmin

, and
b

pC
12
Dqmin

at the cross-over from the
critical to the supercritical flow regime were addressed. The underlying cause becomes visible
by a closer inspection of the mean pressure distribution over the mid-span cross-section of the
prism. Figure 4.5 presents a quantitative and qualitative (i.e. scaled vectorial) distribution
of the mean cross-sectional surface pressure coefficients for the slightly rough and very rough
prism at three exemplary Reynolds numbers that belong to the subcritical, critical, and super-
critical flow regimes. A direct comparison between the mean surface pressure distributions on
both prisms shows a remarkable similarity in each flow regime, despite the shift of the Reynolds
numbers towards lower values for the very rough prism. This includes not only the height of the
plateaus of Cp in the base region of both prisms, but even more remarkably also the shape(s)
and maximum value(s) of the negative pressure peak(s) at s{D = 0.98 (i.e. on the rounded
edge between the surfaces I and II ) and s{D = 3.67 (i.e. on the rounded edge between the
surfaces I and IV ) in the critical and supercritical flow regimes. These pressure peaks on the
upstream-directed edges are associated with the formation of a separation bubble further down-
stream on the side surface(s) II and/or IV. It implies a highly surface-roughness-independent
behaviour of (1 ) the positions at which the boundary layer separates from the surface over
both windward-directed rounded edges, (2 ) the reattachment locations of the free shear lay-
ers on the side faces II and IV, and (3 ) the positions of the following secondary separation
of the attached boundary layer on the leeward rounded edges. It is thus not surprising that
the resultant mean and fluctuating fluid-dynamic forces, the eddy-shedding frequency, and the
(near-)wake properties are also only weakly influenced by an increase of the surface roughness
height at those flow regimes.

The independence of the fluid-dynamic coefficients on ks{D at subcritical Reynolds numbers
is actually well known from the many experimental and numerical studies on the flow around
smooth and (slightly) rough 2D circular cylinders, e.g. Achenbach [2, 3], Güven et al. [91],
Buresti [39], Niemann and Hölscher [156], Zdravkovich [293], Lehmkuhl et al. [131], and Ro-
dríguez et al. [195]. In this flow regime, the attached laminar boundary layer has a large
thickness with respect to the height of the surface roughness and is therefore relatively unaf-
fected by an increase in roughness height – up to a certain upper threshold – up to separation
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Figure 4.5: Comparison of the mean cross-sectional pressure distribution over the mid-span
of a slightly rough (ks{D = 4.5ˆ10´4) and highly rough (ks{D = 1.4ˆ10´3) two-dimensional
square-section prism with edge roundness values of r{D = 0.16, placed at α = 0˝ (Adapted from
Van Hinsberg [256]). (a): subcritical flow regime; (b)-(c): critical flow regime; (d): supercritical
flow regime; (e): qualitative scaled vectorial representation for the slightly rough prism; (f ):
qualitative scaled vectorial representation for the highly rough prism. —: subcritical flow
regime; —: critical flow regime; —: supercritical flow regime.

from the cylinder. In experimental studies on 2D smooth and (slightly) rough circular cylin-
ders in cross-flow by Fage [73], Achenbach [2], Okajima and Nakamura [175], and Adachi [6],
it was furthermore proven that a continuation of this weak influence of the surface-roughness
height also exists throughout the critical and even in the ensuing supercritical flow regime as
long as ks{D remains smaller than 5ˆ10´4. Above this threshold, a flattening of the curves
of CD, Cp,b, and StL with Reynolds number was observed in combination with a decrease of
the critical Reynolds number at which CD,min, Cpb,min, and StL,max take place. This latter
behaviour corresponds to the currently obtained trends of these three and other fluid-dynamic
parameters for the rounded square-section prism at α = 45˝ in the Figures 4.1 and 4.3. Similar
to the circular cylinder flow, the boundary layer is attached to the windward-directed surfaces
I and II, its primary separation occurs over or slightly downstream of the rounded shoulder
edges and the (local) continuous surface allows a migration of the separation position along this
surface with changing Reynolds number (Figures 4.6c, 4.6d, 4.6g, and 4.6h). It can therefore
be expected, that an increase in surface roughness height has a similar effect on the boundary
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layer and thus also on the resultant fluid dynamics as known from flows over circular cylinders.

Figure 4.6 presents the mean cross-sectional surface pressure distributions on the slightly
rough and very rough prisms at selected subcritical to transcritical Reynolds numbers for both
incidence angles. For a clear qualitative visualisation of these distributions, the scaled vectorial
representations have been included as well. Based on these surface pressure distributions in
combination with the results presented in the Figures 4.1 to 4.4, the following behaviour of
and changes in the flow field around the rounded square-section prisms can be derived when
passing from one flow regime to the next:

(a.) α = 0˝

(1.) Subcritical flow regime
The attached boundary layer on the windward-directed surface I separates over
both rounded edge between the faces I and II and between I and IV of the prism,
independent of the height of the roughness on both faces. The relatively flat pressure
distributions on the two side faces II and IV imply the absence of a reattachment
of both free shear layers on them. In addition, the negative pressure values indicate
the presence of two large recirculation regions in between these faces and the free
shear layers. From the many experimental and numerical studies on the flow around
sharp-edged square-section prisms, it is known that these backflow regions force a
strong lateral spreading of the two free shear layers and the outer streamlines along
the side faces (e.g. Figure 2.27(a)). The occurrence of this large deflection for the
smooth and (slightly) rough rounded square-section prisms is confirmed by the large
mean wake width of Zw{D = 5.8 to 6.2 at a location of X = 5.75D downstream
of the base of the prism (Figure 4.2 and Table 4.1) and the high mean global drag
coefficients of CD « 1.3 at subcritical Reynolds numbers in Figure 4.1a for all four
investigated prism configurations. The strong fluctuations of CL in Figure 4.3a
furthermore indicate an intense interaction of both free shear layers in the base
region during the process of rolling up into eddies, which results in a high suction at
the base (i.e. Cpb = –0.97 in Figure 4.1c), whereas the fluctuations in flow direction
remain small (Figure 4.3c). The narrow main peak in the power spectra of the
unsteady lift force in Figure 4.4 reveals a strong periodic shedding of the eddies at
a main dimensionless frequency of StL = 0.13–0.14.

(2.) Critical flow regime
The gradual (partly asymmetric) reduction of the mean wake width Zw{D implies
a decrease of the lateral spreading of the free shear layers and thus a shrinkage of
the recirculation regions above the two side faces. The latter is confirmed by the
gradual decrease of the negative value of the pressure coefficients on these surfaces.
The resultant lower effective aerodynamic blockage ratio, together with the sharp
rise of the mean base pressure coefficient, explain the decrease of CD (Figure 4.1).
Studies on flows over circular cylinders at subcritical and critical Reynolds num-
bers have demonstrated that those flow changes are mainly caused by a shift of
the transition location along both free shear layers in the direction of the primary
separation location. The steep decrease of the fluctuating lift in Figure 4.3, in com-
bination with the reduced suction on the prism’s base face, are evidence of a weaker
interaction of both shear layers in the base region of the prism. The passage of the
asymmetric flow state is characterised by the appearance of a distinct asymmetric
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Figure 4.6: Comparison of the mean cross-sectional pressure distribution over the mid-span
of a slightly rough (ks{D = 4.5ˆ10´4) and highly rough (ks{D = 1.4ˆ10´3) two-dimensional
square-section prism with edge roundness values of r{D = 0.16, placed at α = 0˝ or 45˝ to the
oncoming flow (Adapted from Van Hinsberg [256]). (a)-(b): α = 0˝; (c)-(d): α = 45˝; (e):
qualitative scaled vectorial representation for the slightly rough prism at α = 0˝; (f ): qualitative
scaled vectorial representation for the highly rough prism at at α = 0˝; (g): qualitative scaled
vectorial representation for the slightly rough prism at α = 45˝; (h): qualitative scaled vectorial
representation for the highly rough prism at at α = 45˝; left column: ks{D = 4.5ˆ10´4;
right column: ks{D = 1.4ˆ10´3. —: subcritical flow regime; —: critical flow regime; —:
supercritical flow regime; —: upper transition; —: transcritical flow regime.

surface pressure distribution that is caused by the formation of a laminar separation
bubble on one of the two side faces slightly downstream of the windward-directed
rounded edge and the upstream portion of the side face (Figures 4.6b and 4.6c).
The re-separation of the attached turbulent boundary layer occurs further down-
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stream over the leeward-directed edge of the prism, induced by the strong pressure
increase in the surface boundary layer over that curved surface. The free shear layer
at the opposite side of the prism remains fully separated up to the base region, as
the energy of the flow is not yet sufficiently high to force a reattachment at that
side of the prism as well. Interesting to note is that the one-sided reattachment
of the free shear layer on the side face IV (for the prism with a surface roughness
of ks{D = 4.5ˆ10´4) or II (ks{D = 1.4ˆ10´3) in Figure 4.6 is still clearly visible
in the asymmetric vertical wake profiles in the Figures 4.2c and 4.2g. In partic-
ular at the critical Reynolds numbers ReD = 3.48ˆ105 (ks{D = 4.5ˆ10´4) and
ReD = 1.57ˆ105 (ks{D = 1.4ˆ10´3) the wake profiles are composed of a subcritical
branch at the side at which no reattachment of the free shear layer has occurred
yet and a supercritical branch at the opposite side, both of which overlap relatively
well with the mean wake profiles at their respective flow regime at lower or higher
Reynolds numbers. As a result of the different positions of the boundary layer sep-
aration on the prism, a much weaker communication of the two shear layers in the
base region of the prism takes place, as is projected by a sharp decrease of the fluc-
tuating lift force. The mean suction at the base decreases thereupon further, which,
in combination with an increased reduction of the effective aerodynamic blockage
ratio, results in a sharp drop of the mean drag force. The appearance of two main
peaks in the power spectra of the unsteady lift force at all four prism configurations
in the Figures 4.4a to 4.4d demonstrates that the flow around each prism and thus
the topology of its near wake is quite dynamic, as it switches at this specific critical
Reynolds number continuously back and forth between the subcritical and the su-
percritical flow regimes. The height of each peak is a measure of the occurrence of
that respective stage during the measurement. With increasing surface roughness
height, both the start of the critical flow regime and the final cross-over from the
critical to the supercritical flow regime are shifted to lower Reynolds numbers. At
the cross-over the flow around the prism regains its symmetry, as both free shear
layers can reattach to their respective side faces. A sharp drop in the curves of the
mean drag, mean lift, and fluctuating lift coefficients, as well as a step to a lower
negative mean base pressure coefficient are all evidence of this event.

(3.) Supercritical flow regime
The presence of a strong adverse pressure recovery region at the upstream part
of both side faces right downstream of the windward-directed edges in Figure 4.6
implies a firm settlement of the two laminar separation bubbles on these side sur-
faces. The narrow near wake of less than 4 prism widths and the lowest values of
the fluctuating lift force and mean base pressure coefficient hint on the presence
of a small recirculation region behind the prism in which only a weak interaction
between the opposite free shear layers takes place. It is therefore not surprising that
the lowest mean global drag force is achieved in this flow regime. Compared to the
previous two flow regimes, a relatively broad main peak around StL = 0.25–0.27 is
present in the power spectra of the unsteady lift force. The nearly constant surface
pressure distributions and the plateaus of the various fluid-dynamic coefficients for
the smooth and slight rough prisms demonstrate that the flow around these two
prisms is stable up to a Reynolds number of at least O(107).

(4.) Upper transition and transcritical flow regime
The appearance of the upper transition and transcritical flow regimes for the rough
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and very rough prism results from the increased ratio of the height of the surface
roughness to the boundary layer thickness. The roughness elements most probably
protrude into regions of higher velocity inside the boundary layer, thereby inducing
an even more rapid growth and amplification of the instabilities in the boundary
layer. This disturbs the laminarity and leads to an earlier (i.e. more upstream)
transition to turbulence. The upper transition is characterised by a gradual de-
crease of the height of the two negative pressure peaks and a related reduction of
the adverse pressure recovery region (and thus most probably also of the laminar
separation bubble and the strength of the enclosed recirculating flow) on both side
faces, as is exemplary shown for the very rough prism at ReD = 3.01ˆ105 in the
Figures 4.6b and 4.6f. The gradual widening of the near wake, the increase in the
value of the maximum total pressure loss

`

∆p{q
˘

max
(Figure 4.2), and the steady

recovery of all fluid-dynamic parameters is not only proof for a gradual increase of
the lateral spacing between both turbulent free shear layers that depart from the
trailing edges, but also for a more intense interaction of both free shear layers in
the base region. Similar to the flow transition in the critical flow regime, two main
peaks are present in the power spectra of the unsteady lift force, of which each one
corresponds with one of the two bounding flow regimes.
The cross-sectional mean surface pressure distributions at the final transcritical
flow regime strongly resemble those obtained at subcritical Reynolds numbers, as
the negative pressure peaks and adverse pressure recovery regions have fully dis-
appeared (Figure 4.6). The mean width of the near wake is slightly lower than its
subcritical value, which implies a somewhat smaller lateral deflection of the two free
shear layers and the outer streamlines along the side faces. This is in agreement
with the appearance of a slightly lower mean suction on these faces, which implies
a weaker backflow region in between the faces II and IV and the free shear layers.
The higher mean value of

`

∆p{q
˘

max
in the transcritical flow regime is an indica-

tion for a recirculation region behind the base of the prism that extends further
in downstream direction compared to the subcritical flow regime. Although similar
Strouhal numbers are obtained in the subcritical and transcritical flow regime, the
values of the fluctuating lift force in Figure 4.3 suggest that the intensity of the free
shear layer interaction in the recirculation region is in the latter flow regime much
lower. This explains the much lower suction at the prism’s base and the resultant
slightly smaller values of the mean global drag force.

(b.) α = 45˝

While at 0˝ angle of incidence very distinct changes in the mean surface pressure dis-
tribution occur with increasing Reynolds number for slightly and very rough rounded
square-section prisms, the surface pressures on these prisms at α = 45˝ in Figure 4.4
show only small variations in the negative pressure peaks at s{D = 0.98 and 3.67 (i.e. at
both rounded shoulder edges) and in the pressures at the two base faces III and IV. A
direct comparison of the pressure distributions on both prisms reveals a reduction in mag-
nitude of those variations with increasing surface roughness height. Analogue to circular
cylinder flows, an increase in surface roughness height reduces the shifts of the transition
and main separation locations along the surface of the prism, as well as those of the
reattachment and secondary separation points in the case of the existence of laminar sep-
aration bubbles. This explains the growing Reynolds-number independence of the fluid
dynamics – in particular with respect to the critical flow regime up to the upper transition
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– of the prism with increasing ks{D from smooth to very rough. The same counts for the
asymmetric flow state in which only the smooth prism experiences a distinct asymmetric
flow with a resultant maximum steady lift force of |CL| = 0.51, as shown in Figure 4.1f.
Independent of the Reynolds number and surface roughness height, the main separation
of the attached boundary layer on the windward-directed surfaces I and II is most prob-
ably situated on both rounded shoulders. The negative pressure peaks that occur for
critical up to transcritical Reynolds numbers are sharp and narrow. Hence, the down-
stream adverse pressure recovery is only weak and short. The relatively large mean width
of the near wake of Zw{D ě 4.7 over all flow regimes for each prism configuration implies
a large separation in cross-flow direction between both free shear layers. The afterbody
that is extruded downstream into the wake leads to a strong interaction of both shear
layers with the two bases faces III and IV and results in high fluctuating lift and drag
forces and a strong suction on both faces. The resultant shedding frequency is relatively
low, as pointed out by the low Strouhal numbers.

4.2 From square with sharp edges to circular: combined
influences of edge roundness and surface roughness on
the fluid dynamics of prismatic bluff bodies at α = 0˝

and 45˝

The results in the previous chapter on the flow over rounded square-section prisms with smooth
surfaces have shown that the highest drag reduction is achieved in the supercritical flow regime
for both "symmetric" incidence angles. The presence of a laminar separation bubble on both
side surfaces in combination with a secondary separation further downstream on the prism’s
surface leads at these Reynolds numbers to a low suction force at the base, a narrow wake, and
thus a small effective aerodynamic blockage. Starting with a squared prism with sharp edges,
the largest gain in global drag reduction over the full range of edge roundness values – hence,
from r{D = 0 (squared with sharp-edged) to r{D = 0.5 (circular cylinder) – is accomplished
for a relatively small non-dimensional edge roundness, whereas only modest additional benefits
for CD are obtained for 0.16 ď r{D ď 0.5. The eddy shedding at those supercritical Reynolds
numbers is characterised by the lowest intensity, but occurring at the highest frequency. While
at α = 0˝ these flow characteristics remain stable up to Reynolds numbers of at least O(107),
an increase in the Reynolds number results at α = 45˝ in a gradual recovery towards their
respective subcritical levels. Hence, the final transcritical flow regime is marked by high mean
and fluctuating forces and a low Strouhal number.

The past section of the current chapter revealed a distinct effect of the surface roughness
height on the flow around square-section prisms with edge roundness values of r{D = 0.16.
Independent of the height of the surface roughness, the lowest drag is also at this angle of inci-
dence obtained in the supercritical flow regime, but the flow regime itself has shrunk to only a
very small range of Reynolds numbers. While at α = 0˝ the low supercritical drag values are
hardly affected by the roughness height, a sharp increase in CD is observed at α = 45˝. Similar
trends were observed for the fluctuating lift and drag forces and the Strouhal number. The
surface roughness introduces an upper boundary of this flow regime at α = 0˝ as well, thereby
causing a recovery of the fluid-dynamic properties of the prism at high transcritical Reynolds
numbers at both incidence angles. In particular at α = 45˝, the values of the fluid-dynamic
quantities in the transcritical flow regime are similar to the subcritical flow regime.
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The current section places the focus on the combined influence of both parameters. The
wind tunnel experiments were performed on square-section prisms having edge roundness values
of r{D = 0, 0.16, or 0.29, and on a circular cylinder. Based on the outcomes of the preceding
section, two surface roughness values were selected: ks{D = 4.5ˆ10´6 ("smooth") and 1ˆ10´3

("rough"). The studied range of Reynolds numbers was kept constant, i.e. from 0.1 million up
to 10 million, and the incidence angles of the square-section prisms equalled 0˝ and 45˝.

It is hardly surprising that the surface roughness height has no influence on the fluid dy-
namics of the sharp-edged square-section prism: neither the mean quantities CD, Cpb, Zw{D,
and

`

∆p{q
˘

max
in the Figures 4.7 and 4.8, nor those associated with the eddy-shedding process,

hence
b

pC
12
L q,

b

pC
12
Dq, and StL (Figure 4.9) at both α = 0˝ and 45˝ are affected. Even the

heights of the main peaks in the PSDs of the time series of the lift, presented in Appendix A
for various selected Reynolds nunbers between 105 and 107, are independent of the height of
the surface roughness. The boundary layer separation remains frozen at the two windward-
directed (for 0˝ incidence angle) or the two shoulder (at α = 45˝) sharp edges and the increased
roughness height does not lead to a reattachment of the free shear layers on the downstream
faces.

In contrast to the sharp-edged square-section prism, the curves of the 2D circular cylin-
der show a significant alteration with increased roughness height, thereby closely following the
trends that are known from literature and presented in section 2.1.3. Those include, among
others, a narrowing of the subcritical up to upper transition flow regimes coupled with a shift
of their bounding Reynolds numbers to lower values. In addition, the absolute mean global lift
coefficient that appears in the asymmetric bistable flow state strongly reduces, as shown in Fig-
ure 4.10b. This implies the occurrence of a much smaller one-sided laminar separation bubble
with a substantially weaker enclosed recirculating flow, owing to which the asymmetry in the
cross-sectional surface pressure distribution is much less pronounced. The range of Reynolds
numbers that cover the supercritical flow regime reduces even to a single value. The value of
CD at this Reynolds number increases, while those of Cpb and StL decrease. Not only does this
demonstrate, that the secondary separation points must be located closer to the (most probably
smaller) laminar separation bubbles at the upper and lower surfaces of the rough circular cylin-
der than is the case for the smooth cylinder case. Simultaneously, a much more rapid migration
of the transition location in upstream direction occurs, first on the free shear layers above the
laminar separation bubbles and – after having overtaken the primary separation points – along
the surface of the prism, with increasing Reynolds number while passing through the upper tran-
sition. At common transcritical Reynolds numbers near 107 the increased surface roughness
height has induced a 60% increase in the mean global drag force on the circular cylinder, as well
as a reduction of the eddy shedding frequency by 20% in combination with a tremendous gain
in strength of the eddies that is reflected in an increase in the fluctuating lift of more than 250%.

The fluid-dynamic quantities of the two rough prisms with rounded edges, placed at α = 0˝,
generally follow the trends as described above for the circular cylinder. Since the baseline
situation of those two prisms is a different one than of the smooth circular cylinder, various
small-scale differences are nevertheless obtained. Small deviations in the trends are also found
among the two square-section prisms and related to the different value of the edge roundness.

Regarding the square-section prism with rounded edges of r{D = 0.16, the effect of the
increased roughness height on the various fluid-dynamic quantities has already been outlined in
detail in the previous section for both incidence angles. In a nutshell, the higher surface rough-
ness induces a narrowing of the flow regimes together with a shift of the bounding Reynolds
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Figure 4.7: Combined effects of edge roundness r{D, non-dimensional equivalent sand-grain
surface roughness height ks{D, and Reynolds number ReD on the mean global drag coefficient
and mean cross-sectional base pressure coefficient of 2D square-section prisms at incidence.
(a)-(d): α = 0˝; (e)-(h): α = 45˝; left column: r{D = 0 and 0.16; right column: r{D = 0.29
and 0.5 (Van Hinsberg [253, 258], Van Hinsberg et al. [254, 255]). Reference: ` Schewe [209]
(r{D = 0.5 and ks{D = O(10´6)).

numbers to lower values. For the smooth prism configuration, the left-bounded supercritical
flow regime is open to the right at α = 0˝. As for its rough counterpart, approximately equal
levels of the mean global drag, the mean cross-sectional base pressure, the fluctuating lift, and
the Strouhal number are obtained in this flow regime. This implies, that for both roughness
values the transition, primary and secondary separation, and the reattachment points are lo-
cated at nearly equal positions on the surface of the prism at this incidence angle. Hence,
both prisms thus experience a similar overall effective flow field. The sharp increase of the
absolute mean global lift coefficient in the asymmetric flow state in Figure 4.10a implies a
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Figure 4.8: Combined effect of non-dimensional equivalent sand-grain surface roughness height
and prism’s edge roundness value on the mean vertical wake profile at X{Lref = 6.25 behind
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Figure 4.9: Combined effects of edge roundness r{D, non-dimensional equivalent sand-grain
surface roughness height ks{D, and Reynolds number ReD on the fluctuating global lift and
drag coefficients, as well as the Strouhal number of 2D square-section prisms at incidence (Van
Hinsberg [253, 258], Van Hinsberg et al. [254, 255]). (a)-(f ): α = 0˝; (g)-(l): α = 45˝; left
column: r{D = 0 and 0.16; right column: r{D = 0.29 and 0.5. Reference: ` Schewe [209]
(r{D = 0.5 and ks{D = O(10´6)).
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Figure 4.10: Combined effects of edge roundness r{D, non-dimensional equivalent sand-grain
surface roughness height ks{D, and Reynolds number ReD on the absolute value of the mean
global lift coefficient of 2D square-section prisms at incidence and a circular cylinder. (a):
r{D = 0.16 and 0.29 at α = 0˝; (b): r{D = 0.5; (c): r{D = 0.16, 0.29, and 0.5 at α = 45˝.
Reference: ` Schewe [209] (r{D = 0.5 and ks{D = O(10´6)).

distinct asymmetry in the cross-sectional surface pressure distribution on the rough prism at
these Reynolds numbers. Surprisingly, the same two phenomena are also found for the prism
with r{D = 0.29 at α = 0˝, but not for the 2D circular-cylinder case. Whereas for the smooth
prism with r{D = 0.16, these points remain at their respective locations up to ReD = 107,
the appearances of an upper-bounding Reynolds number of the supercritical flow regime and of
the subsequent upper transition and transcritical flow regime with increased surface roughness
demonstrates a gradual, but steady migration of in particular the transition location (and in a
lesser extend also the reattachment and secondary separation points) with increasing Reynolds
number in upstream direction towards the stagnation point. Both laminar separation bubbles
on the side face of the prism in the vicinity of the forward-directed edges decrease thereupon
in size, before eventually disappearing at a sufficiently high Reynolds number, caused by the
laminar boundary layer that undergoes transition before separation. During this flow transition
from the supercritical to the transcritical flow regime, the majority of the fluid-dynamic quan-
tities shows a recovery of their values in the direction of their respective subcritical levels. The
only exception forms the fluctuating drag force in Figure 4.9c, which shows a sharp decrease in
the upper transition, as a result of which the absolute lowest level is obtained in the transcritical
flow regime.

A similar overall development of the flow with increased ks{D-value is obtained for the
square-section prism with curved edges of r{D = 0.29. Subtle differences in the change of the
flow behaviour for both rounded prisms can nevertheless be observed in the Figures 4.7 and 4.9.
A first discrepancy to r{D = 0.16 concerns the supercritical flow regime, which shrinks from
left-bounded and open to the right side for the smooth prism configuration to a single Reynolds
number for the rough counterpart. In addition, the upper transition is characterised by a very
weak recovery of the various fluid-dynamic quantities. As a consequence, their transcritical val-
ues nearly equal those of the supercritical flow regime. This is reflected in the virtually identical
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shapes of the mean vertical wake profile and the associated values for the mean non-dimensional
wake width and maximum mean total non-dimensional pressure loss at the selected supercritical
to transcritical Reynolds numbers in Figure 4.8f. These two phenomena are quite similar to
the results obtained for the circular cylinder, although less pronounced. The alteration of the
flow around the rough square-section prism with r{D = 0.29 for increasing Reynolds numbers
can thus be seen as a mixture of the trends of the previous two bluff bodies. This becomes par-
ticularly clear when looking at the curves of the Strouhal numbers in the Figures 4.9e and 4.9f,
in combination with the underlying power spectra at selected Reynolds numbers in Appendix
A.1. Two clearly separated Strouhal numbers, each one either associated with the subcritical
or with the supercritical flow regime, were acquired at multiple critical Reynolds numbers for
both rounded square-section prisms. In the upper transition though, a gradual reduction of the
Strouhal number without the appearance of two peaks in the power spectra is found for the
rough square-section prism with r{D = 0.29, therefore closely following the StL(ReD) curve of
the rough circular cylinder.

At α = 45˝, the trends of the curves of the various fluid-dynamic quantities that belong to
both square-section prisms with non-zero edge roundness agree to a large extend to those of
the circular cylinder. This encompasses (1 ) a narrowing of the subcritical to upper transition
flow regimes and their migration to lower Reynolds numbers with increased roughness height,
(2 ) a significant increase of both CD,min and Cpb,min at the cross-over from the critical to the
supercritical flow regime, (3 ) the appearance of a very low mean steady lift force in the short
asymmetric flow state that is even non-existent for r{D = 0.29, and (4 ) a weaker dependence
of the flow around the two rounded prisms on the Reynolds number. The combination of all of
these developments results in deviations in the values of the fluid-dynamic quantities between
the smooth and the rough versions of both prisms at common transcritical Reynolds numbers.
While the shedding frequency of the eddies in the near wake decreases, higher values for all
other mean and fluctuating coefficients are obtained. The graphs furthermore show that a
decrease in bluffness (i.e. a higher r{D-value) leads to larger differences between the smooth
and rough prism.

4.3 From one "symmetric" incidence angle to the other:
influence of the incidence angle of the oncoming flow
on the fluid dynamics of a slightly-rough square-section
prism with r{D = 0.16.

Not only the cross-sectional shape and the surface roughness are examples of influencing pa-
rameters that can become governing ones. The incidence angle of non-circular bluff bodies is
another important one that severely alters the behaviour of the flow around them. In particu-
lar structures with bluff cross-sections that have been placed in the ocean or in the planetary
boundary layer experience in the vast majority of cases a water or air flow from all possible
directions. Under unsteady flow conditions, such as atmospheric turbulence or storms with
strong wind gusts, large directional and spatial variations in wind shear, or strong impacting
waves, large and rapid fluctuations in both the Reynolds number and incidence angle may take
place.

While the combined effects of edge roundness and angle of incidence on the aerodynamics,
the flow topology, and the heat transfer of square-section prisms has been subject of extensive
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research for Reynolds numbers up toO(103), see for example Alam et al. [13] and the many refer-
ences therein, only few studies have actually focussed on the high to very high Reynolds-number
range. So performed Tamura et al. [241] a numerical study on the three-dimensional incom-
pressible flow around square-section prisms with sharp, chamfered, and rounded (r{D = 1/6)
edges at α = 0˝ and ReD = 104. Their results showed that a 60% decrease in drag could
be obtained by rounding the edges of the prism compared to its sharp-edged counterpart. In
a follow-up experimental study at a Reynolds number of 3ˆ104 it was shown that an edge
roundness of r{D = 1/6 resulted in lower drag coefficients and higher Strouhal numbers for all
angles of incidence between –5˝ and 30˝, as well as in a reduction of the lift fluctuations by
about 50% compared to the values for the sharp-edged square-section prism at small angles of
incidence [242]. The critical angle at which both the slope of the CL(α) curve changed from
negative to positive and the Strouhal number reached its maximum value, shifted from 12˝ for
prisms with r{D = 0 to 5˝ for those with r{D = 1/6, and was induced by an earlier reattach-
ment of the separated shear layer on the side face exposed to the wind. Similar conclusions were
drawn in the studies by Carassale et al. [44,45] for two-dimensional square-section prisms with
rounded edges of r{D = 0, 1/15, and 2/15 in the Reynolds-number range of 1.7ˆ104 to 2.3ˆ105.
Their surface pressure data at the prism’s mid-section demonstrated that around α = αcr, being
12˝, 7˝, and 5˝ for r{D = 0, 1/15, and 2/15, respectively, an increase in the suction near the
leading edge of the side face exposed to the oncoming free stream and a decrease close to its
trailing edge occurred, thus proving the formation of a separation bubble through reattachment
of the free shear layer on this face. A further increase in angle of incidence led to a shrinkage
of both the length and height of this separation bubble towards the windward-directed edge,
in agreement with the observations by Huang et al. [106] for a square-section prism with sharp
edges. This latter behaviour can be subscribed to the steady migration of the reattachment
point along the side face towards its leading edge with increasing angle of incidence towards
α = 45˝, as has been described in detail in section 2.2.2.

The results of the wind tunnel experiment on a slightly rough and rounded square-section
prism (ks{D = 4.5ˆ10´4, r{D = 0.16) at incidence are presented in this section. Eleven inci-
dence angles between –45˝ and +3.25˝ were selected and at each one of them, the fluid dynamics
over the full range of Reynolds numbers from 0.1 million up to 8 million was investigated.

4.3.1 Mean global and cross-sectional fluid-dynamic coefficients

Figure 4.11 presents the variations of the mean lift and drag coefficients CD and CL and the
mean cross-sectional pitch moment and base pressure coefficients Cm, and Cpb with respect to
the angle of incidence at multiple Reynolds numbers between ReD = 2.0ˆ105 (subcritical) and
ReD = 6.0ˆ106, i.e. either supercritical at α = 0˝ or transcritical at all other incidence angles.
For a Reynolds number up to ReD = 3.0ˆ105, i.e. up to the end of the subcritical flow regime,
a decrease in CD takes place as the incidence angle decreases from α = 0˝ to –6.5˝. At the
latter incidence angle, a sign inversion of the slope of the CD(α) curve from positive to negative
is seen to occur, followed by a steady increase of CD with further decreasing incidence angle
and a flattening of the CD(α) curve for α Ñ –45˝. The sign inversion implies that the angle of
α = –6.5˝ either corresponds or lies close to the critical angle of incidence, αcr, at which the
detached flow reattaches close to the trailing edge of the upper lateral face that has been turned
into and is thus exposed to the oncoming flow. This value is slightly higher than αcr = 5˝ found
by Carassale et al. [45] and αcr = 4˝–5˝ obtained by Tamura and Miyagi [242] for a square-
section prism with r{D = 2/15 at ReD = 2.7ˆ104 and r{D = 0.167, respectively, in a smooth
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Figure 4.11: Combined effects of incidence angle α and Reynolds number ReD on the mean
global drag and lift coefficients and on the mean cross-sectional pitch moment and base pres-
sure coefficients of a 2D square-section prism with edge roundness of r{D = 0.16 and non-
dimensional equivalent sand-grain surface roughness height of ks{D = 4.5ˆ10´4. (a)-(b): CD;
(c)-(d): CL; (e)-(f ): Cm; (g)-(h): Cpb. Left column: ReD = 1.0ˆ105 to 6.0ˆ105; right column:
ReD = 6.5ˆ105 to 6.0ˆ106.

flow with turbulence intensities below 0.3. Interestingly, the Figures 4.11a and 4.11b show that
for Reynolds numbers ranging from 5.0ˆ105 to 8.5ˆ105 the mean global drag coefficient either
starts its steady increase straight away from α = 0˝ or its value remains relatively constant at
low negative angles of incidence (i.e. down to α = –3.25˝ or α = –6.5˝) before commencing its
continuous increase. At these Reynolds numbers, no distinct critical incidence angle can thus be
derived from the trend of the corresponding CD(α) curves. The curve at ReD = 3.5ˆ105 forms
the transition between both trends at low negative incidence angles: for –3.25˝ ď α ď 0˝ the
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drag slope is negative and thus consistent with the curves at ReD ě 4ˆ105, whereas dCD/dα
ą 0 for –6.5˝ ď α ď –3.25˝, i.e., equal to the trend of the curves at ReD ď 3ˆ105. Although
the behaviour of the mean base pressure coefficient Cpb is directly coupled to the mean drag
coefficient, as the latter has a direct influence on the value of the former, the aforementioned
two exact opposite trends of CD with increasing Reynolds number in the range of –6.5˝ ď α
ď 0˝ cannot be seen in the behaviour of Cpb in figures 4.11g and 4.11h. Based on these latter
curves, the appointment of the exact value of the critical angle of incidence is therefore also less
accurate. In comparison to CD, a somewhat wider spreading of the Cpb-values can furthermore
be observed at low absolute angles of incidence for ReD = 4ˆ105–8ˆ105. This larger spreading
is caused by the relatively deep and bright dip in the corresponding Cpb(ReD) curves for α = –
3.25˝ to -13˝ in that range of Reynolds numbers. The deviation of the trend of the base pressure
curves for ReD = 5.5ˆ105 and 6.0ˆ105 for α ě –38.5˝ is then again in close agreement with CD.

The curves of the mean global lift and the mean cross-sectional pitch moment coefficients as
function of the incidence angle in the Figures 4.11c to 4.11f possess two main trends that appear
alternately and are separated at each cross-over by a transition curve at a certain Reynolds
number. For relatively low Reynolds numbers up to about 4.0ˆ105, CL shows a steady increase
with decreasing incidence angle down to αcr « –6.5˝ (Figure 4.11c). This is followed by a
continuous decrease with a slope dCL/dα that is highly independent of the Reynolds number,
a cross-over to a negative mean global lift coefficient in between α = –25.5˝ and –32˝ and a
moderate recovery towards CL = 0 for α Ñ –45˝. A relatively similar, but opposite behaviour
is found for Cm for ReD ď 3.5ˆ105 in Figure 4.11e: a steep decrease of its value with decreasing
incidence angle down to α = –6.5˝ that is followed either directly by a steady increase of Cm
towards Cm = 0 at α = –45˝ or by an intermediate and short plateau with rather constant
values of Cm for incidence angles between –6.5˝ and –13˝ prior to the gradual recovery towards
Cm = 0 at α = –45˝.

At the first transitional Reynolds number of ReD = 4.5ˆ105 for CL and ReD = 4.0ˆ105 for
Cm, a deviation in absolute values of the CL(α) curve is seen to occur at angles of incidence
smaller than –19.5˝ and of the Cm(α) curve at angles of incidence below –6.5˝, whereby this
deviation is clearer for the former than for the latter coefficient. In the following range of
Reynolds numbers that prolongs up to ReD = 7.5ˆ105, both curves have swapped trends and
therefore keep their mirrored image. Down to an incidence angle of either –6.5˝ (5.0ˆ105 ď ReD
ď 6.0ˆ105) or –3.25˝ (6.5ˆ105 ď ReD ď 7.5ˆ105) the mean global lift coefficient shows a strong
negative trend, whereas the mean cross-sectional pitch moment coefficient becomes increasingly
positive in the exact same range of incidence angles. This is followed by a steep recovery of CL
to values that lie close to CL = 0 and at several Reynolds numbers CL even switches sign and
reaches a positive lift force. In contrast, the Cm(α) curves show either a steady and moderate
(Figure 4.11e) or a steep (Figure 4.11f) decrease for larger incidence angles, whereby a sign
change appears at all Reynolds numbers. Beyond the second common transitional Reynolds
number of ReD = 8.0ˆ105, the individual curves of both coefficients regain their "subcritical"
shapes.

4.3.2 Fluctuating global fluid-dynamic coefficients and Strouhal num-
ber

The trends of the fluid-dynamic quantities
b

pC
12
L q,

b

pC
12
Dq, and StL with decreasing incidence

angle are shown in Figure 4.12 for the same 20 Reynolds numbers in the range of ReD = 1ˆ105

to 6ˆ106. At small negative incidence angles, there is a striking resemblance between the be-
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Figure 4.12: Influence of incidence angle and Reynolds number on the fluctuating global lift and
drag coefficients and the Strouhal number of a 2D square-section prism with edge roundness
of r{D = 0.16 and covered with a non-dimensional equivalent sand-grain surface roughness of

ks{D = 4.5ˆ10´4. (a)-(b):
b

pC
12
L q; (c)-(d):

b

pC
12
Dq; (e)-(f ): StL. The open triangles corre-

spond to the secondary peak in the power spectra in Figure B.1. Left column: ReD = 1.0ˆ105

to 6.0ˆ105; right column: ReD = 6.5ˆ105 to 6.0ˆ106.

haviour of both fluctuating force coefficients at each Reynolds number, while distinct differences
in the trends are obtained at combinations of high negative incidence angle and relatively low
Reynolds number up to ReD = 3.0ˆ105, i.e. up to the point at which the cross-over between
the subcritical and the critical flow regimes takes place. At these subcritical Reynolds num-
bers, the values of both fluctuating force coefficients show a steady increase with decreasing
angle of incidence that levels off at intermediate negative incidence angles, before reaching a
plateau that remains relatively constant towards α = –45˝. The only discrepancy in the trends
between the two coefficients is observed at incidence angles close to 0˝, for which the curves of
the fluctuating lift show a sharp drop instead.

The curve at ReD = 3.5ˆ105 can be assigned as transitional, justified by the first appear-

ance of a bright valley between α = 0˝ and –13˝ with a minimum value of
b

pC
12
Dq = 0.03 and

b

pC
12
L q = 0.05 at α = –6.5˝. Beyond this transitional Reynolds number, the curves possess

initially two plateaus, of which the first one spreads down to α = –6.5˝ and the second one
continues to angles of incidence as low as α = –19.5˝ or even α = –25.5˝ for the fluctuating
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drag and lift coefficient, respectively. Interestingly, both plateaus possess a similar behaviour
with increasing Reynolds number: a continuous decrease in length towards a single point at
α = 0˝ (1st plateau) and α = –3.25˝ (2nd plateau), the latter being obtained at ReD ě 8.5ˆ105–
9.0ˆ105. Hence, the Reynolds number thus has a significant effect on the shape of the curves
within their first parts. The decrease of both plateaus thereby induces a gradual convergence

of the second part of the
b

pC
12
Dq(α) and

b

pC
12
L q(α) curves to a single one for ReD ě 4.0ˆ105.

Their shapes therefore resemble those of the mean global drag coefficient in Figure 4.11b to a
high extend for Reynolds numbers above ReD ě 8.5ˆ105–9.0ˆ105.

Based on their overall shapes, the curves of the Strouhal number as a function of the
incidence angle in the Figures 4.12e and 4.12f can be split up into two parts. The first one
is characterised by clear changes in the behaviour of StL with varying Reynolds number at
negative incidence angles close to 0˝; here, the most interesting phenomena occur. At higher
negative values for α, a near-perfect agreement in both the course of the curves and the actual
values of the Strouhal number between the various Reynolds numbers is observed. This part
of each curve shows a gradual, continuous decrease of StL with decreasing α that ends in a
levelling-off towards an asymptotic value of StL = 0.12 to 0.14 at α = –45˝. This trend of
StL, i.e. being weakly dependent on α and highly independent on ReD, becomes also clear by
inspection of the underlying power spectra of the lift force at the various incidence angles for
six Reynolds numbers in the range of ReD = 2.0ˆ105 to 6.0ˆ106 presented in Figure B.1 in
Appendix B.

In contrast, for –6.5˝ ď α the inverse situation is found: the value of the Strouhal number
now depends to a high degree on the Reynolds number. Based on the values of StL in both
graphs, three distinct sub-branches can be distinguished. The first one is present up to a
medium to high critical Reynolds number of 4.0ˆ105. The StL(α) curve is characterised by
a sharp increase from StL = 0.14 at α = 0˝ up to its absolute maximum of StL = 0.18 at
αcr = –6.5˝. Around α = αcr, a discontinuity exists in the Strouhal-number curve as the slope
dStL/dα changes sign, whereupon the curve starts its previously described second trend line
down to α = –45˝. The curve at ReD = 4.0ˆ105 shows small fluctuations in the range of
α = 0˝ to –13˝, being an indication for an imminent transition from the first sub-branch to
the second one. This latter sub-branch ranges from ReD = 4.5ˆ105 to 8.0ˆ105–8.5ˆ105 and is
defined by high, relatively constant Strouhal numbers of StL = 0.26 to 0.28. It stretches down
to α = –3.25˝ for high critical and all upper transitional Reynolds numbers and to –6.5˝ in
the supercritical flow regime. The curves suffer a subsequent significant drop in StL at higher
negative incidence angles down to the second overall trend line. Interestingly, each drop is
preceded by a limited range of incidence angles in which no clear vortex-shedding frequency
can be deduced from the underlying power spectra of the lift force, as exemplary shown for
α = –9.75˝ at ReD = 6.0ˆ105 in Figure B.1g. The length of this range initially increases for
larger Reynolds numbers, reaches its maximum span of ∆α = 13.5˝ around ReD = 5.5ˆ105

in the supercritical flow regime, gradually decreases with further increasing Reynolds number,
and finally disappears completely at ReD = 9.0ˆ105, i.e. around the cross-over from the upper
transition to the transcritical flow regime. This latter Reynolds number additionally marks
the beginning of the third and final sub-branch that covers all Reynolds number up to at least
8ˆ106. It is characterised by a steady decrease of the Strouhal number from StL = 0.26 at
α = 0˝ with decreasing incidence angle and a seamless transition into the second part of the
overall trend line down to α = –45˝.
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4.3.3 Cross-sectional mean pressure distributions

The development of the mean pressure distribution on the prism’s surface with incidence angle
is presented in Figure 4.13 for six Reynolds numbers between 2ˆ105 and 6ˆ106. By means
of a scaled vectorial representation, Figure 4.14 gives an additional qualitative impression of
these distributions. The values of the mean global drag and lift coefficients, as well as the cross-
sectional pitch moment coefficient are added to the individual graphs to facilitate the correlation
between the changes in the surface pressures and the resultant fluid-dynamic coefficients.

At the subcritical Reynolds number of 2ˆ105, the mean pressure distribution at α = 0˝
is highly symmetric with respect to the virtual horizontal line through s{D = 0.47 and 2.33.
Based on the classification by Igarashi [108], introduced in section 2.2.2, the flow belongs to the
category of symmetric flows. The relatively constant negative mean pressures of Cp,cyl = –1.08
and Cpb = –0.95 on, respectively, the two side surfaces and the base of the prism demonstrate
that after separation of the boundary layer no reattachment of the free shear layers takes place.
The mean global drag coefficient thereupon reaches a high value of CD = 1.29, whereas near-zero
values for both the mean global lift and cross-sectional pitch moment coefficients are obtained.
A rotation of the prism to α = –3.25˝ induces only slight changes in the cross-sectional sur-
face pressure distribution (Figure 4.14). The turning of the rounded edge between the faces
I and II into the wake induces a small relocation of the boundary layer separation point to,
most probably, a position slightly further downstream that leads to a light overall reduction
of the suction on face II compared to α = 0˝. The resultant light asymmetry in the pressure
distribution leads nevertheless to a pronounced mean global lift coefficient of CL = 0.30, the
appearance of a small negative pitch moment coefficient Cm = –0.01, and a small reduction of
the mean global drag coefficient. This proves that the flow field around the prism belongs at
this angle of incidence to the asymmetric flows, i.e. the second sub-category of the subcritical
or perfect separated flow regime. A doubling of this incidence angle to α = –6.5˝, i.e. near the
critical angle, leads to a distinct asymmetry in the pressure values between both side surfaces
II and IV. A reattachment of the lower free shear layer on the lateral face II is still prevented
at this incidence angle. The migration of the separation point of the opposite boundary layer
in upstream direction, in combination with the increased proximity of the free shear layer upon
separation to its corresponding side surface IV allow a reattachment of this free shear layer
to surface IV close to its trailing edge. The resultant one-sided reattachment-like flow field
has switched to the reattachment or separation flow regime (Igarashi [108]). It is characterised
by the formation of a recirculation bubble on the upstream portion of this prism’s side face,
which appears as a local increase in the suction pressure, and a secondary separation of the
reattached boundary layer on or near the downstream upper rounded edge. As a result of
the different positions of the boundary layer separation on the upper and lower faces of the
prism, a much weaker communication of the two shear layers in the base region of the prism
takes place, as is projected by the absolute minimum and absolute maximum of the fluctuating
lift force and Strouhal number, respectively, at this incidence angle (Figure 4.12). The mean
suction pressure at the base of the prism (face III ) thereupon decreases and the mean global
drag coefficient reaches its absolute minimum of CD = 1.08 at ReD = 2ˆ105 (Figure 4.11a).
The clear imbalance between the mean pressure coefficients in cross-flow direction below and
above the prism induces a large steady positive mean lift coefficient of CL = 0.63 (Figure 4.11c)
and a negative mean pitch moment of Cm = –0.067 (Figure 4.11e).

Induced by a wandering of the reattachment location in upstream direction along side
face IV towards its leading edge, the separation bubble shrinks in size. The suction peak near
the leading edge initially increases before reducing with every further rotation of the prism
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Figure 4.13: Development of the mean cross-sectional pressure distribution with incidence
angle for a 2D slightly-rough (i.e. ks{D = 4.5ˆ10´4) square-section prism with edge roundness
of r{D = 0.16 at selected Reynolds numbers that cover the subcritical to the transcritical flow
regimes. (a)-(c): ReD = 2ˆ105; (d)-(f ): ReD = 3.5ˆ105; (g)-(i): ReD = 5ˆ105; (j )-(l):
ReD = 6ˆ105; (m)-(o): ReD = 8ˆ105; (p)-(r): ReD = 6ˆ106. Left column: |α| = 0˝ to 6.5˝;
centre column: |α| = 9.75˝ to 19.5˝; right column: |α| = 25.5˝ to 45˝.
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Figure 4.14: Qualitative scaled vectorial representation of the mean circumferential surface
pressure distribution at the mid-span of a 2D slightly-rough (i.e. ks{D = 4.5ˆ10´4) square-
section prism with edge roundness of r{D = 0.16 for incidence angles in the range of α = 0˝
to –45˝. Top two rows: ReD = 2ˆ105; centre rows: ReD = 3.5ˆ105; bottom two rows:
ReD = 5ˆ105. The colours of the envelopes of the arrows match the colours of the respective
curves in Figure 4.13.
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Figure 4.14: Qualitative scaled vectorial representation of the mean circumferential surface
pressure distribution at the mid-span of a 2D slightly-rough (i.e. ks{D = 4.5ˆ10´4) square-
section prism with edge roundness of r{D = 0.16 for incidence angles in the range of α = 0˝ to
–45˝. Top two rows: ReD = 6ˆ105; centre rows: ReD = 8ˆ105; bottom two rows: ReD = 6ˆ106.
The colours of the envelopes of the arrows match the colours of the respective curves in Figure
4.13 (cont.).
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towards α = –25.5˝, see figures 4.13b and 4.13c. The area on the upper lateral face IV with a
reattachment-like flow thus grows steadily in upstream direction, whereas the flow on the lower
lateral face II remains fully separated for all angles of incidence. At α = –32˝, the pressure on
the upstream half of face IV has becomes negative. The resemblance of the overall pressure
distribution on this face with that on face I suggests a complete absence of the separation
bubble on face IV. This means that the boundary layer remains attached up to its separation
over the downstream rounded edge. The flow field around the prism has thus switched to the
wedge or attached flow regime. The continuous turning of the prism results furthermore in a
migration of the stagnation point from s{D = 0.47 at α = 0˝ towards s{D = 0 at α = –45˝.
During this transition, the increasing symmetry of the surface pressures between the upper and
lower sides of the prism leads to a gradual decrease of both CL and Cm to 0 at the second
symmetric angle of –45˝. Simultaneously, the suction at the base of the prism gets stronger. In
combination with a wider lateral spreading of the free shear layers, a higher drag coefficient is
obtained that slowly approaches the value of CD = 1.96 at α = –45˝. The strong increase in
the fluctuating drag with decreasing incidence angle in Figure 4.12a is most probably caused
by the afterbody that is formed by the faces II and III while turning them into the wake.
Interestingly, the values of the fluctuating lift coefficient and the Strouhal number gradually
regain their initial values of 0˝ angle of incidence for α Ñ –45˝ and are not affected by this
afterbody.

As ReD increases, various Reynolds-number flow regimes are passed one after another for
the prism at 0˝ angle of incidence, as has been described in detail in section 4.1. At the tran-
sitional Reynolds number of ReD = 3.5ˆ105, we are in the middle of the critical flow regime
with a fully-separated flow on the lower lateral face II and a reattachment-like flow on the
upper lateral face IV. The secondary separation of the reattached boundary layer over the rear
upper rounded edge introduces a smaller, asymmetric near wake (Figure 4.2c) and a lower mean
suction on the base face III of Cpb = –0.80 (figure 4.11g), leading to a lower mean drag force
of CD = 0.93 in comparison to CD = 1.29 at ReD = 2ˆ105 in the subcritical flow regime. The
light asymmetry of the surface pressures between both lateral faces and the somewhat higher
suction pressures over the laminar separation bubble result in a steady, but still relatively small
values of CL and Cm. Surprisingly, an influence of the light asymmetry in Cp(s{D) that is
present at α = 0˝ is noticed in the mean surface pressure distributions for incidence angles as
far down as about α = –25.5˝ at this specific Reynolds number. It mainly manifests itself in
a somewhat shorter recirculation bubble on face IV, in particular at α = –6.5˝ and –9.75˝. In
addition, the higher suction peak at the upper front rounded edge compared to the previous
subcritical Reynolds number and the somewhat higher negative pressure in the vicinity of the
secondary separation point at the trailing edge of face IV for incidence angles of –19.5˝ and
–25.5˝ are also directly related to it. As Figure 4.11 shows, these changes in Cp(s{D) lead

in particular to lower values of CD, Cm, Cpb,
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whereas the mean global lift coefficient and the Strouhal number remain practically unaffected.
At angles of incidence between –32˝ and –45˝, the differences in the surface pressures between
ReD = 2.0ˆ105 and 3.5ˆ105 are marginal. That explains the common values for all mean
fluid-dynamic coefficients at these incidence angles, as well as the fluctuating drag and the
Strouhal number. Hence, at ReD = 3.5ˆ105 the flow around the prism slowly migrates from
a clear critical state at low absolute incidence angles back to a subcritical flow state at large
negative angles. The only exception are the somewhat higher values for the fluctuating lift at
ReD = 3.5ˆ105, which indicates a small increase in the communication between both shear
layers in the base region, as well as their interaction with the prism surface.
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4.3 From one "symmetric" incidence angle to the other: influence of the incidence angle of the
oncoming flow on the fluid dynamics of a slightly-rough square-section prism with r{D = 0.16.

For ReD ě 5ˆ105, the prism at α = 0˝ experiences a supercritical flow, marked by the
presence of a large suction peak of about Cp,cyl = –3.4 to –3.8 – depending on the exact Reynolds
number – at the leading edge of both lateral faces. Along these two side faces, it follows a distinct
adverse pressure recovery region, a laminar separation bubble, and a secondary separation of
the reattached turbulent boundary layer at the trailing edges of the faces II and IV. The suction
at the base of the prism and the mean global drag are both low, while the symmetric surface
pressure distribution induces both a zero mean global lift and cross-sectional pitch moment
coefficient (Figure 4.11). With the exception of ReD = 6 million, both suction peaks (and most
probably also both recirculation bubbles) keep to exist down to an angle of incidence of about
α = –13˝. At the former Reynolds number, a flat pressure distribution appears on the complete
side face II as soon as the first non-zero incidence angle has been reached, see Figure 4.14.

Interesting to mention is the dynamic behaviour of the height of the suction peak(s) and
the length of following adverse pressure recovery region with changing Reynolds number. For
low Reynolds numbers up to about ReD = 4ˆ105–4.5ˆ105, an adverse pressure recovery region
in combination with a preceding suction peak appears on the upper lateral face only, see,
for example, the pressure distributions at ReD = 3.5ˆ105 in Figure 4.14a. This explains the
occurrence of a positive mean lift and negative mean pitch moment coefficient for all incidence
angles down to α = –25.5˝ in the Figures 4.11c to 4.11f. In the range of 4.5ˆ105–5ˆ105 ď

ReD ď 6ˆ105–6.5ˆ105, the lower lateral face experiences a stronger suction peak and a longer
adverse pressure recovery region than the upper one (Figures 4.13g to 4.13l). This results in a
sign inversion of CL and Cm for incidence angles as low as α = –25.5˝ and α = –9.75˝ to –13˝,
respectively. The Figures 4.13m and 4.13n, as well as Figure 4.14 show that at ReD = 8ˆ105 the
situation has changed once more as the stronger suction peak and the longer adverse pressure
recovery region have now both switched back to the upper lateral face. From this Reynolds
number onwards, the prism experiences once again a positive mean lift and a negative mean
pitch moment coefficient at low to moderate negative incidence angles.

4.3.4 Susceptibility to galloping and flutter

The results for CL and Cm in the Figures 4.11c to 4.11f show that, depending on the actual
Reynolds number, both the slope of the CL(α) curves and of the Cm(α) curves at α = 0˝,
i.e. dCL/dα|α “ 0 and dCm/dα|α “ 0, respectively, change more than once in absolute value
and in sign. The values of both slopes, obtained by a least square fit through the values of CL
and Cm at ˘3.25˝ and 0˝, are presented in Figure 4.15.

The values of dCL/dα|α “ 0 can be used to derive a possible susceptibility of this specific
square-section prism to 1-DoF transverse (plunge) galloping. In section 1.2.2 the classical gal-
loping model that is based upon the quasi-steady theory by Glauert [88] and Den Hartog [61]
was therefore introduced. It states that a bluff body becomes unstable in transverse galloping
when the Glauert-Den Hartog stability criterion, given by equation (1.2), is fulfilled. Since the
mean global drag coefficient at α = 0˝ is positive throughout each of the various Reynolds-
number flow regimes, the lift slope dCL/dα at this incidence angle has to be both negative and
in absolute value larger than CD at equal Reynolds number. Figure 4.15 reveals that this is
the case within a limited Reynolds-number range of approximately 4.6ˆ105–8.0ˆ105 and thus
spans the first part of the supercritical flow regime only. Hence, according to the classical
galloping model, this specific slightly rough, rounded square-section prism is at these Reynolds
numbers thus potentially unstable in 1-DoF transverse galloping.
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Figure 4.15: Development of the stability criteria for transverse galloping, dCL/dα + CDpα0q

(blue squares), according to the quasi-steady theory by Den Hartog [61], and for torsional
galloping, dCm/dα (red circles), with Reynolds number for a 2D square-section prism with
edge roundness of r{D = 0.16 and covered with a non-dimensional equivalent sand-grain surface
roughness of ks{D = 4.5ˆ10´4.

In the case of torsional galloping or 1-DoF flutter, the bluff body starts to vibrate with
a limit cycle oscillation in its first torsional mode along its elastic axis (Simiu and Scanlan
[222], Blevins [32]). In section 1.2.2 it was outlined, that just like 1-DoF transverse galloping,
torsional galloping occurs when both the free stream velocity exceeds a certain critical value
and perturbations in the oncoming flow induce a small initial vibration of the structure. In
contrast to transverse galloping, the resultant motion of the structure is a rotation about its
axis in pure yaw, provided that the elastic axis of the prism coincides with the axis that goes
through the centre of mass. Based once again on a linear quasi-steady analysis, torsional
galloping may occur when equation 1.3 is satisfied. According to the results in Figure 4.15,
the slope of the pitch moment of the prism can be positive or negative for different Reynolds
numbers. Surprisingly, the negative values of dCm/dα at α = 0˝ appear exactly at those
Reynolds numbers where the Den Hartog criterion, i.e. equation (1.2), is not fulfilled and the
prism is thus stable for 1-DoF transverse galloping, i.e. at ReD ď 4.6ˆ105 and ReD ě 8.0ˆ105.
Although between these boundaries the necessary condition for torsional galloping is not met,
torsional divergence could theoretically take place instead. For this latter static aeroelastic
problem to occur, the sum of the structural stiffness and the aerodynamic torsional stiffness
has to approach zero or become negative, which implies that dCL/dα|α “ 0 ą 0. Since either
1-DoF transverse galloping or torsional divergence could take place at Reynolds numbers in
the range of ReD = 4.6ˆ105–8.0ˆ105, the onset velocity of either one of these two instabilities
that is exceeded first will determine which one of the two aeroelastic phenomena will appear
at a certain Reynolds number within this range. Since the values of the slope of the mean
pitch moment coefficient are only slightly positive, hence, dCm/dα|α “ 0 ď 0.32, while the
negative values of dCL/dα|α “ 0 are approximately one order of magnitude larger at equal
Reynolds number, the aerodynamic damping that counteracts the structural damping is larger
in the latter case. It is therefore to be expected that the critical velocity of the 1-DoF transverse
galloping instability is exceeded first, although other structural properties like the mass moment
of inertia, the weight, and the eigenfrequency of the current prism also play an important role
(Blevins [32], Païdoussis et al. [179]).
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4.4 Résumé Chapter 4

The change in the fluid dynamics resulting from changes in the average height and texture of
surface roughness, i.e. its shape and distribution, has so far been derived in the majority of
applications from experiments and numerical simulations on two-dimensional and finite circular
cylinders. Nowadays, a large amount of information is available on the effects of either a fully or
partially roughened surface on the surface pressure distributions, the cross-sectional (i.e. local)
and global forces, the local and global heat-transfer coefficients, the skin friction distributions,
the angular transition and separation points of the boundary layer, and the eddy shedding
frequency. Qualitative flow visualisation studies or quantitative data from experiments in wind
or water tunnels or numerical simulations focussing on rough square-section prisms – whether
"infinite" or finite, with sharp, rounded, or chamfered edges, isolated, paired, or clustered – are
unfortunately still sought in vain in the literature. The aim of this chapter was to start filling
this huge gap by presenting and quantitatively analysing the first results ever on the influence
of surface roughness on the mean and fluctuating fluid dynamics of two-dimensional sharp-
edged and rounded square-section prisms at incidence in a high-Reynolds-number cross-flow.
The data presented were obtained in several wind tunnel experiments on square-section prisms
with dimensionless edge radii of r{D = 0, 0.16, and 0.29, and on a circular cylinder. Many
different combinations of edge roundness, non-dimensional equivalent sand-grain surface rough-
ness height (i.e. 4.5ˆ10´6 ď ks{D ď 1.4ˆ10´3), and incidence angle (i.e. α = –45˝ to +3.25˝,
and 45˝) were tested at high to very high Reynolds numbers covering the range from 105 to 107.

Of all flow regimes, the subcritical is the only one that is not affected by surface roughness
at α = 0˝ and 45˝, regardless of the value of the edge rounding. This is true for all global and
cross-sectional mean (i.e. CD, CL, Cm, Cpb,
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, Zw{D, and StL) and global fluctuating

(i.e.
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Dq) fluid-dynamic quantities. Thus, the additional turbulence generated

by the surface roughness, at least up to the highest tested value of ks{D = 0.14%, is ineffective
in triggering the laminar-turbulent transition at those Reynolds numbers. This demonstrates
that the laminar boundary is stable in this flow regime and its thickness is such that the tops
of the roughness elements do not yet extend into regions of higher velocity within the boundary
layer or even pierce the boundary layer. These observations are in very good agreement with
the results for roughened circular cylinders. Fage and Warsap [74] found that even for a average
relative roughness of k{D = 2% the mean drag coefficient of the circular cylinder was hardy
altered at subcritical Reynolds numbers. The same results were obtained by Achenbach and
Heinecke [5] for both CD and St for mean relative roughness values as high as k{D = 3%. In
the experiments described in this chapter, the largest relative roughness of ks{D = 0.14% was
applied to the surface of the square-section prism with r{D = 0.16, i.e. with a relatively strong
edge curvature. However, with each further increase in edge roundness, the cross-section of the
prism approaches a perfect circle. It can thus be assumed, that also the flow around such a
prism starts to increasingly resemble the circular cylinder flow when both are covered with the
same roughness elements. It can therefore be argued that for the prism with r{D = 0.29 a
higher surface roughness than the maximum investigated of ks{D = 0.1% will neither have a
noticeable effect on the fluid-dynamic quantities in the subcritical flow regime.

A second similarity with circular cylinders is the narrowing of the subcritical up to upper
transition flow regime that is coupled with a shift in their bounding Reynolds numbers to lower
values with increasing roughness height at the same two incidence angles. At α = 45˝, this
trend is accompanied with a distinct rise of the absolute minimum values of the coefficients for
the mean and fluctuating global drag, fluctuating lift, and mean cross-sectional base pressure,
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as well as a descend of the maximum Strouhal number for both square-section prisms with
non-zero edge rounding. This proves that the analogy to circular cylinders is given here as well.
However, the amount by which these quantities change with increasing roughness height differs
from those for a circular cylinder. That is not surprising, as a high edge curvature (i.e. low
r{D value) implies a short arc length and the presence of a stronger adverse pressure gradient
over the rounded edge. Consequently, the deceleration of the boundary-layer flow close to the
prism’s surface is higher and leads to an earlier separation. The near wake is thus wider and
the interaction of the shear layers in the base region is higher, i.e. higher fluctuating forces and
a lower Strouhal number. This leads to a higher suction at the base, which in turn results in
a larger mean drag on the prism. Exactly the opposite was observed for α = 0˝. For rounded
square-section prisms, not only the absolute minimum or maximum values of the previously
listed quantities at the cross-over from the critical to the supercritical flow regime were found
to be independent of the surface roughness height, but also their respective values in the lat-
ter flow regime. Combining these results with the aforementioned shift and narrowing of the
various flow regimes with increasing roughness height, we can deduce the following. Although
higher surface roughness induces an earlier and faster wandering of the primary separation,
reattachment, and secondary separation points along the prism surface, their final positions at
the cross-over to the supercritical flow regime are practically independent of the surface rough-
ness height, as can be seen from the cross-sectional pressure distributions at the mid-section of
the prism in Figure 4.5. This independence then persists at all supercritical Reynolds numbers,
but ceases to exist once the upper transition is reached. Thus, at very high Reynolds numbers
close to 107, the presence of a surface roughness is clearly noticeable in the values of the various
fluid-dynamic coefficients.

Based on the quasi-steady theory, it was shown that the slightly rough (i.e. ks{D = 4.5ˆ10´4)
square-section prism with rounded edges of r{D = 0.16 may tend to 1-DoF transverse gallop-
ing in a limited Reynolds-number range of ReD = 4.6ˆ105–8ˆ105 and to torsional galloping
outside this range in the case it would have been mounted elastically in a cross-flow. However,
following the discussion by Parkinson [180], the maximum amplitude of both galloping motions
would be limited. For a smooth sharp-edged square-section prism in cross-flow, he found that
the reattachment of the free shear layer to the trailing edge of the lateral face and the resultant
sign reversal of dCy/dα at the critical angle of about α = ˘13˝ leads to a self-limitation of the
galloping amplitude. By adding a continuous curvature at the upstream edges of the square-
section prism, a migration of the separation point along this edge is favoured. The resulting
deflection of the free shear layer that has separated from this edge is smaller, which causes it to
reattach to the surface of the prism in the vicinity of the downstream rounded edge at a lower
critical angle of about |α| = 6.5˝. In this sense, the galloping self-limitation of square-section
prisms with rounded egdes will most probably occur at smaller incidence angles and thus at
smaller amplitudes of oscillation. The circular cylinder is insensitive to motion-induced vibra-
tions owing to its continuously curved cross-sectional shape. It is therefore to be expected that
an increase of the edge roundness of the prism from r{D = 0 towards 0.5 leads to a steady
decrease of the critical angle towards α = 0˝ and thus a gradual reduction of the maximum
vibration amplitude of the limit cycle oscillation at a certain reduced velocity.

A challenging question that remains unanswered is whether this prism could theoretically
behave like a hard oscillator at Reynolds numbers below 4.6ˆ105 and above 8ˆ105. This would
mean that transverse galloping could still occur under certain conditions, even though the clas-
sical galloping model predicts a stable situation. Therefore not only the critical flow velocity
has to be exceeded, but, in contrast to a soft oscillator, the prism would also have to be given
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a certain minimum, unfortunately a priori unknown, initial transverse amplitude in order to
potentially become unstable in plunge galloping. If the prism would from that moment on
perform a limit cycle oscillation with a certain constant amplitude, which would increase with
growing reduced velocity, the hard oscillator -theory would be proven correct at this Reynolds
number. If, on the other hand, a gradual reduction in its transverse amplitude would occur
for any chosen initial amplitude at all reduced velocities above the critical velocity, one would
have to conclude that the prism is in fact stable in plunge galloping at certain or all Reynolds
numbers outside the supercritical flow regime (Van Hinsberg [259]).
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Chapter 5

Two smooth or slightly rough
square-section prisms with rounded edges
at incidence in a tandem configuration

Two or more parallel prismatic structures with either circular or square cross-sectional shapes
placed close together are widely encountered in many practical situations such as chimney
stacks, overhead power-line bundles, tube bundles in heat exchangers, skyscrapers in modern
cities, struts of landing gears, interplane struts for holding apart the wings of biplanes and mul-
tiplanes, cables of suspension and stayed bridges, pipelines, risers, wind-assisted ship propulsion
devices like Flettner rotors, foundation elements of fixed and floating offshore wind turbines
and oil or gas rigs, etc.

The parallel placement of an identical second bluff body in the close vicinity of the first
one results in most cases in a fluid-dynamic interference between the two bodies. This mutual
flow field interaction induces changes in the instantaneous surface pressures that act on each
one of them. Consequently, both bluff bodies experience not only altered resultant mean and
fluctuating fluid-dynamic forces and moments, but the eddy shedding process and the flow
structures in their separate or common wake are also modified. When mounted elastically in a
uniform flow, this may lead to the occurrence of wake-induced instabilities, such as shear-layer
impingement and reattachment, quasi-periodic vortices, wake galloping, or resonance. Besides
these interference-induced vibrations, the same flow-induced instabilities as for isolated bluff
bodies, described in Chapter 1, may occur. The interference effects and their strengths are
largely dependent on both the relative arrangement to one another (i.e. in-line, side-by-side,
or staggered), the spacing between them, the cross-sectional dimensions (equal or dissimilar),
and the total angle of the incoming flow velocity vector with respect to the longitudinal axis
of each of the two bluff bodies (i.e. perpendicular, yawed, pitched, or a combination of the
latter two). This shows, that there exists an infinite number of possibilities to combine these
parameters. Besides these governing interference parameters, the governing and influencing
parameters listed in Chapter 2 (e.g. Reynolds number, turbulence intensity of the oncoming
flow, geometric blockage, aspect ratio, surface roughness, edge roundness) for isolated bluff
bodies also have an impact on the flow around a pair of circular or non-circular prismatic ele-
ments. As it is frankly impossible to investigate and discuss all possible combinations of those
governing and influencing (interference) parameters, the emphasis of this chapter is on pairs
of parallel 2D square-section prisms with rounded edges that have been placed in-line, i.e. in a
tandem configuration, perpendicularly to the incoming flow. Selected governing and influencing
parameters are the spacing between the two, the Reynolds number based on the undisturbed
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incoming flow, the surface roughness height, and the incidence angle, the last one being equal
for both prisms.

5.1 Classification of the flow regimes for two in-line circular
cylinders and sharp-edged square-section prisms

In the previous chapters, it has been shown that the fluid-dynamic characteristics of single
2D rounded square-section prisms – with and without surface roughness – in a cross flow are
a mixture of those belonging to circular cylinders and to sharp-edged square-section prisms,
whereby the amount of edge roundness determines which one of the two extremes is more
dominant. Hence, the smaller (or larger) the value of r{D, the more the flow around the
square-section prism with edge roundness resembles that of a square-section prism with sharp
edges (or of a circular cylinder). Based on these results, it can be argued that the same must
hold for the flow around two parallel square-section prisms with rounded edges in a tandem
configuration and positioned perpendicular to the incoming flow. This section therefore gives
an overview of the flow categories that can be distinguished for a pair of circular cylinders on the
one hand and for two square-section prisms with sharp edges on the other. The categorisation is
mainly based on the kind of interference effects that take place with changing non-dimensional
centre-to-centre spacing between the two bodies, S{Lref , where Lref equals the diameter or the
side width for circular cylinders and square-section prisms, respectively. The two main types are
a combination of wake interference and proximity interference for small values of S{D, and the
sole occurrence of wake interference for larger S{D values. In the former case, the downstream
bluff body is fully submerged in the turbulent wake of the upstream one and the two bluff
bodies are that close together that the flow around the upstream body is (significantly) altered
by the presence of the downstream one. In the latter case, the main difference is that now the
gap between the two is sufficiently large that the fluid dynamics of the upstream cylinder or
prism is barely influenced by the downstream one and thus nearly equals that of the respective
isolated one. Although at first glance the main characteristics of the various classes seem to
be very similar for both bluff-body pairs, various differences can nonetheless be marked that
result from the possible migration or absolute fixation of the boundary layer separation and
reattachment points along the surface, respectively at the sharp edges.

5.1.1 Pairs of circular cylinders in tandem

5.1.1.1 Categories of flow regimes

The extended-body regime or Mode I occurs at a very small centre-to-centre spacing of 1 ď
S{D ď 1.2 to 1.8 (Zdravkovich [292]) or 1 ď S{D ď 2 (Zhou and Yiu [299]) between the
two tandem cylinders, whereby the exact gap value of the upper boundary depends on the
Reynolds number. This category is characterised by the absence of a reattachment of the free
shear from the upstream circular cylinder on the surface of the downstream one. They instead
overshoot and thus wrap around the second cylinder, which leads to a complete suppression of
the eddy shedding in the base region of the upstream cylinder and a stagnant flow in the gap
between the two cylinders. Hori [102] demonstrated the absence of a gap-flow by measuring the
mean circumferential pressure distribution over two in-line circular cylinders. He found that
the mean surface pressures close to the stagnation point of the downstream cylinder equalled
the mean base pressure of the upstream cylinder. Since the resultant mean suction at the base
of the second cylinder was furthermore lower than at its front surface, the former experienced
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a negative drag, hence, a thrust force. Because of the relatively small spacing between the
two tandem cylinders in this flow regime, the presence of the downstream cylinder and the
induced flow modification around it are fed back to the upstream cylinder. The drag force that
is experienced by the latter cylinder is therefore lower than that of a single isolated cylinder.
This proves, that in this category proximity effects clearly dominate over wake interference
effects. The unsteady flow and the periodic eddy shedding both occur in the wake of the
downstream cylinder only, whereby these eddies are actually formed by the free shear layers
that have separated from the upstream cylinder. The two cylinders therefore act effectively
as a single streamlined elliptical structure with a periodic eddy shedding in its wake. The
common wake behind the cylinder pair is narrow, which results in a shorter eddy-formation
length and higher Strouhal numbers than for a single isolated cylinder. So obtained Hiwada et
al [100] in their experiments on the flow around two tandem cylinders at ReD = 5ˆ104 Strouhal
numbers behind the downstream cylinder of StL2 = 0.24–0.28 (Fig 5.1). Similar values were
later measured by Igarashi [109] for Reynolds numbers of ReD = 1.5ˆ104–4ˆ104.

Okajima [173] 

Figure 5.1: Effect of centre-to-centre spacing value S{D on the Strouhal number of two smooth
circular cylinders in tandem at ReD = 5ˆ104 (Adapted from Hiwada et al. [100]).

The extended-body regime is followed by the reattachment regime, the latter taking place at
an increased cylinder-to-cylinder centre spacing of 1.2–1.8 ď S{D ď 3.4–3.8 (Zdravkovich [292])
or 2 ď S{D ď 5 (Zhou and Yiu [299]). On the one hand, the gap between both cylinders is now
sufficiently large to allow the free shear layers that have separated from the upstream cylinder
to start rolling up behind the cylinder’s base. The values of S{D are, on the other hand, still
smaller than the eddy formation length of the upstream cylinder. Hence, during the process of
roll-up, the free shear layers reattach on the downstream prism. Depending on the exact length
of the gap, this reattachment is either alternately, permanently, or intermittently (Ishigai et
al. [112], Hori [102], Igarashi [107, 109]). The eddy shedding from the upstream cylinder is
thus still suppressed and only one common Kármán vortex street is formed in the wake of the
downstream cylinder. This implies, that this category is still dominated by proximity effects,
although at these spacing values wake-interference effects also slowly start to become visible
and noticeable. The flow regime can therefore still be marked as Mode I.

In contrast to the former extended-body regime, the eddies behind the downstream cylinder
are now shed with a lower frequency than that of a single isolated cylinder. Zhou and Yiu [299],
for example, observed in their experiments that for S{D = 2 to 3 the reattachment of the free
shear layers from the upstream cylinder occurred more often on the leeward side of the down-
stream cylinder, whereas for S{D = 3 to 5 the reattachment mostly took place on the windward
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side. In the former case, this led to a strong influence on the development and separation of the
downstream cylinder’s boundary layer that resulted in weaker and smaller eddies being shed
behind the downstream cylinder, whereas in the latter case the Kármán vortices were stronger.
Hiwada et al. [100] found that the cross-over from the extended-body regime to the reattachment
regime was accompanied with a discontinuous drop in the Strouhal number of the downstream
cylinder to StL2 = 0.12 to 0.15 (Figure 5.1). The graph shows, that this low value remains up
to S{D = 4.

Similar to the extended-body regime, the proximity of both cylinders leads also in reattach-
ment flow regime to a lower drag on the upstream cylinder than that of an isolated cylinder, al-
though the difference between the two values gradually decreases with increasing gap length. As
furthermore shown by Zdravokich [296], the value of Cd1 is nearly independent of the Reynolds
number for ReD = 3.4ˆ103–2.3ˆ105, but experiences a light decrease with increasing S{D. In
contrast, the mean drag of the downstream cylinder is – depending on the combination of S{D
and ReD – either negative or close to zero.

In the final co-shedding regime (S{D ě 3.4–3.8 or S{D ě 5, according to Zdravkovich [292]
and Zhou and Yiu [299], respectively), which is also denoted as Mode II, the downstream cylin-
der is positioned sufficiently far downstream from the upstream one for the free shear layers
from the latter cylinder to roll up into distinct eddies in the gap between both cylinders. As
a result, the flow around the downstream cylinder is not only affected by the upstream non-
uniform wake turbulence, as is the case in the previous extended-body regime, but it now also
experiences a periodic vortex impingement.

While for S{D ą 5–6 a fully developed and uncoupled vortex street is formed behind each
cylinder, a coupled eddy-shedding regime appears for spacing values in the range of 3.4 ă S{D
ă 5–6. In the latter regime, the eddy-shedding mechanism in the near wake of the downstream
cylinder is triggered by the arrival of the distinct vortices that have been shed by the upstream
cylinder. This leads to a synchronisation of the two vortex streets both in phase and frequency,
as a result of which a "binary vortex street" is formed (Igarashi [107, 109], Zdravkovich [295],
Alam et al. [16], Alam [12], Wang et al. [266]). For spacing values larger than approximately
3.3, Hiwada et al. [100] obtained nearly equal values of StL1 and StL2 , see Figure 5.1. A slow rise
with increasing S{D is observed from StL1,2 = 0.17 around S{D = 3.3 towards StL1,2 = 0.19 at
S{D = 6, hence, gradually approaching that of a single isolated cylinder. In their wind tunnel
experiments on two circular cylinders in tandem, Okajima and Sugitani [176] observed a similar
behaviour for StL2 with increasing spacing value. They measured the eddy shedding frequencies
behind both cylinders simultaneously for 5 ă S{D ă 66 at Reynolds numbers ranging from
ReD = 1.6ˆ104 to 2.36ˆ105. Their data, presented in Figure 5.2, clearly show a gradual, but
steady rise of StL2 from 0.12 to 0.18 for Reynolds numbers up to about ReD = 9.4ˆ104. In
the same range, the Strouhal number of the upstream cylinder remains fixed at StL1 = 0.2.
Following the argumentation by Zdravkovich [295], the difference in the two trends results from
the different flow conditions experienced by both cylinders. The upstream cylinder experiences
a uniform oncoming free-stream. The vigorous interaction of both free shear layers in its base
region produces a velocity defect in the near wake. This velocity defect is large in the vicinity
of the cylinder, but decreases and therefore slowly dissolves downstream. For relatively small
spacing values, the velocity of the oncoming flow experienced by the downstream cylinder equals
the wake velocity of the upstream cylinder with uwake ă U8. The calculation of the Strouhal
number of each cylinder is based on the free-stream velocity, though. For the downstream cylin-
der, this leads to a lower Strouhal number than for the upstream one at small S{D values, but
gradually approaches the latter one with increasing gap length. Wu et al. [278] indicated that
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Figure 5.2: Combined influence of centre-to-centre spacing value S{D and Reynolds number on
the Strouhal number of two smooth circular cylinders in tandem (Okajima and Sugitani [176]).

the effect of a combination of vortex impingement on the downstream cylinder and an elevated
turbulence intensity of and streamwise structures in the approaching flow leads in addition to
a lower spanwise coherence of the wake behind the downstream cylinder. Zhou and Yiu [299]
furthermore showed that the eddies shed by the downstream cylinder are larger, but at the
same time weaker in Mode II than in Mode I, since in the co-shedding regime they are formed
closer to the base of the downstream cylinder.

Depending on the Reynolds number of the undisturbed oncoming flow, the boundary be-
tween the reattachment regime and the co-shedding regime varies between S{D = 3.5 and 5
(Zdravkovich [292], Xu and Zhou [280], Zhou and Yiu [299]). It is characterised by the critical
or bistable flow spacing S{Dcr, at which both flow regimes appear intermittently on either side
of S{Dcr (Igarashi [107], Xu and Zhou [280]). At the critical spacing, a drag inversion takes
place: for increasing S{D-values a discontinuous jump in the drag force on the downstream
cylinder from a small negative to a large positive value occurs at S{Dcr due to the transition
from Mode I to Mode II. This jump in CD2 is coupled with a simultaneous jump in the Strouhal
number StL2 to a higher value. The intermittent character of this transition was measured by
Hiwada et al. [100], as shown in Figure 5.1. For spacing values between 3.3 and 4.0, two clearly
separated Strouhal numbers are obtained for the downstream cylinder at each spacing value.
The lower one is associated with the reattachment regime, while the higher value belongs to
the co-shedding regime.

5.1.1.2 Influence of Reynolds number and surface roughness

The influence of the second governing parameter, i.e. the Reynolds number, on the flow be-
haviour around two smooth 2D circular cylinders in a tandem configuration has been investi-

135



Chapter 5: Two smooth or slightly rough square-section prisms with rounded edges at incidence in
a tandem configuration

gated experimentally by Pearcey et al. [184], Schewe and Jacobs [211], and Schewe et al. [212]
over a wide range of Reynolds numbers up to transcritical values close to Op107q. The measure-
ment data by Pearcey et al. [184] include, among others, mean drag coefficients and Strouhal
numbers for both cylinders, that were obtained at S{D = 3.0 (i.e. in the reattachment regime)
and 5.0 (hence, belonging to the co-shedding regime) for ReD ď 7ˆ105 and ReD ď 7ˆ106,
respectively. At both spacing values, the trend of the Cd1(ReD) curve is similar to that of an
isolated circular cylinder. Slightly lower values have been measured for S{D = 3.0 in the sub-
critical and supercritical flow regimes, that result from the mutual interference between both
cylinders at this spacing. The downstream cylinder experiences a clear thrust force up to the
start of the critical flow regime, at which point a sign inversion occurs and a positive drag is
obtained. In contrast, Cd2 remains relatively constant for S{D = 5.0 within the complete range
of studied Reynolds numbers. At supercritical Reynolds numbers, the drag on the upstream
prism is at both spacing values lower than on the downstream one. This is attributed to the
formation of separation bubbles on the surface of the upstream cylinder in the supercritical
flow regime and the accompanied secondary turbulent boundary layer separation on the down-
stream half of the cylinder. The resultant sharp reduction in the width of the wake behind
the upstream cylinder leads to a smaller shielding of the downstream cylinder by the upstream
one. The surface pressures on the front portion of the downstream cylinder that is not shielded
anymore thereupon increase and consequently raise the drag.

A similar behaviour of the mean drag force experienced by the upstream circular cylinder
was recently confirmed by Schewe and Jacobs [211], and Schewe et al. [212] for spacing values of
S{D = 1.56, 2.8, and 4.0 at Reynolds numbers between 105 and 107. They found that the mean
drag coefficient of the downstream cylinder shows, on the contrary, an inverse development with
Reynolds number compared to the upstream one, as presented in Figure 5.3. This inversed be-
haviour of CD between both cylinders becomes even more distinct with decreasing gap length
and results from the increased dominance of the proximity effects. At S{D = 1.56, the down-
stream cylinder experiences two drag inversions with zero-crossing. The first one occurs at the
cross-over from the reattachment regime (CD2 ă 0) to the co-shedding regime (CD2 ą 0) in the
critical flow regime and is coupled with the appearance of an asymmetric flow with steady lift
force on the downstream cylinder of CL2 « 1. The second one is found at the beginning of
the transcritical flow regime, this time at the passage from the co-shedding regime back to the
reattachment regime with CD2 ă 0 and coupled with a change in the topological flow structure.
Only one jump in CD2 , from the reattachment regime to the co-shedding regime, takes place
in the critical flow regime at the larger spacing S{D = 2.8, whereas at S{D = 4.0 only small
variations in CD2 with changing Reynolds number have been obtained. At this largest spacing
no zero-crossing was observed though, which means that the co-shedding regime is present in
the complete investigated Reynolds-number range. As can be seen in the upmost graph of
Figure 5.4, the trends of the fluctuating lift on the downstream circular cylinder at S{D = 2.8
and 4.0 agree well with that of an isolated circular cylinder. The higher values throughout the
subcritical to transcritical flow regimes result from the impingement of the free shear layers
(S{D = 2.8) or shed eddies (S{D = 4.0) onto the downstream cylinder. The curve of the
Strouhal number StL2(ReD) for the downstream cylinder for the larger of these two spacing
values is very close to that of an isolated circular cylinder (Figure 5.4). Within the supercritical
flow regime, two clearly separated Strouhal numbers have been measured. Through wavelet
analysis it has been demonstrated that the lower one of the two results from interference effects
between both cylinders. For the tandem configuration with S{D = 2.8, a discontinuous jump
from StL = 0.13 to 0.34 appears at the cross-over from the critical to the supercritical flow
regime. This value then gradually decreases with increasing Reynolds number while traversing
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Figure 5.3: Mean drag coefficients of two in-line smooth circular cylinders for Reynolds numbers
between 105 and 107 (Adapted from Schewe et al. [212]). Top: S{D = 4.0; centre: S{D = 2.8;
bottom: S{D = 1.56.

the supercritical flow regime and upper transition before reaching a transcritical plateau with
StL = 0.17 around ReD = 107.

In contrast to the many studies, both numerically and experimentally, on the influence of
the height and texture of surface roughness on the fluid dynamics of isolated circular cylinders,
hardly any investigations have been performed on in-line roughened circular cylinders up to
today, despite their significant relevance to many engineering applications. Okajima [173] used
polystyrene beads to simulate a surface roughness of k{D = 0.9%. Two centre-to-centre spacing
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Figure 5.4: Fluctuating lift coefficient and Strouhal number of the downstream smooth cylinder
for two in-line circular smooth cylinders (S{D = 2.8 and 4.0) at Reynolds numbers between 105

and 107 (Adapted from Schewe et al. [212]). Top: fluctuating lift; centre: Strouhal number for
S{D = 2.8; bottom: Strouhal number S{D = 4.0. Reference: ‚, single smooth circular cylinder
by Schewe [209].

values were selected, i.e. S{D = 3.0 and 5.0, for Reynolds number between ReD = 4ˆ104 and
4ˆ105. The downstream cylinder was either smooth or roughened, while the upstream cylinder
was in both cases rough. Figure 5.5 gives an overview of the mean drag and Strouhal number
of both roughened cylinders at the two spacing values, as well as those obtained for both in-
line rough and smooth cylinder combinations, as function of the Reynolds number. For the
upstream cylinder, the changes of both fluid-dynamic parameters with increasing S{D and
Reynolds number are as expected. A comparison of the various curves for the downstream
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Figure 5.5: Impact of increased surface roughness height (K{D = 0.9%) on the mean drag
coefficient (left) and Strouhal number (right) of two circular cylinders in tandem (S{D = 3.0
and 5.0) for Reynolds numbers between 4ˆ104 and 4ˆ105 (Okajima [173]). The dashed lines
show the reference data that were obtained for a combination of a rough upstream and smooth
downstream circular cylinder in tandem at equal centre-to-centre spacings.

cylinder shows that the drag curve for S{D = 5.0 is the only one that is clearly altered by
the surface roughness for all Reynolds numbers with the exception of the subcritical ones.
Interestingly, the increased surface roughness has barely any effect on the curves of the Strouhal
numbers for both cylinders. It is furthermore noticed, that both cylinders have equal Strouhal
numbers at each spacing value.

5.1.2 Pairs of sharp-edged square-section prisms in tandem

Despite the various distinct differences between the flow characteristics of sharp-edged square-
section prisms and circular cylinders, presented in Chapter 2, a variety of flow patterns, similar
to those described above for two in-line circular cylinders, also appear one after the other with
increasing centre-to-centre spacing between two tandem square-section prisms in cross-flow (Shi-
raishi et al. [220], Kareem [121], Sakamoto et al. [204], Sakamoto and Haniu [203], Luo [137],
Ohya et al. [172], Luo and Teng [140], Takeuchi and Matsumoto [240], Tatsutani et al. [244],
Hangan and Vickery [94], Luo et al. [139], Alam et al. [14, 15], Liu and Chen [134], Kim et
al. [125], Sohankar and Etminan [232], Etminan et al. [72], Choi et al. [50], Sohankar [229,230],
Duchaine et al. [67], Shang et al. [216]). Besides S{D (and ReD in case its value is smaller than
104, as was discussed in section 2.2.1) the angle of incidence of each of the two square prisms
now has a tremendous influence on the flow structures and ensuing fluid-dynamic loading as
well. This latter effect has for example been presented in experimental investigations of two-
inline square-section prisms at various incidences between 0˝ and 45˝ by Reinhold et al. [188]
and Du et al. [64–66].
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In their experimental study on the flow over two sharp-edged square-section prisms in a
tandem arrangement at Reynolds numbers of ReD = 2.76ˆ104–5.52ˆ104, Sakamoto et al. [204]
found a significant effect of S{D on both the mean and fluctuating fluid-dynamic loads experi-
enced by both prisms, as well as on the Strouhal number. They observed a jump in the mean
and fluctuating drag, fluctuating lift, and Strouhal number at a spacing of S{D = 4.0. At this
critical spacing between the reattachment regime (S{D ď 4.0) and the co-shedding regime (4.0
ď S{D ď 28) the mean drag and fluctuating forces reach their maximum values, whereas the
Strouhal number drops to its minimum of StL « 0.1. In contrast to the reattachment regime, in
which eddies are shed from the downstream prism only, the co-shedding regime is characterised
by a synchronisation in frequency and phase of the eddy shedding behind both prisms. They
noticed that this synchronisation remains present up to a spacing value of S{D = 28, above
which both prisms shed eddies independently and at different frequencies with StL2 ă StL1 .
They furthermore reported that in the co-shedding regime the periodic vortex impingement
onto the downstream prism leads to significantly larger fluctuating lift and drag forces acting
on this prism than those measured on the upstream one or on an isolated prism. Similar flow
observations were obtained in a later experimental study by Luo and Teng [140], in which the
value of the critical spacing as S{Dcr = 4.0 was confirmed at ReD = 5.67ˆ104. Sakamoto
and Haniu [203] discovered that the value of the critical spacing decreases with increasing free-
stream turbulence intensity for two tandem square-section prisms at ReD = 3.32ˆ104, while
Sohankar [229] observed a decrease of S{Dcr with increasing Reynolds number at α = 0˝. The
effect of a variation in the prism-to-prism spacing in the range of S{D = 1.5 to 9 was studied
in a wind tunnel experiment by Liu and Chen [134] at Reynolds numbers between 2ˆ103 and
1.6ˆ104. Their results show not only that the flow structures around both prisms are highly
dependent on S{D, but also that a hysteresis phenomenon with two jumps between the reat-
tachment regime and co-shedding regime is present for S{D = 2.5 to 3.25 as the spacing value
is either progressively increased or decreased at ReD = 5.3ˆ103. Using PIV, Kim et al. [125] in-
vestigated the flow structures around two square-section prisms in a tandem arrangement with
S{D = 1.5 to 11 at Reynolds numbers between 5.3ˆ103 and 1.6ˆ104. It was demonstrated
that, depending on the Reynolds number, the value of the critical spacing is positioned in the
range of S{D = 3.0 to 4.0.

The previous overview has shown, that a large amount of studies, both numerically and ex-
perimentally, are available on the flow around and fluid-dynamic quantities of two sharp-edged
square-section prisms in a tandem configuration at 0˝ angle of incidence. Du et al. [64–66] are
one of the few who actually performed wind tunnel experiments to study the impact of a vari-
ation of the incidence angle of both in-line prisms on their fluid-dynamic characteristics. Two
incidence angles, α = 0˝ and 45˝, and eight spacing values between P {B (= S{D) = 1.75 and
5 (with P the dimensional centre-to-centre spacing between both prisms with side widths B)
were selected. The Reynolds number was kept constant at ReD = 8ˆ104. Figure 5.6 presents
the cross-sectional mean drag coefficients on both prisms as function of the spacing value P {B
for both incidence angles. Regarding the upstream prism, the drag values lie at both incidence
angles in the vicinity of those of the single prism and coincide with the values obtained by
Sakamoto et al. [204] and Sohankar [230]. The change of the drag force on the downstream
prism from negative (i.e. a thrust force) to positive at P {B = 3 to 3.5 for α = 0˝ implies that
the flow around the tandem configuration switches around that spacing from the reattachment
regime to the co-shedding regime. The absence of an eddy formation behind the upstream
prism, together with the combination of the reattachment of the free shear layers from the
upstream prism on the downstream one and a weak eddy shedding in its wake for P {B ă 3–3.5
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Variations of the fluctuating pressure distribution on all rings for a single square cylinder
at incidence angle α=0°–45° are shown in figure 7, and a good agreement is found with the
experimental data from Nishimura and Taniike (2000) and the results of LES studies from
Oka and Ishihara (2009).

In general, our results agree well with the previous studies and some characteristics can
be distinguished. The quantities of four tap rings also reach a good agreement. Thus, only the
results of tap ring 1 will be discussed afterwards.

4. Aerodynamics of two tandem square cylinders

4.1. Aerodynamic coefficients

Figure 8 shows the variation of the mean drag coefficients CD of tandem cylinders in hor-
izontal and diagonal arrangements with the the spacing ratio. The results of single cylinder
and other studies of horizontal arrangement (Sakamoto et al 1987, Sohankar 2014) are also
plotted for comparison. It can be seen that there are in a good agreement on the tendency of
the CD, despite the different critical spacing, which is approximately P/B=3–3.5 in the
present study and P/B=3–4 in other studies for different Reynolds numbers or experimental

Figure 7. Fluctuating pressure coefficients CPf of tap rings: (a) horizontal single
cylinder; (b) diagonal single cylinder.

Figure 8. Variation of mean drag coefficient CD with spacing ratio P/B: (a) horizontal
arrangement; (b) diagonal arrangement.
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Exp. Sakamoto et al. [204]  
LES Sohankar [230]  

Figure 5.6: Effect of gap spacing on the mean drag coefficients of two in-line sharp-edged
square-section prisms at incidence (Adapted from Du et al. [64]). Left: α = 0˝; right: α = 45˝.

induce only weak force fluctuations in both flow and cross-flow direction on both prisms (Figure
5.7). Above the critical spacing, the appearance of an vortex street in the gap between both
prisms and its impingement on the downstream prism result in constant fluctuating lift and
drag forces with high values that are close to those of an identical isolated sharp-edged square-
section prism. Whereas in the former regime, the fluctuating lift forces on the downstream
prism are larger than those of the upstream one, the latter regime is characterised by higher
fluctuating lift forces on the upstream prism. Regarding the fluctuating drag forces, higher
values are obtained on the downstream prism at all gap spacing values. The frequency with
which the eddies are shed in the common near wake behind the downstream prism gradually
decreases with increasing spacing value in the reattachment regime and reaches its minimum of
StL = 0.1 at the critical spacing, this value being consistent with the measurement by Sakamoto
et al. [204] (Figure 5.8). In the subsequentco-shedding regime a recovery is observed; interest-
ingly, at P {B ą 4 the Strouhal number matches that one of a single prism at α = 45˝.

For the tandem configuration at 45˝ angle of incidence, the mean drag on the downstream
prism remains negative at all spacing values between 1.75 and 5. This demonstrates that the
reattachment regime is present at all investigated gap values and, at least up to P {B = 5, no
cross-over to the co-shedding regime takes place. With the exception of the drag fluctuations of
the downstream prism, the fluctuating forces change rapidly with growing gap size up to about
P {B = 3. They thereupon level off and reach nearly constant values for P {B ě 4. For the
fluctuating lift on the downstream and fluctuating drag on the upstream prism, this plateau
equals the level of a single prism, whereas the fluctuating lift experienced by the upstream
prism nears values close to zero. The fluctuating drag on the downstream prism actually has a
similar trend as the fluctuating lift on the upstream one, just with a much smaller amplitude
variation. The trend of the Strouhal number for the tandem prisms at α = 45˝ with increasing
P {B is the exact inverse of those for the fluctuating forces: an increase up to about P {B = 3.5,
followed by nearly constant values for a larger gap spacing (Figure 5.8).
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conditions. However, the results show great differences between horizontal and diagonal
tandem cylinders. As the spacing ratio increases, the mean drag coefficients of the horizontal
and diagonal Cyl_up are close to those of the single cylinder, respectively. But for both
Cyl_down, they exhibit much smaller values than those observed from the single cylinder in
two arrangements. Moreover, the mean drag coefficients of both Cyl_down are quite dif-
ferent, especially when P/B>3.

For the horizontal tandem cylinders, the reduction of the drag on the Cyl_up and a
negative drag on the Cyl_down occur at small cylinder spacing (P/B=1.75–3). With
increasing spacing, CD of the Cyl_down discontinuouly increase at P/B=3–3.5. Previous
studies have revealed the same phenomena and named this spacing ratio as the critical
spacing, where the CD of the Cyl_down varies from negative to positive (Sakamoto et al
1987, Liu and Chen 2002, Yen et al 2008, Sohankar 2014). According to the previous
studies, the flow around two square cylinders is mainly controlled by the center-to-center
longitudinal spacing ratio, P/B, and Reynolds number, Re. The flow can be classified into
three modes, the single bluff-body mode, the reattach mode, and the co-shedding mode. The
aerodynamic characteristics are distinctly different for three modes. Considering both the
previous and present experimental results including aerodynamic forces, pressures and
Strouhal number, there exists two flow modes in the present study in the separation spacing
ratio investigated, the reattach mode for P/B=1.75–3 and the co-shedding mode for P/
B=3.5–5. The single-bluff body mode is not observed because this mode occurs for very
small separation spacing. In the reattach mode, the shear layer separating from the Cyl_up
reattaches to the Cyl_down, and there is no vortex shedding in the gap between the cylinders
(Sohankar 2014). Due to the weak vortex shedding, the fluctuating lift and pressure of both
cylinders are small, which can be seen in figures 9(a) and 13. However, in the co-shedding
mode, the shear layers separated from the Cyl_up roll up alternately and a vortex street forms
in the gap region between the two cylinders as well as behind the Cyl_down, which results in
highly fluctuating lift and pressure of the cylinders. It should be noted that the discontinuous
changes of forces on two cylinders at P/B=3–3.5, as well as the Strouhal number, should be
the results of the mode shift from the reattach one to the co-shedding one.

For the diagonal tandem cylinders, the mean drag coefficient of the Cyl_down remains
negative at all spacing ratios investigated. For two small spacing ratios, P/B=1.75 and 2,
the mean drag coefficients of the Cyl_up are greater than that of the single cylinder. The
phenomenon is probably caused by a pair of strong recirculation flow that occurs between the

Figure 9. Variation of fluctuating aerodynamic coefficients with P/B in the horizontal
arrangement: (a) lift coefficient CLf; (b) drag coefficient CDf.
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two cylinders, inducing high negative pressure at the leeward of the Cyl_up and the windward
of the Cyl_down, and resulting in higher mean drag coefficient, as seen in figure 11.

The r.m.s values of the fluctuating lift coefficient CLf and drag coefficient CDf for two
arrangements are presented in figures 9 and 10. For the horizontal tandem cylinders, the
fluctuating force coefficients of the Cyl_up and Cyl_down have the same trend as the CD in
figure 8, which changes rapidly at the critical spacing. As mentioned above, the flow state
associated with this phenomenon below and above the critical spacing are reattach mode and
co-shedding mode, respectively. In reattach mode, the CLf and CDf for two cylinders are
nearly constant, and values are smaller than those of the single cylinder. Simultaneously, the
values of the Cyl_down are larger than those of the Cyl_up. In co-shedding mode, the
fluctuating coefficients of two cylinders are close to those of the single cylinder. The CDf of
the Cyl_down is still greater than that of the Cyl_up. On the contrary, the CLf of the Cyl_-
down is smaller than that of the Cyl_up.

For the diagonal tandem cylinders, the fluctuating force coefficients also change rapidly
with the increase of the spacing ratios, but the variation differs from that of horizontal tandem
cylinders. At small spacing ratio (P/B=1.75–3), the CLf and CDf of the Cyl_down are much
larger than those of the Cyl_up, single cylinder, and horizontal tandem cylinders. Whereas for
the Cyl_up, only the CLf is larger than that of the single cylinder, and the CDf keeps nearly
constant with the spacing ratio. For larger spacing ratio (P/B=3–5), the CLf and CDf of two
cylinders are much smaller compared to the horizontal tandem cylinders. And for the
Cyl_down, the fluctuating force coefficients are close to those of the single cylinder. Based on
the present aerodynamic characteristics, at least three different flow pattern occur in the
spacing ratio from P/B=1.75 to 5. However, the details of these flow pattern around two
diagonal tandem square cylinders need further investigation by flow visualization techniques.

4.2. Pressure distribution

Figures 11 and 12 present the variations of the mean pressure distribution of two tandem
cylinders at various spacing ratios. The mean pressure distributions on two horizontal and
diagonal tandem cylinders are considerably different, and also differ from those of their single
cylinders, respectively. Among two different arrangements, the discrepancy of two Cyl_down
is substantial.

Figure 10. Variation of fluctuating aerodynamic coefficients with P/B in the diagonal
arrangement: (a) lift coefficient CLf; (b) drag coefficient CDf.
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diagonal tandem square cylinders need further investigation by flow visualization techniques.

4.2. Pressure distribution

Figures 11 and 12 present the variations of the mean pressure distribution of two tandem
cylinders at various spacing ratios. The mean pressure distributions on two horizontal and
diagonal tandem cylinders are considerably different, and also differ from those of their single
cylinders, respectively. Among two different arrangements, the discrepancy of two Cyl_down
is substantial.

Figure 10. Variation of fluctuating aerodynamic coefficients with P/B in the diagonal
arrangement: (a) lift coefficient CLf; (b) drag coefficient CDf.
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Figure 5.7: Effect of gap spacing on the fluctuating lift and drag coefficients of two in-line
sharp-edged square-section prisms at incidence (Adapted from Du et al. [64]). Upper row:
α = 0˝; lower row: α = 45˝.

estimated from the power spectra by the corresponding frequency to the predominate peak in
the power spectra. Firstly, for the horizontal tandem cylinders, there is merely one distinct
peak appearing in the spectra at all spacing ratios. The peak value decreases as P/B increases
below the critical spacing ratio, and increases suddenly when P/B is above the critical
spacing ratio. For the diagonal tandem cylinders, the peak value gets a maximum at P/B=2
and generally decreases monotonically as P/B increases. Meanwhile, the reduction of the
peak value for the Cyl_up is greater than that of the Cyl_down. More particularly, three
distinct peaks are found in the spectra at P/B<3 for the diagonal tandem cylinders, which
corresponded to the reduced frequency St, 3St and 5St, respectively. This mechanism is not
clear currently. As a whole, for small spacing ratios, the shift of the flow modes causes the
frequency of the lift to change with the spacing ratio. For large spacing ratios, the effect of the
Cyl_down on the Cyl_up decreases with the increase of the spacing ratio, which causes the
flow around the Cyl_up changes accordingly as well as its vortex shedding frequency.

Furthermore, in the present study, the Strouhal number for the horizontal single square
cylinder is 0.132 that agrees well with the previous study of Okajima (1982), and for the
diagonal single square cylinder is 0.122. In general, the Strouhal number of the horizontal
tandem cylinders decreases below the critical spacing ratio and increases above the critical
spacing ratio. Whereas, the Strouhal number of diagonal tandem cylinders fluctuates less with
P/B and is apparently smaller than that of horizontal tandem cylinders at the same spacing
ratio.

The predicted results of Strouhal numbers capture the acute change at P/B=2 and 3.5
for diagonal and horizontal arrangements, respectively, which agree well with the differences
in aerodynamic characteristics in the previous section. Here, the base pressure is combined to
quantitatively predict vortex shedding of two tandem square cylinders for various spacing
ratios. It should be clarified that in the following discussion, the mean pressure at the base
point (i.e. the center point c of the rear face for the horizontal cylinder and the point near the
rear vertice c′ for the diagonal cylinder) is marked as the mean base pressure coefficient Cpb,
while the fluctuating base pressure is marked as C′pb.

Figures 18 and 19 show the mean and fluctuating base pressure coefficients for two
tandem cylinders. Results of the single square cylinder in two arrangements are also plotted.
The absolute value (referred as the abs value afterward) of the mean base pressure Cpb of the
horizontal single cylinder is slightly larger than that of the diagonal single cylinder, while the

Figure 17. Variation of Strouhal numbers with spacing ratio P/B.
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Figure 5.8: Effect of gap spacing on the Strouhal number of two in-line sharp-edged square-
section prisms at α = 0˝ and 45˝ (Adapted from Du et al. [64]).
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5.2 Separation effect on two smooth square-section prisms
with r{D = 0.16 in tandem at the two "symmetric"
incidence angles

In contrast to the huge amount of studies on the flow around two "infinite" smooth circular
cylinders or sharp-edged square-section prisms, positioned one behind the other in a cross-flow,
merely a handful of investigations are available on the fluid dynamics of a pair of inline square-
section prisms with rounded edges. The few studies that do exist and focus on the combined
effect of edge roundness and gap spacing have only been published recently and focus on low to
very low Reynolds numbers of ReD = 100 (Adeeb et al. [8], Datta et al. [55], Zhang et al. [297],
Adeeb and Sohn [9]) or ReD = 3ˆ103–4ˆ103 (Virkam et al. [264]).

The results presented in this section on the various fluid-dynamic quantities of two paral-
lel rounded square-section prisms have been obtained in a cross-flow with Reynolds numbers
between 105 and 107. For that purpose, the same test section and measurement equipment
were used as briefly described in section 3.1.1 for the single cylindrical and prismatic bluff
body measurements. Small modifications were performed to the test section to be able to po-
sition a second square-section prism upstream of the first one, as shown in Figure 5.9. The
test described in this section was conducted with two prisms having a fixed edge roundness
of r{D = 0.16 and polished faces, i.e. ks{D = 4.5ˆ10´6. Two centre-to-centre spacing values,
S{D = 4.0 and 5.6, were selected. The spacing variation was realised through a reposition-
ing of the upstream prism, while the location of the downstream prism remained fixed at the
position of the piezoelectric platform dynamometers. Two angles of incidence, α1,2 = 0˝ and

Xtest_sec = 16.67 Lref 

Z
test_sec  = 10L

ref 

Unsteady 3D 
lift & drag data

Wake pitot  
tubes 

Wake static  
tubes 8.33Lref 

Wake rake 
Piezoelectric 

platform  
dynamometers 

X 

Z 

Wake  
width 
(Zwake) 

Xwake_rake   =6.25Lref 

Wake profile 

U∞ 

Downstream 
prism S/D = 5.6

S/D = 4.0
S/D = 2.8

Upstream 
prism 

Figure 5.9: Experimental setup in the High-Pressure wind tunnel facility for fluid-dynamic
tests on two 2D models in tandem: side view of test section with the two tandem models,
piezoelectric platform dynamometers, and wake rake (Adapted from Van Hinsberg [259]).
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45˝, were investigated, whereby at each test run both prisms had the same incidence angle.
The measurement procedure of scanning through the complete range of Reynolds numbers by
a combined variation of the flow velocity and total air pressure in the HDG, see section 3.1.1,
was maintained.

5.2.1 Mean global and cross-sectional fluid-dynamic coefficients

The Figures 5.10a and 5.10b present the development of the coefficient of the mean cross-
sectional total wake drag coefficient of the tandem arrangement, obtained with the pressure
rake in the wake behind both prisms, with increasing Reynolds number for S{D = 4.0 and 5.6
for both incidence angles. The shapes of the vertical wake profiles from which the total drag
of both prisms was derived, are shown in Figure 5.11 for selected Reynolds numbers that cover
the various occurring flow regimes. For comparison reasons, the data for the isolated smooth
square-section prism with equal edge roundness have been included in both figures as well.
The latter global drag coefficients were obtained with the piezoelectric platform dynamome-
ters instead. Both CDsingle

(ReD) curves in the Figures 5.10a and 5.10b have been multiplied
by a factor two to facilitate the comparison with the results for each tandem configuration.
At α = 0˝, an almost perfect match is found between both Cdwake(ReD) curves for the two
in-line prisms and the corresponding curve of the identical, single square-section prism at all
Reynolds numbers. This even counts for the drag crisis and the Reynolds numbers at which
the cross-overs from one flow regime to the next occurs. By inspection of the shapes of the
wake profile, the widths of the wake, and the maximum total non-dimensional pressure losses
`

∆p{q
˘

max
in the Figures 5.11b and 5.11c, this equality of the total drag between both gap

spacing values at equal subcritical to supercritical Reynolds numbers is evident. Surprisingly,
even the asymmetry in the wake profiles in the asymmetric flow state is virtually identical.

At α = 45˝, the overall trend of the Cdwake(ReD) curve for the larger of the two spac-
ing values is still similar to that of the single prism configuration (Figure 5.10b). Deviations
from the latter configuration do occur though, in particular at subcritical and supercritical
Reynolds numbers at which, smaller, respectively higher mean total drag values are obtained.
The changes in the wake profiles and in particular in the values of

`

∆p{q
˘

max
show a weaker

dependence on the Reynolds number, though (Figure 5.11f). In contrast, the combination of
S{D = 4.0 and α = 45˝ results in a mean total drag curve that highly differs from the others.
With the exception of the short supercritical flow regime, both the value for Cdwake and its
variation with increasing Reynolds number are much smaller. In particular the discontinuous
drop of the total drag curve in the transcritical flow regime down to the subcritical level is
prominent. As seen in Figure 5.11e, it is caused by the sharp and sudden reduction of the max-
imum total non-dimensional pressure loss that indicates the presence of a much lower velocity
defect and thus a shorter near wake, while the width of the wake remains unaffected.

The individual mean drag coefficients on each prism, Cd1 and CD2 , are displayed in the Fig-
ures 5.10c to 5.10f for the two spacing values at both incidence angles, together with the mean
global drag coefficient of the single prism. Because neither the global, nor the cross-sectional
drag on the upstream prism was measured directly, Cd1 had to be derived in an indirect way as
the difference between the mean cross-sectional total drag coefficient, Cdwake, of each tandem
configuration and the respective mean global drag coefficient experienced by the downstream
prism, CD2 .

For both S{D = 4.0 and 5.6, the mean global drag coefficient of the downstream prism is
largely Reynolds-number independent. The only significant, but very gradual change of about
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Figure 5.10: The Reynolds-number dependent mean global and cross-sectional drag and mean
cross-sectional base pressure coefficients on two smooth square-section prisms (r{D = 0.16,
ks{D = 4.5ˆ10´6, α = 0˝ and 45˝) in a tandem configuration with a prism centre-to-centre
spacing of S{D = 4.0 and 5.6. Left column: α = 0˝; right column: α = 45˝. 4: single isolated
prism (r{D “ 0.16, ks{D = 4.5ˆ10´6), Van Hinsberg et al. [254].

33% in drag occurs in the critical flow regime. The cross-over to the supercritical flow regime
is for both spacing values situated around ReD = 7ˆ105. Similar to the single prism case, this
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Figure 5.11: Influence of the prism centre-to-centre spacing on the mean vertical wake profile
at X{Lref = 6.25 behind the mid-span of the downstream one of two smooth tandem square-
section prisms (r{D = 0.16, ks{D = 4.5ˆ10´6, α = 0˝ and 45˝) for selected Reynolds numbers
in the various flow regimes. Left column: α = 0˝; right column: α = 45˝. Upper row: single,
isolated prism configuration; centre row: S{D = 4.0; lower row: S{D = 5.6. --: subcritical
flow regime; --: critical flow regime; --: supercritical flow regime; --: upper transition; --:
transcritical flow regime.

flow regime lasts up to at least ReD = 107. While the values of CD2 are at all subcritical and
critical Reynolds numbers significantly lower than for the single prism, the weaker descent in
the latter flow regime leads to a convergence of both curves that results in mean global super-
critical drag coefficients for the downstream prism that are at a similar level as for the single
prism configuration. It can thus be argued, that, although the flow around the two tandem
prisms can be classified as belonging to co-shedding regime, proximity effects are nonetheless
present up to about ReD = 7ˆ105. Both Cd1(ReD) curves for the upstream prism have similar
trends as both the total drag coefficient of the tandem configuration (obtained by the wake
rake measurement) and the global drag coefficient of the single smooth prism. Because of the
low subcritical and critical values of CD2 , a significantly higher drag force than for the isolated
prism is derived for the upstream prism in these two flow regimes at S{D = 4.0 and 5.6. The
mean pressure at the base of both tandem prisms is for all Reynolds numbers nearly identical
to those of the single prism, as shown in the Figures 5.10g and 5.10i. This would imply the
presence of a lower mean pressure on the front face(s) of the downstream prism than on the
same face(s) of the single prism, while on the front face(s) of the upstream prism much higher
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mean pressures would have to be present. However, both the upstream tandem prism and the
isolated prism experience the same undisturbed free stream. It can thus be argued, that the
pressure distribution on the front face(s) of both latter configurations are similar or even equal.
Hence, it must be concluded that the values of Cd1 , calculated by taking the difference between
Cdwake and CD2 , are over-predicted at subcritical and critical Reynolds numbers.

At the incidence angle of 45˝, the mean cross-sectional drag coefficient for the upstream
prism follows at both spacing values the CDsingle

(ReD) curve of the single prism. The actual
values of Cd1 fluctuate for S{D = 4.0 around those of CDsingle

, while for S{D = 5.6 larger
values are obtained at all Reynolds numbers. Because in the latter case a nearly perfect match
between the base pressures of the upstream tandem prism and the single prism has been found,
as displayed in Figure 5.10j, an over-prediction of Cd1 is present at all Reynolds numbers at
S{D = 5.6. At the smaller spacing, a much lower mean suction at the base is obtained for the
upstream prism than for the single prism at the majority of Reynolds numbers (Figure 5.10h).
This means that for S{D = 4.0 Cd1 is also over-predicted. Compared to the upstream prism, the
mean global drag coefficient of the downstream prism shows at both spacing values an inverse
development with increasing Reynolds number. The stronger variation of CD2 between the
various flow regimes at S{D = 4.0 results from the sharp discontinuous steps in the mean base
pressure coefficient at the cross-overs from the critical to the supercritical and from the upper
transition to the transcritical flow regimes. At S{D = 5.6, a much weaker dependence of both
CD2 and Cpb2 on the Reynolds number has been measured. Interestingly, at all subcritical and
transcritical Reynolds numbers, the downstream prism experiences at S{D = 4.0 no net drag
force. This demonstrates, that in those two flow regimes the smaller centre-to-centre spacing
equals the critical spacing.

5.2.2 Fluctuating loads due to eddy formation and shedding

The trend of the fluctuating lift on the downstream rounded square-section prism at α = 0˝
is not only equal for both spacing values, but also corresponds to that one of the single prism

(Figure 5.12a). While the spacing itself has no pronounced influence on the values of
b

pC
12
L q2

,
the presence of the upstream prism generates for both spacing values slightly lower subcritical
and critical lift fluctuations compared to the single prism case and considerably higher ones
at all supercritical Reynolds numbers. Regarding the force fluctuations in flow-direction on
the downstream prism, an inverted behaviour with increasing Reynolds number is observed in
Figure 5.12c. The presence of the upstream prism induces significantly larger drag fluctuations
on the downstream prism in the subcritical and critical flow regimes, that are at S{D = 4.0 in
the former flow regime even more than twice as high as for an isolated prism. Then again, no

variation in the values for
b

pC
12
Dq2

by changes in the spacing and the Reynolds number or by
the presence of a second prism is noted at supercritical Reynolds numbers.

Regarding the trend of the curve of the non-dimensional frequency of the shed eddies in the
wake behind the downstream prism, a nearly perfect match with the curve for the single prism
is obtained for both spacing values as well, as shown in Figure 5.12e. In particular the jump in
the StL(ReD) curves at the cross-over from the critical to the supercritical flow regime occurs
in all three configurations at the exact same Reynolds number. The same even holds for the
appearance of two Strouhal numbers, associated with the two main peaks in the power spectra
of the global lift force presented in the Figures C.1a to C.1c, at equal Reynolds numbers in
the critical flow regime. These results clearly show once more that the flow belongs at both
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Figure 5.12: The Reynolds-number dependent fluctuating global lift and drag coefficients and
the non-dimensional eddy-shedding frequency of the downstream prism of two smooth square-
section prisms (r{D = 0.16 and ks{D = 4.5ˆ10´6) in a tandem configuration with S{D = 4.0
and 5.6 at α = 0˝ and 45˝. 4: single isolated prism (r{D “ 0.16 and ks{D = 4.5ˆ10´6), Van
Hinsberg et al. [254]. In case of the occurrence of two peaks in the power spectra at a certain
Reynolds number, the more dominant Strouhal number is indicated by an open symbol, while
a dot within the symbol belongs to the secondary peak. Left column: α = 0˝; right column:
α = 45˝. Upper row: single, isolated prism configuration; centre row: S{D = 4.0; lower row:
S{D = 5.6.

spacing values to the co-shedding regime. The slightly lower Strouhal numbers for S{D = 4.0
signalise the presence of a very weak influence of the upstream prism on the eddy shedding
process behind the downstream one. At S{D = 5.6, the congruence of the curves for the tandem
configuration and the single prism demonstrate the absence of any of such interference effects.

Also at the second "symmetric" incidence angle, the trends of the curves of the fluctuating
lift, fluctuating drag, and for Strouhal number as function of the Reynolds number coincide well
with those for the single prism configuration. However, compared to α = 0˝, larger deviations
at equal Reynolds and larger variations in the values with increasing Reynolds number take
place. Whilst at the majority of Reynolds numbers higher lift fluctuations are experienced
by the downstream prism at both spacing values than by the single prism, the values for the
fluctuating drag are for all three cases at a similar level. The only exception is found in the
outer two flow regimes for the smaller gap size, i.e. the subcritical and transcritical one, where
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much lower fluctuations in flow direction have been obtained. The only deviations of the two
StL2(ReD) curves from that one for the single prism are found for S{D = 4.0 at ReD ď 8ˆ105

and ReD ą 6ˆ106; hence, exactly at those Reynolds number at which S{D = S{Dcr. At both
tandem configurations, the occurrence of two Strouhal numbers at equal Reynolds number is
evident from the power spectra of the global lift force presented in the Figures C.1e and C.1f.

5.3 Surface-roughness effect on two square-section prisms
with r{D = 0.16 in tandem at the two "symmetric"
incidence angles

Chapter 4 was devoted to the impact of an increase in height of a uniformly-distributed surface
roughness on the flow around isolated two-dimensional circular cylinders and square-section
prisms with and without rounded edges at incidence. Placing the focus on the square-section
prism with rounded edges of r{D = 0.16, the main effects of a higher surface roughness were
found to be a narrowing of all flow regimes with the exception of the transcritical one, and their
migration to lower Reynolds numbers. Additional changes in the main fluid-dynamic quanti-
ties, i.e. mean and fluctuating lift and drag, base pressure, and Strouhal number, were found
to be dependent on the incidence angle. At α = 0˝, the left-bounded supercritical flow regime
was open to the right and the upper transition and transcritical flow regimes only appeared
for high non-dimensional surface roughness values of at least ks{D ě 0.1%. The roughness
itself had barely any effect on the absolute minimum or maximum values of all previously listed
quantities at the cross-over from the critical to the supercritical flow regime, as well as on
their respective values within the latter flow regime. For those surface roughness values where
the upper transition and transcritical flow regimes appeared, the majority of the fluid-dynamic
quantities showed a recovery of their values in the direction of their respective subcritical levels
during the flow transition from the supercritical to the transcritical flow regime. At α = 45˝,
the most striking differences with the aforementioned trends at α = 0˝ were the distinct rise of
the absolute minimum values of the coefficients for the mean drag, fluctuating lift and drag, and
base pressure, as well as a descend of the maximum Strouhal number with increasing rough-
ness height at the critical Reynolds number. A higher ks{D value resulted furthermore in an
increased independence of the flow around the rounded square-section prism on the Reynolds
number.

The results in the Figures 5.13 and 5.14 display that similar surface-roughness effects as
described above for the isolated rounded square-section prism in a cross-flow also appear for
two identical in-line square-section prisms with r{D = 0.16. By setting both smooth tandem
prism configurations of section 5.2 as reference, the surface roughness height on both prisms
was increased by a factor of 100 to ks{D = 4.5ˆ10´4 (i.e. "slightly rough"). A significant
deviation occurs only for the upstream prism at α = 45˝, as is presented at a later stage.

Compared to the reference curves of the various fluid-dynamic coefficients, the curves for
both slightly rough prisms clearly show a distinct shrinkage of the Reynolds-number ranges
covered by the various flow regimes. This trend is accompanied with the common shifts of the
two bounding Reynolds numbers of each flow regime towards lower Reynolds numbers with
increasing surface roughness height. The combination of both trends results at α = 0˝ either
in the appearance of both the upper transition and the transcritical flow regimes (S{D = 4.0)
or the increase of the range of supercritical Reynolds numbers (S{D = 5.6). At α = 45˝, the
transcritical flow regime is extended to lower Reynolds numbers for both spacing values.
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Figure 5.13: Impact of the non-dimensional equivalent sand-grain surface roughness height on
the mean cross-sectional (upstream prism) and mean global (downstream prism) drag and mean
cross-sectional base pressure coefficients on two square-section prisms (r{D = 0.16, α = 0˝ and
45˝) in a tandem configuration with a spacing of S{D = 4.0 and 5.6. Left column: α = 0˝;
right column: α = 45˝.

In agreement with the results for the single rounded square-section prism, the subcritical
values of each fluid-dynamic quantity remain for both prisms at all tandem configurations
unaffected by a surface roughness increase. The only exception is formed by the values of Cd1
in the Figures 5.13a to 5.13d, for which a clear difference can be noticed between both curves.
As discussed in section 5.2.1, the drag on the smooth upstream prism was not measured directly;
its values were instead derived by taking the difference between Cdwake

and CD2 . This leads to
an over-prediction of the values for Cd1 in this and the subsequent critical flow regime. The
mid-sections of both slightly rough prisms were on the other hand equipped with 36 pressure
taps, from which the mean pressure drag coefficients could be derived directly. Hence, based
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Figure 5.14: Impact of the non-dimensional equivalent sand-grain surface roughness height on
the fluctuating global drag and lift coefficients and the Strouhal number of the downstream
one of two square-section prisms (r{D = 0.16, α = 0˝ and 45˝) in a tandem configuration with
a spacing of S{D = 4.0 and 5.6. In case of the occurrence of two peaks in the power spectra
at a certain Reynolds number, the more dominant Strouhal number is indicated by an open
symbol, while a dot within the symbol belongs to the secondary peak. Left column: α = 0˝;
right column: α = 45˝.
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on the behaviour of the drag on the single prism with increasing ks{D value (section 4.1.1),
the difference between both Cd1(ReD) curves thus shows the amount of over-prediction of Cd1
for the smooth upstream prism in the subcritical and critical flow regimes at each tandem
configuration. A second similarity with the single prism configuration is the independence on
the roughness height of not only the absolute minimum values of Cd1 , CD2 , and Cpb1,2 of both
prisms at the cross-over from the critical to the supercritical flow regime, but also of their
nearly constant values at supercritical Reynolds numbers. The same holds for the fluctuating
lift and drag forces on and the Strouhal numbers of the downstream prism at those Reynolds
numbers.

At α = 45˝, the effect of an increased ks{D value differs between the two slightly rough
prisms. While for the upstream prism a weaker descend of Cd1 and Cpb1 in the critical flow
regime is obtained that leads to higher supercritical values of both coefficients at both spacing
values, the increased roughness does not alter the values of CD2 and Cpb2 of the downstream
prism obtained at supercritical Reynolds numbers. Hence, although both prisms form together
a tandem constellation, each prism experiences its own development of the drag and base
pressure with increased surface roughness at those Reynolds numbers. Based on the values
of the mean global and cross-sectional drag coefficients, the higher surface roughness does
not affect the classification of the flow around the tandem prism configurations. Like their
smooth counterparts, the flow belongs in all four cases to the co-shedding regime. Noteworthy
is furthermore the occurrence of a zero net drag on the downstream slightly rough prism at all
subcritical and transcritical Reynolds numbers for the combination S{D = 4.0 and α = 45˝
(Figure 5.13c). Hence, in these two flow regimes the spacing of S{D = 4.0 equals once more
the critical spacing between the reattachment and the co-shedding regimes.

The appearance of the upper transition and the transcritical flow regimes for S{D = 4.0
at α = 0˝ creates a stronger dependence of the flow around both slightly rough prisms on
the Reynolds number. This leads to considerably higher drag fluctuations on the downstream
prism, as well as much lower Strouhal numbers, both at a subcritical level, for ReD Ñ 107.
The opposite is found at α = 45˝ as a result of the weaker variation of the fluid-dynamic
coefficients with Reynolds number in the critical flow regime and upper transition for both
spacing values. In this case, high and relatively constant force fluctuations both in flow and in
cross-flow direction together with low Strouhal numbers occur over a large range of Reynolds
numbers.

5.4 Separation effect on slightly rough two square-section
prisms with r{D = 0.16 in tandem at the two "sym-
metric" incidence angles

To obtain a more detailed trend of the impact of the centre-to-centre spacing between the two
slightly rough (i.e. ks{D = 0.045%) square-section prisms with rounded edges of r{D = 0.16 on
the flow behaviour around both tandem prisms a third spacing, i.e. S{D = 2.8, was additionally
investigated at α = 0˝ and 45˝. For all three spacing values S{D = 2.8, 4.0, and 5.6, both
prisms were equipped with 36 pressure that were equally spaced over each model’s mid-span
cross-section. By integration of their pressure values, the mean cross-sectional pressure drag,
lift, and pitch moment coefficients (Cd1,2 , Cl1,2 , and Cm1,2) of each prism could be derived
separately. In addition, both ends of the downstream prism were connected to piezoelectric
platform dynamometers. In that way, the time series of the spanwise-integrated lift and drag
forces on that prism could be measured, from which – in a post-processing step – the respective
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mean and fluctuating components, as well as the frequency of the eddy shedding in the wake
of the downstream prism were extracted.

5.4.1 Mean cross-sectional fluid-dynamic coefficients

Figure 5.15 presents the development of the coefficients of the cross-sectional mean pressure
drag on both tandem prisms Cd1,2 with increasing Reynolds number for the three investigated
prism-to-prism spacing values and for both incidence angles. The values of the single isolated
prism with both equal edge roundness and surface roughness, presented and discussed in section
4.1, have been added to each graph to facilitate a direct comparison. For all three spacing val-
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Figure 5.15: Variation of the mean cross-sectional drag coefficients on two slightly rough square-
section prisms (r{D = 0.16, ks{D = 4.5ˆ10´4, α = 0˝ and 45˝) in a tandem configuration with
S{D = 2.8, 4.0, and 5.6 for Reynolds numbers in the range of 105 to 107 (Van Hinsberg [259]).
4: single isolated prism with r{D “ 0.16 and ks{D = 4.5ˆ10´6, Van Hinsberg et al. [254].
Left column: α = 0˝; right column: α = 45˝. Upper row: S{D = 2.8; centre row: S{D = 4.0;
lower row: S{D = 5.6.

ues a good match between the subcritical values of Cd1 and those of the single prism at α = 0˝
is obtained. The drag crisis in the subsequent critical flow regime is for the smallest spacing
not only steeper, but continues also up to slightly higher Reynolds numbers compared to the
single prism case (Figure 5.15a). This results in supercritical values of the drag experienced by
the upstream prism that are about twice as low as on the single prism. While the single prism
possesses a right-unbounded supercritical flow regime with relatively constant drag coefficients
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up to ReD = 107, the presence of a second prism further downstream introduces an upper limit
of the same flow regime at ReD = 7ˆ105. This is followed by a significant recovery of Cd1 in
the upper transition and the appearance of a second nearly constant transcritical plateau of
approximately Cd1 = 1.18 for Reynolds numbers larger than 2.23ˆ106. At the largest of the
three spacing values, S{D = 5.6, both the shapes of the Cd1(ReD) and Cdsingle

(ReD) curve and
the mean drag values coincide very well at the majority of the Reynolds numbers (Figure 5.15c).
The slightly steeper descent of Cd1 whilst traversing the drag crisis leads to small deviations
between both curves in the critical flow regime. For the intermediate spacing of S{D = 4.0,
the development of Cd1 with increasing Reynolds number is actually a mixture of the previous
two trends. Up to about ReD = 1.85ˆ106, the values of Cd1 coincide reasonable well with
those of the single prism. The discontinuous jump at ReD = 1.85ˆ106 from a nearly constant
plateau of Cd1 « 0.76 to a second plateau with Cd1 = 1.13–1.17 marks the sudden transition
from the supercritical to the transcritical flow regime. The gradual recovery of Cd1 in the upper
transition, clearly present at S{D = 2.8, has thus disappeared at S{D = 4.0. At all transcritical
Reynolds numbers, the mean cross-sectional drag coefficient corresponds at this intermediate
spacing then again very well to the transcritical drag values obtained for the upstream prism at
S{D = 2.8. The trends of the three Cd1(ReD) curves thus clearly show that at α = 0˝ a larger
prism spacing results in an increased range of Reynolds numbers for which the interference of
the flow around the upstream prism by the direct presence of the downstream partner in its
wake is either very weak or prevented completely. While for S{D = 2.8 the upper boundary of
this range lies within the critical flow regime, it is shifted to the end of the supercritical flow
regime for S{D = 4.0. At the largest spacing of S{D = 5.6, the flow around the upstream
prism can even be treated as being equivalent to that one of an isolated prism in cross-flow at
all investigated Reynolds numbers.

The curve of the mean cross-sectional drag coefficient of the downstream prism is for the
smallest spacing of S{D = 2.8 characterised by multiple sudden jumps, several plateaus with
relatively constant values, and large variations over relatively small ranges of Reynolds num-
bers. In the subcritical flow regime, the state of the flow around both tandem prisms changes
successively over two sharp drops at ReD = 2ˆ105 and 2.6ˆ105 from the co-shedding regime
(Mode II with Cd2 ą 0) to the reattachment regime (Mode I with Cd2 ă 0). At the subcritical
Reynolds numbers between both sudden descents the net drag force on the downstream prism
equals zero, meaning that the spacing S{D = 2.8 corresponds exactly to the critical spacing.
At ReD ď 2ˆ105 the spacing S{D = 2.8 lies above the critical spacing S{Dcr and the free
shear layers that have separated from the upstream prism can reattach on the downstream one.
After having passed the second drop, the spacing value lies below the critical spacing, which
implies that proximity interference effects are dominant, as a result of which the eddy shedding
and formation of the Kármán vortex street take place behind the downstream prism only. The
second zero-crossing of Cd2 around the critical Reynolds number of ReD = 3.6ˆ105 terminates
the reattachment regime and causes the flow state around the tandem configuration to return
to the co-shedding regime, i.e. Mode II. The steep decline of the mean drag force on the up-
stream prism in the critical flow regime leads at all supercritical Reynolds numbers and in the
first part of the upper transition to a paradox situation: the downstream prism experiences a
higher positive mean drag force than the upstream one. As mentioned in paragraph 5.1.1.2,
a similar observation was described by Schewe et al. [212] for two tandem smooth cylinders
with centre-to-centre spacing values of S{D = 1.56, 2.8, and 4.0 within the supercritical flow
regime. In the following upper transition, the mean cross-sectional drag on the downstream
prism dips at ReD = 1.68ˆ106 once more at exactly Cd2 = 0, meaning that the critical spacing
is briefly touched upon in this flow regime„ however, without the occurrence of a change in the
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flow state around the tandem configuration. In the final transcritical flow regime, the values
for Cd2 are about half and one-third of those for the single prism and upstream tandem prism,
respectively. Hence, by taking the arithmetic mean of the values of the drag coefficients of both
tandem prisms at each transcritical Reynolds number, the results match those of the single
prism at equal Reynolds number very well.

With larger spacing between both tandem prisms an increasing independence of Cd2 on the
Reynolds number is achieved. At S{D = 4.0, the mean cross-sectional drag on the downstream
prism varies between 0.18 and 0.72 over the displayed range of Reynolds numbers and is further
characterised by three small to moderate discontinuous steps at approximately ReD = 2.8ˆ105,
3.6ˆ105, and 1.85ˆ106, hence, at the end of the subcritical, critical, and supercritical flow
regime, respectively. At the largest spacing value, the Cd2(ReD) curve is relatively flat, imply-
ing a strong independence on ReD. Whereas at S{D = 2.8 the mean drag on the upstream
prism was at transcritical Reynolds numbers three times higher than that on the downstream
one, this difference reduced to 2 and 1.5 at S{D = 4.0 and 5.6, respectively. As expected,
this shows that with increasing gap spacing the interference of the flow around the downstream
prism, induced by the presence of the upstream one that generates a highly turbulent oncoming
flow that is experienced by the downstream prism, diminishes, but is nevertheless even at a
centre-to-centre spacing of S = 5.6D still clearly noticeable.

As displayed in Figure 5.16a to 5.16c, each curve of the mean cross-sectional base pressure
coefficient shows a similar development with increasing Reynolds number as their respective
curve of the cross-sectional drag coefficient Cd1,2 . Because a change in the (mean) base pressure
is directly coupled with an alteration of the net (mean) pressure drag acting on the prism, it is
not surprising that the discontinuous steps in Cd2 occurring in the subcritical and critical flow
regimes at S{D = 2.8 and 4.0 and for both prisms at the cross-over from the supercritical to
the transcritical flow regime at S{D = 4.0 appear in the corresponding curves of the mean base
pressure as well. At those Reynolds numbers, at which the mean cross-sectional drag on the
upstream prism equals that of the single prism, similar values of the base pressure coefficients
are also obtained. Surprisingly, for S{D = 2.8 and 4.0 the base pressure coefficients of both
tandem prisms are nearly equal and their values are close to those of the single prism. The
strong divergence between the development of Cpb1 and Cd1 in this flow regime thus implies an
accompanying distinct change of the surface pressure on the other three faces and in particular
on the front surface of the upstream prism. In section 5.4.3 this behaviour is explored in more
detail by analysing the changes that occur in the cross-sectional surface pressure distributions
with varying Reynolds number.

At 45˝ angle of incidence, the appearance of the mean cross-sectional drag curve of the
upstream prism in the Figures 5.15d to 5.15f resembles for each of the three spacing values
the Cd(ReD) curve of the single prism, with the exception of the upper transition at the inter-
mediate spacing of S{D = 4.0. For S{D = 2.8 and 5.6, Cd1 experiences in this flow regime a
moderate recovery from the drag crisis. In contrast, a distinct bump – with high drag values
that partly even overlap with Cdsingle

at several Reynolds numbers and bounded at both sides
by a discontinuous jump – occurs in the Cd1(ReD) curve for S{D = 4.0. In addition, and similar
to α = 0˝, the drag coefficients of the upstream prism are for the largest spacing nearly equal
to those values of the single prism. Hence, based solely on the drag, the upstream prism can
in that specific case be treated as being equivalent to an isolated prism in cross-flow.

For each tandem prism configuration, a unique development of the mean cross-sectional
drag on the downstream prism with increasing Reynolds number can be observed. Roughly
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Figure 5.16: Variation of the mean cross-sectional base pressure coefficients on two slightly
rough square-section prisms (r{D = 0.16, ks{D = 4.5ˆ10´4, α = 0˝ and 45˝) in a tandem
configuration with S{D = 2.8, 4.0, and 5.6 for Reynolds numbers in the range of 105 to 107

(Van Hinsberg [259]). 4: single isolated prism with r{D “ 0.16 and ks{D = 4.5ˆ10´6, Van
Hinsberg et al. [254]. Left column: α = 0˝; right column: α = 45˝. Upper row: S{D = 2.8;
centre row: S{D = 4.0; lower row: S{D = 5.6.

speaking, an increase of the spacing induces a shift of the Cd2(ReD) curve from negative to-
wards positive values. At S{D = 2.8, Cd2 shows a clear inverse trend with Reynolds number
compared to Cd1 . Except at the supercritical and its direct neighbouring Reynolds numbers,
the downstream prism experiences a thrust force. At Reynolds numbers of 5.4ˆ105 ă ReD ă
6.0ˆ105 the spacing S{D = 2.8 is equivalent to the critical spacing, since the net mean drag
force on the downstream prism lies close to or equals zero. Regarding the associated mean
pressure coefficients over the two base faces of both prisms, a relatively similar behaviour with
the Reynolds number as for both mean drag coefficients is found, as displayed in Figure 5.16d.
The flatness of the Cpb2(ReD) curve implies a very weak dependence on the Reynolds number,
though, even at those Reynolds numbers at which Cd2 possesses a distinct Reynolds-number-
dependent variation. Identical trends for the mean cross-sectional drag on the upstream and
downstream prism are obtained for the tandem configuration with the intermediate spacing
S{D = 4.0. The same counts for both mean cross-sectional base pressure coefficients in Fig-
ure 5.16e. Similar to S{D = 2.8, the significantly lower suction at the base of both prisms
compared to the single prism at equal Reynolds number reflects the strong interference effects
between both tandem prisms at both spacing values. For Reynolds numbers up to approxi-
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Figure 5.17: Variation of the mean cross-sectional lift and pitch moment coefficients on two
slightly rough square-section prisms (r{D = 0.16, ks{D = 4.5ˆ10´4, α = 0˝ and 45˝) in a
tandem configuration with S{D = 2.8, 4.0, and 5.6 for Reynolds numbers in the range of 105

to 107 (Van Hinsberg [259]). 4: single isolated prism with r{D “ 0.16 and ks{D = 4.5ˆ10´6,
Van Hinsberg et al. [254]. Left column: α = 0˝; right column: α = 45˝. Upper row: S{D = 2.8;
centre row: S{D = 4.0; lower row: S{D = 5.6.
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mately ReD = 4.7ˆ105 within the critical flow regime, the mean cross-sectional drag on the
downstream prism is slightly negative and the state of the flow around both prisms thus belongs
to the reattachment regime (i.e. Mode I ). The sign reversal of Cd2 at ReD « 4.7ˆ105 induces a
switch of the flow state to the co-shedding regime or Mode II with 4.0 ą S{Dcr, and remains
in this flow state up to ReD = 7.13ˆ106. A further gap increase to S{D = 5.6 leads to a strong
flattening of the curve and in particular in the critical up to upper transition flow regimes an
increased independence of Cd2 on the Reynolds number. The absence of a sign inversion in Cd2
proves that the state of the flow equals the co-shedding regime at all Reynolds numbers. The
previously mentioned nearly perfect match between Cpb1 and Cpbsingle

in combination with an
approach of the Cpb2 towards both other curves for S{D = 5.6 reveals a strong reduction of the
mutual interference between both tandem prisms at this gap length.

The variation of the mean cross-sectional lift and pitch moment coefficients with Reynolds
number for all three spacing values are presented in Figure 5.17 for Reynolds numbers that
cover the subcritical to low supercritical flow regimes at α = 0˝ (left column) and subcritical to
low transcritical flow regimes at α = 45˝ (right column). Non-zero lift coefficients appear at the
first incidence angle at critical Reynolds numbers only, while at the second this range extends
up to the Reynolds number at which the cross-over from the upper transition to the transcritical
flow regime takes place. For all three spacing values, the absolute maximum mean lift coefficient
of the upstream prism reaches a similar value as that of the single prism; at the combination
of 45˝ incidence angle and the largest spacing, it even exceeds Clsingle,max

. At the majority of
the presented configurations, a sign change in Cl1 furthermore takes place while traversing the
critical flow regime. Interesting to mention is that at α = 45˝ the local maximum values of
the lift coefficient of the upstream prism are at both sides of this sign reversal equally high.
For the downstream prism, distinct changes in the lift coefficient are found for S{D = 2.8 at
both incidence angles, whereas its dependence on the Reynolds number has decreased sharply
for both other spacing values as Cl2 fluctuates around zero.

Similar trends are also found for both mean cross-sectional pitch moment coefficients. Al-
though an increased Reynolds-number independence of Cm2 with larger S{D value can be no-
ticed as well, it is not as pronounced as for Cl2 . In particular for the combination of S{D = 4.0
and α = 0˝ a strong variation of Cm2 is obtained with values that even exceed those of the
upstream prism at most critical Reynolds numbers.

5.4.2 Fluctuating loads and Strouhal number

The value of the prisms’ centre-to-centre spacing has not only a strong impact on the mean
force coefficients, but also on their fluctuating parts. The direction of the trends with increasing
gap size differ between both fluctuating force components at equal incidence angle, as well as
between the two incidence angles for each of the two quantities separately. For S{D = 2.8, the
downstream prism experiences at α = 0˝ in the subcritical and the first half of the critical flow
regime a lower fluctuating lift than for the isolated prism, while in the majority of Reynolds
numbers that belong to the upper transition and the following transcritical flow regime up to
ReD = 7.7ˆ106 higher RMS-values of the lift force are obtained. Only in a small range of
Reynolds numbers from approximately ReD = 3ˆ105 up to about 8ˆ105, nearly equal values
are obtained for both configurations (Figure 5.18a). The cross-over from the supercritical to

the upper transition is marked by a discontinuous step of ∆

b

pC
12
L q2

= 0.14 and is followed

by a relatively broad dip in the latter flow regime with a minimum of
b

pC
12
L q2

= 0.15 at
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Figure 5.18: Development of the fluctuating global drag and lift coefficients of the downstream
one of two slightly rough square-section prisms (r{D = 0.16, ks{D = 4.5ˆ10´4, α = 0˝ and
45˝) with Reynolds number for a tandem configuration with S{D = 2.8, 4.0, and 5.6 (Van
Hinsberg [259]). 4: single isolated prism (r{D “ 0.16, ks{D = 4.5ˆ10´6), Van Hinsberg et
al. [254]. (a)-(f ): fluctuating global lift coefficient; (g)-(l): fluctuating global drag coefficient.
Left column: α = 0˝; right column: α = 45˝.
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ReD = 1.68ˆ106. it correlates with the dip in the Cd2(ReD) curve and the Reynolds number at
which a net drag force of zero is found on the downstream prism in Figure 5.15a. Figure 5.18d

shows that, in contrast to α = 0˝, both the development of the
b

pC
12
L q2

(ReD) curve and the
individual fluctuating lift values coincide at 45˝ angle of incidence well with the results of the
single prism. With larger gap size between both tandem prisms, the appearance of the curve
of the fluctuating lift on the downstream prism at α = 0˝ increasingly resembles that one of
the single prism. Noteworthy is in particular the clear approach of both curves at subcritical
and critical Reynolds numbers and the flattening of the curve as a result of the extension of
the supercritical flow regime to higher Reynolds numbers, in combination with the absence of
the upper transition at both S{D = 4.0 and 5.6, as well as of the transcritical flow regime at

S{D = 5.6. At α = 45˝, an increasing divergence of the trend of the
b

pC
12
L q2

(ReD) curve with
increasing gap spacing becomes visible. While for S{D = 4.0, the curve of the fluctuating lift on
the downstream prism resembles still to a large extend that one of the single prism, an nearly
flat curve is obtained for S{D = 5.6. This means, that besides this growing Reynolds-number

independence of
b

pC
12
L q2

for larger gaps sizes over all flow regimes, an increasing shift away
from the single prism data to distinctly higher values is thus also obtained.

The distribution of the fluctuating drag on the downstream prism as function of the Reynolds
number at α = 0˝, presented in the Figures 5.18g to 5.18i, possesses at all three spacing values
a qualitatively similar trend over all flow regimes as the respective Cd1(ReD) curves presented
in Figure 5.15. The steep jumps of Cd1 at ReD = 7ˆ105 (i.e. at the transition from the su-
percritical flow regime to the upper transition) and at ReD = 1.85ˆ106 (hence, at the abrupt
cross-over from the supercritical to the transcritical flow regime) for S{D = 2.8 and 4.0, respec-

tively, are clearly recognisable in the associated
b

pC
12
L q2

(ReD) curves as well. Apart from the
end of the critical and in the complete following supercritical flow regime in which equal values
for the downstream and the single prism are found, significantly higher drag fluctuations are
experienced by the downstream prism at all other Reynolds numbers. For the smallest spac-
ing at α = 45˝, a similar (inverted) behaviour can be observed: a relatively good agreement
between the values of the fluctuating drag on the downstream prism and those on the single
prism over a small part within the critical flow regime and at the supercritical Reynolds number
(i.e. ReD = 5.78ˆ105) and considerably lower values at all other flow regimes. An increased gap
size between both tandem prisms leads to a gradual approach of the fluctuating drag values of
those latter flow regimes towards the curve of the single prism. For S{D = 4.0, this is only the
case for the transcritical flow regime, while for S{D = 5.6 the other flow regimes have followed
as well.

Figure 5.19 presents the dependence of the non-dimensional frequency with which the eddies
are shed in the wake of the downstream prism, StL2 , on the Reynolds number for all three
spacing values at both incidence angles. The trend of the Strouhal number with increasing gap
spacing is clearly visible: at both incidence angles it induces a (gradual) shift of StL2 in one or
several flow regimes towards the curve belonging to the single prism.

At α = 0˝, the critical flow regime is at all three spacing values characterised by the
appearance of two Strouhal numbers at equal Reynolds number, associated with the two main
and clearly separated peaks in the PSDs of the time series of the global lift force on the
downstream prism, as shown in Figure E.1. A similar occurrence of a double Strouhal number
is found as well in the second half of the upper transition (i.e. at 1.0ˆ106 ď ReD ď 1.68ˆ106) for
S{D = 2.8 and at ReD = 1.85ˆ106 at which the sudden transition from the supercritical to the
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Figure 5.19: Development of the Strouhal number of the downstream one of two slightly rough
square-section prisms (r{D = 0.16, ks{D = 4.5ˆ10´4, α = 0˝ and 45˝) with Reynolds number
for a tandem configuration with a prism-to-prism spacing of S{D = 2.8, 4.0, and 5.6 (Van
Hinsberg [259]). 4: single isolated prism (r{D “ 0.16, ks{D = 4.5ˆ10´6), Van Hinsberg
et al. [254]. In the case of the occurrence of two peaks in the power spectra at a certain
Reynolds number, the more dominant Strouhal number is indicated by an open symbol, while
the star belongs to the secondary peak. Left column: α = 0˝; right column: α = 45˝. Top row:
S{D = 2.8; centre row: S{D = 4.0; bottom row: S{D = 5.6

transcritical flow regime takes place for the intermediate spacing. Whereas an increase in the
gap size leads to a clear rise of the supercritical values of the Strouhal number towards StLsingle

,
the values in the transcritical flow regime are practically not influenced by a larger S{D value
and remain at an equal level with the Strouhal numbers in the subcritical flow regime.

The shape of the StL2(ReD) curve at α = 45˝ clearly resembles that one of the single prism
at each of the three spacing values. Despite equal trends, large deviations in the values of the
Strouhal numbers between both curves at equal Reynolds number can nonetheless be observed
for S{D = 2.8 and 4.0. They appear in exactly those Reynolds-number regimes, in which the
mean cross-sectional drag coefficient on the downstream prism is negative or near-zero, as was
presented in the Figures 5.15d and 5.15e. In contrast, for Reynolds numbers that lie inside the
range spanned from the upper critical flow regime up to the end of the upper transition and
at which, in addition, the mean cross-sectional drag coefficient is positive, a fairly good match
between StL2 and StLsingle

is obtained (Figure 5.19e).
At both incidence angles, the Strouhal numbers obtained for S{D = 5.6 match at all flow
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regimes well with those for the single prism. A possible interpretation that this spacing is thus
large enough to prevent an interference by the upstream prism of the eddy shedding frequency
of the downstream prism, is misleading though. The previous comparison of the mean cross-
sectional and fluctuating global lift and drag coefficients on the downstream tandem prism for
S{D = 5.6 with those on the single prism, as well as their mean cross-sectional base pressure
coefficients has proven that wake interference effects are still unmistakably present at this
spacing. At the same time, the mean cross-sectional drag and base pressure coefficients of the
upstream and the single prism are nearly equal at all Reynolds numbers. It can thus be argued,
that with high probability this also counts for the Strouhal number of the upstream prism. Most
probably, the arrival of the vortices shed by the upstream prism triggers and controls the eddy
shedding process in the wake of the downstream prism. This results in a synchronisation of the
eddy shedding frequency of the downstream prism with that of the upstream one, whereby the
latter is then again most probably equal to the eddy shedding frequency of the isolated single
prism.

5.4.3 Sectional mean pressure distributions

An overview of the quantitative distributions of the mean pressure coefficient Cp,cyl along the
mid-span cross-section of both tandem prisms at 0˝ and 45˝ angle of incidence is shown in
the Figures 5.20 and 5.23 for selected Reynolds numbers that cover the various flow regimes.
For the complete picture of the mutual flow influence between the upstream (left column) and
downstream (centre column) tandem prism as a result of proximity and/or wake interference
effects, the mean coefficients of the surface pressures on the equivalent single prism are shown at
approximately the same Reynolds numbers in the right column of both figures. An additional
qualitative impression of the mean cross-sectional surface pressure distributions on both tandem
prisms is presented in the Figures 5.21 (α = 0˝) and 5.24 (α = 45˝) for each spacing value by
means of a scaled vectorial representation. In these two latter figures, both prisms are foreseen
with their values for the mean cross-sectional drag, lift, and pitch moment coefficients at specific
Reynolds numbers.

5.4.3.1 Incidence angle of 0˝

Starting with the smallest prism-to-prism distance of S{D = 2.8 at α1,2 = 0˝ in Figure 5.20a
the attached boundary layer on the upstream prism separates at the forward-directed rounded
edges between the surfaces I and II and the surfaces I and IV of the prism. The constant and
nearly equal negative pressures on both side surfaces II and IV and the base III imply that ab-
sence of a reattachment of the two free shear layers on the side faces at this subcritical Reynolds
number. The comparable values for the average cross-sectional surface pressure coefficient on
the front face Cpf1 of the upstream and the single prism and the equal mean base pressure
coefficients in Figure 5.22a explain the similar high mean drag coefficients on both prisms. The
large difference in the surface pressure distributions between both tandem prisms at ReD ď
1.51ˆ105 in Figure 5.20, in combination with the negative values of the average cross-sectional
surface pressure coefficient on the front face of the downstream prism of Cpf2 = –0.51 to –0.57
for ReD ď 2.0ˆ105 (Figure 5.22a) suggest a clear interaction between the downstream prism
and the free shear layers coming from the upstream prism. Since the average suction is at the
base of the downstream prism about twice as high as on its front face, the resultant mean drag
coefficient of Cd2 « 0.7 is still positive, but clearly lower than for the upstream prism at equal
subcritical Reynolds number.

The constant values of Cpf1 in combination with the gradual decrease of the base pressure on
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Figure 5.20: Mean circumferential cross-sectional pressure distribution with prism centre-to-
centre spacing on two slightly rough square-section prisms (r{D = 0.16, ks{D = 4.5ˆ10´4,
and α = 0˝) in a tandem configuration of S{D = 2.8, 4.0, and 5.6 at selected Reynolds
numbers that cover the subcritical to the transcritical flow regimes (Adapted from Van Hins-
berg [259]). The non-dimensional circumferential distance s{D equals 0 at the centre of the
upper windward-directed rounded edge and increases in counter clockwise direction. Left col-
umn: upstream prism; centre column: downstream prism; right column: isolated prism. Top
two rows: S{D = 2.8; centre rows: S{D = 4.0; bottom two rows: S{D = 5.6. M in the
Reynolds number equals "million".
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Figure 5.21: Qualitative scaled vectorial representation of the mean circumferential cross-
sectional pressure distribution on two slightly rough square-section prisms (r{D = 0.16,
ks{D = 4.5ˆ10´4, and α = 0˝) in a tandem configuration with S{D = 2.8, 4.0, and 5.6
for the same selected Reynolds numbers as presented in Figure 5.20 (Adapted from Van Hins-
berg [259]). Left column: S{D = 2.8; centre column: S{D = 4.0; right column: S{D = 5.6.

the upstream prism within the first half of the critical flow regime up to ReD = 3.59ˆ105 leads
to a steady decrease of Cd1 . The mean cross-sectional lift and pitch moment coefficient both
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Figure 5.22: Average cross-sectional surface pressure coefficient on the front face I for α = 0˝
and the faces I and II for α = 45˝ on two slightly rough square-section prisms (r{D = 0.16,
ks{D = 4.5ˆ10´4, α = 0˝ and 45˝) in a tandem configuration, together with the mean cross-
sectional base pressure coefficient as function of the Reynolds number and spacing (Adapted
from Van Hinsberg [259]). Cpf1 and Cpb1 : upstream prism; Cpf2 : downstream prism. Left
column: α = 0˝; right column: α = 45˝.

remain practically zero as a result of the nearly perfect symmetry of Cp,cyl between the upper
and lower face of the upstream prism (Figures 5.20a and 5.21b). In the range of ReD = 2.78–
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3.59ˆ105 an overlap of the values for Cpf2 and Cpb1 is found. This indicates, that the free shear
layers coming from the upstream prism reattach on the side faces of the downstream prism.
They thereby enclose the fluid in the gap between both prisms and prevent an exchange of
fluid with the surrounding outer flow. The stagnant fluid induces an overall suction effect on
the downstream prism that leads to a negative value for Cd2 ; i.e. the flow around the tandem
prism constellation has switched from Mode II to Mode I. The similar height of the two peaks
at fLD{U8 = 0.115 and 0.212 in the PSD of the lift fluctuations on the downstream prism at
ReD = 3.59ˆ105 proves that the flow over this prism not only alternates between the subcritical
and supercritical state, but also resides in each of the two states over an overall equal mean
time period. The second half of the critical flow regime is characterised by a highly asymmetric
flow around both tandem prisms. The qualitative surface pressure distribution on the upstream
prism in Figure 5.21c indicates the presence of a shallow laminar separation bubble in the vicin-
ity of the upper upstream-directed rounded edge, in combination with a re-separation of the
turbulent reattached boundary layer at the downstream upper edge of the prism. The equal
negative pressures on face II at ReD = 3.59ˆ105 and 3.72ˆ105 in Figure 5.20a imply that the
lower free shear layer remains separated up to the base region. The asymmetric flow leads to
a positive mean cross-sectional lift and negative mean cross-sectional pitch moment coefficient.
In addition, a smaller near wake is induced directly behind the upstream prism that results in
a further reduction of the mean cross-sectional drag coefficient. The strong asymmetric pres-
sure distribution on the downstream prism demonstrates the presence of proximity interference
effects between both prisms. Since the side face on which a laminar separation bubble and a
secondary re-separation of the turbulent boundary layer occur has been inverted in comparison
to the upstream prism, the downstream prism experiences a downward-directed lift force. The
presence of a positive pressure on the upper half of the front surface I leads to a lower value for
Cpf2 than at ReD = 3.59ˆ105. Coupled with a relatively small change of the value for Cpb2 , the
mean drag coefficient Cd2 becomes positive again, indicating a return of the flow state around
both prisms to Mode II.

In the following supercritical flow regime, the symmetry in the mean pressure distribution on
both prisms has been restored. The Figures 5.21a (and 5.21b) and 5.21d indicate the existence
of a separation bubble on the leading section of each side face of the upstream prism together
with a continuous decline of the suction on the two faces in the direction of the rounded trailing
edge. The re-separation of the boundary layer at the two trailing edges generates a smaller
downstream lateral spreading of the free shear layers in the gap between both prisms than in
the previous subcritical and critical flow regimes. The combination of a low mean negative base
pressure and the large upstream-directed components of the suction peaks at both upstream
edges leads to a lower mean drag force than on the single prism at equal Reynolds number.
The close approximation of the values of Cpf2 and Cpb1 at all supercritical Reynolds numbers in
Figure 5.22a proves that also in this flow regime the fluid in the gap between the two prisms is
still to a large extend enclosed by the free shear layers from the upstream prism. However, the
lower negative values of Cpf2 indicate that shielding of the downstream prism by the upstream
one has reduced compared to the previous two flow regimes. Along with |Cpb2 | ą |Cpb1 | this
leads to an increased drag force on the downstream prism that is even higher than that one on
the upstream prism.

In contrast to the single prism for which the supercritical flow regime extends up to at
least ReD = 107, the presence of a second prism at S = 2.8D in the near wake terminates
this flow regime already at ReD = 7ˆ105. The steady rise of the drag on the upstream prism
with increasing Reynolds number results from an interplay of a significant increase of both
Cpf1 and the mean suction on the base surface (Figures 5.22d and 5.22e) and of a progressive
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reduction of both the height and width of the suction peaks on the two upstream rounded
edges in Figure 5.20b. The values of Cpf2 and Cpb2 slowly converge with increasing Reynolds
number towards the same negative value (Figures 5.22a and 5.16a). Simultaneously, an overall
flattening of the surface pressures on the downstream prism takes place, as shown in Figure
5.20d. Both phenomena lead to a gradual decrease of the mean drag coefficient Cd2 towards
zero at ReD = 1.68ˆ106. Because the value of Cpf2 lies at this Reynolds number in close
proximity to Cpb1 , the shielding of the downstream has increased significantly in the range of
ReD = 1.12–1.68ˆ106 as a result of the increased lateral spreading of the free shear layers from
the upstream prism.

In the final transcritical flow regime, both tandem prisms experience a mean surface pres-
sure distribution that seems to be independent of the Reynolds number. Whereas only minor
changes in Cp,cyl between ReD = 1.68ˆ106 and 7.06ˆ106 can be observed in Figure 5.20b, small
variations in both Cpf2 and Cpb2 in opposite directions, but with different magnitudes induce
somewhat larger changes in the mean drag coefficient on the downstream prism with increasing
transcritical Reynolds number. From the qualitative representation in Figure 5.21f it can be
clearly deduced that the increase in Cd2 mainly results from the higher suction at the base of
the downstream prism.

For the two larger centre-to-centre spacing values, the results for the average cross-sectional
surface pressure coefficient on the front face and at the base of the upstream prism gradually
approach the values for the single prism. Distinct deviations in Cpf1 compared to Cpfsingle

only
occur for the intermediate prism at ReD ě 1.85ˆ106 and are, similar to S{D = 2.8, the result
of the appearance of the transcritical flow regime, as shown in Figure 5.22b. Interestingly, a
direct comparison of the three Cpf1(ReD) curves in Figure 5.22d visualises the occurrence of
similar to nearly equal values of Cpf1 for all three spacing values in each of the flow regimes.
Hence, although the presence of the downstream prism alters the surface pressures in several
flow regimes for S{D = 2.8 and 4.0, these proximity or wake interference effects have barely
any impact on the value of Cpf1 within each flow regime. Regarding the mean cross-sectional
base pressure on the upstream prism, it was discussed already in section 5.4.1 that an increase
in the gap size from S{D = 2.8 to 4.0 leads to a shift of the supercritical values of Cpb1 towards
the curve for the single prism, whereas the critical flow regime follows the same trend with
a further increase to S{D = 5.6. This behaviour of Cpb1 is also clearly recognisable in the
surface pressure distributions in Figure 5.20 and explains the steady or increasing value for the
resultant mean cross-sectional drag coefficient at the two critical and the supercritical Reynolds
numbers with increased S{D value.

Compared to the smallest spacing, the larger gap sizes of S{D = 4.0 and 5.6 induce at the
majority of Reynolds numbers a reduction in the shielding of the downstream prism, expressed
by a diminished mean suction on the front face of the downstream prism, as presented in
Figure 5.22e. Simultaneously, local regions with high negative pressure values appear at both
forward-directed rounded edges of the downstream prism in the subcritical, supercritical, and
transcritical flow regimes for the intermediate spacing and in all flow regimes for the largest
spacing value. For each flow regime, the heights of the suction peaks furthermore increase with
growing S{D value. The influence of the proximity to the upstream prism can nevertheless still
be noticed even at S{D = 5.6, despite the relative large spacing between both tandem prisms.
Owing to the presence of those two suction peaks and the small dip in the Cp,cyl(s{D) curve
at the trailing edge of the side faces II and IV just upstream of both curved rear edges at the
subcritical to supercritical flow regimes (Figures 5.20n, and 5.21l to 5.21n), a clear resemblance
with the surface pressure distribution on a single prism at supercritical Reynolds numbers
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in Figure 5.20o is given. This shows that, although the Reynolds number that is based on
the undisturbed free-stream velocity is for the tandem configuration classified as within the
subcritical or critical flow regime, the downstream prism experiences a highly altered and
more turbulent oncoming flow field that induces a shift of the local flow around that prism
to supercritical Reynolds numbers. This is confirmed by the values for Cpf2 in Figure 5.22c
that lie in the (near) vicinity of the supercritical values of Cpfsingle

at all investigated Reynolds
numbers and thus strongly deviate from those for Cpb1 . The cause is found in the impingement
of the vortical structures, being produced by the process of rolling up of the free shear layers
in the gap between both prisms, onto the downstream prism. As a result, the boundary layer
on that prism is already turbulent at the location of separation from the surface over the two
front rounded edges. This leads to the formation of a shallow separation bubble over each of
its side faces, in combination with a strong suction peak at both leading edges. The secondary
separation of the reattached turbulent boundary layer at each trailing edge therefore induces a
decrease of the mean suction pressure at the base of the downstream prism towards values being
equal to the single prism configuration, as has been discussed earlier. It is the combination
of these two phenomena that leads to an increase of the mean drag force on the downstream
prism.

Within the critical flow regime, a similar distinct asymmetry in the pressure distribution
appears for both prisms that results from the occurrence of a one-sided separation bubble and
the associated strong suction peak at that side of the prism. The presence of two main peaks in
the associated PSDs of the lift fluctuations, presented in Figure E.1, demonstrate that also at
S{D = 4.0 and 5.6 the frequency with which the eddies are shed in the wake of the downstream
prism alternates between subcritical and supercritical values. The surface pressure distributions
show that, despite the strong temporal changes in the eddy shedding process, inversed trends
are found between both prisms in the asymmetric bistable flow state. The side face of the
downstream prism at which one of the two shear layer reattaches first is thereby most probably
triggered by the behaviour of the flow around and in the (near) wake of the upstream prism.

5.4.3.2 Incidence angle of 45˝

Regarding the pressure distributions on the upstream one of the two tandem prisms at α = 45˝,
a good match of the values on the two upstream-directed faces I and II with those of the single
prism is visible in the Figures 5.23 and 5.24. The trend of the average cross-sectional surface
pressure coefficient over these two faces, i.e. Cpf1, in the Figures 5.22f to 5.22g follows for all
three spacing values the curve of the single prism. At S{D = 2.8 and 4.0, slightly higher values
for Cpf1 are obtained at all Reynolds numbers, though, and result from the faintly lower nega-
tive peak pressure coefficients at both shoulder edges in comparison to the single prism at equal
Reynolds number. In addition and in contrast to the single prism, a small imbalance of the
negative peak pressure between the upper and lower shoulder of the upstream prism is not only
found in the critical flow regime for all three spacing values, but also at all Reynolds numbers
that belong to the supercritical, upper transition, and the first part of the transcritical flow
regime. It is mainly this deviation from a perfectly symmetric pressure distribution between
the two upper and the two lower prism faces that is responsible for the extended occurrence
of both non-zero lift and pitch moment coefficients up to transcritical Reynolds numbers of
approximately ReD = 1.1–1.2ˆ106, as displayed in Figure 5.17 and discussed in section 5.4.1.

The flatness of the Cp,cyl(s{D) curve on the two base faces III and IV of the upstream
prism for S{D = 2.8 and 4.0 is the obvious proof for a mutual interference between both tan-
dem prisms in the sense of a modification of the flow in the near wake behind the upstream
prism, induced by the presence of the downstream prism, and being fed back to the upstream
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Figure 5.23: Mean circumferential cross-sectional pressure distribution with prism-to-prism
spacing on two slightly rough square-section prisms (r{D = 0.16, ks{D = 4.5ˆ10´4, and
α = 45˝) in a tandem configuration of S{D = 2.8, 4.0, and 5.6 at selected Reynolds num-
bers that cover the subcritical to the transcritical flow regimes (Adapted from Van Hins-
berg [259]). The non-dimensional circumferential distance s{D equals 0 at the centre of the
upper windward-directed rounded edge and increases in counter clockwise direction. Left col-
umn: upstream prism; centre column: downstream prism; right column: isolated prism. Top
two rows: S{D = 2.8; centre rows: S{D = 4.0; bottom two rows: S{D = 5.6. M in the
Reynolds number equals "million".
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one. The combination of a much lower mean cross-sectional suction at the base and a slightly
higher value for Cpf1 leads to a significantly lower mean cross-sectional drag coefficient on this
prism compared to an isolated prism, as was presented in Figure 5.15. Interestingly, an excep-
tion forms the pressure distribution at several Reynolds numbers in the upper transition for
S{D = 4.0. In this case, a clear V-shaped pressure distribution, being characteristic for the
single prism, also appears on both base faces of the upstream prism (Figure 5.23h). Because
at these few Reynolds numbers the values for Cpf1 are also equal to Cpfsingle, a nearly perfect
match of the resultant mean cross-sectional drag coefficients is obtained at both configurations
(Figure 5.15e). The same observation can be made for the pressure distributions and resultant
Cd1 values at all investigated Reynolds numbers for the largest spacing S{D = 5.6. Hence, in
these two latter cases the flow around the upstream prism seems to be practically unaffected
by the presence of the downstream prism (with the exception of small differences in height of
the negative peak pressures over both shoulder edges).

The impact of a change of the incidence angle of both tandem prisms from 0˝ to 45˝ and the
associated alteration of the shielding of the downstream prism both become obvious from the
surface pressure distributions on the downstream prism. Independent of the Reynolds number
and spacing between both prisms, the downstream prism experiences on all four faces a pure
mean suction (Figure 5.24). For all three spacing values, a similar general trend of the pressure
distribution is found on both upstream-directed faces I and II. However, the actual shape of
the pressure distribution on these two faces differs significantly among the three spacing values,
and is for S{D = 4.0 in addition clearly Reynolds-number dependent. At the lowest spacing, it
has a clear concave shape. With increasing spacing, this U-shape gradually transforms into a
"double bump"-shape. Interestingly, the position of the local maximum of the negative pressure
remains fixed on the upstream-directed rounded edge between both faces, whereas the pressure
value itself increases for larger S{D value.

In Figure 5.15d it was shown that the downstream prism experiences at a spacing of
S{D = 2.8 a negative mean drag force in each Reynolds-number flow regime, which implies a
strong shielding at this small spacing value. At low subcritical Reynolds numbers and through-
out the complete transcritical flow regime, the values for Cpf2 are just slightly lower than those
for Cpb1 , from which it can be derived that the enclosed flow in the gap between both prisms is
practically stagnant. The latter results from the reattachment of the free shear layers from the
upstream prism on both front faces of the downstream prism, most probably around s{d = 0.15
on the upper face and s{d = 1.71 on the lower face, as at these positions Cp,cyl reaches its
largest negative values. The decrease of Cpf2 at higher subcritical Reynolds numbers and in the
critical flow regime shows the reduction of the amount of shielding of the downstream prism.
It is caused by the decreased lateral spreading of the free shear layers in the gap between both
prisms as can be derived from the decrease of the suction pressure at the base of the upstream
prism. Because Cpb2 is practically independent of the Reynolds number throughout all flow
regimes (Figures 5.23c and 5.23d), the increase in Cd2 at those Reynolds numbers is a direct
result of its decreased shielding. At the supercritical Reynolds number of ReD = 5.78ˆ105, the
width of the near wake behind this prism reaches its smallest value, and so does the shielding
of the downstream prism, both being obvious from the minimum values for Cpf2 and Cd2 at
this Reynolds number. In the following upper transition, the opening of the near wake behind
the upstream prism (i.e. an increase of both Cpb1 and Cd1) results in a gradual recovery of
the shielding of the downstream prism. Hence, a larger interference of the flow around the
downstream prism by the close presence of the upstream one occurs: the decrease of the mean
base pressure of the upstream prism leads to a larger suction on the faces I and II of the
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5.4 Separation effect on slightly rough two square-section prisms with r{D = 0.16 in tandem at
the two "symmetric" incidence angles
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Figure 5.24: Qualitative scaled vectorial representation of the mean circumferential cross-
sectional pressure distribution on two slightly rough square-section prisms (r{D = 0.16,
ks{D = 4.5ˆ10´4, and α = 45˝) in a tandem configuration with S{D = 2.8, 4.0, and 5.6
for the same selected Reynolds numbers as presented in Figure 5.23 (Van Hinsberg [259]). Left
column: S{D = 2.8; centre column: S{D = 4.0; right column: S{D = 5.6.
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downstream prism and the value for Cpf2 slowly approaches Cpb1 once more. The foregoing
provokes a gradual increase of the thrust force on the downstream prism towards the subcritical
level in the transcritical flow regime.

The main effect of an increase in S{D is a reduction of the interference between both tan-
dem prisms and thus also of the shielding of the downstream prism. As previously mentioned,
the fluid dynamics of the upstream prism approaches that one of a single, isolated prism with
increasing gap size. The larger spacing allows the free shear layers that have separated from
the upstream prism to curl inward towards the main centreline of the gap between both prisms.
For S{D = 5.6, the appearance of a steady "double bump"-shape of the pressure distribution
on both front faces of the downstream prism is evidence for a distinct change of the flow be-
haviour in the gap. Based on the distribution of the surface pressure on those two faces, the
impingement of the eddies occurs most probably in the vicinity of s{d = 0.57 to 0.67 (faces I )
and s{d = 1.19 to 1.29 (face II ). Compared to S{D = 2.8, the large difference between Cpb1 and
Cpf2 at all Reynolds numbers in Figure 5.22j indicates that the shielding of the downstream
prism has reduced significantly. In combination with the higher mean suction at its base, which
slowly nears that of the upstream prism (Figure 5.16f), a clear positive, but relatively Reynolds-
number-independent mean drag force acts on the downstream prism. Its value is nonetheless
still about twice as small as that of both the upstream and of the single prism, owing to the
lower velocity of the oncoming flow experienced by the downstream prism than the free-stream
velocity U8.

For the intermediate spacing, the distribution of the mean pressure on the faces I and II
differs significantly between the various flow regimes. At subcritical and low critical Reynolds
numbers, the partial shielding of the downstream prism induces a clear V-shaped pressure dis-
tribution in between both reattachment locations at s{D = 0.15 to 0.26 and s{D = 1.61 to
1.71 of the free shear layers from the upstream prism. Although these reattachment points are
similar to those found for S{D = 2.8 in the same flow regimes, the larger gap size and the con-
sequent alteration of the shape of the pressure distribution from U to V are responsible for the
larger difference between Cpb1 and Cpf2 compared to the smallest spacing. The rough balance
between the negative values of Cpf2 and Cpb2 explains the only slightly negative values for Cd2
in Figure 5.15e. The following decrease of Cpf2 reveals a reduction in the amount of shielding
that results from the decreasing width of the near wake behind the upstream prism and the
accompanying migration of both mean reattachment locations on the downstream prism in the
direction of the upstream-directed rounded edge between the faces I and II. The imbalance be-
tween Cpf2 and Cpb2 grows with increasing Reynolds number and the small thrust force (Mode
I ) on the downstream prism becomes a positive drag force (Mode II ) around ReD = 4.7ˆ105,
i.e. at the cross-over from the critical to the supercritical flow regime. The switch from the
reattachment to the co-shedding regime induces a gradual transformation of the mean pres-
sure distribution from a V-shape into a clear "double bump’"-shape at Reynolds numbers that
belong to the first part of the upper transition (Figure 5.23j). In this latter flow regime, an
almost perfect match is found between the surface pressure distributions for S{D = 4.0 and
S{D = 5.6 at equal Reynolds numbers in the beginning of the transcritical flow regime (Figure
5.24). The same thus also counts for the values of the derived coefficients Cpf2 , Cpb2 , and Cd2 .
This demonstrates, that instead of a shear-layer reattachment, an eddy impingement onto faces
I and II of the downstream prism takes place in this small range of Reynolds numbers, which
then again results in the lowest shielding of the downstream prism (and thus the highest value
for Cd2) for this tandem configuration. With a further increase in ReD, the lateral spreading
of both free shear layers in the gap increases, as a consequence of which their reattachment on
the downstream prism re-appears. The increased shielding leads to a gradual re-migration of

172



5.5 Résumé Chapter 5

the "double bump’"-shape into a concave V-shape, as displayed in Figure 5.23j. The associated
large decrease in Cpb2 is mainly responsible for the sharp decrease of Cd2 towards nearly zero,
but still positive transcritical values.

5.5 Résumé Chapter 5
The emphasis of this chapter was placed on the analysis of the fluid dynamic behaviour of a
pair of identical "infinite" square-section prisms with rounded edges, positioned in a tandem
configuration perpendicular to a uniform flow. The impact of various governing and influen-
cing parameters, i.e. the Reynolds number based on the undisturbed oncoming flow, the edge
roundness, incidence angle, and surface roughness height of the two prisms, and the spacing
between them were presented and discussed. The data were obtained in several wind tunnel
experiments in the High-Pressure wind tunnel facility by using the same measurement tech-
niques as in the single prism tests discussed in the previous two chapters. The test section
was only slightly modified to allow for the placement and incidence angle variation of a second
prism at various upstream locations of the single prism position, i.e. at prism centre-to-centre
positions of S{D = 2.8, 4.0, and 5.6. In this way, an absolute minimum of boundary conditions
was altered to ensure a profound comparison between the results of the single prism and the
tandem configurations at equal Reynolds numbers between 105 and 107. As reference, the sin-
gle prism with a square cross-section and non-dimensional rounded edges of r{D = 0.16, either
with smooth (ks{D = 4.5ˆ10´6) or slightly roughened (ks{D = 4.5ˆ10´4) faces, was selected.

An increase of the surface roughness on the two tandem prisms with S{D = 4.0 and 5.6 at
α = 0˝ and 45˝ induces similar roughness-related changes in the various coefficients (i.e. the
mean drag and base pressure coefficients of both prisms, and in the fluctuating force coefficients
and the Strouhal number of the downstream prism) as found for an identical single prism at
the same incidence angles. This includes, among other things, a common shift of the various
flow regimes towards lower Reynolds numbers together with a convergence of their respective
bounding Reynolds numbers. In particular at α = 45˝ a significantly increased Reynolds-
number independent behaviour of the fluid-dynamic coefficients of both prisms is in that way
obtained. This is even more evident for the larger of the two spacing values owing to the weaker
drag crisis that occurs in the critical flow regime. Regardless of the combination of gap spacing
and angle of incidence, the values of the various fluid-dynamic quantities listed above are not
affected by the larger roughness height at subcritical Reynolds numbers. The same applies to
the minimum or maximum values at the cross-over from the critical to the supercritical flow
regime and the plateau of the latter at α = 0˝.

At a constant angle of incidence, a variation of the gap size between the two slightly rough
tandem prisms has a particular effect on the flow around and the resulting pressures and forces
on the downstream prism. For the two "symmetric" incidence angles, the effect of a variation in
S{D is most pronounced at α = 45˝ and results from a larger lateral distance between both free
shear layers in the (near) wake behind the upstream prism and the resulting stronger shield-
ing of the downstream prism by the upstream one. For the low gap value of S{D = 2.8, the
downstream prism experiences a thrust force either only in certain flow regimes for α = 0˝ or
in all flow regimes at α = 45˝. In the first case, the state of the flow around the tandem prism
configuration switches multiple times between Mode I, with Cd2 ă 0, a stagnant fluid in the gap
between both prisms resulting from a reattachment of the shear layers from the upstream on
the downstream prism and S{D ă S{Dcr, and Mode II, with Cd2 ą 0 and S{D ą S{Dcr. The
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mutual interference resulting from the proximity to the downstream prism also alters the flow
over the upstream prism. This leads in particular to a decrease in the mean pressure on the
base face(s) of the upstream prism and thus to a reduction of its mean overall pressure drag.
The decrease of both the proximity and wake interference effects with increasing gap spacing
causes the fluid-dynamic quantities to gradually approach the values for the isolated single
prism. At the largest spacing of S{D = 5.6, the flow state around both tandem prisms equals
Mode II at all Reynolds numbers and at both incidence angles. While the flow around the
downstream prism is still altered by shielding effects, the mean pressure drag on the upstream
prism equals that of a single prism. Weak proximity effects are nonetheless still noticeable in
the mean surface pressure distribution of the upstream prism at Reynolds numbers that belong
to the critical (α = 0˝) and the critical to upper transition (α = 45˝) flow regimes and lead to
a different behaviour of the mean lift and pitch moment compared to the single prism.

The trends and values of the fluid-dynamic parameters related to the eddy shedding process,
i.e. the fluctuating lift, fluctuating drag, and the Strouhal number of the downstream prism
depend strongly on the combination of the investigated governing and influencing parameters
and which one of them is taken as the main variable. Starting from the reference configuration,
hence, two prisms with square cross-sections, non-dimensional rounded edges of r{D = 0.16,
and smooth surfaces of ks{D = 4.5ˆ10´6, positioned in-line at α = 0˝ or α = 45˝, the following
main results can be summarised:

(a.) increase of roughness on the faces of both tandem square-section prisms.
The common shift of the various flow regimes towards lower Reynolds numbers together
with a convergence of their respective bounding Reynolds numbers, resulting from an
increased surface roughness height by e.g. marine fouling or snow and ice accumulation,
leads to a lengthening of the uppermost flow regime, i.e. the supercritical and the tran-
scritical one for α = 0˝ and 45˝, respectively. While at the lower of the two incidence
angles the values of both fluctuating forces and the Strouhal number are hardly altered
by the increased surface roughness of ∆ks{D = 1ˆ102 within each flow regime, their
independence on the Reynolds number increases significantly at α = 45˝. The latter re-
sults in high fluctuating lift and drag forces at most Reynolds numbers, with the only
exception of a small dip in the limited range of Reynolds numbers that covers the criti-
cal to upper transition flow regimes. The Strouhal number, on the other hand, behaves
inversely with increasing Reynolds number. Hence, while at α = 0˝ the high-frequency
eddy shedding induces only weak pressure fluctuations on the downstream prism at high
to very high Reynolds numbers, the exact opposite occurs at α = 45˝, i.e. the downstream
prism experiences high force fluctuations, but at relatively low frequencies.

(b.) variation of gap size between both slightly rough square-section prisms in tandem.
Also in this case, a distinction must be made between both "symmetric" incidence angles,
based on the behaviour of the free shear layers in the gap between the two tandem prisms
and the resultant amount of shielding of the downstream prism. Placing a second identical
square-section prism closely upstream hardly affects the values of the pressure fluctuations
in cross-flow direction on the surface of the original single prism. The frequency with
which those surface pressures fluctuate in transverse direction can be lowered, though.
In contrast, the presence of the second tandem prism increases the values of the pressure
fluctuations on the initial prism in flow direction at α = 0˝, while decreasing them at
45˝. The former results from the occurrence of the upper transition and transcritical flow
regimes at Reynolds number beyond 1ˆ106.
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Increasing the gap between both in-line prisms at α = 45˝ causes a switch of the flow
state around both prisms from Mode I to Mode II, which results in a significant rise of
the fluctuating lift well beyond the values for the single prism, while they remain at a
similar level at α = 0˝. The influence of the second (hence, upstream) prism on the
fluctuating drag and Strouhal number of the downstream prism decreases sharply with
increasing S{D, leading to an approximation and even a nearly perfect overlap of their
values with those of the single prism in the various flow regimes. Since the state of the flow
belongs at both incidence angles to the co-shedding regime, the lift and drag fluctuations
experienced by the originally single prism now result from a combination of the impinging
vortices coming from the upstream prism and the eddy shedding in its own near wake.
The increase in Strouhal number with increasing centre-to-centre spacing is most likely
caused by the stronger synchronisation of the eddy shedding frequency with that of the
upstream one, the latter being equal to the eddy shedding frequency of the isolated single
prism, in combination with a reduction of the velocity defect in the near wake behind the
upstream prism.
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Chapter 6

Summary

The studies summarised and discussed in this monograph represent the state-of-the-art of flows
over stationary two-dimensional prismatic bluff bodies with square cross-sections and rounded
lateral edges at high to very high Reynolds numbers. The focus was placed on configurations
of isolated, single prisms and pairs of two identical prisms arranged in-line in a steady and
uniform cross-flow. Cross-sectional surface pressure distributions at mid-span of the prisms
provided mean sectional lift, pressure drag, pitch moment, and base pressure coefficients, as
well as information on the locations of boundary layer separation, the occurrence and positions
of a reattachment of the free shear layer(s), and the subsequent re-separation of the turbu-
lent boundary layer. The time-resolved global, hence, spanwise-integrated lift and drag forces,
obtained with piezoelectric platform dynamometers, were used to identify the extent of un-
steadiness in the flow around the isolated or tandem prisms along with jumps of the flow from
one Reynolds-number flow regime or flow state to another. The resultant power spectral density
of the time series of the lift force provided the main frequency (or the two main frequencies at
Reynolds numbers in the asymmetric critical flow state) of the eddy shedding, while the RMS
values of the lift and drag forces were measures of the vigorousness of the shedding process
in the near wake. Furthermore, the vertical wake rake give insight in the mean cross-sectional
total drag coefficient of the tandem arrangement and the non-dimensional mean pressure loss in
the near wake, from which the (a)symmetry and the width of the (common) near wake could be
derived. Several governing and influencing model parameters (i.e. the roundness of the prism’s
lateral edges, the height of the surface roughness elements, and the centre-to-centre spacing
between both tandem prisms) and flow parameters (hence, the Reynolds number and the angle
of incidence) were selected and the impact of a change in their values – either individually,
in pairs, or in combinations of three or more simultaneously – on the mean and time-resolved
fluid-dynamic behaviour of the isolated and tandem prisms was analysed.

The results presented have demonstrated the capability of the various investigated model
parameters in altering the process of eddy shedding in the near wake of single, isolated prismatic
bluff bodies. Most prominent are the three facts that (1 ) rounding the sharp lateral edges of
smooth square-section prisms can significantly lower the fluctuating lift and drag values, thereby
simultaneously increasing the shedding frequency, (2 ) increasing the surface roughness height
has exactly the opposite effect, and (3 ) a combination of both can even result in a complete
suppression of the eddy shedding. While edge roundness can thus be considered a valuable
passive countermeasure for galloping in high Reynolds-number flows with ReD = 1ˆ105 to
1ˆ107, with the greatest gain in the supercritical flow regime, surface roughness can be used
to counteract vortex-induced vibrations (VIV). The increased height of the roughness elements
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not only has the potential of reducing the oscillation amplitudes in both flow and cross-flow
direction, but also of preventing the occurrence of resonance (hence, a "locking-in" of the
eddy shedding frequency with the natural frequency of the prism) by shifting the shedding fre-
quency to lower values and thus away from the natural frequency. Adding a roundness to the
sharp edges of square-section prisms also introduces a dependence of its fluid dynamics on the
Reynolds number, which increases the more its cross-sectional shape approaches a circle. By
subsequently placing roughness elements on the faces of the rounded square-section prism, this
dependence on the Reynolds number can then again be (partially) counteracted. In Chapter
4 it has even been demonstrated that a specific combination of the two parameters leads to
a complete suppression of the periodic eddy shedding in a limited range of Reynolds numbers
belonging to the upper transition for incidence angles in the range of 3.25˝ to 19.5˝. This
latter behaviour at Reynolds numbers in the upper transition is actually already known from
experiments on two-dimensional smooth circular cylinders, but has never been demonstrated
for rounded square-section prisms.

However, it should be kept in mind that a variation of either of these two influencing model
parameters will also lead to an alteration of other important fluid-dynamic quantities of the
prismatic bluff body, such as its experienced mean drag, mean lift, and mean pitch moment.
In addition, the two main governing flow parameters, i.e. the Reynolds number and the angle
of incidence of the oncoming flow, must also be taken into account. Especially when highly dy-
namic flow conditions (e.g. atmospheric turbulence or wind gusts) exist or are expected to occur
frequently, a distinct variation of the free-stream velocity or direction may result in temporal
and intermittent transitions of the flow over the prism to neighbouring Reynolds-number flow
regimes or flow states, respectively. The resulting temporal fluctuations of the fluid dynamics
of the prism may even make the applied or intended passive countermeasure(s) against the
undesired flow-induced vibration counterproductive. Owing to this complex interplay of the
various governing and influencing parameters, the degree of edge roundness or the exact height
of the surface roughness elements should therefore be well-considered beforehand. The results
presented in this work now allow first resilient comparisons with other passive and active flow
control methods.

Apart from having gained a better and detailed understanding of the flow around two iden-
tical square-section prisms with rounded lateral edges in a tandem constellation, the results are
also useful in various applications. For example, the ocean currents around steel foundations
of in particular semi-submersible floating platforms for marine renewables and offshore drilling
rigs are characterised by very high Reynolds numbers, even though the ocean surface current
velocity is generally below 1 m/s. The flexible mooring lines allow combinations of large ampli-
tudes and low frequencies of the possible translational (surge, sway, and heave) and rotational
(roll, pitch, and yaw) platform motions, as well as a dynamic coupling between them, which
may cause strong vibrations and harmonic motions of the upper structure, resulting in severe
(periodic) loads and moments on the blades and the hub of floating renewables, while being
uncomfortable for rig operators and drillers as they experience those (harmonic) motions over
long periods of time.

The reduction or suppression of these flow- and motion-induced vibrations is to date still
a serious hot issue in the offshore and wind-engineering industry, mainly owing to the missing
robust procedures to predict the motions precisely. The current high-fidelity Computational
Fluid Dynamics codes and reduced-order models commonly used in the design process of float-
ing offshore structures are mainly based on validation data from experiments performed at
incorrect, hence, relatively "low" Reynolds numbers in wind tunnels, water tunnels, and water
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towing tanks. Robust and accurate statistical data at full-scale Reynolds numbers are still
very rare, as there are only a handful of test facilities in which systematic experiments can
be performed at high to very high Reynolds-number flows with low freestream velocities. The
unique experimental data, findings, and thorough analyses in Chapter 5 of this work now allow
a first improvement of the commonly applied numerical and reduced-order models.

Another frequently discussed issue with respect to floating offshore structures is the natural
increase of soft and hard marine fouling over time upon their placement in the ocean. The
current data have shown that, depending on the direction of the ocean current, the gradual
increase in natural hard marine fouling on submersed foundation elements may significantly en-
hance the amplitudes of the platform’s motions over an increasing range of operating Reynolds
numbers, while simultaneously lowering their frequencies. The numerical capture of the flow
over the surface of foundation elements covered with roughness elements requires an enormous
computational effort. Indeed, an extremely fine numerical grid directly adjacent to the surface
is required to correctly reproduce the behaviour of the flow over the roughness elements, which
at those high Reynolds numbers are either situated entirely inside the very thin boundary layer
or pierce through the surface boundary layer at very high roughness values. Furthermore, a
minimum number of vibration cycles per studied roughness value is required to obtain good
statistical average and fluctuating force and moment values. A reduced order modelling, de-
rived from phenomenological schemes based on the presented unique results, can therefore be
regarded as a solid initial step towards updating and optimising numerical schemes that take
into account the high-Reynolds-number fluid-dynamic effects of marine growth on prismatic
foundation elements.

Worth mentioning are several open points that have not yet been addressed in this mono-
graph, but which demonstrate the necessity and meaningfulness of further research efforts.

The conclusions drawn in this monograph are based on wind tunnel experiments on statio-
nary single and tandem square-section prisms. As a next logical step, experimental wind tunnel
measurements on the flow over elastically-mounted single and tandem prisms, which are either
forced to oscillate or free to vibrate in flow and/or cross-flow direction at very high Reynolds
numbers, are highly encouraged and recommended. Their realisation in the High-Pressure wind
tunnel facility Göttingen (HDG) is, however, much more complex than in conventional, easily
accessible wind or water tunnels. Due to the limited space inside the facility, the required com-
ponents of the test setup and their sizes must both be reduced to a minimum, while still serving
their purpose even at total air pressures of p0max = 10 MPa. Safety aspects play a key role here,
since the test section cannot be accessed immediately once the total air pressure in the facility
has exceeded a certain lower threshold. In particular when galloping sets in, or, in the case of
VIV, the reduced velocity approaches the values at which the eddy shedding frequency "locks"
into the natural frequency of the prismatic bluff body, there must be the possibility to activate
a damping system. Despite these challenges, the feasibility of such measurements in the HDG
is currently being explored.

In the parametric studies of the flow around the two identical tandem square-section prisms,
both were treated as separate bluff bodies with a mutual influence between the flow around
each one of them. However, in relation to floating offshore structures, a more realistic scenario
is their treatment as a single body. For furure investigations on the variation of the angle
of incidence of the oncoming flow around both prisms, this implies a staggered configuration,
thereby combining a variation of their relative positions with a simultaneous change of their
incidence angles. Since only one pair of piezoelectric platform dynamometer is currently avail-
able to measure the time-dependent global lift and drag forces from which the eddy shedding
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frequency can be derived, the second prism must in this case be placed both upstream and
downstream of the first one to obtain the time series of the lift and drag forces on and the
shedding frequencies of the eddies in the wake behind both prisms separately. This could be fa-
cilitated and even automated by mounting the ends of both prisms at both sides on a turntable
with the dynamometers in-between. To avoid large geometric blockage ratios that lead to wall
interference effects and to stay below the maximum allowable total aerodynamic force that can
be absorbed by the test section, investigations on offshore structures with three or more pillars
in the HDG are not possible without a significant downscaling and thus a large reduction in the
maximum possible Reynolds number. To overcome this problem, one could think of additional
tests on clusters of three or more foundation elements in other facilities, such as water tunnels.
The experiments would have to be carried out at lower Reynolds numbers to avoid cavitation,
but at the same time there would be a much easier accessibility for optical measurements tech-
niques. An identical experiment with two prisms at an equal Reynolds number that can be
achieved in both facilities, would then serve as a reference case for comparing the fluid-dynamic
results. The measurements in the HDG on two prisms would then cover the high to very high
Reynolds-number range.

The analysis of the flow around the single and tandem square-section prisms, as well as the
behaviour of the surface boundary layer and the free shear layers on each of the prisms is based
on mean pressure and time-dependent force measurements. To gain a better understanding
of the highly unsteady flow field, especially in the gap between the two tandem prisms, it is
of great value to advance the implementation of optical measurement techniques – first and
foremost Particle Image Velocimetry – in the HDG. However, the limited space inside the HDG
for the cameras, the few available windows for the laser beam, and a remote-controlled system
for adjusting the alignment of both laser sheets after a pressure change are just some of the
numerous challenges that have to be overcome. One of the most important and currently also
most challenging issues is the selection of tracer particles that do not agglomerate at high pres-
sures, do not react with the internal seals of the wind tunnel, can follow the unsteady flow at
10 MPa as well as at atmospheric pressures, and do not deposit on the model (thereby increas-
ing the surface roughness) or on the internal parts of the HDG, e.g. by dissolving into thin air
after having remained over a certain time inside the HDG. Moreover, their introduction into
the flow from outside the HDG is still an unsolved issue, as a certain minimum overpressure
to the internal pressure of the HDG is required, which could destroy their sphericity. However,
confidence can be placed in the expectation that these issues will be solved in the next couple
of years.
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Appendix A

Combined effect of the surface roughness
height and prism’s edge roundness value
on the PSD of the global lift force of
square-section prisms at α = 0˝ and 45˝

and circular cylinders

The following figures display the effect of a change in surface roughness height from ks{D = 4.5ˆ10´6

to 1ˆ10´3 on the power spectra of the time series of the global lift force that acts on a 2D square-
section prism with various possible edge-roundness values and on a 2D circular cylinder. The
selected edge roundness values are: r{D = 0, 0.16, and 0.29. The incidence angle is either 0˝ or
45˝. The presented Reynolds numbers are chosen in such a way that they cover all flow regimes.
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Figure A.1: Combined influence of ks{D and r{D on the PSD of the time series of the global
lift force of a two-dimensional square-section prism at α = 0˝ for selected Reynolds numbers.
(a)-(b): r{D = 0; (c)-(d): r{D = 0.16; (e)-(f ): r{D = 0.29; (g): r{D = 0.5;. —: subcritical
flow regime; —: critical flow regime; —: supercritical flow regime; —: upper transition; —:
transcritical flow regime. The corresponding Strouhal numbers are indicated by the symbols
on the curves and listed in Table A.1. In the case of the occurrence of two Strouhal numbers
at equal Reynolds number, both have been highlighted in the graphs.
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Appendix A: Combined effect of the surface roughness height and prism’s edge roundness value on
the PSD of the global lift force of square-section prisms at α = 0˝ and 45˝ and circular cylinders

Table A.1: Values of the Strouhal numbers – based on the main and, when applicable, also the
secondary frequency peak in the PSDs of the time series of the lift L(t) in Figure A.1 – for
selected Reynolds numbers in the various flow regimes of perfectly smooth and rough square-
section prisms with edge roundness values of r{D = 0, 0.16, or 0.29 at α = 0˝ and of a circular
cylinder.

Incidence Edge Surface roughness Flow regime Reynolds number Strouhal number(s):
angle / ˝ roundness height StL,1 StL,2

0 0 4.5ˆ10´6 – 1.269ˆ105 0.122 –
– 5.474ˆ105 0.122 –
– 9.439ˆ105 0.123 –
– 6.159ˆ106 0.119 –

1.0ˆ10´3 – 1.189ˆ105 0.121 –
– 5.382ˆ105 0.124 –
– 9.548ˆ105 0.125 –
– 6.011ˆ106 0.126 –

0.16 4.5ˆ10´6 subcritical 1.163ˆ105 0.136 –
critical 5.481ˆ105 0.136 0.274

supercritical 5.913ˆ106 0.266 –

1.0ˆ10´3 subcritical 1.127ˆ105 0.135 –
critical 1.873ˆ105 0.121 0.257

supercritical 2.327ˆ105 0.246 0.122
upper transition 2.622ˆ105 0.134 –

transcritical 5.912ˆ106 0.142 –

0.29 4.5ˆ10´6 subcritical 1.184ˆ105 0.154 –
critical 2.428ˆ105 0.144 0.322

supercritical 6.130ˆ106 0.306 –

1.0ˆ10´3 subcritical 1.115ˆ105 0.153 –
critical 1.624ˆ105 0.136 0.287
critical 1.821ˆ105 0.303 0.148

supercritical 1.984ˆ105 0.289 –
upper transition 3.338ˆ105 0.276 –

transcritical 6.021ˆ106 0.272 –

– 0.5 1.2ˆ10´3 subcritical 1.058ˆ105 0.191 –
critical 1.702ˆ105 0.177 –

supercritical 1.950ˆ105 0.239 –
upper transition 2.553ˆ105 0.243 —

transcritical 6.163ˆ106 0.226 –
: StL,1 and StL,2 correspond to the dimensionless eddy shedding frequencies at the main and secondary peak, respectively.
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A.2 Incidence angle of 45˝

A.2 Incidence angle of 45˝
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Figure A.2: Combined influence of ks{D and r{D on the PSD of the time series of the global
lift force of a two-dimensional square-section prism at α = 45˝ for selected Reynolds numbers.
(a)-(b): r{D = 0; (c)-(d): r{D = 0.16; (e)-(f ): r{D = 0.29; (g): r{D = 0.5;. —: subcritical
flow regime; —: critical flow regime; —: supercritical flow regime; —: upper transition; —:
transcritical flow regime. The corresponding Strouhal numbers are indicated by the symbols
on the curves and listed in Table A.2. In the case of the occurrence of two Strouhal numbers
at equal Reynolds number, both have been highlighted in the graphs.
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Appendix A: Combined effect of the surface roughness height and prism’s edge roundness value on
the PSD of the global lift force of square-section prisms at α = 0˝ and 45˝ and circular cylinders

Table A.2: Values of the Strouhal numbers – based on the main and, when applicable, also the
secondary frequency peak in the PSDs of the time series of the lift L(t) in Figure A.2 – for
selected Reynolds numbers in the various flow regimes of perfectly smooth and rough square-
section prisms with edge roundness values of r{D = 0, 0.16, or 0.29 at α = 45˝ and of a circular
cylinder.

Incidence Edge Surface roughness Flow regime Reynolds number Strouhal number(s):
angle / ˝ roundness height StL,1 StL,2

45 0 4.5ˆ10´6 – 1.114ˆ105 0.113 –
– 5.437ˆ105 0.114 –
– 9.492ˆ105 0.114 –
– 6.125ˆ106 0.115 –

1.0ˆ10´3 – 1.205ˆ105 0.113 –
– 5.242ˆ105 0.114 –
– 9.667ˆ105 0.115 –
– 6.202ˆ106 0.115 –

0.16 4.5ˆ10´6 subcritical 1.317ˆ105 0.123 –
critical 9.219ˆ105 0.157 –

supercritical 1.032ˆ106 0.182 –
upper transition 2.190ˆ106 0.145 –

3.232ˆ106 0.135 –
transcritical 6.048ˆ106 0.130 –

1.0ˆ10´3 subcritical 1.319ˆ105 0.122 –
critical 2.322ˆ105 0.131 –

supercritical 2.418ˆ105 0.135 –
upper transition 2.590ˆ105 0.133 –

transcritical 6.173ˆ106 0.128 –

0.29 4.5ˆ10´6 subcritical 1.198ˆ105 0.139 –
critical 5.652ˆ105 0.203 –

supercritical 6.315ˆ105 0.284 –
upper transition 2.534ˆ106 0.168 –

transcritical 5.864ˆ106 0.165 –

1.0ˆ10´3 subcritical 1.091ˆ105 0.139 –
critical 1.845ˆ105 0.149 –

supercritical 2.064ˆ105 0.186 –
upper transition 2.260ˆ105 0.160 –

transcritical 6.300ˆ106 0.150 –

– 0.5 1.2ˆ10´3 subcritical 1.058ˆ105 0.191 –
critical 1.702ˆ105 0.177 –

supercritical 1.950ˆ105 0.239 –
upper transition 2.553ˆ105 0.243 –

transcritical 6.163ˆ106 0.226 –
: StL,1 and StL,2 correspond to the dimensionless eddy shedding frequencies at the main and secondary peak, respectively.
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Appendix B

Power spectra of the global lift force for a
slightly rough square-section prism with
rounded egdes of r{D = 0.16 at incidence
angles between 0˝ and 45˝
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Appendix B: Power spectra of the global lift force for a slightly rough square-section prism with
rounded egdes of r{D = 0.16 at incidence angles between 0˝ and 45˝
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Figure B.1: Influence of incidence angle on the PSDs of the time series of the global lift force on
a 2D square-section prism (r{D = 0.16 and ks{D = 4.5ˆ10´4) at selected Reynolds numbers
that cover the subcritical to the transcritical flow regimes. First and third row: 0˝ ď |α| ď 13˝;
second and fourth row: 19.5˝ ď |α| ď 45˝. The corresponding Strouhal numbers are indicated
by the symbols on the curves and listed in each graph.
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Appendix B: Power spectra of the global lift force for a slightly rough square-section prism with
rounded egdes of r{D = 0.16 at incidence angles between 0˝ and 45˝
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Appendix C

Power spectra of the global lift force on
the downstream prism of two smooth
square-section prisms with edge roundness
of r{D = 0.16 in a tandem configuration
with prism centre-to-centre spacing of
S{D = 4.0 or 5.6 and at incidence angles
of either 0˝ or 45˝
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Appendix C: Power spectra of the global lift force on the downstream prism of two smooth
square-section prisms with edge roundness of r{D = 0.16 in a tandem configuration with prism
centre-to-centre spacing of S{D = 4.0 or 5.6 and at incidence angles of either 0˝ or 45˝
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Figure C.1: Influence of the prisms’ centre-to-centre spacing on the PSDs of the time series of
the global lift force that acts on the downstream one of two 2D smooth tandem square-section
prisms (r{D = 0.16, α = 0˝ and 45˝) at selected Reynolds numbers that cover the subcritical to
the transcritical flow regimes. Left column: α = 0˝; right column: α = 45˝. Upper row: single,
isolated prism configuration; center row: S{D = 4.0; lower row: S{D = 5.6. —: subcritical
flow regime; —: critical flow regime; —: supercritical flow regime; —: upper transition; —:
transcritical flow regime. The corresponding Strouhal numbers are indicated by the symbols
on the curves and listed in each graph. M in the Reynolds number equals "million".
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Appendix C: Power spectra of the global lift force on the downstream prism of two smooth
square-section prisms with edge roundness of r{D = 0.16 in a tandem configuration with prism
centre-to-centre spacing of S{D = 4.0 or 5.6 and at incidence angles of either 0˝ or 45˝
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Appendix D

Effect of surface roughness height on the
power spectra of the global lift force on
the downstream prism of two
square-section prisms with edge roundness
of r{D = 0.16 in a tandem configuration
with prism centre-to-centre spacing of
S{D = 4.0 or 5.6 and at incidence angles
of either 0˝ or 45˝

217



Appendix D: Effect of surface roughness height on the power spectra of the global lift force on the
downstream prism of two square-section prisms with edge roundness of r{D = 0.16 in a tandem
configuration with prism centre-to-centre spacing of S{D = 4.0 or 5.6 and at incidence angles of
either 0˝ or 45˝
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Figure D.1: Combined impact of increased surface roughness and gap spacing on the power
spectral density of the time series of the global lift force that acts on the downstream one
of two tandem square-section prisms (r{D = 0.16, α = 0˝) at selected Reynolds numbers in
the subcritical to transcritical flow regimes. Left column: ks{D = 4.5ˆ10´6; right column:
ks{D = 4.5ˆ10´4. Upper row: centre-to-centre spacing of S{D = 4.0; lower row: centre-
to-centre spacing of S{D = 5.6. —: subcritical flow regime; —: critical flow regime; —:
supercritical flow regime; —: upper transition; —: transcritical flow regime. The corresponding
Strouhal numbers are indicated by the symbols on the curves and listed in each graph. M in
the Reynolds number equals "million".
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Appendix D: Effect of surface roughness height on the power spectra of the global lift force on the
downstream prism of two square-section prisms with edge roundness of r{D = 0.16 in a tandem
configuration with prism centre-to-centre spacing of S{D = 4.0 or 5.6 and at incidence angles of
either 0˝ or 45˝
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Figure D.2: Combined impact of increased surface roughness and gap spacing on the power
spectral density of the time series of the global lift force that acts on the downstream one of
two tandem square-section prisms (r{D = 0.16, α = 45˝) at selected Reynolds numbers in
the subcritical to transcritical flow regimes. Left column: ks{D = 4.5ˆ10´6; right column:
ks{D = 4.5ˆ10´4. Upper row: centre-to-centre spacing of S{D = 4.0; lower row: centre-
to-centre spacing of S{D = 5.6. —: subcritical flow regime; —: critical flow regime; —:
supercritical flow regime; —: upper transition; —: transcritical flow regime. The corresponding
Strouhal numbers are indicated by the symbols on the curves and listed in each graph. M in
the Reynolds number equals "million".
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Appendix E

Effect of gap spacing on the power spectra
of the global lift force on the downstream
prism of two slightly rough square-section
prisms with edge roundness of r{D = 0.16
in a tandem configuration at incidence
angles of either 0˝ or 45˝
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Appendix E: Effect of gap spacing on the power spectra of the global lift force on the downstream
prism of two slightly rough square-section prisms with edge roundness of r{D = 0.16 in a tandem
configuration at incidence angles of either 0˝ or 45˝
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Figure E.1: Influence of the gap spacing on the power spectral density of the time series of the
global lift force that acts on the downstream one of two slightly rough square-section prisms
in tandem (r{D = 0.16, ks{D = 4.5ˆ10´4) at α = 0˝ and 45˝) for the same selected Reynolds
numbers as presented in the Figures 5.20 to 5.24 (Adapted from Van Hinsberg [259]). Left
column: S{D = 2.8; center column: S{D = 4.0; right column: S{D = 5.6. Upper row: α = 0˝;
lower row: α = 45˝. —: subcritical flow regime; —: critical flow regime; —: supercritical
flow regime; —: upper transition; —: transcritical flow regime. The corresponding Strouhal
numbers are indicated by the symbols on the curves.
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