Heliostat Tracking Influence on Wind Pattern within a Real-Scale Heliostat Field

Laura Paulus^{1,2}, Natalie Hanrieder^{1*}, Tobias Plessing², Sergio Gonzalez Rodriguez¹, Kira Gramitzky³, Lukas Deuerlein³, Paul Kühn³, Jesús Fernández-Reche⁴, Luis Zarzalejo⁵, Marc Röger¹, Stefan Wilbert¹ and Fabian Gross⁶

¹German Aerospace Center (DLR), Institute of Solar Research, Spain, *natalie.hanrieder@dlr.de, ²University of Applied Sciences Hof, Germany, ³Fraunhofer Institute for Energy Economics and Energy System Technology IEE, Germany, ⁴Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Point Focus Solar Thermal Technologies, Plataforma Solar de Almería, Spain, ⁵CIEMAT, Renewable Energy Division, Spain, ⁶sbp sonne gmbh, Germany

Motivation: Why are aerodynamic conditions in heliostat field important?

- Heliostat field contributes ~ 40% to total investment costs of CST tower plants¹
- Costs of heliostat field can be optimized if peak wind load can be reduced
- Heliostats in interior of field might be exposed to up to 30% less wind loads than those on edge of field \rightarrow could be designed slimmer + more cost-effective in interior/strengthen them on edges $^{2,3} \rightarrow$ One promising approach: adapt heliostat sizing to local flow conditions

Experimental Setup of AdaptedHelio Project:

Measurement campaign (Dec 2021-June 2023) at CIEMAT's Plataforma Solar de Almería (Spain)

9 ultrasonic anemometers (WindSonic and WindMaster, Gill Instruments) in 4, 7 and 10 m at 4 windmasts \rightarrow heliostats stow position in ~4 m, upper edge in vertical position in ~7 m

Two scanning wind lidars (WindCube WLS-200S) in ~10m height operating in dualdoppler mode, horizontal scan along 42° above heliostat field, angular resolution of 1.5°/s, radial resolution of ~3m

Exemplary two-dimensional field plot showing LiDAR data + corresponding normalized heliostat area A_e for an operational day with **SW wind**

Summary

- Significant differences of wind pattern between outer edge and inner rows due to heliostat orientation and field
- In stow position height (4m): •
 - \rightarrow Wind speed decreased by ~ 30%, wind gust decreased by ~ 20%
 - \rightarrow Turbulence intensity increased by ~20%
 - \rightarrow Almost no difference if heliostats are tracked or not
 - At upper edge of heliostat in vertical position (7m):
- Exposed norm. heliostat area A_e: Surface area of heliostat perpendicular to wind depending on wind direction and orientation of heliostat
- Correlation between increase of A_e and decrease in wind speed within heliostat field
- \rightarrow Wind speed decreased by 10-20%, wind gust decreased by 5-12%
- \rightarrow Turbulence intensity increased by 10-22%
- → Less dependency on heliostat row, but stronger influence of heliostat orientation
- Good correlation of anemometer and LiDAR measurements status
- 2D maps of horizontal wind data over heliostat field presented

1 T.M. Mancini, "Catalog of Solar Heliostats", SolarPACES Technical Report, No. III-1/00, Jun 2000 2 M. Emes, "Wind load design considerations for the elevation and azimuth drives of a heliostat", AIP Conf. Proc., 2303, 02013, Dec. 2020, doi:https://dio.org/10.1063/5.0028609 3 j. Sment and C.K. Ho, "Wind Pattern over a Heliostat Field", Energy Procedia, 49, pp.228-238, Dec 2014, doi: https.doi.org/10.1016/j.egypro.2014.03.015

Federal Ministry for Economic Affairs and Climate Action

Owner and operator of the Plataforma Solar de Almería is the Spanish research center CIEMAT.

