Fuel and Load Flexibility of a Single-Nozzle Jet-Stabilized Combustor Operated with Hydrogen and Hydrogen-Methane Blends

Karl Planke*, Felix Grimm, Peter Kutne, Andreas Huber Institute of Combustion Technology, German Aerospace Center (DLR), Stuttgart, Germany * Corresponding author: 🖂 karl.planke@dlr.de

Motivation

- Open up the use of carbon-free fuel hydrogen to reduce CO₂ emissions
- Utilize the FLOX[®] burner concept to ensure combustion stability while keeping down possible NO_x emissions

Geometry and Numerical Setup

- Concentric fuel tube (d_{in} = 0.2 D) in air nozzle , Non- and Technically-Premixed configurations (NP, TP)
- Tetrahedra-based meshes, refined

- Validate the simulations using data from single-nozzle experiments ^[1]
- Ready the numerical design process for more complex hydrogen combustors

zones for reactions, approx. 20M cells

 DLR code ThetaCOM for combustion/ CFD simulation: RANS, Std. k-ω turb., adiabatic walls, finite-rate chemistry, mechanism DLR Concise v1/2021 ^[2]

NP configuration mesh (cross section), characteristic cell size / mm

Results

- Range of **Operating Points** for Fuel and Load Flexibility (FF, LF) investigations, see Table
- **FF** starts at 100% methane CH₄ (Operating Point A) continuing towards 100% H₂ (OP B), constant equivalence ratio Φ and thermal power $P_{\rm th}$, shown here in steps of 20 vol% H₂
- LF varies Φ (0.74 \rightarrow 0.25) by reducing P_{th} (10.5 kW \rightarrow 4.0 kW) from OP B to OP C
- Flame shape/position (Lift-Off Height LOH) are validated using experimental data ^[1]

Selection of Operating Points (OP)

	fuel	$\dot{m}_{ m fuel}$	$\dot{m}_{ m air}$	$v_{\rm air}$	${\Phi}$	$P_{\rm th}$
OP	-	g/min	g/min	m/s	-	kW
(A)	CH_4	12.6	291	110	0.74	10.5
B	H_2	5.2	241	105	0.74	10.5
\bigcirc	H_2	2.0	266	107	0.25	4.0

• Contours are simulation results (SIM), Lines are experimental data (EXP), SIM and EXP

- Comparing NP and TP, technical premixing lowers the LOH, see EXP data
- trend is captured by the simulation for FF and LF, limited agreement regarding absolute values of LOH
- LOH decreases with H_2 content (FF) and Φ (LF) respectively, for both EXP / SIM
- data are normalized to their respective maximum values, EXP shown in steps of 10%
- Simulation of OH* chemiluminescence using the line-of-sight integrated product of the species mass fractions of oxygen radical O and hydrogen radical H as marker for OH*
- Conclusions
- Combustion properties of hydrogen are fundamentally different from methane, which has major implications on burner design, hydrogen can help keeping combustors short
- DLR Concise reaction mechanism^[2] shows promising results for various equivalence ratios (LF) and fuel compositions (FF) ranging from 100% methane to 100% hydrogen
- Controlling the fuel-air mixing is the key to fuel- and load-flexible combustor systems

• in general, simulation yields shorter flames that are less distributed in space

References

[1] Petry, N. et al., ASME Turbo Expo (2023), 102392.[2] Kathrotia, T. et al., Fuel 302 (2021), 120736.

<u>DLR Project</u>

H₂-GT – Hydrogen Utilisation in Gas Turbines

