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Abstract

The numerical approximation of solutions to the compressible Euler and
Navier-Stokes equations is a crucial but challenging task with relevance in
various fields of science and engineering. Recently, methods from deep learn-
ing have been successfully employed for solving partial differential equations
by incorporating the equations into a loss function that is minimized during
the training of a neural network. This approach yields a so-called physics-
informed neural network. It is not based upon classical discretizations, such
as finite-volume or finite-element schemes, and can even address parametric
problems in a straightforward manner. This has raised the question, whether
physics-informed neural networks may be a viable alternative to conventional
methods for computational fluid dynamics. In this article we introduce an
adaptive artificial viscosity reduction procedure for physics-informed neural
networks enabling approximate parametric solutions for forward problems
governed by the stationary two-dimensional Euler equations in sub- and su-
personic conditions. To the best of our knowledge, this is the first time that
the concept of artificial viscosity in physics-informed neural networks is suc-
cessfully applied to a complex system of conservation laws in more than one
dimension. Moreover, we highlight the unique ability of this method to solve
forward problems in a continuous parameter space. The presented method-
ology takes the next step of bringing physics-informed neural networks closer
towards realistic compressible flow applications.
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Nomenclature

List of Symbols

u general solution to boundary value problem
û neural network output vector
Ω spatial domain
D general differential operator
B boundary condition
I initial condition
x vector of euclidean coordinates
t time
T upper limit of time
ρ density
x first euclidean coordinate
y second euclidean coordinate
u velocity in x-direction
v velocity in y-direction
E total specific energy
H enthalpy
p pressure
q velocity vector
W vector of conserved variables
W∞ vector of conserved variables at far-field
Fx flux vector in x direction
Fy flux vector in y direction
κ ratio of specific heats
τ general parameter of PDE or boundary conditions

τmin, τmax lower and upper bound of τ
N number of points for residual evaluation
N∞ number of points for Dirichlet/far-field boundary condition
Nob number of points on obstacle surface for wall boundary condition
L total loss functional

LRes residual loss term
LI initial loss term
LB boundary loss term
Lν viscosity penalty loss term
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M∞ Mach number at far field
M local Mach number
η artificial viscosity
ν artificial viscosity factor
ν̃ prescribed artificial viscosity factor

Mred number of reduction epochs
k order of reduction function
α weighting factor for initial condition loss
β weighting factor for boundary condition loss
γ weighting factor for viscosity penalty loss
a semi-major axis of ellipse
b semi-minor axis of ellipse
e eccentricity of ellipse
lr learning rate
θ deflection angle for oblique shock
δ angle between shock and wall
Cp coefficient of pressure
r radius of cylinder

Nbatch number of point per mini-batch
ωk trainable parameter in adaptive activation layer k

Abbreviations
PINN physics-informed neural network
LBFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
ADAM adaptive momentum estimation optimization algorithm
PDE partial differential equation
AD automatic differentiation
CFD computation fluid dynamics
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1. Introduction

The motion of compressible fluids gives rise to nonlinear partial differen-
tial equations (PDEs) such as the Euler and Navier-Stokes equations. The
numerical solution of these equations is for example essential for the devel-
opment of future aircraft configurations. State of the art solvers typically
rely on finite volume or finite element algorithms [1, 2, 3, 4]. These algo-
rithms have been developed and refined for decades and they are in regular
use for industrial problems such as aircraft design. These classical algorithms
discretize the domain and thus require the construction of carefully crafted
computational grids, so-called meshes. Superficially speaking, a finer mesh
will result in a more accurate result but will also increase the computational
cost needed. Despite a non-negligible progress in efficiency in recent years,
long term prospects for further acceleration of these codes seem limited. Es-
pecially, transferring these methods to potentially advantageous hardware
like graphic processing units has shown to be challenging. Besides, classical
algorithms solve a problem for one specific instance of boundary conditions
and/or initial conditions. Therefore, for certain tasks, such as design opti-
mization, multiple evaluations of the solver are necessary. The cumulative
computational effort of multiple solver evaluations can be significant and is
therefore a possibly limiting factor for the usage for commercially relevant
problems.

Our interest is to investigate numerical methods which have the poten-
tial to be applied on future hardware promising an acceleration of orders of
magnitude. In particular, some initial works indicate that one may be able
to transfer deep learning based approaches to quantum computers [5], even
though the potential for acceleration on this hardware is currently still un-
clear. In addition, to successfully implement such an approach, it is necessary
to explore the methodological basis that is required for successful algorith-
mic implementation. With the rising popularity of machine learning methods
and especially deep neural networks, alternative approaches for the solution
of differential equations, based on methods from this rapidly advancing field
have become a popular alternative to classical solvers

One of these techniques are Physics-Informed Neural Networks (PINNs).
The fundamental idea of PINNs is to use a neural network as a parametric
ansatz function for the approximation of the PDE solution and to optimize
the networks parameters by minimizing a loss functional which directly in-
corporates the differential equations as well as the initial and boundary con-
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ditions. During the training of the network, the loss functional is evaluated
at random points inside of the domain. PINNs are fundamentally different
to classical algorithms because they do not rely on a spatial or temporal
discretization in a classical sense. Instead a continuous parametric ansatz-
function (a neural network) is evaluated and optimized at (oftentimes ran-
domly distributed) points in the domain. Hence, the task of mesh-generation
is replaced by the task to find a point distribution in space and time and an
appropriate network dimension (i.e. number and width of layers) which,
when combined, result in a fast convergence and satisfactory final accuracy.

Compared to classical methods, PINNs can directly tackle parametric
problems. A single network can be trained in a continuous parameter space
and yield approximate solutions for a whole range of parameter combinations
of interest. This ability may have implications for aforementioned use cases
like design optimization.

Similar approaches for approximating PDE solutions via neural networks
have been proposed decades ago in works of Lagaris et al. [6] and Dis-
sanayake et al. [7]. Even though the idea seems natural due to the abil-
ity of universal function approximation of neural networks [8], the method
has only recently gained popularity. Nowadays, the networks can be trained
more efficiently due to the availability of high performance graphics cards.
Moreover, the implementation of such algorithms has become straightfor-
ward with software libraries for deep learning, such as Tensorflow [9] and
PyTorch [10]. The term PINN has been introduced by Raissi et al. [11]
who demonstrated the use of this approach on a number of nonlinear PDEs
for forward and inverse problems. Subsequently, PINNs have shown to be
applicable for solving stochastic PDEs [12], inverse problems [13] and para-
metric problems [14]. Various alterations of the vanilla PINN formulation
have been proposed and improvements for the implementation of bound-
ary conditions [15, 16, 17], training facilitation [18, 19] and training point
selection [20, 21] have been developed. For high frequency problems and
large domains, the limited expressibility and the frequency bias of neural
networks may limit the applicability of PINNs. Therefore, different domain
decomposition approaches have been proposed, which divide the domain into
smaller subdomains and use separate networks to approximate the solution
in each subdomain. In particular Jagtap et al. have proposed the con-
servative PINN [22] and extended PINN [23] approaches which use disjoint
subdomains and predefined interface conditions to enforce continuities at the
common interfaces of subdomains. Each network for the respective subdo-
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main is trained with a separate loss function and the training procedures
can be parallelized efficiently [24]. On the other hand, soft domain compo-
sition approaches such as augmented PINN [25] and finite basis PINNs [26]
use overlapping subdomains and smooth gating or blending functions which
locally determine the contribution of each network to a particular point in
the domain. The final prediction is the sum of all sub-network predictions,
weighted with the window/gating functions. Augmented PINNs use addi-
tional trainable gating networks while finite basis PINNs use fixed analytical
window functions. Among many other domains, the flow simulation commu-
nity has readily adapted PINNs for various cases such as blood flow [16, 27],
turbulent convection [28] and aerodynamics of airfoils [29]. An important
property of PINNs is the fact they allow for a straightforward integration of
additional available data from various sources such as experiments or higher
fidelity simulations into the training process. Raissi et al. [30] demonstrate
how noisy concentration data of a passive flow agent can compensate for in-
complete boundary conditions. Even for compressible flows, there has been
some success to employ PINNs for simple forward and especially inverse
problems which exhibit discontinuities [31, 22, 32]. Again, the introduction
of additional solution data into the loss is used to compensate for incomplete
boundary conditions. For a more extensive overview on the usage of PINNs
for fluid dynamics the interested reader is referred to [33].

Fuks and Tchelepi [34] have identified the need for additional dissipa-
tion when solving one dimensional hyperbolic conservation laws with PINNs
once shocks are present. They pointed out the similarity to classical meth-
ods, which use artificial dissipation to approximately solve conservation laws.
Recently, Coutinho et al. [35] have proposed multiple methods to locally or
globally choose artificial viscosity values. They demonstrate the efficacy of
their method on one dimensional transient PDEs. Here we take this idea to
more complex problems by solving the stationary compressible Euler equa-
tions in two spatial dimensions. The compressible Euler equations are a
system of conservation laws with four dependent variables (typically density,
the velocity components and the energy) that describe the behavior of in-
viscid compressible fluids. We also observe that additional dissipative terms
are able to facilitate convergence which is the case for supersonic but also for
subsonic problems without shocks as shown in Appendix A. To avoid highly
dissipative solutions, we introduce two novel ideas. On the one hand we
predict the locally necessary dissipation strength by letting the network pre-
dict the local viscosity alongside the primitive variables. On the other hand,
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we use a penalty loss term to control dissipation levels during the training.
By initially training with high viscosity and then reducing the dissipation
later, we obtain non dissipative solutions while facilitating convergence dur-
ing training. We do, however, not only solve these equations for one instance
of boundary conditions, but rather use the ability of PINNs to approximate
parametric solutions, essentially extending the dimension of the problems by
one or two parameter dimensions. We choose to restrict this analysis to clas-
sical forward problems, meaning that no additional data is incorporated into
the loss function, besides the information that is available in the form of fully
provided boundary conditions. So far, the investigation PINNs for complex
problems governed by the Euler equations has oftentimes been restricted to
inverse problems where some form of data of the solution is already provided
[31, 32]. While the ability of incorporating this data is clearly an advantage
and possibly one of the most important use cases of PINNs, we believe that a
solid understanding of the forward problem is necessary for reliably tackling
more complex problems (e.g. higher dimensional).

In Sec. 2 we give a general introduction to the standard PINN approach
for solving (parametric) initial and boundary value problems. In Sec. 2.2 we
discuss the application of the approach to the compressible Euler equations
and explain how the incorporation of artificial dissipation during the train-
ing can facilitate convergence when looking at the aerodynamic problem of
calculating the flow around solid obstacles.

In Sec. 3 we solve the subsonic flow around an ellipse with a paramet-
ric boundary shape and and variable Mach numbers. In Sec. 4 we solve
the supersonic oblique shock problem with variable Mach number. Consider
also Sec. Appendix A, where non-parametric solutions to the problems are
shown and how PINNs struggle to obtain accurate predictions without artifi-
cial viscosity. Finally, in Sec. 5 the presented results are evaluated in a more
general context and future implications as well as newly arising questions
are discussed. The novelties of the paper are twofold. To the best of our
knowledge for the first time, we solve parametric problems, governed by the
two dimensional compressible Euler equations with PINNs. In addition we
introduce a novel adaptive viscosity training procedure which improves pre-
diction accuracy of PINNs on supersonic problems significantly, compared to
previously published results. Compared to previous work in [32] we focus
exclusively on forward problems. In Appendix A, we show that these require
additional measures such as artificial viscosity to reliably obtain physically
reasonable solutions. This has also been shown for more simple conservation
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Figure 1: Schematic representation of the physics-informed neural network approach for
solving the 2D stationary Euler equations. A fully connected neural network predicts the
primitive variables ρ, u, v, E and the local viscosity factor ν at a point (x, y) in the physical
domain and for optional parameters of the problem (τ0, τ1, . . . ). The loss is calculated as
the sum of squares of the residual of the PDE, the boundary condition and an additional
viscosity penalty term. Partial derivatives of the primitive variables with respect to x or
y are required for the loss and can be calculated using automatic differentiation.

laws in Fuks and Tchelepi [34] and Coutinho et al. [35] confirm the efficacy of
artificial viscosity on one-variable conservation laws. Compared to the work
on forward problems by Mao et al. [31] we focus on parametric and thus more
complex forward problems and obtain better resolution of shocks in the para-
metric formulation, compared to their non-parametric result (see Fig. 10).
For more details, please consider Sec. Appendix A. Preliminary results of
the presented ideas have been presented at the 8th European Congress on
Computational Methods in Applied Sciences and Engineering [36].
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2. Methods

2.1. Physics-Informed Neural Networks

Physics-informed neural networks are deep neural networks, which are
employed to approximate solutions to differential equations. A general initial-
boundary value problem for the unknown function u on the spatial domain
Ω ⊂ Rd and in the time interval (0, T ) ⊂ R can be defined as:

D(u(x, t),x, t) = 0 (x, t) ∈ (Ω× (0, T ))

B(u(x, t),x, t) = 0 (x, t) ∈ (∂Ω× (0, T ))

I(u(x, 0),x) = 0 x ∈ Ω,

(1)

where D is a general differential operator and I and B are the initial and
boundary condition, respectively. The operator D may include multiple non-
linear differential terms of different order. A neural network û(θ,x, t) is now
used to approximate the unknown solution û(θ,x, t) ≈ u(x, t). The vec-
tor θ includes neural networks parameters (weights and biases) which have
to be adjusted during an optimization/training process to find an accurate
approximation of the solution. For this, an objective or loss functional L is
defined. If û(θ,x, t) is a solution to Eqs. 1, the left hand side of Eqs. (1)
vanishes on the entire domain x ∈ Ω and for all times t ∈ (0, T ). Therefore,
a simple loss functional is

L(û(θ)) =

∫ T

0

∫
Ω

D(û(θ,x, t))2 dx dt + α

∫
Ω

I(û(θ,x, 0),x)2 dx

+ β

∫ T

0

∫
∂Ω

B(û(θ,x, t),x, t)2 ds(x) dt (2)

which is 0 and thus minimal if û(θ,x, t) is a solution to Eqs. 1. The coef-
ficients α and β scale the importance of the boundary and initial loss term
with respect to the residual term. Since the network û(θ,x, t) can only be
evaluated at discrete input values, the loss is instead calculated by taking
the sum over a representative point distribution inside of the spatial and
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temporal domain

L(û(θ,x, t)) = LRes + LI + LB

LRes =
1

N

N∑
i=1

D(û(θ,xi, ti))
2 xi ∈ Ω ; ti ∈ (0, T )

LI = α
1

NI

NI∑
i=1

I(û(θ,xi, 0))
2 xi ∈ Ω

LB = β
1

NB

NB∑
i=1

B(û(θ,xi, ti))
2 xi ∈ ∂Ω ; ti ∈ (0, T )

(3)

where NRes, NI and NB are the number of points that evaluate the residual,
the initial condition and the boundary condition, respectively. Since for a
well defined problem, the bounds of the domain are known, the generation
of these training points can be achieved with quasi-random low discrepancy
sequences such as Sobol [37] or Halton [38] or with other methods like Latin
Hypercube sampling [39] at little additional cost. For a uniform point distri-
bution, the calculation of the loss functional can be interpreted as a Monte-
Carlo integration of Eq. (2) where the normalization by the volume has been
dropped. As highlighted in various publications [21, 20, 31], a non uniform
distribution of training points or an adaptive training point selection, based
on the local residual may accelerate training and improve the final accuracy
for certain problems.

The partial derivatives in D(û(θ,xi, ti)) are calculated, using automatic
differentiation (AD). The network parameters are then tuned using an iter-
ative optimization algorithm. The most popular algorithms are variants of
stochastic gradient descend such as Adam [40]. During the optimization, the
gradient of the loss with respect to the network parameters ∇θL(û(θ,xi, ti))
has to be calculated. This can again be achieved, using automatic differ-
entiation and the backpropagation algorithm [41]. As usual for neural net-
works, the optimization problem is generally non-convex and the optimizer
can therefore converge to local minima or regions of vanishing gradients.
Furthermore, for partial differential equations such as the compressible Eu-
ler equations which may not have a unique solution, a minimum of the loss
may not always correspond to a physically reasonable solution.

10



2.1.1. Adaptive Activation Functions

A general feedforward neural network with m layers and dk neurons per
layer can be described as a composition of linear functions and nonlinear
activation functions σ:

û(x0) : Rd0 −→ Rdm

ûj ≡ xm
j j = 1, 2, . . . , dm

x0 = (x0
1, x

0
2, . . . , x

0
d0
)

xk
j = σk

(
dk−1∑
i=1

wk−1
i,j xk−1

i − bkj

)
j = 1, 2, . . . , dk k = 1, 2, . . . ,m.

(4)

A popular choice for the activation function for PINNs is the hyperbolic tan-
gent which has been shown to be a robust choice on a variety of problems [42]
compared to other fixed activation functions:

σ(x)k ≡ tanh(x) =
ex − e−x

ex + e−x

k = 1, 2 . . . ,m−1.
(5)

Note that in the last layer, the identity function σm(x) = x is used. In this
work we also make use of the layer-wise locally adaptive hyperbolic tangent
activation formulation [43]:

σk
adapt(x) ≡ σ(nωk · x) = tanh

(
nωk · x

)
k = 1, 2 . . . ,m−1,

(6)

where n is a constant scaling factor and ωk is an additional trainable parame-
ter per hidden layer that scales the slope of the hyperbolic tangent. Adaptive
activation functions have been shown to improve convergence speed [44, 43]
and PINN accuracies [42] on various problems, compared to fixed activation
functions. The above described version only introduces a single trainable pa-
rameter per layer which only marginally increases the computational effort
compared to fixed activation functions.

2.1.2. Parametric Problems

One prospect of physics-informed neural networks is the possibility to
solve parametric problems. Let τ be a general parameter of the initial and
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boundary value problem. A PINN approximation û(θ,x, t, τ) of the un-
known solution u(x, t, τ) simply receives τ as an additional input to the neu-
ral network alongside x and t. The parameter adds an additional dimension
to the input space and thus the training points. The training points are now
sampled in a d + 2-dimensional domain (x, t, τ) ∈ Ω × (0, T ) × (τmin, τmax).
The parameter τ can then be incorporated into the calculation of any of the
loss terms in Eq. (3). Similarly, this approach can be extended to more than
one parameter.

2.2. Approximation of Stationary Compressible Flows with PINNs

The inviscid flow of compressible fluids is governed by the Euler equa-
tions which describe the conservation of mass, momentum and energy in a
continuous fluid. The two-dimensional Euler equations in their differential
conservative form are given by

∂W

∂t
+

∂Fx

∂x
+

∂Fy

∂y
= 0,

W =


ρ
ρu
ρv
ρE

 , Fx =


ρu

ρu2 + p
ρuv
ρHu

 , Fy =


ρv
ρuv

ρv2 + p
ρHv

 (7)

where W is the vector of the conservative variables with the density ρ, the
local fluid velocity q = (u, v), and the total specific energy E. The total
enthalpy H is defined as H = E + p

ρ
. This system of partial differential

equations can be closed by the equations of state of ideal gases, which yield
p = ρ(κ− 1)(E− ρq2/2), with κ being the ratio of specific heats (κ = 1.4 for
air). The Mach number M = ∥q∥2/a is the ration between the velocity and
the speed of sound a =

√
κp/ρ.

For aerodynamic problems one is oftentimes interested in the steady-state
solution. Therefore, the time derivative in Eq. (1) is omitted.

When solving this system of equations with a physics-informed neural
network, the network outputs can be chosen to approximate the primitive
variables û(θ,x) ≈ (ρ(x), u(x), v(x), E(x)). The residual loss term becomes

LRes =
1

N

N∑
i=1

(
∂Fx(û(θ,xi))

∂x
+

∂Fy(û(θ,xi))

∂y

)2

. (8)

The partial derivatives are calculated using automatic differentiation.
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θ

δ

Figure 2: Schematic representation of boundary conditions and boundary training points
for the cylinder and the oblique shock test case. The Dirichlet boundary conditions for a
Mach number of M∞ are applied at the points xi with i = 1 . . . N∞. The wall boundary
conditions at the obstacle surfaces are enforced at the points xj with j = 1 . . . Nob. Note
that for the parametric problems, one additional sampling dimension per parameter is
appended to the euclidean spatial coordinates.

In the following, we focus on the calculation of flows around solid ob-
stacles and alongside walls. In particular, we use Dirichlet boundary con-
ditions for the inflow/far-field and wall boundaries for the obstacles. For
the Dirichlet boundary conditions the conserved variables approach W∞ =
(ρ∞, ρ∞u∞, ρ∞v∞, ρ∞E∞) which is in the context of aerodynamics typically
determined by the Mach number M∞. Also, the flow should be tangential to
the obstacles surface. This results in a boundary loss term of

LB = β

(
1

N∞

N∞∑
i=1

[W (û(θ,xi))−W∞]2+

1

Nob

Nob∑
j=1

[q(û(θ,xj)) · nj]
2

) (9)

with N∞ points xi on the boundary of the physical domain and Nob points
xj on the boundary of the obstacle. The surface normals at positions xj are
given by nj.
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2.2.1. Adaptive Artificial Dissipation

A fundamental challenge for PINNs in the search of solutions to the com-
pressible Euler equations lies in finding a physically reasonable minimum of
the loss (i.e. an entropy solution). By definition of the loss function (3), any
weak solution of Eqs. (7) that fulfills a given set of boundary conditions is a
(global) minimum of the loss and thus a possible final state of the network
to converge to. Furthermore, the optimizer can always converge to local
minima, which correspond to unphysical solutions.

In classical computational methods for the solution of compressible flows,
artificial dissipation is introduced in the form of upwind schemes or through
a combination of central schemes and explicit dissipative terms [1]. The
dissipation smears out discontinuities and has a stabilizing effect.

For PINNs, the necessity of additional dissipative terms for successfully
solving scalar conservation laws has also been observed by Fuks et al. [34].
More complex systems of conservation laws, such as the compressible Euler
equations require advanced methods for locally determining reasonable dis-
sipation levels while also minimizing the dissipative effects on the solution.

Here we propose a novel training procedure for flexibly and reliably solv-
ing the compressible Euler equations which uses artificial dissipation. The
novelty of this procedure is twofold. Firstly, the PINN locally predicts an
appropriate value of viscosity which is necessary to stabilize the training.
Secondly, the strength of dissipation is reduced during the training process
which minimizes errors that are introduced by the dissipation.

The dissipation is introduced as an additional term in Eqs. (7):

∂W

∂t
+

∂Fx

∂x
+

∂Fy

∂y
= η∆W (10)

where ∆ = (∂2
x+∂2

y) is the Laplacian and η can be interpreted as an artificial
viscosity. From an optimization point of view, the dissipation acts as a
regularization of the optimization/training problem. Similarly to classical
scalar dissipation schemes like the JST-scheme [45], we scale the dissipation
locally, based on the spectral radius of the flux jacobians

η = ν(a+ |q|) (11)

where ν is a viscosity factor for which adequate values have to be selected.
The linear scaling of the viscosity η with the wave speed a + |q| results in
higher viscosity values in regions with higher Mach numbers. Furthermore,
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when considering parametric problems with variable inflow velocities, the
viscosity is adjusted according to the resulting variable wave speed. How-
ever, additional local upscaling of the viscosity may be required to deal
with certain highly nonlinear or unstable regions in the domain, such as
shocks. Instead of deriving an analytical sensor function, we leverage the
ability of the neural network to adjust the viscosity. To do so, the network
predicts the viscosity factor ν alongside the primitive variables û(θ,x) ≈
(ρ(x), u(x), v(x), E(x), ν(x)). To enforce positivity of the viscosity and to
allow for a flexible prediction of values close to 0, the exponential function
is used as an activation for ν in the last layer of the network. In addition,
since we are interested in the inviscid solution, an additional loss term Lν is
introduced which penalized high viscosity values :

Lν = γ|ν − ν̃|. (12)

The prescribed viscosity value ν̃ can now be used to control the strength
of the dissipative term, while still allowing the network to locally choose
ν(x) ̸= ν̃ when necessary. We use the modulus to enforce positivity of the
term instead of the square because local outliers should not be penalized. We
want to stress that ν̃ is not related to a turbulent eddy viscosity for which
this symbol is oftentimes used in turbulence models.

The addition of dissipation changes the physical problem and the resulting
solution will disagree with the fully inviscid solution. Essentially, one is no
longer solving for an inviscid solution and therefore the fluid is decelerated
by shear stresses. In classical methods, scalar dissipation schemes employ
fourth order differences in smooth flow regions which only dampens higher
frequency modes of the flow, limiting the effect of the artificial viscosity
on the solution. Second order differences are only used near discontinuities,
where a scheme of first order accuracy is required due to Godunov’s theorem.
An additional fourth order differential term could theoretically be added to
Eq. (10). This would however introduce fourth order derivatives which would
require additional expensive evaluations of the computational graph. Instead,
we follow a different approach and adjust the viscosity during the training
process, to limit the dissipative effect on the final solution. Therefore, we
propose a 3 phase training routine:

Phase 1: Train with ADAM at a constant viscosity ν̃ = ν0 until no
significant changes in the residual loss are observed.

15



Phase 2: Train with ADAM and reduce the prescribed viscosity ν̃ until
ν̃ = 0. Continue at ν̃ = 0 until no significant changes in the residual
loss are observed.

Phase 3: Train with LBFGS and ν̃ = 0 until convergence.

The idea of this procedure is to guide the network towards a physical solution
(the entropy solution) during the initial training phase. Once the network
has converged to a state that resembles a physical but viscous solution, the
viscosity can be reduced, since, from this point on, the network should be in a
state near the entropy solution. In phase 2, ν̃ is reduced to 0, to decrease the
dissipative effect on the prediction. However, the network can still predict
viscosity factors ν(x) > 0 where necessary, keeping the penalty term in
balance with the residual and other loss terms. We reduce the prescribed
viscosity factor ν̃ as follows:

ν̃i =

ν0

(
1−

(
i

Mred

)k )
if 0 ≤ i ≤ Mred

0 if Mred < i

(13)

Where i ∈ N is the epoch counter starting at phase 2 and Mred is the epoch
at which ν̃ = 0 is reached. The exponent k ∈ N+ can be used to modify the
shape of the reduction curve. For k = 1 the reduction is linear and for k > 1 it
is accelerating. For the first two phases, Adam [40] is used as the optimizer. A
final training period with the quasi-Newton LBFGS optimizer [46] has shown
to be effective for convergence of PINNs in general and has been crucial to
achieve high levels of accuracy with the proposed training procedure. A
schematic representation of the described PINN approach is shown in Fig. 1
and a schematic view of the boundary points for the later discussed test cases
is shown in Fig. 2.

3. Parametric Flow around Ellipse

As the first parametric problem we consider the flow around an ellipse
with a parametric inflow boundary condition and a parametric ellipse bound-
ary. We position the two-dimensional ellipsoid at the center of the domain
Ω = (−1, 1)× (−1, 1). The semi-major axis a ∈ (0.1, 0.2) is variable whereas
the semi minor axis b = 0.1 is constant. Therefore at a value of a = 0.1,
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we have a cylinder of radius r = 0.1 which corresponds to an eccentricity of
e =

√
1− b2/a2 = 0. For the maximal major axis of a = 0.2 the eccentricity

is e = 3/4. As a second varying parameter we consider the Mach number
M∞ ∈ (0.2, 0.4). The neural network receives both parameters as additional
inputs. The training points are therefore sampled in a four-dimensional do-
main. The upper limit of the Mach number of M∞ = 0.4 is slightly below
the critical Mach number of the cylinder, at which the velocity locally ex-
ceeds the speed of sound. An initial prescribed artificial viscosity factor of
ν = 7.5 · 10−4 is used based on the previous investigations. We have ob-
served that this value is typically a reasonable value and can be used both
for subsonic and supersonic problems. Since the actual artificial viscosity in
Eq. (11) is scaled with the local wave speed, the strength of the dissipation
naturally increases at higher Mach numbers.

We choose a fully connected neural network of constant layer width. We
investigate the performance of fixed and adaptive hyperbolic tangent acti-
vation functions. We observe that during the third training phase, when
using the LBFGS optimizer, the usage of adaptive activation functions leads
to highly inconsistent results (i.e. in some runs convergence is similarly to
tanh and in others no further convergence is possible or the optimizer di-
verges completely). Therefore, we decide to freeze the trainable parameters
ωk for the final training phase meaning that these parameters are no longer
optimized during phase 3. In doing so, we are able to avoid the previously
observed inconsistencies.

The loss weighting factors are set to β = 1 and γ = 5. As shown in various
publications, such as [47, 18, 19], the (dynamic) weighting of loss terms is an
effective technique to accelerate the convergence and improve the accuracy
because it can compensate imbalances in the gradients between the different
loss terms. However, we have observed that for certain problems, adaptive
loss term weighting may lead to instabilities during the early stages of the
training. For the presented problems we do not see significant imbalances
during the training and are able to achieve satisfying results with a constant
weighting factor. Therefore, dynamic loss term weighting is not considered
herein.

A summary of all hyperparameters is shown in Tab. B.2. This includes
the utilized optimizer, the learning rate lr the batchsize Nbatch and the pre-
scribed viscosity factor ν̃. To cover the four-dimensional input space, the
number of residual training points is comparatively high (N = 100000).
However, since a mini-batch routine is used for the first two training phases,
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this has typically no negative effect on the training speed. Only during the
last training phase 3, memory may be a limiting factor because the LBFGS
optimizer is incompatible with mini-batch training. Therefore, we use a re-
duced number of training points during the last training phase (N = 30000).
A non-uniform point distribution is used. Half of the points are distributed
uniformly across the entire physical domain Ω = (−1, 1)× (−1, 1) using the
Halton sequence [38]. For the other half of the points, the y-coordinate is
sampled using a normal distribution with a variance of σ = 0.07 and with
a uniform distribution for the x-coordinate. A projection of the resulting
point distribution to the physical domain is shown in Fig. 4. For both point
sets, the same number of points is used to represent the boundary of the
physical domain and the cylinder (N = N∞ = Nob). No additional data of
the solution is incorporated into the loss, besides the boundary conditions.
We are thus approximating the solution of a fully determined (but not over-
determined) forward problem. The resulting predictions for the velocity field
for three cases are shown in Fig. 5 in comparison to reference finite volume
simulations. For additional information on the calculation of reference finite
volume results, see Sec. Appendix C. One can see that for the cylindrical
shape (a = 0.1) even at M∞ = 0.4, close to the critical Mach number, the re-
sults are visually indistinguishable to the reference solution. The plot of the
absolute error reveals that the inaccuracies are fairly uniform. For the other
two parameter sets with ellipsoidal shapes, a similar quality of the results can
be observed. The bottom row of Fig 5 depicts the artificial viscosity η. The
viscosity is relatively uniform (see the scale of the color bars) for all three
Mach number. Up and downstream of the ellipse, the viscosity is however
slightly reduced.

For certain problems it can be observed that PINNs can perform incon-
sistently, depending on the random initialization of network parameters at
the start of the training. To ensure the consistency of our proposed method
we analyze the accuracy over 12 training runs with different random initial-
ization seeds. Fig. 6 (a) shows the mean error in the density field during
training. The best and worst prediction accuracy over the 12 runs (i.e. the
spread of the predictions) is also indicated. While differences occur between
different initializations during early training phases, all models converge to
a similar final accuracy. Fig. 6 (b) shows the prescribed viscosity factor ν̃ as
well as the predicted mean viscosity ν during training. Besides a spike in the
first few epochs, the prescribed and predicted viscosity are identical during
the first phase. In phase 2 we see that the viscosity is comparatively quickly
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reduced. After about 2500 epochs, it remains at a constant value around
ν = 10−6. This indicates that this lower viscosity is sufficient for stabilizing
the training and that ν can be reduced relatively fast during phase 2 without
causing any instabilities. This is to be expected for this relatively stable
subsonic problem. However, as shown in Appendix A.1, the initial viscosity
in phase 1 is still required to converge to reasonable predictions which is
even apparent for the non-parametric version of the problem. On average we
can only observe marginal improvements in accuracy and convergence speed,
when using adaptive activation functions instead of the fixed hyperbolic tan-
gent activations. For a quantitative assessment of the errors, we consider the
pressure coefficient Cp, the local Mach number M and the density ρ for 100
quasi-random parameter values in the parameter space. For each parameter
set, the mean absolute difference to the reference solution was calculated for
a small square that contains the cylinder (−0.5 < x < 0.5;−0.5 < y < 0.5).
Fig. 3 shows the resulting absolute errors for the density. These errors are
then normalized with the range of values of the reference solution for each
individual quantity. The final relative errors in Tab. 1 are the mean over
all datasets and all 12 runs. The relative errors confirm that adaptive and
non-adaptive activation functions perform very similarly for this example.
For a detailed explanation of the error calculation see Sec. Appendix C.
The hyperparameters are not optimized and higher accuracies may be possi-
ble when employing hyperparameter optimization e.g. on the network shape
and learning rate.

For all presented results, the Python package SMARTy [48] was used,
which is a toolbox for surrogate modeling and other data driven tasks.
SMARTy supports Tensorflow and PyTorch as backends for the creation
and training of neural network models. With the tensorflow backend the
model is trained in 24 hours on a single NVIDIA A100 graphics card. All
the presented models were using double precision for the floating point num-
bers. Once trained, the evaluation of the model is fast. The prediction of
the model at 300.000 points takes about 0.5 s.

4. Parametric Oblique Shock

As a supersonic test case we consider the Oblique Shock problem with
a variable inflow Mach number of M ∈ (2, 3). The test case describes a
scenario where a supersonic inflow is deflected by a wedge with deflection
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Figure 3: Mean absolute errors on subsonic test case between parametric PINN and refer-
ence finite volume result for the density field, for different parameter sets. Fig. (a) shows
the results without and Fig. (b) with adaptive tanh activation functions.
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Figure 4: Projection of point distribution of four-dimensional parametric space onto phys-
ical domain for subsonic ellipse problem. Note the variation in the axis a in the boundary
points.

angle θ = 10◦. The resulting attached shock originates from the corner of
the wedge. We define the shock angle with respect to the surface of the
wedge as δ. The shock angle is a unique function of the deflection angle and
the incoming Mach number M1 = M∞ as stated by the θ-β-M relation. The
field variables after the shock can be calculated analytically from M1 and θ
[49].

This problem has been solved with PINNs in a non-parametric version
with M = 2 in [31] and [22]. For a comparison of the non-parametric results
with and without adaptive viscosity, see Appendix A. To the best of our
knowledge this is the only other forward supersonic test case which has been
solved with PINNs for the two-dimensional compressible Euler equations.
PINNs have however been applied to other inverse supersonic problems [32]
where shock locations are already given by solution data that is provided
inside of the physical domain.

Here, we solve the forward problem in the continuous parameter space
for M∞ = (2, 3). We use a total of 100000 points for the evaluation of the
residual and the viscosity penalty loss. 80000 of these points are uniformly
sampled in the three-dimensional input space (x, y,M∞) ∈ Ω × (2, 3) =
(0, 1)× (0, 1)× (2, 3). An additional 10.000 points are uniformly sampled on
the upper (x, y,M∞) ∈ Ω×{3} and lower bound (x, y,M∞) ∈ Ω×{2} of the
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Figure 5: Comparison between parametric PINN solution with adaptive activation func-
tions and a reference finite volume result for different Mach numbers and ellipse eccen-
tricities. The absolute errors between the reference and the PINN solution are shown in
Figs. (c), (g) and (k). Figs. (d), (h) and (l), show the artificial viscosity η.
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parameter space to enhance the accuracy towards the borders. The Halton
sequence [38] is used for generating all three point sets. Note that, in contrast
to previous works, we do not require clustered training points [31] or domain
decomposition [22] for accurate predictions. This is advantageous, because
no previous knowledge of the solution is required for the point generation or
for the decomposition. Dirichlet boundary conditions are applied at the top
and left surface. No-flux wall boundary conditions are used for the bottom
boundary. Since the shock originates from the bottom left corner, we increase
the boundary point density for x ∈ (0, 0.1) and y ∈ (0, 0.1) as sketched in
Fig. 2. As before, an initial prescribed viscosity factor of ν̃ = 7.5 · 10−4 is
used. The network consists of 7 layers with layers of 30 neurons and tanh
activations. We compare fixed and adaptive hyperbolic tangent activation
functions but freeze the trainable parameters of the activations in phase 3 as
explained in Sec. 3. The loss term weights are β = 1 and γ = 5. A detailed
overview of training parameters is shown in B.3. Again, no additional data
of the solution is incorporated into the loss, besides the boundary conditions
and we are strictly solving the forward problem.

Fig. 7 provides an overview of the result for three different Mach numbers
in comparison to the analytical solution. The field values before and after
the shock are accurately predicted and the shock is well resolved. Slight in-
accuracies in the shock angle are visible. The bottom row shows the artificial
viscosity. Due to the local adaptivity, the dissipation is increased close to
the shock. This shows that the proposed method is able to locally identify
regions which require additional viscosity for stabilization. In this sense, the
network is able to take over the role of so called pressure sensors, which are
used in classical CFD methods to switch to first-order schemes near shock
locations. Since PINNs can perform inconsistently, depending on the random
initialization of network parameters at the start of the training, we analyze
the accuracy over 12 training runs with different random initialization seeds.
The following plots highlight the mean prediction over those 12 runs and the
largest and smallest values (i.e. the spread of the predictions). The usual
quantities like standard deviation and quantiles are not calculated due to the
limited number of 12 training runs. As an integral indicator of prediction
accuracy we consider the shock angle δ (see Fig. 2). Fig. 8 shows an overview
of predicted shock angles for the entire parameter space. Overall the error
of the shock angle is lower than one degree. The errors are larger at the
lower bound of the parameter space towards M∞ = 2. The spread of the
predictions over the 4 training runs indicates that the results are generally
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within a one degree neighborhood of the analytical solution both with and
without adaptive activation functions. In this example, one can see that the
adaptive outperform the fixed activation functions. Fig. 9 (a) shows how the
error for the angle delta changes during the training. We see that the error
in the angle does not improve significantly after phase 1 and that the spread
of predicted angles in fact increases. However, Fig. 10 shows that during the
second and third training phase, the shock becomes much sharper and thus
approximates the expected analytical result better. This is also confirmed
by the decrease in the relative density errors (see Fig. 9 (b)). Note that the
final training phase 3 with LBFGS is crucial to obtain good accuracy. The
error history shows that on average, the adaptive activation functions can
accelerate convergence in phase 1 and 2. In phase 3 the most inaccurate
runs with and without adaptive activations are very similar, while the most
accurate runs are improved for the adaptive activations. Fig. 9 (c) shows
the prescribed viscosity value ν̃ and the mean (over the domain) predicted
viscosity ν during the training. Contrary to the subsonic test case we can
clearly see the adaptivity of viscosity and how it is only loosely coupled to the
prescribed value. Early in the training we can see an adaptive increase be-
yond the prescribed value which is accompanied by a fast convergence during
the first few thousand epochs. Then, during phase 2, the predicted viscosity
is again reduced less steeply than the prescribed value which indicates that
more viscosity is necessary than prescribed, to stabilize the training during
the reduction phase. During phase 3 the predicted viscosity decreases more
steeply. The final values are between ν = 2 · 10−5 and ν = 2 · 10−6 and
thus higher than for the subsonic test case. The viscosity for the adaptive
activations is on average slightly increased. The necessity for more viscosity
during the training is to be expected since we are dealing with a supersonic
flow that involves a shock. Compared to the previous subsonic test case, this
problem should be more unstable and require more dissipation.

For a quantitative comparison of relative errors with the subsonic prob-
lem, we again consider the pressure coefficient Cp, the local Mach number
M and the density ρ for 20 linearly distributed Mach number values with
M ∈ [2, 3]. For each parameter, the mean absolute difference to the reference
solution was calculated for the entire domain. This difference was then nor-
malized with the range of values of the reference solution for each individual
quantity. The calculation of errors and uncertainties is described in more de-
tail in Sec. Appendix C. The hyperparameters are not optimized and higher
accuracies may be possible when employing hyperparameter optimization
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Table 1: Comparison of relative errors for different field variables.

Sec.
3. Parametric Flow

around Ellipse
4. Parametric Oblique

Shock
σ σadapt σ σadapt

Cp (0.23± 0.06)% (0.25± 0.08)% (0.7± 0.7)% (0.52± 0.61)%
M (1.0± 0.1)% (1.0± 0.11)% (1.3± 0.9)% (0.7± 0.7)%
ρ (0.33± 0.11)% (0.34± 0.13)% (0.62± 0.62)% (0.5± 0.6)%

e.g. on the network shape and learning rate. The use of adaptive activations
generally leads to improved accuracies, especially for the Mach number M .
Compared to the subsonic problem 3, we see slightly increased errors within
the same order of magnitude. The bounds of the error are higher, mainly
due to the fact that accuracies are worse close to the lower Mach number
M = 2, while the errors of the subsonic problem are consistently low for the
entire parameter space (c.f. Sec. Appendix C).

Again, the models are implemented with SMARTy [48] using the ten-
sorflow backend and the total training time for one run on a NVIDIA A100
graphics card is about 23 hours. The prediction at 300000 points takes about
0.5 s.

5. Conclusion

To summarize, we propose a novel physics-informed neural network train-
ing procedure to approximate parametric solutions to the stationary com-
pressible Euler equations. Parameters are considered as additional input
dimensions of the network. Furthermore, we add a dissipative term to the
equations to stabilize the training process. Our proposed method locally pre-
dicts the necessary viscosity. An additional penalty loss term is used to con-
trol and reduce the viscosity during the training so that the resulting solution
is non-dissipative. We obtain accurate results on a subsonic test case with
a parametric Mach number and boundary shape as well as a supersonic test
case with parametric Mach number. Adaptive activation functions perform
similar on the subsonic test case and outperform the fixed activation func-
tions on the supersonic test case. The proposed method is easy to implement
and outperforms vanilla PINNs without viscosity (c.f. Appendix A) which
have so far rarely been applied successfully, for more than one-dimensional
forward problems governed by the Euler equations without requiring previous
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Figure 7: Comparison of parametric PINN solution using adaptive actiation functions for
oblique shock test case with the analytical reference solution for different Mach numbers.
The absolute errors between the reference and the PINN solution are shown in Figs. (c), (g)
and (k). Figs. (d), (h) and (l), show the artificial viscosity η.
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Figure 8: Mean and spread of predicted shock angles. The blue curves show the angle
δ (for the definition see Fig. 2). The green curve shows the absolute error which is the
absolute difference between the two blue curves.

solution knowledge (e.g. for data, clustered points or solution based domain
decomposition). Thus, the presented method may open up new possibilities
for the use of PINNs for similar inviscid problems, which were previously
unsolvable, using vanilla PINNs. Compared to finite volume reference sim-
ulations, we achieve errors on the order of less than 2% for the pressure,
velocity and density field, for both test-cases while using no additional data
besides boundary conditions.

While the shown results are overall promising, one might consider the
training cost to be a limiting factor of the method. The viscous term intro-
duces additional, second-order derivatives which increase the computational
effort per epoch due to additional automatic differentiation calls. In addi-
tion, the used neural networks have to be comparatively large because they
need to capture the solution of four field variables and the artificial viscosity
factor. With regards to the additional training cost due to the viscous term,
we consider this to be a sensible compromise because, as seen in Appendix A,
convergence without viscous terms seems to be unreliable at best. This is
to be expected due to the mathematical nature of hyperbolic conservation
laws and we know from classical numerical methods that additional stabi-
lizing methods such as artificial viscosity are required to obtain unique and
physical solutions. In the future we plan to reduce the network size by
decomposing the domain into subsets which are appoximated by smaller in-
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Figure 9: Error history and artificial viscosity factor ν during training of PINN for para-
metric oblique shock problem. The three phases of the applied training procedure are
highlighted.
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becomes less dissipative after reducing the viscosity during the training. Results were
obtained using the adaptive activation functions.

dividual networks. Even though we obtain accurate solutions with a global
network for the entire domain, we expect that domain decomposition will
be able to further increase the accuracy, enable faster parallel training and
to reduce the requirements for network size. Especially for larger domains,
as well as transient and higher-dimensional problems, domain decomposi-
tion approaches may be imperative because very large global networks are
limited in resolving local effects and training convergence becomes increas-
ingly difficult. Fortunately, since our methodology just requires the network
to predict the local viscosity factor ν and a simple modification of the loss
function, it can easily be incorporated into existing domain decomposition
frameworks. Decomposition methods with explicit interface losses, such as
extended PINNs [23], would require additional continuity conditions for the
viscosity factor at the domain interfaces. Therefore, soft domain decompo-
sition approaches such as augmented PINNs [25] or finite basis PINNs [26]
might be favorable. Overall , we see various possibilities to further improve
numerical efficiency of the described approach in the future. Moreover, we
also have to take into account that inference times are on the order of 1 s
and that due to the parametric formulation, one is able to obtain solutions
for different parameter conditions with a single trained PINN model. This
makes parametric PINNs viable in specific scenarios which require real-time
evaluation. The proposed implementation of artificial viscosity is simplis-
tic and one can think of many ways to improve this approach. Similarly
to artificial matrix-valued artificial viscosity schemes in classical CFD meth-
ods [50, 51, 52, 53], a yet to be developed matrix-valued viscosity model for
η might reduce the influence of the dissipative term during training, while
maintaining its stabilizing properties. Also, an alternative regularization
scheme based on an entropy criteria has been proposed for solving hyper-
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bolic problems with PINNs which might be an additional measure to avoid
unphysical results, when solving the compressible Euler equations, especially
at higher Mach numbers [54, 32]. However, our initial tests indicate that this
methodology is not sufficient to stabilize our analyzed forward problems on
its own.

The presented approach of parametric boundary conditions can, in the-
ory, be extended to more parameters (e.g. with variable Mach number, shape
and angle of attack for airfoils). Therefore, it could be applicable for tasks
such as design optimization which traditionally require many solver evalua-
tions. Whether a sufficient level of accuracy can be reached for more complex
multi-parameter problems remains to be seen. An aspect of PINNs that has
not been considered in this work is that higher fidelity solution data can be
incorporated into the objective function as an additional loss term. This
opens the possibility to directly combine PINNs with classical solvers or to
even incorporate experimental data into the loss. For parametric problems,
such a hybrid-data-driven approach may improve accuracy and even speed
up the convergence during training. This flexibility may open up new possi-
bilities for physics-informed reduced order modeling for higher dimensional
parametric flows.

An additional point of future interest is the behavior of the presented ap-
proach in the transsonic regime, where velocities exceed the speed of sound
only locally. Furthermore, we want to consider transient problems. We ex-
pect that this requires additional measures like decomposition of the tempo-
ral domain (see e.g. [55]) while respecting temporal causality. For transient
problems we expect long training times because, when employing causality
preserving temporal decomposition strategies, every temporal subdomain has
to go through the training phases 1-3 successively, to avoid an accumulation
of viscous effects over time.
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Appendix A. Non-Parametric Problems

To highlight the necessity and the efficacy of artificial viscosity, we con-
sider non-parametric versions of the previously analyzed problems and com-
pare the results with and without adaptive artificial viscosity.

Appendix A.1. Flow around Cylinder

First, we investigate the flow around a cylinder at a constant Mach num-
ber of M = 0.2. Again, the center of the cylinder is positioned at the origin
inside the domain x = (x, y) ∈ Ω = (−1, 1) × (−1, 1) with a radius of
r = 0.1. Fig. A.11 (c) show a numerical reference solution of the problem
for a Mach number of M = 0.2. The solution was obtained using the CFD
solver CODA [4]. For additional information on the calculation of reference
finite volume results, see Appendix C.

Similarly to before, no-flux boundary conditions are used for the cylinder
wall and Dirichlet boundary conditions are enforced using Eq. (9) for the ex-
ternal domain boundary. A summary of the parameters within each training
phase is shown in Tab. B.2. For the PINN without viscosity, we train for
the same number of epochs with the ADAM and LBFGS optimizer as for the
model with adaptive viscosity. The learning rate for ADAM is however set to
lr = 103 for the entirety of the ADAM training. All other hyper parameters
and the training points are identical
The training points for the residual loss are randomly sampled in the entire
domain, using the quasi-random Halton sequence [38]. For both point sets,
the same number of points are used to represent the boundary of the physical
domain and the cylinder (N = N∞ = Nob).

Figs. A.11 (a)-(b) show the resulting velocity fields given by the local
Mach number. The training parameters correspond to phase 1 in Tab. B.2
. The results without adaptive viscosity shows elongated, unphysical regions
of low velocity before and after the cylinder. In comparison, the model with
adaptive viscosity agrees well with the reference simulation.

The training with SMARTy [48] and the tensorflow backend on a sin-
gle NVIDIA A100 graphics cars takes about 6 hours without viscosity and
about 11 hours for the model with viscosity, due to the increased effort for
calculating the loss function.
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Figure A.11: Comparison of PINN predictions for the local Mach number M with and
without artificial viscosity and the reference finite volume simulation.

Appendix A.2. Oblique Shock

We consider the oblique shock at a incoming Mach number of M∞ = 2.
The training points for the residual loss are generated similarly to Sec. 4 with
the Halton sequence inside ob the physical domain (x, y) ∈ Ω = (0, 1)×(0, 1).
Dirichlet boundary conditions are used for the left and upper boundary and
no-flux wall conditions are used for the bottom boundary. No boundary
condition is used on the right boundary.

This exact forward problem has been solved with PINNs in [31] and con-
servative PINNs in [22]. Hence, to demonstrate the efficacy of artificial vis-
cosity, we try to reproduce the reported results of [31] by selecting similar
hyper parameters for the neural network shape (7 layers with 20 neurons)
and a similar number of uniformly distributed points (5000 for the residual
loss) and compare the predictions with and without the adaptive viscosity for
these exact hyper parameters. Note that we use uniformly distributed and
no clustered training points because we do not want to assume any previous
knowledge about the solution and the shock angle. We do however increase
the boundary point density in the bottom left corner at the shock origin as
schematically depicted in Fig. 2. Also the number of points on the bound-
aries overall increased to 2000, compared to 300 points in [31]. Again, both
PINN models with and without adaptive viscosity are trained for the same
number of ADAM epochs (phase 1 and 2 combined for the viscous PINN)
and LBFGS epochs.

Fig. A.12 shows the resulting density fields.
We are unable to obtain similar results for the inviscid PINN as shown in

[31] even though the number of boundary points and the number of ADAM
epochs have been increased. We have also searched for better hyper parame-
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Figure A.12: Comparison of results for the non-parametric oblique shock problem at
M∞ = 2. The local Mach number M is shown for training runs with (Fig. (b)) and
without (Fig. (a)) adaptive artificial viscosity in comparison to the reference finite volume
result (c). The hyper parameters used for (a) and (b) are the same. A search for better
hyper parameters for (a) has not lead to significant improvements even when employing
dynamic loss term weighting [18, 19, 47] or adaptive activation functions [43].

ters and even employed adaptive activation functions and dynamic loss term
weighting but were still unable to obtain qualitatively improved results. Nev-
ertheless, even when compared to the shown results in [31], we obtain highly
improved results using the proposed adaptive viscosity during training. The
shock is much sharper and less dissipative, even without clustered training
points.
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Appendix B. Training Parameters

Table B.2: Summary of PINN parameters for flow around ellipse.

Sec.
Appendix A.1. Flow

around Cylinder
3. Parametric Flow

around Ellipse
hidden layers 8 8

neurons/layer 20 40

activation (adapt.) tanh (adapt.) tanh

loss weights β = 1
γ = 5

β = 1
γ = 5

phase 1 Adam
ν̃ = 7.5 · 10−4

N = 20000
Nbatch = 2500

10000 epochs w. lr = 10−3

20000 epochs w. lr = 10−4

Adam
ν̃ = 7.5 · 10−4

N = 100000
Nbatch = 10000

7500 epochs w. lr = 10−3

7500 epochs w. lr = 10−4

2500 epochs w. lr = 10−5

phase 2

Adam
reduce ν̃ = 7.5 · 10−4 to ν0 = 0

N = 20000
Nbatch = 2500
Mred = 2500

k = 4
5000 epochs w. lr = 10−4

5000 epochs w. lr = 10−5

Adam
reduce ν̃ = 7.5 · 10−4 to ν0 = 0

N = 100000
Nbatch = 10000
Mred = 1000

k = 1
17500 epochs w. lr = 10−5

phase 3

LBFGS
ν̃ = 0

N = 5000
25000 epochs

LBFGS
ν̃ = 0

N = 30000
30000 epochs
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Table B.3: Summary of PINN parameters for oblique shock problem.

Sec.
Appendix A.2
Oblique Shock

4. Parametric
Oblique Shock

hidden layers 7 7

neurons/layer 20 30

activation (adapt.) tanh (adapt.) tanh

loss weights β = 1
γ = 5

β = 1
γ = 5

phase 1 Adam
ν̃ = 7.5 · 10−4

N = 5000
Nbatch = N

12000 epochs w. lr = 10−3

18000 epochs w. lr = 10−4

Adam
ν̃ = 7.5 · 10−4

N = 100000
Nbatch = 10000

7500 epochs w. lr = 5 · 10−4

7500 epochs w. lr = 10−4

15000 epochs w. lr = 2 · 10−5

phase 2

Adam
reduce ν̃ = 7.5 · 10−4 to ν0 = 0

N = 5000
Nbatch = N
Mred = 5000

k = 1
20000 epochs w. lr = 2 · 10−5

Adam
reduce ν̃ = 7.5 · 10−4 to ν0 = 0

N = 100000
Nbatch = 10000
Mred = 10000

k = 4
17500 epochs w. lr = 2 · 10−5

phase 3

LBFGS
ν̃ = 0

N = 5000
10000 epochs

LBFGS
ν̃ = 0

N = 20000
30000 epochs
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Appendix C. Details on Reference Simulations, Calculation of Er-
rors and Shock Angles

Appendix C.1. Parametric Flow around Ellipse

All reference simulations for the ellipse were calculated using CODA
[4, 56]. CODA is the computational fluid dynamics (CFD) software be-
ing developed as part of a collaboration between the French Aerospace Lab
ONERA, the German Aerospace Center (DLR), Airbus, and their European
research partners. CODA is jointly owned by ONERA, DLR and Airbus.
We use a structured O-type grid with 200 surface nodes and 13200 cells.
The residuals are converged to an order of 10−12. For a quantitative eval-
uation of the accuracy of the parametric PINN in Sec. 3, we compare the
solutions to 100 reference finite volume simulations in the parameter space
(M,a) ∈ (0.2, 0.4)× (0.1, 0.2). The parameter sets sampled using the Halton
sequence [38]. Fig. 3 shows the parameter values and the absolute errors for
the density field. For each parameter set, the errors are calculated for each
field variable separately, by taking the mean of the absolute difference over a
small rectangle (x, y) ∈ (−0.5, 0.5)× (−0.5, 0.5) near the ellipse. The figure
then depicts the mean error over all training runs. Overall the errors are
all on the same order of magnitude and we see no significant outliers in the
entire parameter space. The results are less accurate towards the bounds of
the parameter space.

For the calculation of the relative errors in Tab. 1 and Fig. 6 the previously
calculated absolute errors are normalized with the range of the respective
field variable, taken from the reference simulations. Then the mean over the
parameter sets is taken. For Tab. 1 all 100 parameter sets and for Fig. 6 a
subset of 10 parameter sets is used. Finally, the mean over all 12 training runs
is taken. The uncertainties in 1 take the variance in accuracy at different
locations in the domain, different parameter sets and the confidence with
respect to the different simulation runs into account.

Appendix C.2. Parametric Oblique Shock

For the oblique shock problem, the reference data is obtained from the
analytical solution [49, pp. 608-615]). The relative errors in Fig. 9 and Tab. 1
are calculated similarly to the ellipse problem but taking the entire domain
(x, y) ∈ (0, 1) × (0, 1) into account. A total number of 20 and 5 uniformly
distributed M∞ values are considered for Tab. 1 and Fig. 9, respectively.
Again, the uncertainties in Tab. 1 take the variance in accuracy at different
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locations in the domain, different parameter sets and the confidence with
respect to the different simulation runs into account. The predicted shock
angles in Fig. 8 and Fig. 9 are determined with a root finding algorithm which
looks for the mean reference value of the density before and after the shock
((ρ1+ρ2)/2). This value is searched in the PINN prediction field on a vertical
line at x = 0.95. This method has worked sufficiently fast and accurate for
our analysis with errors ≪ 1◦. The shock location is very consistent between
the different field variables. Therefore, it is sufficient to only calculate the
angle based on the density prediction.
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