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This paper identifies and addresses three key challenges in energy systems

analysis—varying assumptions, computational limitations, and coverage of a few

indicators only. First, results depend strongly on assumptions, i.e., varying input

data. Hence, comparisons and robust results are hard to achieve. To address

this, we use a broad range of possible inputs through an extensive literature

review by scenario experts. Second, we overcome computational limitations

using high-performance computing (HPC) and an automated workflow. Third,

by coupling models and developing 13 indicators to evaluate the overall quality

of energy systems in Germany for 2030, we include many aspects of security

of supply, market impact, life cycle analysis and cost optimization. A cluster

analysis of scenarios by indicators reveals three recognizable clusters, separating

systems with a high share of renewables clearly from more conventional

sets. Additionally, scenarios can be identified which perform very positive for

many of the 13 indicators. We conclude that an automated, coupled workflow

on supercomputers based on a broad parameter space is able to produce

robust results for many important aspects of future energy systems. Since all

models and software components are released as open-source, all components

of a multi-perspective model-chain are now available to the energy system

modeling community.

KEYWORDS

energy system optimization model, agent-based modeling and simulation, model

coupling, high-performance computing, uncertainty

1 Introduction

Energy systems analysis has made great progress in the last years. Yet, three key
challenges for modeling future energy systems remain. A first challenge is that results
depend heavily on scenario assumptions, making robust results elusive (Gils et al., 2022a).
A second challenge is that computational limitations hinder analyzing multiple pathways
(Cao et al., 2019). This means that testing many different inputs or calculating additional
scenarios often does not happen. A third challenge is the blind spot of many models which
tend to represent only the modeled aspects, but do not provide quantitative evidence for
other parts of future energy system pathways. For example, energy system optimization
models (ESOMs) concentrate usually on system costs (Ringkjøb et al., 2018), macro-
economic models on GDP, income and related indicators and agent-based modeling and
simulation (ABMS) on the individual behavior of actors. Taken together, these three
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challenges reduce the robustness of results and the credibility of
evidence provided to the policymaking process.

As of now, there are a number of solutions for these
challenges. For example, one strategy for making scenario
assumptions (the first challenge) is to be very conservative
about inputs or to average parameters of existing studies.
In order to overcome computational limitations (the second
challenge), mainly the strategy of saving computational time
has been applied by either limiting the spatial or temporal
resolution or analyzing only incomplete timeseries (Cao et al.,
2019). Another viable way is non-probabilistic approaches, e.g.,
integrated scenario methodologies (Prehofer et al., 2021). Finally,
dealing with aspects outside the modeling methodology (the
third challenge) has been addressed either by constraining
model assertions and conclusions to the core of the model,
which is scientifically unsatisfying, or extending the model
(which often takes years, and is thus hardly feasible for many
modelers). This paper addresses each of these challenges with
its own dedicated approach for Germany for 2030 (details in
Section 2).

1.1 Contribution

First, to make scenarios more independent from assumptions,
we develop—based on an extensive literature review by scenario
experts—a scenario parameter generator. This generator
samples many scenario variations from both truncated
normal and uniform distributions of the input parameters
from a large and consistent parameter space. The parameters,
serving as input for the models, are based on peer-reviewed
studies. This approach may be called probabilistic approach
to uncertainty.

Second, computational limitations are overcome by
parallelizing an automated workflow of coupled models, e.g., by
adaption to a high-performance computing (HPC) environment
and the application of the newly developed solver PIPS-IPM++.

Third, the blind spot of each modeling methodology
is addressed by coupling different model types, namely an
optimization model (Gils et al., 2017) and an agent-based
simulation (Deissenroth et al., 2017). For the analysis of the various
scenarios, we developed a set of 13 indicators covering for example
security of supply, market impact, life cycle analysis and cost
optimization. In this way, not just one, but multiple perspectives
on future energy systems can be examined within the same run.

Hence, we try to answer the research question of how to model
a much larger part of future energy systems in a more robust
way, based on a broader base of assumptions. This contributes to
closing the research gap toward a more comprehensive assessment
of optimal future energy systems. Furthermore, we aim to
increase reproducibility by making all models and other parts
of the workflow described open source and enable the modeling
community to re-use our model chain.

At the same time, we are aware that some factors, in particular
socio-cultural and institutional ones, cannot be captured by
ESOMs. In addition, using historical data to capture future trends
is problematic due to non-linearities and black swans.

1.2 State of research

1.2.1 Uncertainties in energy scenarios
Energy scenarios are subject to a multitude of uncertainties. For

those engaged inmodeling, these uncertainties manifest themselves
in three broad areas, namely data acquisition, model construction
and model application.

Concerning Prehofer et al. (2021), energy systemmodelers have
only partial control over their models, because they have to rely on
a large variety of required model inputs. However, uncertainties
that stem from errors made in empirical measurements can be
addressed by using more data sources (see Section 2.2.1).

Structural uncertainty in model construction is the necessity of
abstracting an already complex real-world system. This introduces
a degree of bias into the model-building process. One approach
to quantify structural uncertainties is model comparisons. Here,
similar scenario data sets (combinations of empirical data and
assumptions) are computed using different modeling approaches
or implementations (Gils et al., 2022b). The IPCC notes the
importance of combining qualitative and quantitative approaches
in order to cover weaknesses of one method with the strengths of
another. We implement a complex model coupling approach to
address this (see Section 1.2.3).

Finally, uncertainties in model application can either originate
from unknown or unavailable exact values (parameter uncertainty),
such as exogenous framework conditions (e.g., regulations to be
implemented in the future), or from a lack of knowledge regarding
the variability of parameter values (parametric uncertainty), such
as investment costs for the considered technologies (Usher, 2016).

In energy system analysis, the scenario technique combined
with sensitivity analyses represents the most common approach to
dealing with uncertainties in model application (Trutnevyte et al.,
2016). However, this approach is limited to a small number of
scenarios whose construction cannot be easily automated. In this
paper, a large number of scenarios is calculated to avoid this (see
Section 2.2).

Nevertheless, further quantification approaches exist,
most notably, Monte Carlo analysis, stochastic programming
and modeling to generate alternatives (Yue et al., 2018),
each having their advantages and disadvantages. For
example, Rozenberg et al. (2014) define a set of drivers
that are transformed into a large set of scenarios using an
integrated assessment model that combines two general
modeling approaches: top-down and bottom-up modeling.
However, one disadvantage is always the additional
computational effort.

1.2.2 Modeling approaches
Besides the general distinction between top-down and

bottom-up modeling, a large number of modeling approaches
exist that can be separated into simulations, equilibrium
models, or optimizations (Pfenninger et al., 2014; Hall and
Buckley, 2016). Further distinctions can, for example, be made
according to their coverage of technologies and sectors and
their spatial and temporal resolution (Hall and Buckley, 2016).
For understanding the particular role of certain technologies in
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techno-economic scenarios, bottom-up models are widely used.
For example, ABMS are especially suited to analyse individual
or prototypical human decision-making (Bandini et al., 2009),
to serve as a linking hub for different model types (Klein
et al., 2019), and to estimate the effects of different policies
on the energy system (Chappin et al., 2017). Despite these
strengths, ABMS is still a niche application for studying future
energy systems.

This research field is dominated by energy system optimization
models (ESOMs). They optimize the dispatch and expansion of
energy systems from a central planner’s perspective usually by
minimizing the total system costs (Neumann and Brown, 2021).
The optimization is subject to constraints which can be of technical,
political and environmental nature, such as limitations of the power
flow (Zhang et al., 2018), self-sufficiency requirements (Sasanpour
et al., 2021) or carbon emission limits (Boffino et al., 2019).
Optimization approaches can have a quite detailed inclusion of
technologies and a high spatial and temporal resolution (Cao
et al., 2021a), and thus are quite capable of representing an
energy system in its different levels and alternative technological
configurations. For example, the spatial representation can range
from a continental scope with country-wise resolution (Haller et al.,
2012) to national models with transmission grid level resolution
(Cao et al., 2019). Detailed models are more complex (Kotzur
et al., 2021) and therefore require much higher computational
times (Neumann and Brown, 2021). Research to keep the
computation of complex models manageable mainly focuses on
reducing the model size by smart pre-processing of input data,
i.e., on the temporal dimension. However, there is no one-size-
fits-all approach that ensures good computing performance and
accuracy across a broad variety of ESOMs. To this end, ESOMs
are usually solved using commercial solver software on shared-
memory computers.

1.2.3 Coupling models to overcome structural
uncertainties

To overcome structural uncertainties that are related to
using a single modeling approach, combining the strengths of
different modeling approaches is a useful approach to increase
methodological diversity. However, coupling models requires at
least overcoming three major problems. The first one is that
different models typically operate on different spatial and temporal
scales. Getting them to work together in a meaningful way
is hard and requires different ways of soft or hard coupling
(Cao et al., 2021a). A second problem is making different
models converge on a stable system state. Sometimes, coupled
models end up in different, incompatible system states, even
if calibration was done carefully. Third, models need to be
empirically validated before coupling. While ESOMs validation
by replicating energy systems of the past has been both
successful and unsuccessful (Trutnevyte et al., 2016), ABMS
in particular have been criticized as problematic concerning
validation (Fagiolo et al., 2007). Validation includes validating
the input data, calibrating the model itself with historical data,
and using sensitivity analysis for evaluating the influence of
parameter changes.

1.3 Objectives

To address parametric uncertainty, we strive for analysing
a multitude of scenarios. This allows exploring the scenario
space thoroughly, including plausible extreme cases. To address
structural uncertainty, we use different modeling approaches—
ESOM, ABMS and a multi-criterial ex-post assessment—enabling
us to bring blind spots into the light.

Since both solutions require large computational efforts, the
workflow is implemented on a supercomputing cluster. Our
study aims to uncover patterns in scenarios that have previously
been hidden, while considering both parametric and structural
uncertainties.

The remaining paper is structured as follows: the following
Materials and Methods section presents our approach to tackling
uncertainties in energy systems analysis. The Results section
analyses the interdependencies of the indicators used for evaluation
of the systems and tries to extract robust findings from the
multitude of scenarios.

2 Materials and methods

This section covers a more detailed description of our
methodology. It introduces the modeling frameworks applied, the
HPC-workflow, explains the indicators which assess the modeled
energy system, describes the solver development, and the scenario
construction through the scenario generator tool.

2.1 Modeling frameworks

For our analyses, we use instances of two established modeling
frameworks to construct scenarios of future power systems and to
assess their performance. In this way, we combine the different
modeling approaches introduced in Section 1.2: energy system
optimization and agent-based simulation. In particular, the ESOM
REMix determines the capacities of power generation, storage
and transmission technologies, while the ABMS AMIRIS serves as
tool to evaluate the results of the optimization model, to check
whether the optimized scenarios are economically viable for the
actors involved.

2.1.1 Energy system optimization modeling
approach: REMix

REMix is an open-source framework for energy system
optimization modeling (Wetzel et al., 2024). It is usually applied
to optimize the expansion and dispatch for the energy system
by minimizing the total system costs. In REMix, various sectors,
such as power, heat and transport and different technology groups,
e.g., conventional and renewable converters, storage and transport
technologies can be considered. REMix model instances usually
optimize one target year with hourly resolution with a linear
optimization approach. However, myopic or path optimization
approaches are implemented as well. Further features that are
available in REMix include mixed-integer programming both for
discrete capacity expansion and unit commitment, modeling to
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generate alternatives and pareto fronts. The input of REMix
includes weather and demand profiles based on historic data
and techno-economic parameters, such as technology-specific
investment and operational costs and efficiencies.

2.1.2 Agent-based modeling approach: FAME and
AMIRIS

AMIRIS (Agent-based Market model for the Investigation
of Renewable and Integrated energy Systems) is an electricity
market simulation model (Deissenroth et al., 2017; Schimeczek
et al., 2023b). A detailed description of its code can be
found in Schimeczek et al. (2023b). It relies on the open-
source framework FAME (Framework for distributed Agent-based
models of energy systems; available at https://gitlab.com/fame-
framework/) (Schimeczek et al., 2023a). FAME has been developed
to suit the needs of the HPC-environment like the one described in
this paper. It is able to adequately model many scenarios quickly,
since the framework has been developed for fast execution speed
in Java. In addition, it is parallelizable, a key feature for high-
performance environments.

2.2 Description of the high-performance
computing workflow

Exploring a scenario space in considerable depth requires
testing a large number of input parameters (assumptions)
which results in a large number of scenarios (hundreds to
thousands). Hence, coupling models means to automate the
workflow completely, so that parallelization can play out its
benefits of increasing speed. One practical problem is to keep the
workflow working while all models and scripts are in continuous
development over the course of years. Since each step depends
on all the steps before it, not breaking the workflow is a major
undertaking. A first step to develop such a workflow is to port all
models to an HPC-environment and making them run without
breaking the chain of models.

For benchmarking and the automated execution of the
workflow, the software JUBE (Jülich Supercomputing Centre, 2022)
is used on the supercomputer JUWELS (Alvarez, 2021). JUBE is
a generic, lightweight, configurable environment to run, monitor
and analyze application execution in a systematic way. We have
modified JUBE so that individual scenario pipelines are processed
in parallel. In other words, it is used for performing ensemble runs
in parallel. This has significantly reduced the total time required to
execute thousands of scenarios. Moreover, JUBE is used to store the
paths of the workflow’s most important output files in a database so
that there is a central location for downstream programs for further
data processing.

The workflow starts with the scenario generator that is fed by
the minima, maxima and medians of a parameter space, resulting
from an extensive literature research (Simon and Xiao, 2022). The
scenario generator then samples inputs for REMix. In a next step,
dump files that include GAMS source code and data are compiled
and passed to the solver software. For this, the parallel PIPS-
IPM++ solver (Rehfeldt et al., 2022) or commercial alternatives

can be used. Finally, the results of the solved scenarios are further
processed in the post-solving step, so that AMIRIS can analyze
them. Finally, various python scripts extract the indicators from
all models. Figure 1 shows the HPC-workflow. In the following
sub-chapters, we present its core components in detail.

2.2.1 Scenario data generation
Scenario results of ESOMs are often subject to a variety

of assumptions and thus to high parametric uncertainties (Yue
et al., 2018). To take care of these uncertainties, a large scenario
parameter space is explored by a Monte-Carlo approach based on
defined parameter distributions. For this, the parameter ranges are
defined. Most of this raw data is derived from a literature study
using 26 different sources in total and a meta-analysis of scenarios
(Simon and Xiao, 2022). The source stock includes data sets like
Ruiz et al. (2019) or Pfluger et al. (2017), but also data sets compiled
from different sources that have been used for scenario studies at
the German Aerospace Center in the past. This approach has been
complemented by a Google Scholar search.

Typical values to be varied are techno-economic parameters,
such as efficiencies, operations and maintenance costs (fixed and
variable), capital expenditures, conversion efficiencies, CO2-prices
and fuel costs. In addition, annual power demands for each node of
the modeled electricity network are subject to parameter sampling,
using statistical metrics (minimum, maximum, mean, and median)
from the initial parameter space as input.

Furthermore, to produce consistent parameter sets (in the
following referred to as scenario data), we create a pseudo-
correlation matrix based on expert interviews. In order to
identify the most impactful model parameters on the resulting
scenarios, two experienced REMix modelers agreed on a list of
79 scalar parameters (excluding weather time series). To quantify
the interrelations of the model parameters, an empty matrix
was constructed, comprising these parameters. This matrix was
presented in the context of a seminar, where an interdisciplinary
team of experts working in the field of energy systems analysis
was asked to assess the strength of the correlations between
the parameters as follows: strong correlation (3), correlation (1),
no correlation (empty), anti-correlation (−1), and strong anti-
correlation (−3).

Thismatrix is considered as an additional input to our sampling
approach that uses a Gaussian Copula to compute correlated
scenario data sets. In this way, we avoid implausible value
combinations such as prices for oil and gas being at their minimum
and maximum, respectively. Apart from that, the sampling uses
a uniform probability distribution. Weather time series—used
for modeling the dispatch of renewable energies—are randomly
drawn out of 24 historical data sets. However, since these are
historical patterns, not all possible scenarios can be mapped this
way. The resulting scenario data is then used to build REMix
model instances.

2.2.2 REMix instances
Every workflow run uses a basic REMix model which is

parametrized by the individual scenario data. In the basic
REMix model, partially resolved data is provided for the
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FIGURE 1

Simplified HPC-workflow.

German power transmission network with each model node
representing a transformer substation. Additionally, the import
and export to Germany’s neighboring countries is considered by
historical exchange time series. For solving, the model nodes are
partially aggregated assuming perfect power exchange between the
aggregated nodes. In our case, we consider half of Germany in high
spatial resolution and aggregate the rest of Germany to 6 model
nodes, which results in a network of 270 nodes. In terms of problem
dimension this translates into about 53 million variables, 35 million
constraints and 123 million non-zeros after pre-solving. The model
focuses on the power sector, which is represented by renewable
and conventional power plants, battery and pumped hydro storage
and the electricity grid, which need to satisfy the hourly electricity
demand in each region. Besides the renewable energies, CCGT
power plants are the only conventional technology that can be
further expanded than their currently available capacities. To
further limit the expansion and dispatch of conventional power
plants, the model considers different prices for carbon emissions.

After combining the basic REMix model with the scenario data,
the specific model instances are compiled to solver readable files
that serve as input to the solver.

2.2.3 Solver for very large problems
Different solvers can be chosen for finding an optimal solution

of the generated REMix model instance of a particular scenario.
However, for our study, we apply the newly developed parallel
interior-point solver PIPS-IPM++ based on an initial development
from the Argonne National Laboratory (Petra et al., 2014). With
it, very large model instances, previously unsolvable, can be
calculated, using much less memory. In contrast to the widely
used commercial solvers, which are optimized for shared memory
architectures (i.e., limited to one compute node), PIPS-IPM++

solves the optimization problem distributed over several compute
nodes, using MPI and OpenMP.

The important feature for solving ESOMs is its capability to
treat linking variables and linking constraints. In particular, it is
able to treat the doubly-bordered arrowhead block structure of an
mathematical optimization problem’s coefficient matrix (Rehfeldt
et al., 2022). PIPS-IPM++ has been tested in several benchmarks

FIGURE 2

Scaling of di�erent commercial solvers and PIPS-IPM++ on small

ESOM instances (Cao et al., 2023).

with generic and applied ESOMs. Both for medium (∼5 million
rows and 5.6 million columns, see Figure 2) and large problems
(∼230 million rows and 210 million columns) it outperforms the
benchmark (Cao et al., 2021b).

To apply PIPS-IPM++ to our workflow, additional
hyperparameters are required. In particular, the block structure of
the mathematical optimization problem needs to be defined by the
modeler based on domain knowledge. In our case, this so-called
annotation defines 144 time blocks that translate into 144 tasks
that are computed using 12 compute nodes and 4 cores per task.

2.2.4 Energy system assessment via a broad
indicator set

Since the goal is a comprehensive overview of future energy
systems (see, for example Lehtveer et al., 2021 for a study with 13
indicators), particular care needs to be taken to assess it by using
the right indicators (Buschmann et al., 2022).
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TABLE 1 Selection of indicators for assessing a�ordability, security and sustainability of a scenario.

Aspect Indicator Unit Description

General System costs 1,000 e The optimization is performed by minimizing the overall economic expenses
associated with the operation, maintenance, and infrastructure development of the
energy system. These expenses include fuel procurement, power generation,
transmission, and energy storage costs.

(Life-Cycle) GHG
emissions

1,000 t This indicator refers to the total amount of emissions of CO2 equivalents generated
by the power system. We report the life-cycle greenhouse gas emissions that
include all stages of the life cycle, from raw material extraction and processing,
manufacturing, transportation, and use, to disposal or recycling.

Market Average electricity price e/MWh This indicator represents the electricity price at the energy exchange, weighted by
the amount of energy, and averaged over one simulation year. It is directly related
to household and industry electricity prices and serves as an indicator of consumer
costs for electricity.

Share of economic
curtailment

% The economically curtailed power generation from renewable energy sources can
be used as a valuable addition to the previous mentioned indicator. The
curtailment allows to infer the cause of low profitability of particular technologies
since, in contrast to grid-related curtailments, currently there is no compensation
mechanism in place.

Resources Minerals and metals kg Sbeq This indicator represents the total resource usage of depleted minerals and metals
in kg of antimony equivalent.

Land use Dimensionless, aggregated
index (Fazio et al., 2018)

Land use denotes the extent to which land is utilized by energy generation plants,
taking into consideration potential conflicts with other land uses, such as
agriculture. Accordingly, low land use is desirable for a sustainable energy system.

Human health Carcinogenic effects Comparative Toxic Units for
human health (CTUh)

Aggregated indicator that represents carcinogenic effects on human health.

Non-carcinogenic effects Comparative Toxic Units for
human health (CTUh)

Aggregated indicator of non-carcinogenic effects on human health.

Ecosystem quality Freshwater and terrestrial
acidification

mol H+eq The acidification of freshwater and terra can have negative impacts on the
ecosystem and human health. This indicator measures the magnitude of the
acidification.

Freshwater
eutrophication

kg Peq This indicator measures the concentration of nutritional elements in the freshwater
which can cause changes in the ecosystem balance.

Security of supply Maximum energy not
served

GWh The balance between energy production and demand in the power system is crucial
for ensuring energy security and reliability. In the optimization, a slack variable is
employed to supply energy at a very high cost when there are no other
economically feasible options for delivering electricity. The maximum value of this
indicator signifies the extent and timing of potential threats to the energy system.

Resilience Reserve inadequacy GWh This indicator represents the times at which the system’s reserve power falls below
a specified level. An insufficient reserve power means that the system cannot react
to unforeseen events such as outages of power generators.

Shannon-Wiener-Index
(SWI)

Dimensionless The Shannon-Wiener diversity index represents the diversity of power supply. A
high value indicates that the system is not depending on a single energy source,
thus is more robust toward technological development or change of the availability
of a singular energy source.

Therefore, both the optimization’s outputs and some of the
input parameters are used to calculate indicators for future energy
systems from different perspectives:

• general system,
• markets,
• resources,
• human health,
• ecosystem quality,
• security of supply, and
• resilience.

For each perspective, different sets of indicators are computed.
The aim of this indicator selection is to ensure both a broad

coverage of aspects for the target triangle of energy supply
(affordability, sustainability, security) and a clear assessment of
desired and undesired directions of each indicator.

For example, in addition to the established indicators for total
system costs (desired direction: low) and CO2 equivalents (desired
direction: low) generated by the power system, we calculate the
total resource use of minerals and metals for manufacturing the
technologies in the energy scenario. This indicator is of particular
interest because resource-saving scenarios tend to be neither cost-
efficient nor to have significant low greenhouse gas emissions.

The comprehensive list of indicators can be found in
Buschmann et al. (2022). This list of indicator candidates is pre-
evaluated to remove highly correlated indicator combinations to
avoid an unbalanced weighting. Finally, the applied indicator set is
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FIGURE 3

Pearson correlations for all 13 indicators.

selected in a way that it punishes scenarios that favor greenhouse-
gas emissions that are not in line with the climate targets. The
final short list of indicators consists of two indicators per category
to describe the performance of a solved energy scenario (see
Table 1).

These indicators are implemented as independent components
of the HPC-workflow. They can be activated or deactivated
and thus, offer the possibility for further (parallelized) post-
processing of the solved REMix instances, e.g., for the calculation
of additional indicators.

Considering the fact that system cost minimizing optimization
rely on strong assumptions concerning decision making of
decentral actors, we use AMIRIS for determining economic
indicators. AMIRIS simulates different agents, each with
individual operation strategies on the electricity market.
Main outputs are electricity prices produced by the strategic
bidding behavior of market actors. It has been calibrated and
validated with historical data (Nitsch et al., 2021). Although
changes of policy instruments like feed-in tariffs of renewables
or different strategies (e.g., profit maximization or system
optimal strategies) for individual actors can be modeled
(Frey et al., 2020), for this study, we opt for a setup without
such mechanisms.

2.3 Scenario evaluation

After the HPC-workflow ends, a statistical analysis of the
indicators derived from the solved scenarios is conducted in R
Core Team (2022). As a first step, the result files from REMix
and the indicators from other indicator models are read into data
frames. Next, all scenario data—inputs, results, indicators—are
combined. A third script handles clustering, including k-means and
k-medoids, as well as automatically determining the cluster size.
Other steps include calculating correlations, descriptive statistics,
and tests for difference (t-tests), as well as plotting clusters and
other results.

3 Results

3.1 Correlations between indicators

Since all scenarios are evaluated through the 13 indicators, it
is important to know about their relationships among each other.
Figure 3 presents an overview of the indicator correlations.

First, correlations, e.g., between GHG-emissions and
Freshwater and terrestrial acidification (r = 0.94, p < 0.001)
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FIGURE 4

Three clusters by two PCA (principal component analysis) axes.

are as expected. They confirm the general validity of the 700
scenario runs. Second, indicators from one aspect of the target
triangle, e.g., economics, correlate positively, showing consistency.
One example is the mean electricity price and system cost (r =

0.62, p < 0.001). The highest positive correlation exists between
acidification and emissions (r= 0.94, p < 0.001).

3.2 Finding similar pathways with cluster
analysis

To discover patterns in the data, a cluster analysis is performed.
Clustering the 504 scenarios (out of 516, deleting scenarios with
missing data) along the 13 indicators results in three clearly
distinguishable clusters with almost no overlap, as shown in
Figure 4.

Note that only systems with a share of renewables ≥70%
are analyzed, since all other systems are incompatible with
Germany’s goals for 2030 of 80% (Presse- und Informationsamt
der Bundesregierung, 2024). This reduces the number of scenarios
from n= 700 to n= 504.

Interpretation of these three clusters (1: 165, 2: 240, 3: 99
scenarios) is straightforward. They allow to distinguish clearly
between three pathways. The second cluster (blue) is the most
desirable one from a sustainability perspective: it has by far
the lowest GHG-emissions and the lowest values for life cycle
assessment (LCA) indicators, e.g. freshwater eutrophication or
acidification, as well as the lowest system costs.

Cluster 1 (red) is the most expensive in terms of system costs,
has intermediate GHG-emissions and a high use of minerals and
metals, as well as the highest carcinogenic effects. However, it has
the lowest land use of the three clusters. Cluster 3 (green) is the
one with the largest conventional power plant park. System costs
are lower than in cluster 1, but higher than in cluster 2, while
acidification and freshwater eutrophication are the highest. The
technology mix is the most diverse.

Electricity prices are almost identical for cluster 2 and 3
scenarios. Concerning security of supply: more conventional
systems in cluster 3 had less hours with inadequate reserve
capacities available for unforeseen events and energy not served
than clusters 1 and 2.

3.3 Linking inputs to scenarios

It is of interest if scenarios can be distinguished by their
inputs. Clustering scenarios by selected inputs only, i.e., the annual
demand, the carbon cost, fuel costs for biomass, coal, and gas, as
well as the annuities for biomass and natural gas power plants,
lithium ion batteries, PV, wind offshore, and wind onshore results
in two clusters. Like the clusters by indicators, they can be clearly
distinguished. For the input clusters, the largest difference is
between high fuel and carbon costs (n = 272) and low costs (n
= 232). Annuities for the technologies or the annual demand do
not differ much (for the values, see Supplementary Table S2 in
the SOM).

3.4 Scenarios of interest (SOI)

We shift to the analysis of scenarios that are particularly
interesting. Interestingmeans that a scenario scores low (e.g., GHG-
emissions, less is better) or high (e.g., Shannon-Wiener-Index,
measuring diversity, more is better) on an indicator. Scoring is
done by calculating the overall mean for each of the 13 indicators
across all scenarios. If an indicator is one standard deviation below
or above the mean in the desired direction, this suggests that
in this particular scenario the indicator is particularly good. The
same is true for the opposite direction, resulting in particularly
undesirable scenarios.

If a scenario scores on a lot of these indicators, this points
to a particularly positive system overall, below called scenarios of

interest, short SOI (n = 16). If it scores on a lot of indicators in the
wrong direction, it is classified as a particularly undesirable system
(n = 23), short AntiSOI. An AntiSOI-example would be a scenario
with high GHG-emissions, high system costs, etc. The large rest of
scenarios (n= 477) is classified as normal.

3.4.1 Scenarios of interest and technology
expansion

Analyzing these three subsets in terms of technology expansion
leads to some interesting differences, as shown in Figure 5.

As can be seen, PV (SOI: 480 GW, Normal: 507 GW, AntiSOI:
404 GW) and wind offshore are comparable, but wind onshore is
much higher for AntiSOI (130 GW) than for SOI with 50 GW (see
SOM, Supplementary Table S3 for the complete data).

In the case of SOI, less expansion of lithium-ion batteries
positively impacts several indicators since e.g., less minerals and
metals need to be extracted. The lack of storage flexibility is replaced
by higher biomass power plant capacities.

Having defined these subsets, it becomes possible to calculate
“no-regret”-thresholds, i.e., the minimum expansion for each
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FIGURE 5

Mean capacities by subset.

renewable technology for the SOI. To be not biased by extreme
outliers, the thresholds of the 25th percentile are considered.

Such no-regret expansions feature PV capacities of at least 327
GW, 45 GW wind offshore, 44 GW wind onshore, and 15 GW
biomass power plants. Note that normal scenarios build another
50 GW of PV and 6 GW onshore but no more wind offshore and 7
GW less biomass on top of that. This apparently leads to increased
efforts to integrate fluctuating PV into a complex system and has
other negative side effects.

3.4.2 Di�erences between scenarios of interest
(SOI), undesirable (AntiSOI), and normal scenarios

For 11 out of 13 indicators, the differences between SOI and
AntiSOI are highly significantly different (8 at p < 0.001; 3 at p <

0.05), with all indicators being lower for SOI, i.e., better in terms
of sustainability, except for land use (see Supplementary Table S1
in the SOM). Only the two indicators acidification and max.
energy not served show non-significant differences between these
two subsets.

Comparing all three subsets shows various differences as
well. Figure 6 shows the two key indicators, system costs
and GHG-emissions.

Distinguishing SOI from AntiSOI and normal scenarios
by their inputs only is inconclusive. A random forest linking
the inputs, i.e., the parametrization of the scenarios, like
efficiencies of technologies, annuities, and fuel costs, to the
classification whether a scenario is SOI or AntiSOI achieves
a classification accuracy for these two classes of only 60%
on the test set. This suggests that single inputs are not

decisive for a scenario to be either SOI or AntiSOI, but rather
their combination.

4 Discussion

4.1 Experimental context

The shown analyses represent only a part of several
methodological variations that have been conducted using
the described HPC-workflow. Implementing this workflow,
coupling the models and getting the workflow to run in a stable
manner took about three years for a team of 10 researchers
located in different institutions across Germany. The use of
computational time was significant—about 7,600,000 core
hours. All scenario runs together required around 3,400,000
files in 260,000 directories, totaling 33 TB of data. In order not
to lose track of the large number of files we had to develop
a new hierarchical directory structure that covered all the
needs of the individual components. With it, the individual
components of the workflow could store and read in their data in a
structured manner.

4.2 Model coupling

Model coupling is one of many approaches to explore scenarios
from different perspectives and to analyze a variety of indicators.
Only if multiple aspects of future energy pathways can be evaluated,
a comprehensive and more robust picture of possible energy
systems emerges.
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FIGURE 6

Di�erences in system costs and GHG-emissions between three subsets of scenarios.

Depending on the degree of coupling this tends to be a fragile
process. Keeping the workflow intact had to be ensured, while
all models were under continuous development over three years.
Once one component of the workflow was ready for production,
it was immediately tested with the next link of the chain. Here,
testing means not only no technical errors, but also validation of
results (e.g., Nitsch et al., 2021). Once this next component was
running, the next component was tested in the same way. For
this, each model had to be on GitLab. For each new workflow, the
newest version was pulled and an overall versioning system for all
models in one working model-flow was introduced. During this
development, model interfaces had to be rewritten and modified
to fit the needs of the project. Our practical experiences underline
the importance of a flexible architecture, clean interfaces that are
easy to adapt and the ability of a model to outsource complex
calculations to a cluster, hence to make them as independent
as possible.

4.3 Significance and robustness of findings

One result that merits discussion is that no input—except PV
annuity (p < 0.001)—is significant in the tests for difference (two-
sided t-tests). However, we are hesitant to conclude that they do not
seem to play a major role for future energy systems.

A second result that was consistent across all scenarios was the
large expansion of PV and, at the same time, comparatively little
build-up of wind onshore. Hence, the lower costs of PV seem to
dominate the optimization, while the ABMS confirms that these are
valid systems from a market perspective.

We also find many LCA indicators consistently pointing in
the same direction in scenarios with a high share of renewables.

While this is in line with existing findings (Naegler et al., 2022),
these findings suggest that running 700 scenarios does lead to
robust results.

4.4 Limitations

One limitation of our assessment approach is that “good”
systems are defined statistically, not from a system’s perspective.
This may be more objective on the one hand, but may miss some
systems that experts would have tagged as promising candidates for
overall good future energy systems on the other hand.

With regard to the employed indicator set, it is important to
note that the employed quantitative approach for describing energy
scenarios is susceptible to subjectivity. For example, a combination
of qualitative and quantitative approaches has been suggested by
the IPCC to tackle uncertainty challenges. That also applies to the
expert interviews used to generate the quantifiable interrelations of
model parameters. Filtering to a manageable list of parameters is
biased by the experience of the modelers. Furthermore, it would be
desirable to extend scenarios to encompass social aspects, such as
participation and acceptance.

The parameter sampling approach used utilizes a uniform
distribution for all parameters. However, this may be a generalized
assumption. Hence, it was assumed that all parameter values from
the literature study have the same quality. In addition, there may
be dependencies between sources from the literature, influencing
the mean values. To amend that, comparative calculations were
carried out whenever we applied a normal distribution across all
parameters varied. Finally, the mean values from the literature
review do not necessarily indicate a high probability of occurrence
in the future.
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FIGURE 7

Time per model for each of the 700 scenarios.

Another limitation is that we find subset results (SOI vs.
AntiSOI) to be highly dependent on indicator selection even
though we deliberately decided to evenly weight the indicators.
While we present results for a balanced set of 13 indicators for the
target triangle of energy supply, namely affordability, sustainability
and security, limiting the selection to two indicator per category
resulted in SOI-scenarios having much more emissions. This high
sensitivity should lead to a more cautious interpretation of results.

4.5 Performance considerations

Figure 7 shows the run times of all 700 scenarios which
were preprocessed and sampled in batch sizes of 100. Therefore,
the timings for batches of 100 of those workflow steps show
the same timing. The overall execution time of the workflow—
note the log-scale—was dominated by the solver, followed by the
model calculations.

Only by using a supercomputer like JUWELS we were able to
perform our study in a realistic time frame. This rough estimate
based on our actual run times impressively demonstrates the
potential of HPC and opens up new possibilities for further
developing complex ESOMs and processing large amounts of
data in the order of several terabytes: Assuming that we had to
process each scenario individually one after the other through the
workflow, but still run the solver step in parallel with PIPS-IPM++,
it would have taken ∼219 days to process all 700 scenarios. Using
commercial solvers would have significantly increased this time.
However, with our approach we still spent more than 20 days of
continuous computing time since we could not exclusively reserve
JUWELS for our application.

4.6 Conclusion

Three challenges have been addressed—the strong influence
on varying input parameters into models, the computational

limitations, and the restriction to few aspects of one type of model.
It was demonstrated that all can be overcome in a concerted way

and move the energy systems community toward more robust,
comparable, and comprehensive results.

In this paper, we demonstrated one robust and comprehensive
assessment of future pathways of energy systems while many

other approaches to deal with uncertainties exist. This approach
should not be confused with direct robust optimizations. Our

setup couples the optimization model REMix, the agent-based
simulation AMIRIS, based on the framework FAME, and an
elaborate indicator development. Implementing this workflow on
a supercomputer, using the newly developed solver PIPS-IPM++,

and combining it with a scenario space generator, 700 large
scenarios for Germany 2030 were calculated. By calculating 700
scenarios with 13 indicators each, we go beyond a narrow set of
indicators when analyzing future energy systems.

With all components—FAME, AMIRIS, REMix, PIPS-
IPM++ and JUBE—being open-source software, and the
indicator development published, we hope to provide the research
community with all the building blocks to continue such analyses.
All parts of the chain are easily reusable.

However, we are aware that coupling models in a
supercomputer-environment is a major undertaking. Scaling
up the number of scenarios and automating such a complex
workflow comes with its own challenges. The Methods section
described all the many steps to develop such a complex coupled
model workflow. It requires researchers to find a trade-off
between early, but stable prototypes of their models and the rapid
integration into an ever-changing workflow.

With the infrastructure in place, it is now easy to extend
existing analyses. Many desirable requests of the energy system

modeling community can be implemented with a few changes
in the workflow—e.g., sampling from different distributions,

using different inputs, trying different grid resolutions or indeed
implementing any other model change to address current and
cutting-edge research questions.
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