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A B S T R A C T   

Estimating soil moisture from microwave brightness temperature is extremely challenging in densely vegetated 
areas. The soil moisture retrieved from the Soil Moisture Active Passive (SMAP) measurements tends to be 
consistently overestimated, sometimes exceeding the saturation level of mineral soils. Therefore, the retrieved 
soil moisture cannot detect or monitor climate extremes, such as floods and droughts for forests, natural resource 
management, and climate change research. We hypothesize that the main issue is that the scattering albedo (ω) 
and the optical depth (τ) are parameterized solely with NDVI (Normalized Difference Vegetation Index), 
neglecting the polarization characteristics from vegetation structure. This study proposes a weighting factor 
between scattering and optical thickness, a function of MPDI (Microwave Polarization Difference Index), and 
applies it to both parameters simultaneously to increase the scattering effect and decrease the attenuation effect 
in high MPDI. The validation results based on the Climate Reference Network revealed that considering MPDI is 
critical in reducing soil moisture overestimation errors and obtaining more accurate soil moisture over forested 
regions. This results in correlation improving from 0.36 to 0.44, a decrease in ubRMSE from 0.179 to 0.125 
cm3cm− 3, and bias lowering from 0.127 to 0.060 cm3cm− 3 in comparison with the SMAP measurements over 
forested regions.   

1. Introduction 

Global-scale soil moisture (SM) information can be obtained from 
satellite measurements such as microwave brightness temperature of 
SMOS (Soil Moisture and Ocean Salinity) (Kerr et al., 2010), AMSR-2 
(Advanced Microwave Scanning Radiometer 2) and SMAP (Soil Mois
ture Active Passive) (Entekhabi et al., 2010). Among them, SMAP pro
vides SM products using the Single Channel Algorithm (SCA) (Jackson, 
1993) and Dual Channel Algorithm (DCA) (P. O’Neill et al., 2021; 
Chaubell et al., 2020). The Multi-Temporal Dual Channel Algorithm 
(MT-DCA) for estimating albedo as a spatially variable parameter has 
also been proposed (Konings et al., 2017). Still, some uncertainties in the 
microwave radiation transfer model (RTM or forward model) must be 

solved to more accurately estimate SM from satellites. It is known that 
even L-band, the most penetrating available waveband on current sat
ellite platforms, cannot provide a reliable SM information in the forests 
or dense vegetation areas even though studies have shown that the 
SMAP SM product, for example, does demonstrate sensitivity to SM 
changes in forests (Colliander et al., 2020a,b; Ayres et al., 2021; 
Ambadan et al., 2022; Abdelkader et al., 2022). A recent study (Al-Yaari 
et al., 2019) found that SM retrieval with vegetation water content 
(VWC) greater than 5 kg m− 2 (approximately 0.6 VOD) is not useable 
and unreliable in some SM products. Fig. 1b shows abnormally high SM 
values in dense vegetation areas as shown in Fig. 1a. 

Recent research suggests that the poor performance of satellite SM 
products over dense vegetation is due to the unsolved uncertainty 
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regarding vegetation properties within RTM, rather than an inherent 
limitation of the technique. For example, Ambadan et al. (2022) and 
Colliander et al. (2020a,b) suggested that SM can be estimated using 
SMAP brightness temperature (Tb) under temperate forests if vegetation 
properties such as attenuation and scattering parameters are properly 
estimated within the microwave forward model. 

Currently, in both SCA and DCA, the vegetation scattering albedo is 
fixed regardless of vegetation density. We selected SCA-based algo
rithms to work on the improvement for VOD characterization, We bring 
the argument forward that disentangling vegetation and soil emission 
contribution is not strait forward when using both polarizations, TBv 
and TBh, since both observations are not fully statistically independent, 
especially in dense (forested) vegetation. In this realm, we revisited the 
single-polarization SCA approaches, where VOD is not retrieved, but an 
input to the retrieval. In this study, we develop several advanced stra
tegies how to represent VOD more realisticly and efficiently. To address 
this issue, Park et al. (2020) described a τ-ω type RTM based on a 
variational scattering albedo approach, where increasing vegetation 
optical depth (VOD) computed by NDVI increases the scattering albedo. 
This analysis focused on resolving the impact of unrealistic scattering 
albedo in forested regions with high vegetation optical depth on SM. 
Chaparro et al. (2022) showed that the retrievability of SM from verti
cally and horizontally polarized Tb can be determined with a metric 
called the robustness of vegetation optical depth, indicating higher 
robustness over non-woody vegetation rather than in forests. In our 
study, we found that the current SMAP SCA exhibits error patterns 
related to VOD calculated using NDVI as well as the Microwave Polar
ization Difference Index (MPDI) calculated using Eq (1) (Becker and 
Choudhury 1988), as seen in Fig. 2. 

MPDI =
(TbV − TbH)

(TbV + TbH)
(1) 

In Fig. 2, the blue and red dots indicate that SM predictions are 
underestimated and overestimated respectively. This figure shows that 
the SCA method overestimates SM when VOD (computed from NDVI) 

and MPDI are high. This is because the conventional RTM does not 
consider the polarization characteristics of vegetation in dense vegeta
tion areas. To elaborate, at a τ value of 0.6, less SM bias was observed in 
the lower MPDI range. According to Equation (1), in scenarios of low 
MPDI, the difference between vertical and horizontal scattering, as well 
as their resulting Tb, should be minimal. This implies that a lower MPDI 
is expected to yield a relatively smaller SM bias in SMAP SCA pre
dictions, even when assuming a uniform scattering albedo within the 
SCA model. Conversely, in the case of a higher MPDI, it will reveal an 
issue due to the constant scattering assumption in SCA. For instance, 
when neglecting these factors in the SCA model—when there is a sub
stantial difference in scattering albedo between horizontal and vertical 
polarizations (likely when MPDI is high)— the Tb simulations in hori
zontal and vertical polarization with a fixed scattering albedo lead to a 

Fig. 1. a) MODIS NDVI and c) the cross section overestimated SMAP SCA soil moisture (black dots) comparing to in situ (red dots) over vegetation with VODNDVI 
(green dots) indicated with the red boundary in a), b) and longitudinal range from − 90 to − 65, where vegetation optical depth over 0.5 in b), measured in 1st, 
August 2015. 

Fig. 2. The relationship between τ from MODIS NDVI and MPDI from SMAP 
TbH and TbV and the degree of the soil moisture bias from SMAP SCA SM 
compared to the in-situ soil moisture obtained from USCRN sites (ΔSM SCA) 
along the NDVI-MPDI relationship (gray: missing calculation in the SM 
estimations). 
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bias in SM estimation (a positive SM bias for horizontally polarized Tb). 
Consequently, it is crucial to adjust vegetation-related parameters, such 
as VOD and scattering albedo, particularly at higher MPDI values. The 
methodology section will further elaborate on this strategy. 

2. Method 

We propose a τ-ω model that is parameterized with both NDVI and 
MPDI to resolve the issue of the missing vegetation structural informa
tion in the RTM used by SCA and DCA, we propose a τ-ω model that is 
parameterized with both NDVI and MPDI. To introduce this method, we 
will first discuss the SM errors that arise from the current RTM, partic
ularly those that are caused by an incomplete τ-ω model. 

2.1. Microwave radiative transfer model 

Soil moisture is the most impactful surface property to low-frequency 
microwave emission due to its dipole structure. Therefore, L-band (1.4 

GHz) Tb measurements are the best wavelength to extract SM infor
mation. The microwave radiative transfer model connects SM within the 
wet soil emissivity (esoil) and microwave Tb. However, this does not 
mean that other variables are negligible in Eq. (2), which is a function of 
esoil, surface temperature (T), vegetation optical depth (τ), and vegeta
tion scattering albedo (ω). 

TbH = esoil (SM)e− τ +(1 − ω)(1 − e− τ)T + e− τ(1

− esoil (SM))(1 − ω)(1 − e− τ)T (2) 

An accurate dielectric mixing model (between esoil and SM) and τ-ω 
(for vegetation effects) model are prerequisites to invert vegetation and 
SM components from the measured Tb or to simulate Tb closest to the 
observed Tb. Various studies have discussed improvements to the 
inversion formulation, for example, 1) dielectric mixing model consid
ering explicitly organic matter (Bircher et al., 2016; Mironov et al., 
2018, 2019; Park et al., 2017, 2019); 2) roughness effect parameterized 
with SM (Fernandez-Moran et al., 2015, 2017; Parrens et al., 2016; Peng 
et al., 2017); 3) τ-ω model by considering multiple scattering properties 

Fig. 3. Effect of high vegetation on the microwave brightness temperature simulated by (a) the conventional NDVI-based τ-ω model (SCA), (b) the allometry-based 
τ-ω model (Park et al., 2020), and (c) the τ-ω model adjusted by MPDI (red lines: new consideration in this study) 
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(Kurum, 2013; Feldman et al., 2018), by specifying it in space as look-up 
table (Konings et al., 2016, 2017) and by parameterizing it with VOD in 
order to impose variability in time and space (Park et al., 2020). Because 
both high VOD and rich SOM regions have shown unrealistic retrieval 
values in the current SMAP SCA and DCA SM, an improvement is 
anticipated in these areas. 

Wigneron et al. 2004 found that vegetation model parameters are 
influenced in L-band SM estimation, by factors like system configuration 
and crop type, including VOD, scattering albedo, and polarization 
properties. These discoveries help to enhance forward modeling and 
retrieval techniques for estimating SM over regions covered by vegeta
tion. Based on Eq. (2), to translate the measured Tb to a lower SM value, 
the simulated Tb (Tbsim) should be made lower by increasing the scat
tering albedo and/or decreasing the optical depth. This new adjustment 
will be made according to the polarizability information from MPDI and 
in addition to the dynamic scattering albedo introduced by Park et al. 
(2020). Therefore, this study will apply the MPDI approach (Chaparro 
et al., 2022) with the variational ω model (Park et al., 2020) to improve 
the polarization representation in the τ-ω model. 

2.2. MDPI based τ-ω model 

Fig. 3a shows that the conventional τ-ω model sets the scattering 
albedo, ω, to a constant that varies only according to IGBP land cover 
classification (SCA and DCA). Therefore, in high vegetation states, only τ 
affects Tb simulation. In the modified τ-ω approach (Fig. 3b), ω can also 
increase with increasing NDVI. In this approach, τ and ω are related to a 
power function based on the allometric theory. Even so, with the rela
tively high τ, the SM estimation is accurate with a low MPDI but the 
overestimation still occurred in high MPDI. Hence, to reduce the SM 
error, which tends to increase when MPDI increases, both τ and ω are 
supposed to be readjusted by MPDI input as shown in Fig. 3c. 

In this new approach (Fig. 3c), ω is adjusted in proportion to MPDI, 
especially when applied to the forward simulation of horizontally 
polarized Tb. In our earlier method (Fig. 3b), only NDVI is used for Tbh 
simulation, linking it to vegetation density and assuming a constant ratio 
of vertical to horizontal components (no directionality in vegetation 
structure) for the same IGBP type. This means a higher NDVI indicates 
denser vegetation, resulting in more attenuation (τ) and increased 
scattering (ω). This method reduces the error caused by the fixed ω in the 
dense forest by enhancing ω. However, in the scenarios where horizontal 
vegetation scattering is the dominant factor within the same IGBP, 
relying on NDVI for Tbh simulations poses issues. The NDVI-based ω, 
which assumes a consistent ratio between horizontal and vertical scat
tering (e.g., a randomly distributed vegetation canopy), turns out to be 
lower than the actual ω when the horizontal vegetation component ex
ceeds the average for the IGBP class in a particular SMAP grid cell. This 
case leads to an underestimated scattering albedo, causing an over
estimation in Tb simulations and, consequently, an overestimation of 
SM. 

Introducing MPDI addresses the problem with underestimated scat
tering albedo by being “positively proportional to horizontally polar
ized” scattering albedo. An abnormally high MPDI can indicate a higher 
horizontally polarized scattering albedo than the typically applied 
scattering albedo based on the IGBP classification. When the horizon
tally polarized scattering exceeds that of the vertically polarized com
ponents, the horizontally polarized ω becomes larger than the one 
assumed for both polarizations based on the IGBP type, reducing the 
Tbh. This reduction in Tbh provides a physical basis for the positive 
correlation between scattering and MPDI measurements:  

Higher ωH → Lower TbH → higher MPDI, (TbV–TbH)/ (TbV + TbH).            

A solitary TbH value is insufficient for delineating scattering prop
erties due to its variation with factors such as soil temperature, moisture, 
roughness, and both the density and structural properties of vegetation. 

In contrast, MPDI provides insight into scattering properties by utilizing 
both TbH and TbV, measured under identical conditions of temperature, 
moisture, and vegetation density but differ in their structural responses. 
By subtracting these values and normalizing them by their sum, the 
effects of temperature, soil moisture, roughness, and vegetation density 
on TbH/V are mitigated to a first degree, leaving only the structural 
characteristics. This is where MPDI excels, as it effectively isolates and 
represents these structural properties. This relationship in the TbH for
ward simulation (Higher ωH → lower TbH with no change in TbV) allows 
the model to incorporate structural details inversely from MPDI, such as 
an increased horizontal component, which cannot be captured by using 
only the conventional approach where ωH = ωV. In other words, for a 
canopy with more horizontal components at the same density (indi
cating a higher MPDI in the same VOD scenario), the horizontal ω should 
be set higher than the vertical ω. Therefore, it is necessary to set ω in 
proportion to both MPDI and NDVI, as illustrated with the ‘+’ signs in 
Fig. 3. Inversely, in the high MPDI condition, the simulated TbH is lower 
(Higher MPDI → Higher ωH → Lower TbH as shown along the red arrows 
in Fig. 3), which does not deviate substantially from the measured TbH. 
Under this condition, SM is estimated in the moderate range and is not 
unrealistically overestimated. The NDVI-MPDI approach (EXP2) is 
shown in Table 1, along with the conventional NDVI-based SMAP SCA 
algorithm theoretical basis document (ATBD) (O’Neill et al., 2021) and 
the allometric-based model of Park et al. (2020) (EXP1). 

The cIGBP in Table 2 is an empirical parameter that represents 
different types of vegetation presented by Park et al. (2020). It is 
calculated by multiplying the maximum vegetation scattering albedo 
(ωmax) by the product of the vegetation canopy parameter (b), the 
physical density of plant elements (ρE), the unique thickness of the plant 
element (h), and a canopy environmental parameter (c) raised to the 
power of two-thirds as shown in Eq. (3). 

cIGBP =ωmax(b ρE c h)− 2/3 (3) 

Table 2 shows that cIGBP values found for forests tend to be lower 
than for crops and grasslands, which is consistent with the empirically 
derived relation that cIGBP is inversely proportional to the height of 
vegetation, h, in Eq. (4). 

The weighting factor fMPDI, Eq. (4), enables an enhancement of the 
scattering albedo while simultaneously reducing the optical depth, as 
derived from the MPDI compared to traditional τ and ω values. This 
model, which posits an inverse relationship between MPDI and NDVI, is 
supported by the measured in Fig. 2 and the study from Becker and 
Choudhury, 1988). 

fMPDI = aMPDI0.5 + b (4) 

In this study, these parameters are found by empirically minimizing 
SM errors (a is 2 and b is 0.65). Now, in the new τ-ω model, both τ and ω 
are functions of NDVI, considering vegetation structural information by 
the weighting factor, fMPDI in Eq. (4), and the allometric parameter, cIGBP 
in Eq. (3) (simplified as constants in Table 2). 

Table 1 
The mathematical equations for calculating τ and ω used in the microwave 
radiative transfer model.   

Optical thickness (τ) 

SCA τ = b
(

1.9134NDVI2 − 0.3215NDVI + StemFactor
NDVIref − 0.1

1 − 0.1

)

EXP1 
EXP2 τ = (1 − 0.2fMPDI)b

(
1.9134NDVI2 − 0.3215NDVI +

StemFactor
NDVIref − 0.1

1 − 0.1

)

Scattering albedo (ω) 

SCA Constant 
EXP1 ω = cIGBPτ2/3 

EXP2 ω = fMPDIcIGBPτ2/3  
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2.3. Cost function minimization 

To estimate SM from the Tbobs, the Tb absolute error is computed by 
Eq. (2) by searching for the minimum absolute difference between 
observed TbObs and simulated Tbsim with given state variables X (soil 
texture, soil temperature, roughness, soil organic matter, soil tempera
ture, and NDVI-based VOD) and additional ancillary MPDI according to 
the following function: 

min
X=SM

J = 0=
∑

(Tbobs − Tbsim(X,NDVI,MPDI))2 (5) 

In Eq. (3), higher MPDI induces higher fMPDI (the weighting factor 
increases in scattering and decreases in attenuation by absorption) 
allowing more accurate SM retrieval, owing to the lower Tb simulation 
in Eq. (2). Therefore, MPDI will help to reduce overestimation of SM (Eq. 
(5)) by increasing the weighting factor (Eq. (3)) for scattering and 
decreasing the weighting factor for absorption in Eq. (2). 

2.4. Validation 

SM validation should occur outside rain periods (Colliander et al., 
2020b) and over a range of wetness conditions. Therefore, validation 
points for this study were only considered if SM conditions were below 
saturation (i.e., assuming no flooded regions). The validation compares 
our retrieved SM to in situ data, where SM is larger than the saturation 
point, which is function of soil organic matter and clay proposed by Park 
et al. (2021). 

3. Data 

USCRN (US Climate Reference Network) is used in this study to 
validate the SM estimates because of its dense distribution of validation 
networks (Diamond et al., 2013). The results of the new τ-ω model are 
investigated with all in situ from these sites. Furthermore, to demon
strate how SM estimation from SMAP Tb can be improved in densely 
vegetated areas, a longitudinal band across a strong vegetation gradient 
in the US was selected, as shown in Fig. 4 a). Also, the NEON (the 

National Science Foundation’s National Ecological Observatory 
Network) is used because many of the monitoring stations are located 
under a forest canopy (Ayres et al., 2021) b). 

The evaluation of our methodology focused exclusively on forested 
areas within the United States, specifically leveraging sites from the 
USCRN and NEON. These forested sites present unique challenges for 
soil moisture estimation. 

Table 3 categorizes the study locations according to the International 

Table 2 
Empirical allometry parameter cIGBP for each IGBP type (modified from Park et al., 2020) (bolded cells: the classified by forested regions (IGBP from 1 to 5)).  

Evergreen needle 0.40 Mixed forest 0.30 Savana 0.20 Urban 0.10 
Evergreen broad  

0.15 
Closed shrubland 0.60 Grass 0.60 Mixed crop 0.6 

Deciduous needle  
0.40 

Open shrubland 0.2 Permanent wetland 0.10 Snow & ice 3 

Deciduous Broadleaf  
0.20 

Woody savanna 0.5 Crop 0.40 Spared vegetation 3  

Fig. 4. a) USCRN (US Climate Reference Network) with the longitudinal cross section points in the orange box (latitude: 46.36◦, longitude: − 125◦ to − 65◦) used in 
the validation of the soil moisture estimations, b) NEON (National Ecological Observatory Network) forest sites marked by green diamond symbols. 

Table 3 
Classification of forested regions for this study based on IGBP categories.  

USCRN NEON 

Site name IGBP  IGBP  IGBP 
Asheville-13-S 5 Kingston-1-W 4 D01. 

BART 
5 

Asheville-8-SSW 5 Limestone-4-NNW 5 D01. 
HARV 

5 

Charlottesville-2- 
SSE 

4 McClellanville-7- 
NE 

5 D02.SCBI 4 

Chatham-1-SE 5 Millbrook-3-W 5 D05.STEI 5 
Coos-Bay-8-SW 1 Old-Town-2-W 5 D05.TREE 5 
Corvallis-10-SSW 1 Quinault-4-NE 1 D05. 

UNDE 
5 

Darrington-21-NNE 1 Redding-12-WNW 1 D07. 
GRSM 

5 

Durham-2-SSW 5 Salem-10-W 5 D07. 
MLBS 

4 

Elkins-21-ENE 4 Sandstone-6-W 5 D07. 
ORNL 

4 

Gaylord-9-SSW 5 Selma-13-WNW 5 D08.DELA 5 
John-Day-35-WNW 1 Spokane-17-SSW 1 D08. 

LENO 
5 

Kenai-29-ENE 1 Watkinsville-5-SSE 5 D10. 
RMNP 

1     

D13. 
NIWO 

1     

D16. 
ABBY 

5     

D16. 
WREF 

1  
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Geosphere-Biosphere Programme (IGBP) classification system, indi
cating the predominant vegetation type as the forested resions. This 
targeted approach ensures that our soil moisture estimation technique is 
properly tested in forested regions where it is most challenged for the 
SMAP SCA. 

The applied brightness temperature data is the SMAP L3 horizontally 
polarized brightness temperature measured in descending node time, at 
approximately 6 a.m. local time (de Jeu et al., 2008; Zhang et al., 2019). 
The input vegetation information is the τNDVI, which is the same input 
used for the conventional SMAP SMSCA algorithm. 

4. Results 

The τ-ω RTM was initially analyzed to see if the proposed τ-ω could 
improve the accuracy of the SM estimation from SMAP Tb. Fig. 5 
demonstrates the advantage of using the MPDI-based τ-ω model. The 
baseline τ-ω RTM with a constant ω (Fig. 5a) is unable to produce ac
curate SM estimates with the VOD derived from NDVI. As a result, SM 
SCA estimates over high-VOD regions (forests) using the constant ω 
exceed 0.55 cm3cm− 3. On the other hand, Fig. 5b shows an increase in ω 
by τ, leading in turn to a decrease in simulated Tb, resulting in a more 
accurate SM estimate (positive bias decrease of approximately 0.5 
cm3cm− 3). The most accurate result is obtained with the proposed 
approach, in which both τ and ω are further adjusted by MPDI (Fig. 5c). 
Our findings indicate that this technique is successful when the TbV- 
value is lower than 230 K and the VOD is larger than 0.1, provided that 
the coefficient ‘a’ is set to 15,000 and ‘b’ is 3 in Equation (3). 

As Fig. 5 shows, the NDVI-MPDI-based τ and ω model demonstrated 

enhanced soil moisture estimation in validation with in situ measure
ments, achieving approximately reduction 55% in bias, a 21% reduction 
in ubRMSE and a 32% increase in correlation compared to SCA-H SM. 

Fig. 6 illustrates the NDVI - MPDI effects on SM estimations. For both 
the USCRN (a) and NEON (b) forest sites with IGBP classifications 
ranging from 1 to 5 (indicative of forest regions), an increase in the 
NDVI-adjusted parameter ω results in a decrease of SM estimation 
(EXP1) compared to a control scenario with constant ω. Further, an 
increased ω, this time modulated by high MPDI values, is observed to 
reduce SM from EXP1 to EXP2 in forest sites from both USCRN (c) and 
NEON (d). 

This sequential reduction in SM estimations is well displayed in 
Fig. 7. Factoring in the effects of NDVI and MPDI in the τ-ω model leads 
to a more accurate bias correction in SM derived from microwave 
brightness temperature measurements over forest regions. The figure 
underscores the significance of considering NDVI and MPDI influences 
for realistic SM estimation in dense forest regions. 

In Fig. 8, we explored this error in SM estimation as a function of 
VOD (or NDVI) and MPDI. The green dots indicate the SM bias change 
that arises from the switch from SCA to EXP1, demonstrating the effect 
of incorporating NDVI τ-ω. The orange dots represent the change in SM 
bias from EXP1 to EXP2, displaying the influence of MPDI on the ac
curacy of SM. The majority of the unrealistic SM overestimations are 
rectified within the reasonable SM range. This improvement is evident 
from the increase in green data points after incorporating NDVI and 
MPDI parameters for τ and ω, as depicted in Fig. 7a. While high VOD 
(>0.6) benefits from the ω parameterization with NDVI, some over
estimation issues persist across all VOD ranges. However, the MPDI 

Fig. 5. Scatter plots comparing a) SCA-H, b) NDVI-based τ and ω model (EXP1), and c) NDVI-MPDI-based τ and ω model (EXP2) with in situ soil moisture mea
surements in USCRN forest and d), e) and f) in NEON forest sties classified with IGBP from 1 (blue), 4 (green) and 5 (red). 
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parameterization has effectively mitigated this error by increasing ω and 
decreasing τ (or absorption), particularly when MPDI values are 
elevated, as shown in Fig. 8c. 

Fig. 9 illustrates an evident improvement. The high positive SM er
rors, represented by red dots in both SCA (ΔSM SCA) and the NDVI- 
based τ-ω model (ΔSM EXP1), have been effectively reduced, now fall
ing within the moderate SM error range (less than 0.2 cm3 cm⁻3), as 
highlighted by the green dots in Fig. 9. 

5. Discussion 

5.1. Mismatching issue 

The comparisons of SMAP SM with in situ measurements can result 
in large errors because of the representativeness differences between 
satellite observations and in situ measurements (e.g., Gruber et al., 
2020; Montzka et al., 2020; Colliander et al., 2022). This study shows 
that SMAP SM is unrealistically high in dense vegetation regions, even 
without comparing to in situ data. This is due to the radiative transfer 
model (RTM) not considering dynamic scattering albedo varying with 
NDVI and MPDI. The proposed new τ-ω model reduced these positive 

Fig. 6. The NDVI and MPDI effect on soil moisture estimation: ω NDVI effect on SM in a) USCRN and b) NEON and τ-ω NDVI and MPDI effect on SM in c) USCRN and 
d) NEON in forest sites (IGBP classification from 1 to 5). 

Fig. 7. Bias and RMSE change with different τ-ω models W_sca (SMAP SCA), W_NDVI (EXP1) and W_MDPI (EXP1) in a) USCRN forest and b) NEON forest sites.  

Fig. 8. SM estimation error along VOD (or NDVI) and MPDI (green dots: SM bias change from SCA to EXP1, showing the effect by the incorporation of the NDVI τ-ω, 
orange dots: the SM bias change from EXP1 to EXP2, highlighting the impact of MPDI on SM accuracy) in USCRN; SM bias error by a) SCA method, b) EXP1 and 
c) EXP2. 
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bias errors related to VOD or MPDI. 

5.2. NDVI issue 

5.2.1. NDVI saturation in dense vegetation 
Various studies demonstrated the MODIS-based VOD used in the SCA 

(τNDVI) can produce errors for SM estimation (Chaubell et al., 2020; 
Dong et al., 2018). For example, SM error can be caused by the satu
ration of NDVI in dense vegetation. However, this is unlikely to cause SM 
overestimation. If the real VOD is higher than the saturated τNDVI, Tb 
will increase, exacerbating the overestimation of SM based on Fig. 3 a. 

One of the emerging method is a kernel NDVI (k-NDVI) (Camps-
Valls, et al., 2021; Wang et al., 2023) to solve the NDVI saturation issue 
in the forested regions. However, this technique employs a kernel 
function sometimes masking the essential physical processes, compli
cating the understanding of its outcomes. Our research presents a so
lution rooted in physical principles, effectively addressing this 

limitation. We characterize the fluctuations of the τ and ω parameters as 
they relate not only to NDVI, but also MPDI. By fine-tuning the τ 
parameter associated with NDVI in combination with MPDI, we have 
directly tackled the issue of saturation in dense vegetation—a critical 
challenge for conventional NDVI-based VOD applications. This adjust
ment emerges as a vital strategy for overcoming the saturation hurdle, 
allowing for the extraction of pertinent vegetation parameters. Conse
quently, our methodology not only resolves the overestimation issue of 
soil moisutre in forest but also sheds light on the physical processes 
driving variations in vegetation signals, providing more understanding 
of these dynamics in forest. In a future study, we will pursue the synergy 
between more adavnced approaches, such as k-NDVI, and our physical 
based MPDI consideration for further improvements in the soil moisture 
estimation from microwave Tb over dense forest. 

5.2.2. Climatological NDVI input in RTM 
As shown in Fig. 10, the SM SCA (gray curve from − 110 to − 98) is 

Fig. 9. The SM error distribution in NDVI x -axis and MPDI y-axis (green: acceptable, red: severely positive, blue: severely negative SM error)  

Fig. 10. Longitudinal comparisons of SCA and EXP (modified) soil moisture (smooth fit soil moisture curve for gray: SCA, for blue: proposed approach and red: in 
situ soil moisture measurements) with scattering albedo applied in SCA and EXP1 and other vegetation properties (vegetation fractions from VIIRS daily observation, 
MODIS 10 year daily average and NASA spaceborne lidar measurement GEDI (RH100 global forest canopy height in m) (scaled by dividing 100 in this study). 
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systematically underestimated under crops and grass classified by IGBP 
in the top panel of the figure. One possible cause of this issue is the use of 
MODIS VOD in SCA, which is the monthly average over 10 years. In the 
real world, vegetation changes every year, especially cropland, due to 
different agricultural practices. The average VOD from MODIS applied 
in SCA decreases in the west as increasing VOD with longitude increase 
depicted in Fig. 10. The gradual decrease of VOD in this region (longi
tude from − 110 to − 98) may be caused by averaging temporal patterns 
in each pixel, which is a definite discrepancy from the more temporally 
and spatially highly resolved snapshot measurements from VIIRS and 
lidar. The opposite case (lower τ, lower SM estimation) can also be seen, 
where the NDVI VOD (monthly averaged VOD) is higher than the VIIRS 
VOD (more real-time VOD), where the NDVI based SM showed under
estimation due to lower NDVI τ than real VIIRS τ as shown in Fig. 10. In 
other words, the replacement of NDVI VOD with VIIRS VOD can be a 
further improvement of the current τ-ω model. 

5.3. Absorption issue rather than scattering albedo 

The recent study (Baur et al., 2021) found that the scattering changes 
over time are not as significant as absorption in dense vegetation. In 
nature it is obvious that if the leaves just start growing or dying, not only 
VOD increases and decreases, but also the scattering albedo should 
change by leaves number and size (Park et al., 2020). Therefore, with 
higher NDVI both τ and ω should increase. 

5.4. Issue by missing consideration of VWC effect 

The seasonal increase in τ NDVI (green dots in August in Fig. 11) is 
also a valid indicator of changes in leaf size and number in forest, 
leading to an increase in scattering probability because τ NDVI is posi
tively propotional to NDVI based leaf area index (LAI). This consider
ation has been considered by the NDVI-based allometric approach (Park 
et al., 2020). However, the NDVI can be high in the summer because 
plants have a higher volumetric water content (VWC), absorbing more 
than they scatter, according to a study by Baur et al. (2021). This 
adjustment (scattering decreases but absorption increases) has been 
done by adjustment with low MPDI input (purple dots in August in 
Fig. 11) according to Fig. 3c. 

5.5. Relationship between vegetation density and MPDI 

The NDVI exhibits a positive correlation with vegetation density. 
However, the relationship between vegetation density and the MPDI 
tends to be inversely proportional, as indicated by the scatterplots of 
NDVI and MPDI in Fig. 2 and the dynamics of NDVI and MPDI in Fig. 11. 
Nevertheless, this relationship alone cannot always accurately deter
mine vegetation density from MPDI. When vegetation primarily consists 
of horizontally oriented leaves, the MPDI can increase the scattering 
albedo in horizontally polarized waves, even in high vegetation density. 

As a result, the MPDI can increase independently from vegetation den
sity or, for the same vegetation density, MPDI can vary for different 
vegetation types. Consequently, using only MPDI or NDVI alone cannot 
effectively improve the τ-ω model in a realistic manner. To accurately 
reflect vegetation density and vegetation structure in the τ-ω model, it is 
necessary to incorporate both NDVI and MPDI, as shown in Fig. 3. 

5.6. Heterogeneity issue 

SM is frequently overestimated by SCA. This problem has been 
partially addressed by using a dynamic scattering albedo that is 
parameterized with VOD (Park et al., 2020). However, SM is still over
estimated in low Tb ranges (Tb < 230 K) where they are classified as 
inhomogeneous vegetation, such as mixed forests and mixed crops, as 
Fig. 12 shows. This can be attributed to the fact that the heterogeneity of 
the landscape leads to a clear distinction between TBv and TBh. 

This study first presents the integration of NDVI (vegetation health 
state) and MPDI (vegetation structural state) into the existing τ-ω model 
showing the improvement in SM estimation with higher correlation and 
lower ubRMSE. 

5.7. cIGBP simplification issue 

5.7.1. Missing height variability in cIGBP 
Based on the inverse relationship between cIGBP and h shown in Eq. 

(3), the high average h for forests compared to grasslands or crops 
should lead to a lower value of cIGBP. As shown in Table 2, the cIGBP 
values of forests found with the least error tend to be lower than those of 
crops and grasses. Although cIGBP is a complex number that is deter
mined by four parameters (b, ρE, c, and h), this study assumed that all 
these parameters are mainly determined by vegetation type according to 
the IGBP classification, rather than identifying each component. This 
approach is practical, but it still contains some uncertainty due to its 
physical simplification. In a future study, further improvement can be 
expected by specifying those parameters in each SMAP grid. 

5.7.2. Missing b parameter variability in cIGBP 
Similar to the mixed forest, the mixed crop sites suffer the issue in the 

SM estimated by the proposed τ-ω model. For example, by the plant 
classification by C3 or C4, the b parameter, compounded in cIGBP in our 
study, has been specified in more detail in various studies (e.g., Jackson, 
1993; Jackson and Schmugge, 1991; Saleh et al., 2007; Wigneron et al., 
2003). A further differentiation of cIGBP similar to existing global in
formation of b parameter provided by SMAPL3 products might be a 
possible option to tackle this issue. Another way to solve this challenge is 
to apply various studies about the allometry of vegetation (Asner et al., 

Fig. 11. The seasonal change of NDVI τ and MPDI in Avondale-2-N (USCRN; 
lat: 39.8593, lon: − 75.7861). 

Fig. 12. SMAP soil moisture error in low Tb (<230 K) with NDVI, MPDI and 
IGBP information. 
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2013; Asner and Mascaro, 2014; Chambers et al., 2001; Chave et al., 
2005, 2014). These studies are helpful to consider a more specific ratio 
between height and area for different types of crops within the allometry 
parameters. This kind of further sub-classification within the IGBP 
cropland classification is necessary. 

Another potential reason is the spatial heterogeneity assumption 
within one SMAP grid granule. If a SMAP granule, classified as cropland, 
contains several mixed surface types, for example 34% cropland, 33% 
forest and 33% grass, one single allometry parameter (used for crop
land) might cause a large uncertainty for the τ-ω unified model. Hence, 
in the next research study, it is necessary to focus on the classification 
issue (for example C3/C4) as well as on the heterogeneity issue and how 
these problems can be solved. 

5.8. Roughness model issue 

The error of SMAP SCA is also highly affected by the uncertainty of 
the soil roughness parameters. However, if the SM estimated by SCA 
becomes uncertain due to the roughness model, it should explain why 
this error happens especially in dense vegetation and should demon
strate this can be really the solution to relate to the SM overestimation 
issue of SCA. Arguably, soil roughness in more vegetated regions will be 
higher than less vegetated or bare soil. In forest, due to the litter falls and 
surface-emerging root system, the soil tends to be rougher than for non 
or less vegetated areas (Shroder, 2013). Furthermore, because of the 
litter, moss, and other top-of-surface layers, the air-soil interface is not 
cleanly defined, affecting the roughness parameterization and likely 
increasing the effective value of h. Therefore, the real soil roughness is 
likely higher than assumed in SCA. In this case, the RTM simulation of 
microwave Tb will be higher. However, this consideration will exacer
bate the SM overestimation rather than mitigating because of the ne
cessity of wetter soil conditions to simulate Tb close to the measured Tb. 
The SM overestimation does not originate from the unrealistic roughness 
parameter model and the improvement of the roughness model cannot 
be a solution for the SCA issue presented in this study. Therefore, this 
study applied the same roughness parameters used in the SCA approach 
to demonstrate the improvement by the proposed τ-ω model. 

5.9. Dielectric mixing model issue 

Another way to improve the SM retrieval accuracy is within the soil 
part looking into the dielectric mixing model. The dielectric mixing 
model shown in Fig. 2 is important for the accurate estimation of SM 
from microwave Tb because it simulates the effective dielectric constant 
of wet soil (mixture of minerals and water). One of the main un
certainties in this simulation is the ratio of free to bound water in the 
soil. Because bound water has a much lower dielectric constant 
compared to free water (80), a dielectric mixing model not considering 
the bound water increase due to the soil organic matter will underesti
mate the microwave Tb (Park et al., 2017). To simulate microwave Tb 
more accurately in this study, a more recent dielectric mixing model was 
applied, considering organic matter (Park et al., 2019, 2021). Currently, 
the dielectric mixing model is the function of soil organic carbon such as 
wilting point, saturation point, and the bound water dielectric constant 
and the dielectric constant of dried organic carbon. This model is vali
dated by comparison with in situ SM and in situ soil organic carbon. 
Then, this model was applied with input of a soil organic matter map 
(from SoilGrid250 m, Hengl et al., 2014, 2017). This map can have er
rors for some land use or regions in the world. In the future, this needs to 
be investigated as well. 

5.10. MPDI ambiguity 

MPDI is not solely influenced by vegetation but can also be influ
enced by other environmental factors like soil roughness, moisture 
(Chen et al., 2017), or snow. Therefore, relying solely on the τ-ω model 

with MPDI can introduce uncertainty when the vegetation effect is 
minimal compared to soil effects. To address this, it is first crucial to 
precisely discern whether the measured MPDI was determined by the 
emission signal of the contributions of soil and vegetation. The strong 
correlation of SM with MPDI presented in Chen et al., 2017) could have 
been originated from the strong correlation between vegetation and SM, 
in which case the MPDI is correlated with the polarizing effects of the 
vegetation rather than those of SM. After this investigation, soil and 
vegetation contributions can be incorporated into the dielectric mixing 
model and roughness model. While in-depth ground surveys and 
frequency-specific analyses could potentially resolve this ambiguity, 
such approaches are beyond the scope of our current research. However, 
it is important to note that in dense forests, MPDI significantly reduces 
uncertainty, as demonstrated in our study. 

5.11. Application to DCA 

In a future study, the application to the current DCA will be pursued. 
In the DCA approach, NDVI input is not necessary. Therefore, to apply 
the method to the current DCA, the TB will be simulated close to the 
observed SMAP Tb with the optimal VOD (not calculated with NDVI) 
searched with ω changed by the VOD and the additional input of MPDI. 

5.12. Application to level 4 product 

The observation operator with the improved τ-ω can be used with 
better accuracy for data assimilation products such as SMAPL4. The 
improvement in the accuracy of SMAPL4 owing to the new τ-ω model 
with MPDI input might be interesting to see. When such satellite soil 
moisture is used for model validation (Yuan and Quiring, 2017) such as 
CMIP5, the performance of the model is evaluated incorrectly, and when 
used for data assimilation of the estimated soil moisture rather than 
brightness temperature from satellite (Nambiar et al., 2020), the 
improvement effect of model prediction by initialization on soil mois
ture cannot be anticipated. Furthermore, soil moisture extremes present 
during, or preceding climate extremes associated with droughts and 
floods cannot be adequately detected over these regions. 

6. Summary 

Even microwaves with long wavelengths capability cannot accu
rately estimate soil moisture (SM) from satellites over some agricultural 
and forested areas due to dense vegetation (Yarri et al., 2019). But this 
study started with the hypothesis that the limitation of SM estimation 
from dense vegetation is not the thick optical opacity of the vegetation, 
but the vegetation scattering albedo improperly considered in the RTM 
severely affected especially in dense vegetation. In this study, the SM 
estimation (Park et al., 2020) is more accurate than the constant ω 
approach (SCA and DCA) but still overestimated regardless of applying 
the NDVI-based varying ω in the SM retrieval. The hypothesis is that the 
missing polarization information for vegetation structural property is 
the main uncertainty in the NDVI-based-supported, time-dynamic τ-ω 
model. The method presented here derives a fraction factor from the 
microwave polarization difference index (MPDI) to adjust the 
NDVI-based τ and ω. The results show that the modified retrieval pro
vides more accurate estimates of SM. 

In most of the studies, the SM products from dense forest areas have 
been excluded in most of the validation studies (Fan et al., 2020; Li et al., 
2022; Ma et al., 2023). However, based on the proposed microwave 
RTMs, extreme hydrological events such as floods and droughts in 
densely vegetated areas can be adequately detected or monitored. 
Furthermore, owing to the proposed approach, various studies using 
SMAP SM products as well as vegetation optical depth over dense 
vegetation areas (Chaparro et al., 2022; Zwieback et al., 2019), down
scaling (Das et al., 2018; Mishra et al., 2018), machine learning (Lee 
et al., 2022) and SM monitoring study (Mladenova et al., 2019) will be 
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able to be more extensively performed. 

CRediT authorship contribution statement 

Chang-Hwan Park: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Supervision, Methodology, Investiga
tion, Funding acquisition, Formal analysis, Data curation, Conceptuali
zation. Thomas Jagdhuber: Writing – review & editing, Methodology, 
Formal analysis, Data curation. Andreas Colliander: Writing – review 
& editing, Resources, Data curation, Methodology, Formal analysis. 
Aaron Berg: Writing – review & editing, Resources, Data curation. 
Michael H. Cosh: Writing – review & editing. Johan Lee: Writing – 
review & editing, Software, Resources. Kyung-On Boo: Writing – re
view & editing, Resources, Funding acquisition. 

Declaration of competing interest 

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests. 

Chang-Hwan Park reports financial support was provided by Na
tional Research Foundation of Korea Grant. Johan Lee reports financial 
support was provided by Korea Meteorological Administration. Kyung- 
On Boo reports financial support was provided by Korea Meteorolog
ical Administration. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This work was funded by the Korea Meteorological Administration 
Research and Development Program “Development of Climate Predic
tion System” under Grant (KMA 2018-00322). The USDA is an equal 
opportunity employer and provider. A contribution to this work was 
made at the Jet Propulsion Laboratory, California Institute of Technol
ogy, under a contract with National Aeronautics and Space Adminis
tration and a National Research Foundation of Korea Grant from the 
Korean Government (MSIT) (RS-2022-00165656). 

References 

Al-Yaari, A., Wigneron, J.P., Dorigo, W., Colliander, A., Pellarin, T., Hahn, S., Mialon, A., 
Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y.H., de Lannoy, G., 2019. 
Assessment and inter-comparison of recently developed/reprocessed microwave 
satellite soil moisture products using ISMN ground-based measurements. Remote 
Sensing of Environment 224. https://doi.org/10.1016/j.rse.2019.02.008. 

Ambadan, J.T., MacRae, H.C., Colliander, A., Tetlock, E., Helgason, W., Gedalof, Z.E., 
Berg, A.A., 2022. Evaluation of SMAP soil moisture retrieval accuracy over a boreal 
forest region. IEEE Trans. Geosci. Rem. Sens. 18. 

Asner, G.P., Mascaro, J., 2014. Mapping tropical forest carbon: calibrating plot estimates 
to a simple LiDAR metric. Remote Sensing of Environment 140, 614–624. https:// 
doi.org/10.1016/j.rse.2013.09.023. 

Asner, G.P., Mascaro, J., Anderson, C., Knapp, D.E., Martin, R.E., Kennedy-Bowdoin, T., 
van Breugel, M., Davies, S., Hall, J.S., Muller-Landau, H.C., Potvin, C., Sousa, W., 
Wright, J., Bermingham, E., 2013. High-fidelity national carbon mapping for 
resource management and REDD+. Carbon Bal. Manag. 8 (1), 1–14. https://doi.org/ 
10.1186/1750-0680-8-7. 

Ayres, E., Colliander, A., Cosh, M.H., Roberti, J.A., Simkin, S., Genazzio, M.A., 2021. 
Validation of SMAP soil moisture at terrestrial national ecological observatory 
network (NEON) sites show potential for soil moisture retrieval in forested areas. 
IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 14 https://doi.org/10.1109/ 
JSTARS.2021.3121206. 

Baur, M.J., Jagdhuber, T., Feldman, A.F., Chaparro, D., Piles, M., Entekhabi, D., 2021. 
Time-variations of zeroth-order vegetation absorption and scattering at L-band. 
Remote Sensing of Environment 267, 112726. 

Becker, F., Choudhury, B.J., 1988. Relative sensitivity of normalized difference 
vegetation index (NDVI) and microwave polarization difference index (MPDI) for 
vegetation and desertification monitoring. Remote sensing of environment 24 (2), 
297–311. 

Bircher, S., Andreasen, M., Vuollet, J., Vehviläinen, J., Rautiainen, K., Jonard, F., 
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