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A B S T R A C T

Prototypical networks (PN) have emerged as one of multiple effective approaches for few-shot learning (FSL),
even in medical image classification. This study focuses on implementing a PN for skin lesion classification to
assess its performance, generalizability, and robustness when applied across 11 dermoscopic image domains.
Unlike conventional FSL scenarios, where the performance is evaluated for unseen classes in the test set, our
analysis extends this to evaluate PNs on a complete hold-out dataset with the same classes from a different
domain. Differences in a patient’s age, lesion localization, or image acquisition systems variations mimic real-
world cross-domain conditions in a clinic. Given the scarcity of medical datasets, this assessment is crucial for
potentially translating such systems into real-world clinical settings to support physicians with the diagnosis.
Our primary focus is two-fold: investigating whether a PN performs on par with a baseline classifier, even
using only a limited number of reference samples from the hold-out test set (in-domain) and whether a PN
can generalize to the same classes of unseen domains (cross-domain). Our analysis uncovers that a PN can
perform on par with the baseline classifier in an in-domain setting, even with only a few support samples.
However, in cross-domain scenarios, a PN exhibits improved performance only on specific domains, while
others demonstrate similar or even decreased performance when confronted with a smaller number of images.
Our findings contribute to comprehending potential opportunities and limitations of FSL in dermatological
practice.
1. Introduction

Deep Learning (DL) techniques have been widely used in diverse
medical imaging tasks, including classification and segmentation [1].
In particular, in skin lesion classification, deep learning models have
shown promising results [2]. However, two significant obstacles are
preventing the utilization of these techniques in clinical practice: the
scarcity of medical data, particularly labeled and rare data, and chal-
lenges related to the generalization across different domains with a
domain shift present. Domain shifts arise when the training dataset of
the classification model is from a different distribution than the testing
dataset. This is a typical scenario in clinical skin cancer diagnosis due to
the differences in image acquisition systems or different patient groups,
as shown in our earlier analysis [3].

Several methods deal with data scarcity in machine learning, e.g.,
data augmentation, transfer learning, and few-shot learning (FSL). The
latest research describes FSL as a promising approach for medical image
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classification [4] because it focuses on using only the image features of
a few samples (shots) per class for model training.

To address the limitation of handling domain shifts, transfer learn-
ing approaches like domain adaptation or domain generalization can be
employed [5]. Domain adaptation is used when the task of the model
remains the same while the distribution between two datasets (source-
and target domain) differs [6]. In contrast, domain generalization uses
a model to train on multiple source domains with different data dis-
tributions, thus improving the generalization capabilities of the model
when applied to an unseen dataset (target domain) [5].

The success of transfer learning approaches depends on the avail-
ability of data in two (or more when using domain generalization)
domains during the training of the models. If fine-tuning as a trans-
fer learning approach is used, the models tend to overfit on small
datasets [7]. When domain adaptation is used to address domain shifts,
success relies on large amounts of training data from the source and
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target domain, thus leading to a long duration of adaptation. This
highlights the need for techniques that can handle limited data and
adaptation to new domains. While FSL has primarily been employed
in in-domain scenarios to address data scarcity [8–10], we aim to
examine its potential in cross-domain settings to tackle data scarcity
and generalization. For this task, we employed a Prototypical Network
(PN) due to its broad usage in the medical field [11–15].

Our contribution lies in investigating the generalization capabilities
of PNs on cross-domain dermoscopic images, covering the spectrum
of shifts across clinic- and patient-specific scenarios. This explores the
adaptability of PNs across cross-domain images. For this purpose, we
initially assessed the performance of PNs against a baseline classifier
specifically tailored to in-domain skin lesion datasets. Additionally, we
evaluated the impact of various hyperparameters (episodes, epochs,
shots, and training layers) on the performance of the PN, particularly
within the context of in-domain and cross-domain dermoscopic images.
This exploration goes beyond the baseline model, offering insights into
the dynamics that influence the model’s performance.

Section 2 discusses relevant research in meta-learning, FSL, and
using PNs in dermoscopic scenarios. Subsequently, in Section 3, we
provide details about the datasets and models we utilized, including
a baseline classifier and a PN. In this regard, we explain the meta-
training and cross-domain meta-testing processes. Within Section 4,
we present an evaluation of PNs, encompassing their performance
within in-domain and cross-domain settings, along with the influence of
diverse hyperparameters on PN performance. Moreover, a comparative
analysis between the FSL model and a baseline classifier is presented.
We summarize this study’s main findings in Section 5.

2. Related work

Most FSL methods belong to the branch of meta-learning, known
as ‘‘learning to learn’’ [16], which involves teaching a model multiple
tasks to improve its ability to quickly adapt to an entirely new task [17–
19]. Parnami & Lee classified few-shot meta-learning approaches into
metric-, optimization- and model-based methods, depending on how
the learning task is defined [19].

Optimization- or gradient-based approaches perform by implement-
ing changes to the network optimization process, of which Model-
Agnostic Meta-Learning (MAML) [20] is a popular method. With the
model-based approach Simple Neural Attentive Learner (SNAIL) [21],
learning is achieved by combining experience aggregation and atten-
tion. Metric-based approaches are popular for measuring the similarity
or distance between samples, aiming to create a metric space where
samples from the same class are brought closer and samples from a
different class are far apart. The most prominent methods for metric
learning are Siamese networks [22], Matching networks [23], Relation
networks [24], and Prototypical networks [8].

Significant progress has been made in using meta-learning to adapt
unseen domains. One approach focuses on supervised domain adapta-
tion when only a limited amount of labeled target samples is accessible,
making it applicable to FSL scenarios [25]. An alternative strategy was
presented by Sahoo et al. proposing a combination of meta-learning
and strategies to mitigate domain shift with adversarial domain adap-
tation [26]. Also, the customization of a PN by fine-tuning its backbone
was presented as a valid approach for domain adaptation with FSL [27].
This work additionally conducted ablation studies focusing on different
hyperparameters of PNs. Laenen et al. also demonstrated that different
hyperparameters affect the performance of a PN [28].

Recent studies indicate the successful adoption of FSL methods in
skin lesion classification. Liu et al. used an improved version of Relation
Networks for skin disease classification [29]. Also, a gradient-based
meta-learning approach has been proposed for the classification of
medical images [30]. Furthermore, PNs gained popularity in dermato-
logical diagnosis. For instance, Mahajan et al. proposed a method called
Meta-Derm-Diagnosis on skin lesion datasets with limited annotated
2

examples, which is employed with Reptile and PNs [11]. Furthermore,
Prabhu et al. used FSL for dermatological disease diagnosis by intro-
ducing Prototypical Clustering Networks based on PNs [15]. In their
case, skin lesions are classified by a similarity measure of weighted
combinations of prototypes for a class. While existing research has
shown success in few-shot learning for dermatological cases, our ap-
proach aims to push the boundaries by extending FSL experiments
to cross-domain scenarios. This leads us to our fundamental question:
Can FSL models effectively generalize to cross-domain dermatological
applications?

3. Materials and methods

3.1. Prototypical networks for few shot learning

In Prototypical Networks (PNs), the meta-learning process involves
two key steps: meta-training and meta-testing [8,16]. Fig. 1 shows
the schematic of the meta-learning. An episode in FSL is a single
learning task that consists of a support set and a query set. The support
set contains a small number of samples (shots) from different classes
that the model uses to learn the task. An epoch in FSL is typically
represented by a complete iteration over the entire set of available
episodes. The meta-training phase aims to train a model that can adapt
to new tasks or domains with only a few examples (few-shot learning).
Like meta-training, each meta-testing episode involves a support set
and a query set. However, during meta-testing, the model is presented
with tasks not seen during the meta-training phase.

As shown in Fig. 2 in the meta-training phase, support and query set
images are projected by a feature extractor into an embedding space.
This projection is performed for each episode and is characterized by a
small number of support set images. An episode has five samples from
each class (Nevus and Melanoma). The model calculates the prototype
for each class by computing the mean of the support set samples.
Prototype of support samples for each class 𝑃𝑠:

𝑠 =
1

|

|

𝑆𝑐
|

|

∑
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𝑓𝜃(𝑥𝑖) (1)

where 𝑆𝑐 is the support samples for class c and 𝑓𝜃 is the embedding of
all the support samples. Later, the projected query sample is assigned
to the class of the closest prototype based on a distance metric. The
distance metric we employed is based on the Euclidean measure. The
model incorporates cross-entropy loss to categorize and generalize in
few-shot learning situations.

Our approach is to train the model(s) exclusively on data from a
single domain during the meta-training stage. In the meta-testing phase,
the model’s performance is evaluated on new patient groups and pre-
viously unseen clinical settings. This evaluation mirrors conventional
transfer learning, where a model is initially trained on one domain
(source) and then fine-tuned on another (target). However, in this
study, we aim to determine the feasibility of transferring knowledge
and adapting to an entirely unfamiliar domain (target) using only a
limited number of images.

3.2. Datasets

In our prior study [3], we categorized2 three large ISIC datasets:
HAM [31], BCN [32], and MSK [33] as technical (clinic-specific) and
biological (patient-specific) domains. Thus, the three datasets are fur-
ther divided into sub-datasets based on their domain shifts. Domain
shifts in these datasets arise primarily due to (a) the variations arising
from changes in the origin of the dataset (different clinics with different
image acquisition systems) and (b) the other category arises from differ-
ences in age and location of the skin lesions of patients. Table 1 shows

2 https://gitlab.com/dlr-dw/isic_download
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Fig. 1. Schematic to demonstrate the meta-learning approach. The meta-training approach comprises several episodes per epoch. Each episode consists of support and query sets.
Each support set comprises a few samples (shots) from each class. The class label for the query set is assigned based on the closest prototype of support set samples. In the
meta-testing phase, unseen data from in- or cross-domain sources is used.
Fig. 2. Schematic demonstrating the approach of Prototypical networks. The samples from the support set are projected using a pre-trained ResNet50 model. The prototype is
computed for each class after feature extraction. The query sample is assigned a class label based on the closest prototype to the query projection.
the domain characteristics we used to divide the three datasets into
different domains. The most common clinic domain is represented using
groups with patients aged over 30 with the lesion localization on the torso.
Other domains include the same age group but with lesion localization
at the head/neck and palms/soles. Age less than 30 is considered as a
different domain. Each domain is further split into support and query
datasets with an equal distribution between both classes, as shown in
Table 1.

3.3. Meta-training

With the episodal training, the model was trained to predict query
labels based on support images from each class in the domain. Our
training domain comprises the group with age over 30 with lesion
localization on the torso. We employed a ResNet50, pre-trained on
ImageNet without fine-tuning, to project support and query images into
the embedding space.

Due to the balanced training sets by class, we calculated the average
accuracy over multiple episodes. For comparison, we also calculated
the average AUROC, which is threshold-free and widely used in medical
3

settings. However, as our datasets are balanced, (a) accuracy is the
most feasible measure, and (b) the results from AUROC were matching
with the accuracy output. As outlined in [28], this episodal training
involves a combination of hyperparameters such as episodes, shots, etc.
Following established practices [18], we assessed performance using
episodes for 2-way classification (melanoma and nevus) and conducted
experiments with 10-, 5-, 3-, and 1-shot scenarios.

3.4. Clinic- and patient-specific meta-testing

We evaluated the PNs’ performance in two scenarios: in-domain
and cross-domain. Throughout these evaluations, we maintained a
consistent number of shots (support samples) for both training and
testing.

For in-domain meta-testing, we assessed the model’s performance
on unseen hold-out data from the same domain and the same dataset
as that of training, as shown in Table 2. For this, we partitioned each
domain of the original datasets (HAM, BCN, and MSK) into meta-
training (Train-domain) and meta-testing (In-domain) in an 80:20 ratio
as shown in Table 2.
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Table 1
Overview of the datasets used for training and testing. The datasets HAM, BCN, and
MSK are further partitioned into distinct domains based on specified features in the
Domain characteristics column. The corresponding support and query set sizes are shown
in the last column. The support- and query images are further partitioned into small
episodes while maintaining a balanced class ratio.

Dataset origin Domain characteristics Support/Query Dataset size

HAM

age > 30, loc. = body (default) Support set 745
Query set 185

age ≤ 30, loc. = body Support set 41
Query set 9

age > 30, loc. = head/neck Support set 159
Query set 39

age > 30, loc. = palms/soles Support set 25
Query set 5

BCN

age > 30, loc. = body (default) Support set 3070
Query set 765

age ≤ 30, loc. = body Support set 114
Query set 28

age > 30, loc. = head/neck Support set 513
Query set 127

age > 30, loc. = palms/soles Support set 169
Query set 41

MSK

age > 30, loc. = body (default) Support set 905
Query set 225

age ≤ 30, loc. = body Support set 61
Query set 13

age > 30, loc. = head/neck Support set 188
Query set 46

In cross-domain testing, we considered clinic-specific and patient-
specific aspects. For clinic-specific cross-domain experiments, the corre-
sponding test dataset is sourced from the same domain but a different
dataset (for HAM, BCN, MSK). Table 2 shows the meta-training (Train-
domain) and meta-testing (Cross-domain) datasets used in clinic-specific
experiments. In this scenario, an example is training on BCN and
subsequently testing on HAM from the same domain. Clinic-specific
meta-testing consisted of 500 episodes with five shots for support- and
query images.

Table 3 shows the patient-specific experiments, where the differen-
tiation lies in utilizing distinct domains from the same dataset for the
training and testing phases. An example is to train on BCN and test
on one of the BCN patient-domain datasets. Patient-specific domains,
characterized by smaller melanoma and nevus distributions, underwent
testing with 500 episodes and two shots.

While hyper-parameter variations were explored for meta-testing
scenarios, they had minimal impact on the performance, leading us
to adhere to the mentioned settings. The model performance for in-
domain and cross-domain scenarios was assessed using average accu-
racy and AUROC across all episodes. To evaluate the repeatability and
uncertainty in the results, we calculated the accuracy over three seeds
with the corresponding mean and standard deviation of the results.

3.5. Baseline classifier

We additionally evaluated the performance of a PN in comparison
to a baseline classifier. For this purpose, we utilized a ResNet50 [34]
model pre-trained on the ImageNet dataset as our backbone on each
domain listed in Table 1. ResNet50 is well established for its effective-
ness as a feature extractor, which is crucial for extracting the intricate
patterns and features within skin lesion images. Leveraging a pre-
trained model facilitated knowledge transfer from a diverse range of
images, enhancing the network’s capacity to learn and generalize across
different skin lesion domains. This choice of architecture aligns with
the objective of achieving a robust classifier for skin lesion analysis.
4

We used the same data for PNs and the baseline classifier to maintain
Fig. 3. Performance comparison of the baseline and the FSL method in an in-domain
setting. The in-domain dataset used in this experiment is shown in Table 2. This plot
shows that FSL shows similar/improvement in performance for most of the in-domain
datasets.

the comparison fair. In the case of the FSL model, the model learns
to classify the unseen sample even with a few shots of data (1, 3,
5, and 10). The model uses the entire support set for training and
the query set for validation for the baseline classifier. For instance, if
HAM (loc = body, age >30) serves as the training domain and BCN
(loc = body, age >30) is the test domain. The support set for the meta-
training of the FSL model is utilized as the training set for the baseline
classifier. The corresponding query set for the FSL model is employed
as the validation set for the baseline model. Finally, the query set in
meta-testing for the FSL model is used as the test set for the baseline
classifier.

4. Results and discussion

In the following sections, we present the results of our analysis,
where we explored PNs and their ability to perform on in-domain
and cross-domain dermoscopic images compared to a baseline classifier
(ResNet50). This study aims to assess the PNs’ adaptability to datasets
within unseen clinic and patient-specific domains. Our analysis in-
volved a series of experiments designed to observe how different hyper-
parameters influence the performance of a PN. We then compared the
performance and generalizability of this optimized PN configuration
against a baseline classifier (ResNet50).

It is important to note that our primary focus in this analysis is not
the performance of the baseline classifier or enhancing the performance
of the baseline classifier. Several works have already established the
efficacy of a baseline classifier with many datasets and its performance
on an unseen dataset from the same domain [2]. We want to simulate
a real-world scenario where obtaining a large dataset for training is
often impractical and expensive. Hence, we used the same small dataset
to train the FSL models. Also, this would ensure a fair comparison
with the FSL model performance, avoiding any potential bias from a
substantial disparity in the training data. The baseline classifier serves
as a benchmark for comparison, assessing how a pre-trained ResNet50
model functions when provided with the same dataset.

4.1. In-domain performance

Dermoscopic image classifiers achieve good results when tested in
ideal experimental settings, such as data from the same distribution. We
can also observe this pattern in our results in Fig. 3. Typically, a large
amount of data is used to train such classifiers, unlike FSL methods,
which only use a few images. As shown in Fig. 3, the performance of
the PN and the baseline classifier appear similar in two out of three
cases. However, the baseline classifier seems to perform poorly for the
MSK dataset, whereas the FSL model shows substantial performance
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Table 2
Clinic domains used in the experiments. From each of the training domains, 20% of the hold-out dataset is used for
in-domain tests for both support and query sets. Whereas for cross-domain testing, the same domain from different
data origins (clinic-specific) is used for evaluation.
Train data Test data

Train domain In-domain Cross-domain

HAM (loc=body, age > 30) HAM (loc=body, age > 30) MSK (loc=body, age > 30)
BCN (loc=body, age > 30)

MSK (loc=body, age > 30) MSK (loc=body, age > 30) HAM (loc=body, age > 30)
BCN (loc=body, age > 30)

BCN (loc=body, age > 30) BCN (loc=body, age > 30) HAM (loc=body, age > 30)
MSK (loc=body, age > 30)
Table 3
Patient domains used in the experiments. Patient cross-domains are selected within the
same dataset group but for a different domain.

Train data Test data (Cross-domain)

HAM (loc=body, age> 30)
HAM (age ≤ 30, loc. = body)
HAM (age > 30, loc. = head/neck)
HAM (age > 30, loc. = palms/soles)

BCN (loc=body, age > 30)
BCN (age ≤ 30, loc. = body)
BCN (age > 30, loc. = head/neck)
BCN (age > 30, loc. = palms/soles)

MSK (loc=body, age > 30) MSK (age ≤ 30, loc. = body)
MSK (age > 30, loc. = head/neck)

Fig. 4. Performance comparison of the baseline and the FSL method in a cross-domain
etting. The top plot compares the baseline classifier with FSL for clinic-cross domains
hown in Table 2. The bottom plot shows the comparison for patient-cross domains
hown in Table 3.

mprovement. This illustrates that a limited amount of images with
PN is sufficient to achieve comparable performance to that of the

kin cancer classification’s baseline classifier. These findings indicate
promising direction for the potential applicability of FSL in medical

ractice, particularly in scenarios where data availability is limited.

.2. Cross-domain performance

In potential real-world scenarios, the setting is often less than
deal. Frequently, the distribution between the training and test set
iffers, as classifiers are evaluated on novel and diverse cases they
ave not encountered before. Consequently, the assumption is that the
erformance decreases when testing the same classifier on a cross-
omain dataset. We can observe this decrease in performance for the
aseline classifier and the PN, decreasing from in-domain Fig. 3 to
ross-domain Fig. 4. As we are particularly interested in the cross-
omain performance of the FSL model, we observed the behavior on
linic- and patient-specific domain shifts separately.
5

Even in cross-domain scenarios, the performances of the baseline
classifier and the FSL model appear similar (Fig. 4). In general, achiev-
ing high accuracy in patient domains indicates a more effective adap-
tation to domain shifts for both the baseline classifier and Prototypical
Networks (PN), in contrast to shifts observed between different clinics.
This effectiveness is likely due to the smaller domain shift arising
from biological differences, which proves more manageable than the
technical differences encountered [3].

Deciding whether PNs can be easily employed to adapt to a new
domain is challenging because no clear pattern can be identified from
the results. Although the performance is generally superior for patient
domain shifts, for BCN and MSK, the cross-domain performance de-
creases compared to the baseline classifier. For HAM, the performance
remains unchanged. Conversely, when analyzing clinical domain shifts,
the performance increases for HAM and BCN when a PN is used. Only
for the generally challenging dataset MSK a decrease in performance
can be observed with a PN. Overall, employing a PN seems to yield
more stable results, as the standard deviation is consistently lower.

4.3. Effects of different hyperparameters

According to Laenen et al. [28], the different parameters that
are involved in episodic training, specifically ways (classes), episodes
(support-query pairs), and shots (number of support images for train-
ing), can significantly affect performance. Consequently, a comprehen-
sive understanding of the impact these hyperparameters and others
have on the performance is essential. Therefore, we experimented
with varying numbers of episodes and shots. However, we did not
explore the impact of different class quantities on performance, as our
focus remains on the binary classification of melanomas and nevi in
dermoscopic images to facilitate comparison. Instead, we additionally
investigated epochs and the usage of different network layers during
training, recognizing their typically important role in classification
tasks.

In Fig. 5, it is evident that, overall, the distinctions between various
hyperparameter values are not substantial. Specifically, the differences
in average cross-domain accuracy prove to be negligible. For in-domain
scenarios, the accuracy shows minor fluctuations depending on the
hyperparameter values, except for the epochs, where it remains rela-
tively constant. This indicates no considerable correlation between the
hyperparameters and performance, a conclusion that we can confirm
through correlation matrices. However, the in-domain accuracy seems
weakly influenced (r = 0.35) by the number of episodes used, which
cannot be observed for the cross-domain setup. Moreover, the accuracy
does not exhibit significant variation across the three runs, with only a
slightly larger standard deviation observed when using different layers
on the BCN test sets.

As shown in Fig. 5 (top left), employing a modest episode count
of only 100 yields a notable accuracy and reaches a saturation point
from 500 episodes onward. In this context, despite the potential use
of more episodes in other studies, the limited size of our datasets
suggests that utilizing only 500 episodes is sufficient. As illustrated
in Fig. 5 (top right), the amount of shots exhibits minimal variation.
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Fig. 5. Effect of different hyperparameters on the performance of a PN tested on clinical cross-domain datasets. Transparent bars represent in-domain (higher) performance, while
the opaque bars in the front represent cross-domain (lower) performance. Confidence intervals across three runs.
It is noteworthy that in other FSL studies, various shot quantities are
often compared for a single task to assess how their performance differs.
Conventionally, the expectation is that using only one shot for a task
would result in considerably lower accuracy. However, our analysis re-
veals no substantial correlation between shots and accuracy, especially
when considering cross-domain scenarios. In Fig. 5 (bottom left), there
is no noticeable difference in performance when varying the epoch
size. As known in the machine learning community, selectively training
specific blocks or layers of neural networks can impact performance
and significantly decrease computation time. In our experiments, we
found that training all layers does not yield optimal results. Instead,
the effectiveness depends on the test datasets. Specifically, for HAM
and MSK in cross-domain scenarios, training only the fully connected
layer while freezing the weights of the other network layers produces
the best results, as illustrated in Fig. 5 (bottom right). Additionally,
our findings on distance metrics used for PNs align with those of Snell
et al. [8], showing superior performance with Euclidean distance than
with cosine distance in our classification scenario.

In summary, the results collectively indicate that classifying cross-
domain MSK data is generally more challenging, while HAM data
achieves the most favorable performance results. By averaging results
across three runs, Fig. 5 shows a slight decrease in performance when
transitioning from the in-domain to the cross-domain scenarios for the
HAM dataset, with the most notable decrease observed for MSK data.
Interestingly, the number of epochs does not appear to be important
because the model has already learned effectively by the third epoch
and only has 500 episodes. Consequently, PNs can learn from relatively
small datasets, performing comparably to the baseline classifier.

From Figs. 3 and 4, particularly for the MSK dataset, the results
suggest that PN shows improvement in in-domain performance even
with small datasets. However, when tested on cross-domain, the per-
formance is sub-optimal. Our earlier analysis showed that MSK is a
difficult to adapt domain even while training with the full dataset [3].
6

These results are in accordance with what was observed earlier. It
is worth mentioning that one of the subdomains within MSK (age
>30, loc=head/neck) proved to be particularly challenging for several
unsupervised domain adaptation methods [35]. Further investigation
is required to understand how to effectively adapt the MSK dataset, a
task that extends beyond the scope of this manuscript.

While this represents the initial step in assessing the performance
of PNs across domains, we acknowledge the importance of addressing
these complexities and recognize the need for future research efforts in
this direction. One potential avenue for exploration could involve mul-
timodal few-shot learning, which enhances adaptation strategies and
improves performance in challenging domains such as MSK. Another
interesting approach for such datasets would be to utilize weighted
prototypical networks, emphasizing intra-class distribution [36]. Addi-
tionally, conducting a statistically significant analysis of the employed
datasets is essential to implement real-time diagnostic assistant systems.

5. Conclusion

Throughout this research, we have uncovered several important
findings on the performance, adaptability, and robustness of PNs across
multiple domains. The similarity between the baseline- and FSL perfor-
mance suggests that FSL could be applicable in practice within the same
domain and in rare cross-domain cases. While analyzing our data, we
observed that epochs, episodes, and shots do not correlate strongly with
accuracy, indicating that they do not considerably impact performance.
However, episodes and freezing of different parts of the network lay-
ers can weakly influence performance. Additionally, there is no clear
indication that clinic- or patient-specific domain shifts are easier to
adapt to. Nevertheless, when evaluating cross-domain performance, we
observe that both the baseline- and FSL models exhibit slightly better
performance when applied to patient-specific domain shifts. The results
of this study can be used as a direction to the potential limitations
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and opportunities in clinical decision-making, especially with limited
data.
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