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Abstract. Surface albedo is an important parameter in
radiative-transfer simulations of the Earth’s system as it is
fundamental for correctly calculating the energy budget of
the planet. The Moderate Resolution Imaging Spectrora-
diometer (MODIS) instruments on NASA’s Terra and Aqua
satellites continuously monitor daily and yearly changes
in reflection at the planetary surface. The MODIS Sur-
face Reflectance Black-Sky Albedo dataset (version 6.1 of
MCD43D) provides detailed albedo maps for seven spectral
bands in the visible and near-infrared range. These albedo
maps allow us to classify different Lambertian surface types
and their seasonal and yearly variability and change, albeit
only into seven spectral bands. However, a complete set
of albedo maps covering the entire wavelength range is re-
quired to simulate radiance spectra and correctly retrieve at-
mospheric and cloud properties from remote sensing obser-
vations of the Earth. We use a principal component analysis
(PCA) regression algorithm to generate hyperspectral albedo
maps of the Earth. By combining different datasets contain-
ing laboratory measurements of hyperspectral reflectance for
various dry soils, vegetation surfaces, and mixtures of both,
we reconstruct albedo maps across the entire wavelength
range from 400 to 2500 nm. The PCA method is trained with
a 10-year average of MODIS data for each day of the year.
We obtain hyperspectral albedo maps with a spatial resolu-
tion of 0.05° in latitude and longitude, a spectral resolution of
10 nm, and a temporal resolution of 1 d (day). Using the hy-
perspectral albedo maps, we estimate the spectral profiles of
different land surfaces, such as forests, deserts, cities, and icy

surfaces, and study their seasonal variability. These albedo
maps will enable us to refine calculations of the Earth’s en-
ergy budget and its seasonal variability and improve climate
simulations.

1 Introduction

The surface albedo of the planet plays a crucial role within
the climate system, governing the proportion of reflected so-
lar light relative to incoming solar radiation at the surface.
This holds significant importance as it effectively regulates
the Earth’s surface energy budget (Liang et al., 2010; He
et al., 2014). The role of albedo extends to climate regula-
tion, with snow and ice albedo feedback exerting a significant
influence on climate change dynamics. Snow and ice pos-
sess much higher reflectivity compared to the surfaces they
overlay. As temperatures rise, the diminishing extent of snow
and ice cover leads to a decline in the planet’s albedo. Con-
sequently, this intensifies surface warming through a posi-
tive feedback mechanism. Land surface albedo displays re-
markable variability, both spatially and temporally. Notable
fluctuations in surface albedo coincide with changes in land
cover and surface conditions, including factors like vege-
tation (Loarie et al., 2011; Lyons et al., 2008), snow (He
et al., 2013), soil moisture (Govaerts and Lattanzio, 2008;
Zhu et al., 2011), and urban development (Offerle et al.,
2005). In addition, soil and vegetation surfaces show dif-
ferent reflectance behaviours as a function of wavelength
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and are usually not incorporated into Earth system models
(ESMs). In the last decades, the advancement of satellite re-
mote sensing techniques has enabled more accurate mon-
itoring of the Earth’s surface, enhancing radiative transfer
and climate models. This progress allows for the continu-
ous acquisition of extensive land surface observation data.
However, climate models still struggle to capture temporal
and spatial variations in albedo. In particular, global and re-
gional climate models often require albedo products with
an absolute accuracy of 0.02–0.03 (Sellers et al., 1995; He
et al., 2014). Zhang et al. (2010) compared Moderate Res-
olution Imaging Spectroradiometer (MODIS) albedo prod-
ucts with model results from the Coupled Model Intercom-
parison Project Phase 3 (CMIP3) from 2000 to 2008, re-
vealing discrepancies in globally averaged albedo of up to
0.06. In addition, validation of different satellite land sur-
face products, such as MODIS (Schaaf et al., 2002), the
Global LAnd Surface Satellite (GLASS; Liu et al., 2013;
Qu et al., 2014), and the Copernicus Global Land Service
(CGLS; Buchhorn et al., 2020), shows absolute global dif-
ferences of up to 0.02–0.06, with the largest variations oc-
casionally exceeding 0.1 (Shao et al., 2021). The divergence
among different albedo products is not the only source of un-
certainty in the radiative-transfer calculations of ESMs. Most
ESMs use a two-stream approach for the land component,
where soil albedo has fixed values in two spectral broad-
band regions: the photosynthetically active radiation (PAR)
band (400–700 nm) and the near-infrared (NIR) band (700–
2500 nm). However, broadband radiative-transfer schemes
show strong spectral discontinuities at 700 nm (Braghiere
et al., 2023). This divergence in surface reflectance propa-
gates into other radiative-partitioning terms, such as absorp-
tance and transmittance at the top of the atmosphere (TOA).
More generally, in cloud-free simulations over land, the dom-
inant factor impacting TOA visible (VIS) and near-infrared
radiance is surface reflection (Vidot and Borbás, 2014). Var-
ied surface optical properties exhibit distinct spectral signa-
tures contingent on the type of surface. Furthermore, within
the VIS–NIR range, surface optical properties showcase a ro-
bust geometrical reliance that changes in accordance with
solar and satellite directions. To elucidate the spectral re-
liance of the surface, an assumption of Lambertian behaviour
can be made, implying isotropic luminance regardless of the
viewer’s angle. The albedo quantifies the proportion of re-
flected light under the assumption of isotropic radiation re-
flection. Polar-orbiting satellites, such as NASA’s Terra and
Aqua satellites, provide global albedo maps, which are vital
for the spectral, temporal, and spatial assessment of global
albedo. The MODIS instrument aboard NASA’s Terra and
Aqua satellites offers coverage of the Earth’s surface every
1 to 2 d, enhancing our understanding of terrestrial, oceanic,
and atmospheric processes. In the VIS–NIR range, MODIS
features seven spectral bands that deliver data on land sur-
face characteristics. However, radiative-transfer simulations
demand precise radiance calculations across all wavelengths,

which necessitates hyperspectral albedo maps. For example,
retrievals of cloud pressure thickness using the O2 A band
(760–770 nm) require precise albedo estimates in this spec-
tral region (Li and Yang, 2024). Such comprehensive data are
lacking due to the impracticality of obtaining albedo maps
from satellites for every wavelength. As a result, various as-
sumptions are incorporated into radiative-transfer codes to
overcome this lack of information. MODIS albedo measure-
ments are derived simultaneously from the bidirectional re-
flectance distribution function (BRDF), depicting radiation
discrepancies resulting from the scattering (anisotropy) of in-
dividual pixels. This methodology relies on multi-date, atmo-
spherically corrected, and cloud-cleared input data obtained
over 16 d intervals. The spatial resolution is set at 30 arcsec
in latitude and longitude (equivalent to 1 km at the Equator)
using the Climate Modeling Grid (CMG). To derive climato-
logical averages, the MODIS MCD43D42-48 albedo datasets
are averaged over a 10-year period in steps of 1 d, and albedo
maps are built for each day. In this work, we introduce a
novel methodology for creating hyperspectral albedo maps
based on the seven representative bands of the MODIS in-
strument. Using a principal component analysis (PCA) re-
gression approach, we combine different soil, rock, and veg-
etation datasets representative of different parts around the
world, as well as maps illustrating Lambertian surface albedo
from version 6.1 of the MCD43D product (Schaaf and Wang,
2021), derived from the Terra and Aqua satellites. These
maps cover the seven bandpasses relevant for land surface
albedos. Employing a PCA algorithm, as previously done in
Vidot and Borbás (2014) and Jiang and Fang (2019), enables
us to reduce the problem’s high dimensionality and gener-
ate new albedo maps by interpolating between the measured
bandpasses. These hyperspectral albedo maps of Lamber-
tian surfaces hold significance with respect to various cli-
mate and radiative-transfer models of the Earth’s system.
Using an ESM with coupled atmosphere–land simulations,
Braghiere et al. (2023) demonstrated the impact of mak-
ing simplistic assumptions on albedo maps using only two
broadband values, which were compared to hyperspectral
albedo maps. They combined the soil colour scheme from
the Community Land Model version 5 (CLM5) (Lawrence
et al., 2019) with eigenvectors calculated using a general-
spectral-vector (GSV) decomposition algorithm (Jiang and
Fang, 2019) to build hyperspectral soil reflectance maps and
assess the impact of these maps on ESMs. Unlike our dataset
of hyperspectral albedo maps, their approach is not based
on satellite measurements, meaning it is less accurate and
overlooks the seasonal and temporal variability in surface re-
flectance. However, it holds significance when assessing the
impact of hyperspectral treatment of Lambertian albedo on
ESMs. Braghiere et al. (2023) estimated a divergence in ra-
diative forcing of 3.55 W m−2, which impacts net solar flux
at the TOA (> 3.3 W m−2), cloudiness, rainfall, surface tem-
perature, and latent heat fluxes. Braghiere et al. (2023) also
highlight the impact of implementing hyperspectral albedo
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Table 1. Spectral bands of MODIS in the VIS–NIR range that pro-
vide information about land surface. For each band, we specify the
central wavelength and the bandwidth.

Band Central λ (nm) Bandwidth (nm)

1 645 620–670
2 858 841–876
3 469 459–479
4 555 545–565
5 1240 1230–1250
6 1640 1628–1652
7 2130 2105–2155

maps on regional models, where differences in latent heat
can be higher than 5 W m−2, demonstrating implications for
regional climate variability and the prediction of extreme
events. In the near future, the launch of new satellite mis-
sions, such as NASA’s Earth Surface Mineral Dust Source
Investigation (EMIT) mission, will allow us to obtain hyper-
spectral soil and vegetation data and benchmark the accuracy
of model-generated hyperspectral maps.

2 Data and methods

2.1 MODIS surface albedo climatology

NASA’s MODIS instruments (Salomonson et al., 1989)
aboard the Terra and Aqua satellites (launched in 1999 and
2002, respectively) observe the Earth in 36 spectral bands.
Two channels (centred at 645 and 858 nm; see Table 1) have
a spatial resolution of 250 m, and five channels (centred at
469, 555, 1240, 1640, and 2130 nm), including three in the
shortwave-infrared range, have a spatial resolution of 500 m.
All other channels have a resolution of 1 km.

The science dataset (version 6.1 of MCD43D; Schaaf and
Wang, 2021) is a combined Aqua–Terra MODIS Level-3
(L3) surface reflectance product and provides daily global
estimates of directional–hemispherical surface reflectance
(black-sky albedo) and bihemispherical surface reflectance
(white-sky albedo) for the seven MODIS bands mentioned
above, as well as for three spectral broadband intervals (visi-
ble (300–700 nm), near-infrared (700–5000 nm), and short-
wave (300–5000 nm)), exhibiting a spatial resolution of
30 arcsec in latitude and longitude (corresponding to roughly
1000 m at the Equator). Cloud-free MODIS observations are
collected over 16 d and corrected for atmospheric gases and
aerosols to derive surface albedo for land pixels (waterbodies
are not considered). Data are temporally weighted relative to
the ninth day of the retrieval period, and this day appears in
the filename. Each surface reflectance pixel contains the best
possible measurement from the period, selected on the basis
of high observation coverage, low view angles, an absence
of clouds or cloud shadow, and aerosol loading. Usually, due

to the sun-synchronous orbits of the Terra and Aqua satel-
lites (with equatorial crossing times at 10:30 and 13:30 MLT
(magnetic local time), respectively), only pixels with a lo-
cal solar noon zenith angle of up to approximately 80° are
provided with an albedo value. The MODIS land surface
products have been validated against in situ measurements
and other satellite-based land surface albedo. Globally, the
MODIS product is less accurate with respect to high solar
zenith angles (Sánchez-Zapero et al., 2023).

We compile a black-sky-albedo climatology for the seven
MODIS spectral bands, starting with the MCD43D42-48
products. We average the available daily MODIS product
data over a 10-year period, from 2013 to 2022, in steps of
1 d, starting on 1 January – i.e. from the first day of the year
(DOY 1) to DOY 365. This results in 365 climatologically
averaged albedo maps per spectral band, each with a spatial
resolution of 30 arcsec in latitude and longitude. The aim is
to create a complete surface albedo climatology map for all
grid boxes that are illuminated by the Sun, i.e. up to a lo-
cal solar noon zenith angle of 90°. Pixels that are in the dark
throughout the entire DOY (i.e. where the Sun is always be-
low the horizon) are left unfilled. For the computation of the
climatology, we proceed in the following way:

1. First, we select the MCD43D42-48 albedo retrievals
with an albedo quality between 0 and 3 (see Table 2)
and compute the mean value of the surface albedo for
each grid box over 10 years for a given DOY. After this
averaging procedure, some pixels remain unfilled due to
factors such as cloudiness and constraints on the local
solar noon zenith angle (mentioned above).

2. Thus, for each DOY, we fill in the missing values
with the mean of the albedo calculated for DOY-n and
DOY+n (temporal averages obtained in step 1), where
n ∈ [1,40]. The mean value with the smallest n value,
i.e. the value that is closest in time, is the one that is
used.

3. For some DOYs close to solstices and for local solar
noon zenith angles between 80 and 90°, a range of 40 d
is not sufficient for providing filled values that corre-
spond to both the future and the past. It might be, for
example, that a value is available close in the future;
however, to have a corresponding value in the past, we
would have to look further than 40 d. The reason why,
in the previous step, we require values for both the past
and the future is to balance out seasonal changes and
avoid sharp transitions near the solstices. In such cases,
we first search for the closest filled values that corre-
spond to both the past and the future, even if the two in-
tervals are different or if one of them is larger than 40 d.
Then, we average the values of albedo over a 10 d inter-
val around the selected future and past available days.
Instead of simply assigning the mean of these averages
to the actual DOY, we perform a linear interpolation to
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give more weight to the values closer in time to the ac-
tual DOY.

4. In a fourth step, remaining missing values for a given
DOY are replaced with the spatial average for the same
DOY over an area of m×m grid boxes around each
missing value, where m ∈ [3,5,7,9]. The mean value
with the smallest m value, i.e. the value corresponding
to the smallest surrounding area, is the one that is used.

5. Further remaining missing values are replaced with the
mean surface albedo calculated across longitudes within
2° latitude bands for the same DOY.

6. If missing values still exist at this stage for given
grid boxes and given DOYs, the mean value calculated
across all DOYs during the 10 years under consideration
is used to replace them.

7. Finally, since the MCD43D product only retrieves land
properties, we compute an albedo value for the ocean
pixels in each of the seven MODIS bands using the
“deep-ocean” spectrum from the old ECOSTRESS li-
brary of the US Geological Survey (USGS) database
(Baldridge et al., 2009; Meerdink et al., 2019). To this
end, incoming solar spectral irradiance (Kurucz, 1992)
is first convolved with the spectral response function of
the given MODIS channels. Then, under the assumption
of no atmosphere, reflected spectral irradiance at the
surface is computed upon multiplication with the spec-
tral ocean albedo and integrated over the wavelength.
This value is finally divided by the integral of the incom-
ing spectral irradiance, computed above, to obtain the
band albedo values for the ocean. These values are used
everywhere for global waterbodies and at all times. Of
course, we are aware that water surfaces are better char-
acterised using a BRDF in order to account for specular
reflection (Cox and Munk, 1954a, b; Nakajima, 1983).

MODIS also provides data for coastal regions covering some
ocean pixels. These pixels were filled in the climatology, as
described in steps 1–6, and were not replaced with ocean pix-
els in step 7. Some of these coastal pixels also exhibit sea ice,
which remains included in the climatology.

The percentages of missing land pixels filled after each
step of the climatology are shown in Fig. 1. The percent-
ages are calculated as the average values across all DOYs.
In step 3, most of the remaining missing pixels with a lo-
cal solar noon zenith angle between 80 and 90° are filled.
These pixels only receive nearly parallel incoming solar radi-
ation, and thus their impact on radiative-transfer calculations
is limited. On the other hand, our methodology allows us to
estimate these pixels with high local solar noon zenith an-
gles, which are usually also highly reflective in the visible
wavelengths. This climatology serves as the starting point
for building the hyperspectral albedo maps, where average
ice and snow cover values are automatically included. Our

MODIS black-sky-albedo climatology from the years 2013
to 2022 is available at https://doi.org/10.57970/pt52a-nhm92
(Roccetti et al., 2024a). For each pixel, we provide a flag
indicating at which step the albedo value was filled. The spa-
tial resolution is the same as that of the MCD43D product
(30 arcsec).

2.2 Soil and vegetation spectra

To create hyperspectral albedo maps for each DOY, we use
laboratory and in situ hyperspectral measurements of dif-
ferent soils, rocks, and vegetation surfaces. Jiang and Fang
(2019) developed hyperspectral soil reflectance eigenvectors
to improve canopy radiative transfer. Studying the impacts
of different regional datasets, they found that, compared to
regional datasets, there was an increase in accuracy and ro-
bustness when including a global sample coverage of differ-
ent soil and vegetation spectra. Following this prescription,
we select three dry-soil and vegetation datasets that cover
different countries and different surface materials:

1. First, we select the ECOSTRESS library (Baldridge
et al., 2009; Meerdink et al., 2019), which includes 1023
surface spectra from the United States. Among these,
487 are vegetation spectra, 62 are nonphotosynthetic-
vegetation spectra, 381 are rock spectra, 40 are soil
spectra, 45 are humanmade-material spectra (referred to
as “man-made materials” in the ECOSTRESS library),
and 8 are water ice and snow spectra.

2. Second, we select the ICRAF–ISRIC dataset (ICRAF-
ISRIC, 2021), which is a global dataset with 4440 spec-
tra for different soils from 58 different countries (in-
cluding Africa, Asia, Europe, North America, and South
America).

3. Third, we use the LUCAS (Land Use and Coverage
Area frame Survey) dataset (Orgiazzi et al., 2018),
which contains 21 782 different soil spectra from
28 European Union countries, from which we select
the 30° viewing angle. As shown by Shepherd et al.
(2003), LUCAS spectra are problematic between
400 and 500 nm, where they exhibit negative val-
ues. Following Jiang and Fang (2019), we use the
multiple-linear-regression algorithm from scikit-learn
(sklearn.linear_model.LinearRegression)
(Pedregosa et al., 2011), trained on the ICRAF–ISRIC
dataset, to reconstruct the LUCAS spectra in the
400–500 nm spectral range.

All the datasets cover the 400–2500 nm spectral range, albeit
with different spectral resolutions. The LUCAS dataset has
a spectral resolution of 0.5 nm, while the ICRAF–ISRIC and
ECOSTRESS datasets have a spectral resolution of 10 nm.
We interpolate the least-resolved datasets to obtain a resolu-
tion of 1 nm for all spectra. Among the waterbodies in the
ECOSTRESS library, there are three different snow spectra:
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Table 2. Descriptions of the MCD43D albedo quality flags.

Flag value Description

0 Best quality (full BRDF inversions)
1 Good quality (full BRDF inversions)
2 Magnitude inversion (number of observations ≥ 7)
3 Magnitude inversion (number of observations ≥ 2 and < 7)
255 Fill value

Figure 1. Percentage of land missing pixels as an average over all DOYs. We indicate the remaining percentage of missing values after each
step of the climatology process.

coarse granular snow, medium granular snow, and fine snow.
In addition, there are spectra for frost and ice, sea foam, sea-
water, and tap water. Together, these form the eight water ice
and snow spectra in the ECOSTRESS library. In total, we
use 26 635 dry-soil, vegetation, snow, and ice spectra from
82 different countries as input to extract the principal com-
ponents. In Fig. 2, we show some representative soil and veg-
etation spectra from the ECOSTRESS library. One limitation
of our approach is that vegetation spectra are only present in
the ECOSTRESS library, which is a local dataset from the
United States. However, to our knowledge, this is the only
available dataset with tree, shrub, and grass spectra, which
are fundamental for the purpose of this study.

Jiang and Fang (2019) also study the influence of humid
soils on the PCA regression algorithm. They find that the ef-
fect of soil moisture is non-linear, causing a general reduc-
tion in reflectance due to a total internal reflection effect of
the water surface. This effect is more prominent in the near-
infrared range (1100–2500 nm). They conclude that treating
dry and humid soils separately leads to a more applicable soil
reflectance model. A comprehensive, global database of hu-
mid soils is currently not available in the literature, and the
inclusion of humid soils is beyond the scope of our work.

2.3 Principal component analysis

The vector of the MODIS albedo data (Sect. 2.1) for the
seven wavelengths (R) can generally be decomposed as

R = cU, (1)

where R = (r1, . . ., rn) is the albedo vector, with n represent-
ing the number of wavelengths; c = (c1, . . .,cm) is the coeffi-
cient vector, withm representing the number of surface spec-
tra; and U is anm×nmatrix containing the laboratory spectra
of different soil and vegetation types. In order to calculate the
hyperspectral albedo maps, we first need to compute the co-
efficient vector (c) at every pixel by inverting Eq. (1). Since
U is not a square matrix, the correct inverse equation is

c =RUT (UUT )−1. (2)

From the MODIS dataset, R is available only for seven spec-
tral bands (see Table 1); however, the goal of this work
is to fill the spectral gaps between the bands and recon-
struct a full VIS–NIR spectrum with a fine spectral reso-
lution. Computing Eq. (2), which has a dimensionality of
m= 26635, is too computationally expensive. In order to
reduce the dimensionality of this problem, we follow Vi-
dot and Borbás (2014) and apply a principal component
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Figure 2. Albedo spectral signatures of typical soils, vegetation, and waterbodies from the ECOSTRESS library.

analysis (PCA) algorithm, which is an unsupervised ma-
chine learning algorithm, and extract the principal compo-
nents from the matrix U. We need seven principal compo-
nents (or eigenvectors) to solve our problem. As done by
Vidot and Borbás (2014), we generate six principal compo-
nents and use a constant value for a seventh one as this ap-
proach has been tested and shown to improve performance.
The other six principal components are generated from the
three dry datasets described in the previous section. Since
these datasets account for different surface types (with veg-
etation spectra only given in the ECOSTRESS dataset) and
come in different quantities, we cannot directly merge the
spectra of the three datasets. Thus, we balance the number
of spectra from the different datasets clustering them us-
ing a k-means algorithm (sklearn.cluster.KMeans;
Pedregosa et al. (2011)), as done in Liu et al. (2023). In
this way, we obtain 100 representative soil spectra for the
ICRAF–ISRIC dataset, 100 for the LUCAS dataset, and
128 for the ECOSTRESS dataset; these include 40 vege-
tation spectra, 10 nonphotosynthetic-vegetation spectra, 40
soil spectra, 20 rock spectra, 10 humanmade-material spec-
tra, and 8 waterbody spectra. The waterbody spectra, which
include spectra for snow of different granular sizes, frost,
deep oceans, coastal oceans, and tap water, were not re-
duced in dimensionality. Without accounting for this differ-
ence in number, the vegetation and water surfaces present
in the ECOSTRESS dataset would be outweighed by the
number of soil spectra from the other datasets, resulting in
a considerably lower algorithm performance. We use the
scikitlearn.decomposition.PCA implementation
of PCA, which follows singular value decomposition (SVD)
of the data, as shown in Halko et al. (2009). From this pro-
cess, we end up with the matrix Ũλ, which has the same
spectral resolution as the laboratory spectra, where λ rep-

resents the hyperspectral nature of this matrix. To combine
it with the albedo data vector R, which is only available for
the seven MODIS bands, we need to convolve the full ma-
trix Ũλ using the average satellite response function of the
Terra and Aqua satellites for each band. This convolution is
necessary to correctly estimate the measured albedo for the
central wavelength of each band, which is crucial for gener-
ating hyperspectral albedo maps with the PCA. The result of
the convolution is a square matrix Ũ for the seven MODIS
wavelengths available from satellite data. Since Ũ is a square
matrix, we can simply calculate

c =RŨ−1. (3)

In this way, we have seven equations for seven coefficients,
allowing us to estimate the coefficient vector c. Once c is
known, it is possible to calculate the albedo maps across all
selected wavelengths using

Rλ = cŨλ, (4)

where the subscript λ indicates the hyperspectral nature of
the elements. The same process is applied to all the pix-
els in the map to generate a final albedo map with a spa-
tial resolution of 0.05° in latitude and longitude, and it is
applied across all the different days of the year, considering
the Earth’s seasonal variability. Vidot and Borbás (2014) cre-
ated BRDF maps using a PCA algorithm for their radiative-
transfer code. They used the ASTER library (now called
ECOSTRESS library) – which, at the time, contained far
fewer soil and vegetation spectra – to create average maps in
order to include the hyperspectral reflectivity of soils in their
radiative-transfer simulations. Jiang and Fang (2019) demon-
strated that increasing the sample size of different soils from
various countries helps to validate several datasets against
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Figure 3. Eigenvectors generated by the PCA using the LUCAS,
ICRAF–ISRIC, and ECOSTRESS datasets. These eigenvectors are
used to build the hyperspectral albedo maps. They are plotted in
order of importance, as determined by the PCA.

each other. Without using satellite data to create the maps of
the Earth’s albedo, Jiang and Fang (2019) calculated eigen-
vectors using an SVD algorithm to study the hyperspectral
properties of canopy trees in radiative-transfer simulations,
including small, local datasets of humid soils. For the scope
of this work, it is not possible to directly use the three eigen-
vectors generated by Jiang and Fang (2019) as we regress
the hyperspectral albedo maps from the seven MODIS bands;
thus, seven eigenvectors are needed.

As a result of the method explained above, we obtain a
hyperspectral climatology of black-sky surface albedo over
the entire globe, covering a wavelength range from 400 to
2500 nm in steps of 10 nm. While the interpolation is per-
formed at a 1 nm resolution for the hyperspectral albedo
maps, the final Hyperspectral Albedo Maps dataset with high
Spatial and TEmporal Resolution (HAMSTER) has a spec-
tral resolution of 10 nm to reduce the size of the single maps.
We also reduce the spatial resolution of the hyperspectral
albedo maps from the MCD43D 30 arcsec resolution to a res-
olution of 180 arcsec, which corresponds to 0.05° in latitude
and longitude, again due to size constraints. HAMSTER can
be generated at the same spatial resolution as the MODIS
MCD43D product and at a spectral resolution down to 1 nm,
and hyperspectral albedo maps with higher spatial and spec-
tral resolutions are available upon request. The temporal res-
olution of the hyperspectral climatology is 1 d, and it in-
corporates information contained in the MODIS climatology
and extends it to wavelengths that were not available before.
HAMSTER is available at its finer spatial resolution (0.05°
in latitude and longitude) at https://doi.org/10.57970/04zd8-
7et52 (Roccetti et al., 2024b), while a version with a coarser
spatial resolution, more suitable for global applications, is
available at https://doi.org/10.5281/zenodo.11459410 (Roc-
cetti et al., 2024c).

Table 3. Spectral bands of SEVIRI in the VIS–NIR range that pro-
vide information about land surface. For each band, we specify the
central wavelength and the bandwidth.

Band Central λ (nm) Bandwidth (nm)

1 635 600–680
2 810 775–850
3 1640 1550–1750

3 Validation

As a first test, we use the hyperspectral albedo maps to recon-
struct the MODIS channels’ black-sky-albedo climatology.
We multiply the hyperspectral maps by the satellite’s spectral
response function, and we estimate the root-mean-square er-
ror (RMSE) for all seven channels. For all MODIS channels
(see Table 1), the RMSE is less than 0.0003. This confirms
that the computed hyperspectral albedo maps are able to re-
construct the original MODIS climatology with great accu-
racy. To validate the PCA-retrieved maps (HAMSTER), we
compare them with the land surface albedo product of the
Spinning Enhanced Visible and Infrared Imager (SEVIRI)
instrument aboard the geostationary Meteosat Second Gen-
eration (MSG) satellite (Schmetz et al., 2002). SEVIRI has
three channels in the VIS–NIR range, which are reported in
Table 3. As the MSG satellite is geostationary, we cannot
compare the entire world map; instead, we can only compare
the Earth’s “disc”, which includes Africa, parts of Europe,
South America, and the Middle East. SEVIRI channels have
spectral response functions that are broader than those of the
analogous MODIS bands and are centred at slightly differ-
ent wavelengths; thus, we convolved the hyperspectral maps
to account for this. In particular, the SEVIRI channel cen-
tred at 810 nm touches the vegetation “ramp” that starts from
700 nm and is expected to show higher albedo values than
the first SEVIRI channel.

The SEVIRI land surface albedo product, MDAL (Geiger
et al., 2008; Juncu et al., 2022; product identifier no. LSA-
101), is offered daily by the Land Surface Analysis Satel-
lite Application Facility (LSA SAF) on the native SEVIRI
grid. It has a spatial resolution of 3 km at the sub-satellite
point and is similar to the MODIS-based MCD43D product,
against which it has been evaluated (Carrer et al., 2010). Both
bihemispherical (white-sky) and directional–hemispherical
(black-sky) albedo are available for the MCD43D product.
To enable comparisons with the HAMSTER hyperspectral
albedo maps constructed from MODIS, we reprojected the
SEVIRI data to the MCD43D grid, downscaling the data to a
0.05° resolution in latitude and longitude to allow for a con-
sistent comparison. We selected two different days in 2016:
one in late boreal winter (5 March (DOY 65)) and one in
mid-boreal summer (30 July (DOY 209)) to compare surface
reflectivity during two different vegetation stages, consider-
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ing possible snow cover in winter and no snow in summer
over northern Europe. The results are shown in Figs. 4 and 5.

We compare the three solar satellite channels offered by
SEVIRI with the reconstructed channels from the HAM-
STER climatology and the single-day HAMSTER recon-
struction (first three columns in Figs. 4 and 5). SEVIRI chan-
nel 3 has the same central wavelength (λc= 1640 nm) as
MODIS band 6, allowing for an almost direct comparison be-
tween MODIS and SEVIRI land surface products. However,
the hyperspectral nature of the retrieved HAMSTER maps is
still used to convolve around the 1640 nm MODIS band. The
same applies to SEVIRI channel 1 and MODIS band 1, for
which there is only 10 nm of difference in the central wave-
length. On the other hand, SEVIRI channel 2 (λc= 810 nm)
is outside any MODIS band. This last case allows us to make
a comparison between the reconstructed albedo maps and the
SEVIRI measurements, rather than comparing the land sur-
face products of the two instruments. In addition, in Figs. 4
and 5, we also assess the difference between the HAMSTER
climatological average (first column) and a single-day HAM-
STER reconstruction (second column), without accounting
for the 10-year average of the climatology. White pixels in
the single-day HAMSTER reconstruction correspond to pix-
els without albedo values from the MODIS MCD43D prod-
uct. The climatological average shows fewer features, partic-
ularly over Europe, which might be due to fluctuations occur-
ring on a single day, while the single-day HAMSTER recon-
struction shows a larger dependence on seasonality. The ef-
fect of the climatology is shown in the fourth column, where
we plot the albedo difference between the HAMSTER cli-
matology and the single-day HAMSTER reconstruction. In
Fig. 4, we clearly see discrepancies of around 0.10 in the first
two channels, while SEVIRI channel 3 shows lower albedo
values over southern Africa for the HAMSTER climatology.
Fewer differences are found for DOY 209 (in boreal summer;
Fig. 5). To conclude, the last two columns of Figs. 4 and
5 display the differences between HAMSTER (i.e. the cli-
matology and single-day reconstruction) integrated over the
SEVIRI channels and the SEVIRI land surface product. We
notice an overestimation of approximately 0.05 in the recon-
structed HAMSTER hyperspectral albedo maps for the first
two channels across the Sahara, while vegetated areas across
Africa and parts of Europe and South America show either
a negative discrepancy (SEVIRI channel 1) or a positive dis-
crepancy (SEVIRI channel 2) compared to the SEVIRI mea-
surements, with the discrepancies being of a similar magni-
tude. On the other hand, SEVIRI channel 3 (λc= 1640 nm) is
mostly underestimated by HAMSTER, with a smaller albedo
difference compared to the other two channels. Since HAM-
STER is based on the MODIS land surface product, our re-
sults are in accordance with the discrepancies found by Shao
et al. (2021), which point towards differences of up to 0.06
between various land surface products. Though we describe
the different offsets arising from this comparison, we can
conclude that the reconstructed maps are consistent with the

discrepancies arising from different satellite data products
with respect to their validation. In Figs. 6 and 7, we show
probability density functions (PDFs) calculated using kernel
density estimation (KDE), a Gaussian-kernel-based proba-
bility density method (Scott, 1992), to compare HAMSTER
(i.e. the HAMSTER climatology and single-day HAMSTER
reconstruction) with the SEVIRI land surface products for
the two DOYs selected. For each comparison, we estimate
the RMSE and represent the discrepancies between the dif-
ferent albedo products using KDE.

We notice that the RMSE is always very small, consis-
tent with intrinsic differences between different retrievals of
the albedo products. For both DOYs, the RMSE is larger
for SEVIRI channel 2 (centred at λc= 810 nm), which is
the SEVIRI channel furthest from any MODIS channel. We
also notice that comparing with hyperspectral maps built
from single-day albedos consistently shows a slightly smaller
RMSE since the climatology can only reproduce the climato-
logical vegetation state and snow coverage pattern for a spe-
cific DOY. In addition, we also calculate the RMSE between
the HAMSTER climatology and all three SEVIRI channels
for each day in 2016 (Fig. 8). We can conclude that the two
DOYs selected for a more in-depth analysis (DOY 65 and
DOY 209) are representative of the general trend. We no-
tice that the comparison with SEVIRI channel 2 results in
a larger RMSE, as expected, as this channel is outside the
MODIS bands. However, the performance of the hyperspec-
tral albedo maps is still in agreement with the discrepancies
among different albedo products.

As a last test, we compare the hyperspectral albedo maps
with the TROPOspheric Monitoring Instrument (TROPOMI)
Lambertian-equivalent reflectivity (LER) product, which
is available at https://www.temis.nl/surface/albedo/tropomi_
ler.php (last access: 10 January 2024) (Tilstra et al.,
2021, 2024). The TROPOMI LER product (with a sub-
satellite pixel size of 0.125°× 0.125°) is remarkably differ-
ent from the MODIS MCD43D product as it provides sep-
arate surface albedo values for snow and ice-free conditions
and snow and ice conditions. The snow and ice conditions
are also averaged over a month, which does not allow for a
direct comparison with MODIS, which provides daily snow
coverages. Due to the high reflectivity of snow and ice in the
visible wavelengths, the large discrepancy between the two
products does not result from the PCA-retrieved albedo but
from the products’ different approaches used to assess snow
coverage. On the other hand, TROPOMI bands are very nar-
row (just 1 nm), and they provide many channels in the “veg-
etation red edge” (VRE) ramp. For this reason, we validate
our hyperspectral albedo maps using the TROPOMI prod-
uct exclusively for the African continent and the Middle East
since these regions exhibit the least snow coverage, allowing
for a direct and consistent comparison of land surface albedo
between the two products. In this way, we avoid comparisons
with snow and ice products which are not fully consistent.
Due to the narrow satellite bands of TROPOMI, it was not
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Figure 4. Comparison between the HAMSTER climatology, the single-day HAMSTER reconstruction, and SEVIRI in late boreal winter
(5 March 2016 (DOY 65)) for the three SEVIRI VIS–NIR channels. The first three columns show the albedo values for (a) the HAM-
STER climatology and (b) the single-day HAMSTER reconstruction, both of which are integrated over each SEVIRI channel, as well as
(c) the SEVIRI albedo product. In the last three columns, we display the albedo differences between the three different albedo products or
reconstructions, ranging from −0.10 to 0.10.

Figure 5. Comparison between the HAMSTER climatology, the single-day HAMSTER reconstruction, and SEVIRI in boreal summer (30
July 2016 (DOY 209)) for the three SEVIRI VIS–NIR channels. The first three columns show the albedo values for (a) the HAMSTER clima-
tology and (b) the single-day HAMSTER reconstruction, both of which are integrated over each SEVIRI channel, as well as (c) the SEVIRI
albedo product. In the last three columns, we display the albedo differences between the three different albedo products or reconstructions,
ranging from −0.10 to 0.10.
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Figure 6. Kernel density estimation (KDE) between the HAMSTER climatology, the single-day HAMSTER reconstruction, and SEVIRI
albedo data for 5 March 2016 (DOY 65) across the three central wavelengths of the SEVIRI channels (shown in different columns). Panels
(a), (b), and (c) display hyperspectral albedo maps based on the HAMSTER climatology, while panels (d), (e), and (f) illustrate the single-day
reconstruction. The solid line represents a perfect linear fit, while the dashed lines show a linear fit with an offset of 0.06.

Figure 7. Kernel density estimation (KDE) between the HAMSTER climatology, the single-day HAMSTER reconstruction, and SEVIRI
albedo data for 30 July 2016 (DOY 209) across the three central wavelengths of the SEVIRI channels (shown in different columns). Panels
(a), (b), and (c) display hyperspectral albedo maps based on the HAMSTER climatology, while panels (d), (e), and (f) illustrate the single-day
reconstruction. The solid line represents a perfect linear fit, while the dashed lines show a linear fit with an offset of 0.06.

necessary to convolve its satellite response function, and we
estimated the RMSE between the TROPOMI LER product
and our HAMSTER hyperspectral albedo maps (at a spec-
tral resolution of 1 nm). The results are shown in Table 4.
The RMSE is comparable to what we find for SEVIRI and
reflects known discrepancies among different surface albedo
products. It remains relatively small in the TROPOMI bands

between 670 and 772 nm, within the VRE domain and far
from the MODIS bands. This confirms the good performance
of the hyperspectral albedo maps, even when they are far
from the MODIS bands from which they were retrieved.
In Fig. 9, we select three TROPOMI bands and compare
the albedo values over Africa between the HAMSTER cli-
matology (first column) and the TROPOMI albedo product
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Figure 8. Root-mean-square error (RMSE) of the comparison between the HAMSTER climatology and all three SEVIRI channels. The
comparison is performed for each day in 2016.

(second column). We select the TROPOMI monthly product
for the month of March (average from 2018 to 2023), and
we compare it with the average of the HAMSTER climatol-
ogy from DOY 61 to DOY 91 (corresponding to all days in
March). In the third column, we again plot the albedo dif-
ference between the two products. For λc= 463 nm, we no-
tice very good agreement, with discrepancies of around 0.019
over Africa. For λc= 747 nm, within the VRE domain, the
discrepancies are larger, with HAMSTER generally overes-
timating albedo compared to TROPOMI, resulting in differ-
ences of up to 0.10 but an overall RMSE of 0.055. We also
compared the two products with a band in the far NIR range
(λc= 2314 nm) and found that HAMSTER overestimates dry
and desert areas and underestimates vegetated regions. Also,
in this last band, albedo products show differences of up
to 0.10, particularly over deserts, but have a small RMSE
(0.033).

As with SEVIRI, we also validate the HAMSTER clima-
tology against TROPOMI for each month, estimating the
RMSE for each TROPOMI band. Since TROPOMI offers
monthly albedo products, we used the monthly averages of
the HAMSTER climatology over Africa and the Middle East
to perform the comparison. In Fig. 10, we show the monthly
validation results. For TROPOMI bands between 400 and
500 nm, the RMSE is always very small (around 0.02). Mov-
ing into the VRE domain (from 700 to 800 nm), the RMSE
ranges from 0.05 to 0.07, which is still comparable with
discrepancies among different albedo products. For the NIR
TROPOMI band (λc= 2314 nm), the RMSE is around 0.03–
0.04 for all months.

4 Results

In this section, we present the two main results of this pa-
per: the MODIS black-sky-surface-albedo climatology for
the seven bands and, building on that, the extended Hyper-
spectral Albedo Maps dataset with high Spatial and TEmpo-
ral Resolution (HAMSTER).

4.1 MODIS climatology dataset

As described in Sect. 2.1, we derived a 10-year climatology
of surface albedo for different DOYs as a starting point for
generating the hyperspectral albedo maps. This climatologi-
cal average, with a temporal resolution of 1 d, allows for the
study of temporal variability in the albedo of the planet, as
shown in Fig. 11. Since albedo values are not available for
every pixel of the Earth’s surface throughout the year due to
missing solar illumination during winter, we study the tem-
poral evolution of the mean global albedo between 67° N and
67° S. At these latitudes, we consistently have an estimate
of the albedo for every single pixel across all DOYs. As a
consequence, we exclude the Arctic and Antarctica regions,
as well as other high-latitude land surfaces in the Northern
Hemisphere, from the mean altitude estimation. For this rea-
son, the mean albedo value should be interpreted not as a
global estimate for the Earth but rather as an indicator of
its temporal variation. In Fig. 11, we notice that the mean
albedo is higher in the NIR bands, following the VRE peaks.
At 858 nm, which peaks right after the VRE, we notice the
largest albedo value for the planet, followed by 1240 nm.
Continuing into the NIR range, with 1640 and 2130 nm, the
albedo values decrease. In contrast, in the VIS range, there
is very little variation in albedo among the three bands. The
VIS bands show a clear seasonal trend due to the melting
of ice and snow in the Northern Hemisphere, followed by
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Figure 9. Comparison between the HAMSTER climatology (a) and TROPOMI (b) in late boreal winter (month of March) for three selected
wavelengths within the TROPOMI VIS–NIR channels. Panels (a–b) show the albedo difference between the HAMSTER climatology and
the TROPOMI LER albedo product.

Table 4. Spectral bands of the TROPOMI LER product in the VIS–NIR range, along with the RMSEs of the comparisons with HAMSTER
hyperspectral albedo maps of Africa.

λ (nm) 402 416 425 440 463 494 670 685 697 712 747 758 772 2314

RMSE 0.019 0.018 0.020 0.019 0.019 0.020 0.031 0.030 0.037 0.039 0.055 0.052 0.049 0.033

the subsequent blossoming of vegetation. Thus, the Earth’s
albedo peaks in late boreal winter in the VIS range and then
decreases in boreal summer. This large-variability trend can
be interpreted in terms of seasonal differences in snow cov-
erage, and it mainly follows the variability in the Northern
Hemisphere, which hosts almost 80 % of the Earth’s land.
However, in the NIR bands, other features observed around
late boreal spring and autumn are due to the blossoming of
flowers and the reddening of leaves, which decrease the gen-
eral reflectivity of green leaves.

In Fig. 12, we study the spatial variability in albedo
throughout the year at a particular wavelength for the en-
tire 10-year climatological average. Here, we select MODIS
band 1, centred at 645 nm. In particular, we plot the differ-
ence between the maximum and minimum albedo values for
the entire year, regardless of when the maximum and min-

imum are reached. For instance, the maximum reflectivity
over high latitudes in the Northern Hemisphere is reached
during boreal summer, while along the coast of Antarctica,
it happens during austral summer due to ice melting. It is
important to note that the MCD43D product does not con-
tain sea surface albedo or sea ice albedo. However, coastal
regions exhibit albedo values and are subject to large sea-
sonal differences. Moreover, since albedo data are not avail-
able during boreal winter (summer) for the Northern (South-
ern) Hemisphere, the difference between the maximum and
minimum albedo for high-latitude regions (north and south
of 67°) is calculated over a shorter time period correspond-
ing to the data coverage of the region. By illustrating this
reflectivity variation for every pixel, the map in Fig. 12 high-
lights regions with the largest variations. In particular, Arc-
tic and Antarctic regions exhibit high reflectivity variations
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Figure 10. Root-mean-square error (RMSE) of the comparison between the HAMSTER climatology and all TROPOMI channels. The
comparison is performed for each month.

Figure 11. Yearly cycle of the black-sky-albedo data from the MODIS climatology, covering 67° N to 67° S. The different curves represent
the different MODIS channels, indicated by their central wavelengths.

due to snow, ice, and sea ice melting in coastal regions, as
clearly visible in the map. Mainland Greenland also shows
more variability than mainland Antarctica, possibly point-
ing towards the melting of Greenland’s glaciers during boreal
summer. Deserts all over the world, such as the Sahara and
Australian deserts, show the least variability, remaining al-
most constant throughout the year. Also, tropical rainforests,
such as the Amazon rainforest, do not exhibit significant sea-
sonal variability. In contrast, temperate and boreal forests
show pronounced variation due to differences in snow cover
between the winter and summer months.

4.2 Hyperspectral albedo maps

Using MODIS climatology data, we build hyperspectral
albedo maps with a PCA regression algorithm, as described
in Sect. 2.3. The hyperspectral albedo maps allow us to
combine the spectral features of different soils, vegetation,
and water surfaces with the high spatial and temporal res-
olution of the MODIS climatology data. This has many

possible applications, ranging from implementation in cli-
mate models (as demonstrated by Braghiere et al. (2023))
to the improvement of remote sensing retrieval frameworks.
The new hyperspectral albedo maps have been implemented
in the radiative-transfer software package libRadtran
(http://www.libradtran.org/doku.php, last access: 12 Decem-
ber 2023; Mayer and Kylling, 2005; Emde et al., 2016). As a
first application, we use these hyperspectral maps to calculate
the mean global albedo value around the equinoxes. In this
way, we ensure that almost all pixels are filled with an albedo
value, allowing us to assess a mean albedo value for the en-
tire globe as a function of wavelength (see Fig. 13). The main
difference between the spring and autumn equinoxes pertains
to snow coverage over the Northern Hemisphere, which in-
creases reflectivity during the boreal-spring equinox. This
mostly affects the VIS wavelengths, following the typical
albedo profile of snow and frost (see Fig. 2). From these
hyperspectral albedo maps, we found that the mean global
albedo is around 0.21 in the VIS range during March and
around 0.17 in autumn, whereas it decreases to below 0.10
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Figure 12. Spatial variation in the MODIS climatology, showing the difference between the maximum and minimum albedo (amax and amin,
respectively) for each pixel throughout the year.

in the NIR range. The dots in Fig. 13 represent the average
over the MODIS channels, without taking into account the
hyperspectral albedo maps.

In addition, we apply the hyperspectral maps to study the
VRE, which shows a steep increase in the reflectivity of veg-
etation due to chlorophyll, as shown in Fig. 13 at around
700 nm. In Fig. 14, we show the progression of vegetation re-
flectivity from 700 to 850 nm (with steps of 50 nm) for DOY
65 (5 March). We notice a substantial increase in albedo for
all kinds of forests, from tropical to boreal, with the largest
increase occurring between 700 and 750 nm, as expected
for the VRE. This comparison is only possible when using
albedo maps that account for the hyperspectral dimension.
Using only the MODIS wavelengths would result in missing
the entire VRE transition because the closest bands are only
at 645 and 858 nm.

Lastly, we study the spectral profile of different regions
around the world, accounting for their seasonal variability.
We select different examples of rainforests, boreal forests,
deserts, urban areas, and ice-covered regions, as shown in
Fig. 15. Using pixels from within the boundaries of the areas
highlighted in Fig. 15, we average the spectra of all pixels in
the regions in order to obtain an average spectrum that is rep-
resentative of the entire region. The averages are calculated
separately for the four seasons.

The first comparison pertains to forest spectra (dark green
regions in Fig. 15). We selected three different rainforests
(the Amazon, Borneo, and Congo rainforests), two different
boreal forests (located in Canada and Russia), and a savanna
region in Kenya and Tanzania. The selection of these dif-
ferent areas was made by maximising land area with similar
properties while avoiding mixtures of urbanised soils and dif-
ferent land types within the regions. Figure 16 shows a com-
parison between spectra of different forests. We notice a sim-

ilar trend among all kinds of forests, characterised by similar
spectral features. In particular, all forests show three jumps
in reflectivity of decreasing amplitude. The main difference
between tropical rainforests and boreal forests resides, as ex-
pected, in their seasonal variability. Tropical rainforests ex-
hibit almost no seasonal change as they are very similar to
each other. On the other hand, boreal forests experience an
important decrease in reflectivity from boreal winter to bo-
real summer. This is due to the melting of snow in boreal
forests, which also happens on different timescales. There are
also some small differences within tropical rainforests. The
Borneo rainforest shows the least seasonal variation, while
the Congo rainforest shows the lowest reflectivity. The final
spectra are always combinations of different soils and vege-
tation, and the small differences we find are due to variations
in tree, soil, and ground types, as well as varying tree cover-
age across the different forests. If we compare the obtained
spectra with the spectral signatures shown in Fig. 2, we find
overall agreement between their main spectral features, but
our final spectra are modulated by the combination of many
different soils and are averaged over seasons and different
pixels.

We extend the comparison to desert areas (orange regions
in Fig. 15). We select the Sahara, the Australian desert, the
Gobi Desert, and the Atacama Desert to extract spectral prop-
erties from the hyperspectral albedo maps. Figure 17 shows
the comparison among different arid regions. We find that the
reflectivity profiles of deserts can greatly vary depending on
the mineralogy and composition of different soils and sands.
In addition, as discussed in Fig. 12, the Sahara and Australian
desert do not display any significant seasonal changes. This
is not the case for the Gobi Desert, which shows enhanced
reflectivity in the winter months due to partial snow cov-
erage. In general, deserts exhibit a common spectral shape,
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Figure 13. Mean global albedo as a function of wavelength across the entire globe. We select the two DOYs closest to the equinoxes, when
almost all pixels are filled with albedo values. The seven dots represent the albedo values of the seven MODIS bands, while the curves are
derived from the average of all pixels in the HAMSTER hyperspectral albedo maps for a given wavelength.

Figure 14. Spectral evolution of surface albedo for 5 March (DOY 65). From λ=700 nm to λ=850 nm, there is a steep increase in albedo
over forests, attributed to the VRE.

with a steep increase in reflectivity up to 750 nm, similar
spectral features until the NIR range is reached, and a more
or less steep decrease in reflectivity around 2150 nm. Com-
pared to forests, different desert areas show larger discrep-
ancies among themselves. The same methodology is applied
to study the Greenland and Antarctic ice sheets (blue areas
in Fig. 15). We select two regions which are always snow-
covered to study their spectral features and seasonal patterns
(see Fig. 18). As expected for fully snow-covered surfaces,
their reflectivity is very high, reaching a value of almost 1
in the VIS range, and it then decreases in the NIR range.
During the winter in Greenland and Antarctica, not all the
pixels were always available; thus, we averaged fewer pixels
across fewer days to estimate their winter seasonal spectra. In
Fig. 2, we see that snow and frost show different reflectivity

patterns, particularly in the NIR range. This may explain the
spread in the NIR spectra of both Antarctica and Greenland.
This should be considered alongside the formation of clear,
liquid-water lakes on the surface of glaciers during the melt-
ing season, which lowers the total reflectivity of the surface.
For Greenland and Antarctica, we find similar behaviours in
the NIR range, with winter seasons exhibiting higher reflec-
tivity than summer seasons. We also notice that in the VIS
range, there is almost no seasonal spectral variability over
Antarctica, whereas Greenland shows two distinct trends be-
tween boreal autumn and winter and boreal spring and sum-
mer.

To conclude, we also extracted spectral profiles for two
different urban areas: the urban areas of Beijing and Mexico
City. Among the 45 humanmade spectral materials from the
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Figure 15. Regions of the world investigated in this study. The green boxes represent the forests, the orange boxes represent the deserts, the
blue boxes represent the ice sheets, and the purple circles represent the cities.

ECOSTRESS library, there are general construction materi-
als, road materials, roofing materials, and reflectance targets.
Urban areas are treated as a linear combination of different
components, such as humanmade materials, vegetation, and
soils, and the PCA handles these components similarly to
how it handles all other soil and vegetation spectra. MODIS
albedo performance over cities has not been quantitatively
assessed, and MODIS might underestimate surface reflectiv-
ity (Coddington et al., 2008); thus, city spectra should be
used with caution. Figure 19 shows that Beijing has larger
seasonal variability than Mexico City. In general, the spec-
tra of the two cities look different but share some common
spectral features. Urban areas show a lower albedo than the
other regions investigated, indicating the use of asphalt and
concrete spectra in the PCA, and their general spectral shape
appears different from that of all other regions. The steep in-
crease in the VIS range might be due to vegetation, while
other features in the NIR range come from humanmade ma-
terials and different soils present in the training dataset. As
expected, the peak reflectivity for urbanised areas is low.

In general, when extracting the spectra of different surface
types, we found good agreement among the typical spectral
features of soils and vegetation expected to dominate the dif-
ferent surface types. For instance, different kinds of forests
all have a typical shape due to the VRE. However, the spec-
tra of various land types contain much more information than
the single spectrum of a tree or a particular soil, and we can
clearly see that they constitute a linear combination of differ-
ent spectra within the sample, with each set of spectra having
varying weights. In fact, forests are a combination of trees
with a typical spectral shape, modulated by different soil re-

flectivities. As a result, the retrieved albedo of an entire for-
est is noticeably lower than that of single trees in the dataset.
This is in agreement with Jiang and Fang (2019), who gener-
ated different spectra for canopy-tree radiative-transfer sim-
ulations and studied the influence of soils on the total reflec-
tivity of vegetated areas. While typical vegetated features are
always present in the spectrum, they are modulated by the
properties of the background soil.

5 Conclusions

In this work, we create hyperspectral albedo maps to study
the wavelength-dependent characteristics of the black-sky
albedo of the Earth’s surface. We select spectra of various
soils, vegetation, snow, waterbodies, and humanmade ma-
terials from three different datasets: the ECOSTRESS li-
brary, which includes spectra of soils, vegetation, human-
made materials, snow, and waterbodies; the LUCAS dataset,
which contains spectra of different soils from many countries
around the world; and the ICRAF–ISRIC dataset, a catalogue
of thousands of soil spectra from European Union countries.
In total, we end up with 26 635 spectra of different soils and
vegetation from 82 countries. Due to the huge dimension-
ality of the final training dataset, we use a PCA regression
algorithm to extract the principal components of the dataset.
These principal components serve as eigenvectors to recover
the albedo reflectivity of different pixels across the Earth,
starting with the MODIS land surface product. Specifically,
MODIS measures land surface properties across seven dif-
ferent bands in the VIS–NIR wavelength range. These seven
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Figure 16. Spectra of different forests around the world, obtained by averaging the spectra over all pixels in the corresponding regions using
the hyperspectral albedo maps. Seasonal variability is shown by averaging the spectra over 3-month periods, with different colours indicating
different periods. Grey bands represent the MODIS bandwidths.

MODIS bands are used as the starting point for building the
hyperspectral albedo maps. Using PCA, we extract six prin-
cipal components, following Vidot and Borbás (2014), and,
with the addition of a seventh constant eigenvector, we com-
bine these components with the seven bands of MODIS data,
for which the albedo values of all single pixels are known.
From this computation, it is possible to extract the spectral
albedo value for the entire wavelength range, pixel by pixel.
To generate climatological hyperspectral albedo maps, we
use the 1 d land surface product from the MODIS MCD43D
product, and we average the data for each DOY from 2013
to 2022. This allows us to obtain a climatological average
of global surface properties, fill in missing pixels that might
be cloudy for a particular year, and disentangle pixels from
yearly variability patterns. As a final outcome, we obtain the
Hyperspectral Albedo Maps dataset with high Spatial and
TEmporal Resolution (HAMSTER) with

– a spectral resolution of 10 nm, ranging from 400 to
2500 nm;

– a spatial resolution of 0.05° in latitude and longitude;

– a temporal resolution of 1 d, averaged over the time pe-
riod from 2013 to 2022.

As demonstrated by Vidot and Borbás (2014) and Jiang and
Fang (2019), PCA and SVD algorithms are powerful tools
for combining large samples of soil and vegetation spec-
tra and reconstructing the albedo profiles of different areas
around the world. In addition to generating hyperspectral
albedo maps through PCA, as demonstrated in Vidot and
Borbás (2014), we also follow advice from Jiang and Fang
(2019) by training the PCA with a much larger dataset, ac-
counting for different countries around the world. In addi-
tion, our hyperspectral albedo maps cover all 365 DOYs,
making it possible to retain all seasonal-variability patterns
present in MODIS data. Our MODIS climatological maps
and hyperspectral albedo maps are validated against SEVIRI
and TROPOMI land surface products. To perform this com-
parison, we adapt the SEVIRI dataset to the MODIS pro-
jection, and we find that there is good agreement between
the MODIS climatology and the HAMSTER hyperspectral
maps with SEVIRI observations, with discrepancies of up to
0.06, which is a typical order of magnitude for land surface
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Figure 17. Spectra of different deserts around the world, obtained by averaging the spectra over different pixels from the hyperspectral albedo
maps. Seasonal variability is shown by averaging the spectra over 3-month periods, with different colours indicating different periods. Grey
bands represent the MODIS bandwidths.

Figure 18. Spectra of different ice surfaces around the world, obtained by averaging the spectra over different pixels from the hyperspectral
albedo maps. Seasonal variability is shown by averaging the spectra over 3-month periods, with different colours indicating different periods.
Grey bands represent the MODIS bandwidths.

product comparisons (Zhang et al., 2010; Shao et al., 2021).
Similar results are found in the comparison with TROPOMI.
The MODIS climatological dataset already displays interest-
ing temporal and spatial patterns. Thanks to its high spatial
and temporal resolution, we can study the Earth’s temporal
variability across different wavelengths and display the max-
imal albedo difference for each pixel, highlighting regions
with high temporal variability. The mean spectral albedo
of the planet peaks at wavelengths longer than those corre-
sponding to the VRE and shows larger variability at the VIS
wavelengths than at the NIR ones, with seasonal variations
between snow-covered high-latitude regions in the Northern
Hemisphere displaying an increase in surface albedo in bo-
real winter. We combine information from the temporal and

spatial resolution of the MODIS climatology data with the
ability to spectrally extend the information about different re-
gions to create typical spectra of different land surface types.
We identify the following:

– Forests, as expected, exhibit typical vegetation-induced
spectral features, such as the VRE. Tropical rainforests
do not undergo much seasonal change, while boreal
forests have increased reflectivity in winter due to par-
tial snow cover. Savanna regions experience a drying of
the land after the end of the summer, which flattens the
typical vegetation-induced spectral features.

– Deserts show almost no seasonal variability, except for
those with occasional snow coverage. Depending on the
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Figure 19. Spectra of two different cities (Beijing and Mexico City), obtained by averaging the spectra over different pixels from the
hyperspectral albedo maps. Seasonal variability is shown by averaging the spectra over 3-month periods, with different colours indicating
different periods. Grey bands represent the MODIS bandwidths.

properties, colour, and mineralogical composition of the
soils, as well as the presence of sand, the overall reflec-
tivity of the desert can greatly vary.

– Ice- and snow-covered surfaces, such as the Greenland
and Antarctic ice sheets, reflect almost entirely in the
VIS range, with a steep decrease in the NIR range. Dur-
ing summer months, their albedo is slightly lower than
during late winter or spring due to the melting of surface
ice, which creates lakes on top of icy surfaces.

– Urbanised areas, such as Beijing and Mexico City, re-
flect a combination of many different spectra for hu-
manmade materials, soil, and vegetation, and their spec-
tral shape contains features from all of them. The total
reflectivity of a city is less than 20 %.

These hyperspectral albedo maps can be used for many dif-
ferent applications, from improving climate models to en-
hancing remote sensing of the Earth, correctly simulating the
disc-integrated spectra of the Earth (Emde et al., 2017), and
correctly modelling earthshine observations (Sterzik et al.,
2012, 2019). Only by using the full spectral variations in land
surfaces can we correctly establish the Earth’s energy bud-
get. Braghiere et al. (2023) studied the impact of using only
two broadband albedo values, as done in ESMs, versus using
hyperspectral albedo maps. They found that while general ra-
diative forcing is noticeably lower than that from a doubling
of CO2, omitting the hyperspectral nature of the Earth’s sur-
face causes deviations in many climatological patterns, such
as precipitation and surface temperature, particularly across
regional scales.

Data availability. The HAMSTER dataset is available at its
finer spatial resolution (0.05° in latitude and longitude) at
https://doi.org/10.57970/04zd8-7et52 (Roccetti et al., 2024b). A
lighter version of HAMSTER at a coarser spatial resolution
(0.25° in latitude and longitude), useful for global applica-
tions (e.g. in ESM simulations), is available on Zenodo at

https://doi.org/10.5281/zenodo.11459410 (Roccetti et al., 2024c).
The MODIS climatology used as the initial step to generate
HAMSTER from the MODIS MCD43D product can be found
at https://doi.org/10.57970/pt52a-nhm92 (Roccetti et al., 2024a).
Finer spatial and spectral resolutions of the dataset (up to 30 arcsec
and 1 nm, respectively) are available upon request from the corre-
sponding author.

Video supplement. A video supplement for this work is available
at https://doi.org/10.5446/66248 (Roccetti, 2024), where we show
the spectral and spatial evolution of HAMSTER for four different
DOYs.
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