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Ice saturation (and supersaturation) is a frequent phenomenon in cold regions of the upper 
troposphere. Its existence is essential for the formation of ice clouds and a necessary condition for the 
persistence of contrails. Its spatial and temporal evolution is important for weather and climate. The 
ice saturation and supersaturation values are found in the upper tail of the probability density function 
(pdf) of upper tropospheric humidity with respect to ice (UTHi). Here, we analyse the changes in the 
frequency of occurrence of ice saturation and supersaturation from 1979 to 2020 and compare them to 
changes in the mean UTHi. Our results show that while the mean UTHi increases near-globally with a 
rate of about 0.15% per decade, high UTHi values exceeding the 70%, 80%, 90% and 100% thresholds 
increase faster than the mean, at rates of about 0.7%, 0.6%, 0.4% and 0.3% per decade, respectively. 
The increasing rates of values found in the upper tail of the UTHi pdf suggest that the ambient 
conditions for cirrus and contrail formation and persistence will be more favourable in the future and 
this is expected to further enhance the impact of aviation on climate.

The distribution of water vapour in the upper troposphere and lower stratosphere (UT/LS) is of central 
importance in several ways: it plays a major role in the balance of planetary radiation; it influences and responds to 
atmospheric motions and plays a key role in the UT/LS chemistry1. In the upper troposphere where temperatures 
are persistently below − 40 °C, it is convenient to express the water vapour concentration as relative humidity 
with respect to ice (RHi). Based on tropical in situ observations, it has been found that upper tropospheric RHi 
is close to 100% over convective regions and RHi is often less than 10% in regions with subsidence2.

The appearance of Ice Supersaturated Regions (ISSRs) is common in the upper troposphere and even occurs 
in the lowermost stratosphere3,4. In these regions, where RHi may exceed 100%, cirrus clouds are potentially 
formed, and aircraft can produce long-lasting condensation trails (contrails) which may last for up to many 
hours. Cirrus clouds can affect Earth’s radiative balance by modifying the solar and infrared radiation within 
the atmosphere. Besides naturally formed cirrus clouds, persistent contrails produced by aircraft also affect the 
radiative budget5. Studies show that these contrails contribute to anthropogenic climate change6,7.

The frequency of occurrence and coverage of natural cirrus and contrails is related to the frequency and 
degree of ice supersaturation in the UT/LS, which may change in a changing climate even if the mean relative 
humidity might be constant8,9, since the distribution of relative humidity (its probability density function) may 
change.

From a satellite perspective, RHi, a local quantity, is not at hand. Instead, a related quantity, Upper-
tropospheric Humidity with respect to ice, UTHi, can be retrieved as a weighted average of RHi profiles in the 
upper troposphere10. UTHi may change in a changing climate either by changes of the underlying RHi profiles 
or by changes in the weighting function11. UTHi can be retrieved from satellite data in the strong water band 
between about 6 and 7 μm wavelength. Such data are available since 1979 from the series of HIRS instruments 
on the polar orbiting NOAA and METOP satellites.

Other groups used different types of satellite measurements (e.g. microwave sounders12) or even vertically 
integrated radiosonde profiles (e.g. Köhler et al.13) for their investigations. Other global datasets include the free 
tropospheric humidity (e.g., Brogniez et al.14,15), UTH from microwave measurements (e.g., Tsamalis et al.16; 
Gray et al.17; Good et al.18), and others (e.g. Shi et al.19). In this study, we have selected to work with HIRS satellite 
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data. We do not say that the HIRS dataset is better than others, but it has some strengths compared to others. 
The most important one is its length of over 40 years of nearly global coverage. To our knowledge, there is no 
other dataset with this property. For the quite variable water vapour field, decades-long time series are necessary 
to detect small trends20. Microwave datasets have the advantage of not being sensitive to clouds, but they are 
less long. Radiosonde data lack homogeneous global coverage, and older ones had too strong errors in the cold 
upper troposphere. Moreover, different sonde types have different error characteristics. Explicit datasets on ice 
supersaturation do not exist. Instead, there are many studies in the past looking for various properties of ISSRs, 
some of them reviewed in Gierens et al.3. None of these studies was about the long-term trends.

Over the years, several attempts have been made to produce a continuous data set of UTHi from HIRS 
satellite data21–24, but these focussed on the bulk and not on the high tail of the UTHi distribution. The initial 
methodology was developed by Jackson and Bates22, based on essential work done by Soden and Bretherton21. 
The algorithm relates UTHi to the brightness temperature in channel 12, T12, and additionally uses T6, in order 
to account for different temperature vs. pressure profiles between the tropics and higher latitudes. Shi et al.25 
showed that the T6 dataset contained a bias due to the increase of the CO2 concentration, whereas Shi and 
Bates23 showed that the T12 dataset suffered from a break approximately at the middle of the timeseries due to 
the switch from HIRS2 to HIRS3/4, which was accompanied by a change in the central wavelength of channel 12 
from 6.7 μm to 6.5 μm and a subsequent step change in the measured brightness temperature values. To obtain 
homogeneous times series of ice supersaturation (that is, in the upper tail of the UTHi distribution) Gierens 
and Eleftheratos26 deemed it necessary to reformulate the retrieval and use different coefficients for HIRS2 on 
one hand, and HIRS3/4 on the other. The homogeneity of time series of UTHi and ice supersaturation has been 
checked thoroughly for 10° latitude bands, using a statistical breakpoint analysis. Remaining small step changes 
have been corrected. The applied bias corrections are discussed in the Methods section.

The purpose of this work is to report the observational trends in ice supersaturation in the past 40 years, which 
is the large-scale humidity environment in which cirrus clouds and contrails form and persist. To our knowledge 
no other study has examined changes in ice supersaturation over the past 40 years using observational data at a 
near-global scale. We present the general picture of changes in ice saturation and supersaturation in the recent 
past, providing possible indications of the likely course of their trends in the near future, which may in turn 
affect future trends in cirrus and contrails. Note that this is not a dataset of cirrus or contrail occurrence and 
therefore cannot be used to assess the impact of cirrus and contrails on climate. However, ice supersaturation 
is the “conditio sine qua non” of cirrus and contrails. Thus, if ice supersaturation or its distribution is wrong in 
models (or not represented at all), one cannot be sure about the modelled distribution, properties, and trends 
of cirrus and contrails, although their frequency and coverage for present day and the past can be fixed using 
appropriate satellite data. Satellite simulators that calculate UTHi from the model’s humidity profiles should be 
available for such a purpose, but it might suffice as well to feed these profiles into radiative transfer models and 
to compute the corresponding brightness temperatures. In this regard, we consider the long-term UTHi and 
ice supersaturation data, and the knowledge gained from long-term trend analyses, useful for evaluating and 
validating modern cloud parameterisations, namely those that allow ice supersaturation to occur.

Results
Figure 1 shows the mean UTHi for the 1979–2020 period in 2.5° × 2.5° resolution. The climatology divides the 
map roughly in three zones. Large UTHi in the tropics, mainly over land (central Africa, west Africa and the 
Amazon area), the west branch of the Walker circulation, and the Indian Ocean associated with the Madden-
Julian oscillation, are probably a signature of deep convection which transports large amounts of water vapour 
into the upper tropical troposphere. The adjacent subtropical latitude zones are characterised by low UTHi, 
which reflects the predominant subsidence in these regions. These two features are essential parts of the Hadley 
cells. The mid-latitudes up to 60° north and south are again characterised by higher UTHi values. Indeed, these 
are regions where ice supersaturation is a frequent phenomenon.

Trend analysis is performed in the monthly mean UTHi values (Fig.  2) as well as the monthly fraction 
exceedances of the UTHi above 70, 80, 90 and 100% (Fig. 3). All trends have been estimated from monthly de-
seasonalized UTHi data (see Methods). Results show that there is a clear dependence between the mean UTHi 
anomalies trends and the latitude. At the mid-latitudes (between 30° and 60° N/S), trends are positive, and they 
exhibit relatively low standard error. It is also observed that trends are increasing as the latitude increases. In the 
tropics (between 30° S and 30° N) the observed trends are negative except for the area between 0–10° N. Standard 
error is also relatively low. Therefore, based on the data, for the period between 1979 and 2020 the monthly mean 
UTHi tends to increase in the midlatitudes and decrease in the tropics. The trends range between − 0.19 and 
0.51%/decade. The globally averaged trend is about 0.15% per decade, so the near global monthly mean UTHi 
tends to increase in this period. Statistical significance tests show that the trends are indeed significant at the 99% 
significance level in all latitude zones except from 20–40°S and 0–30°N.

The trends and their respective statistical significance in the fraction exceedances anomalies above certain 
thresholds are also explored (Fig. 3). The trends follow the same pattern as in the monthly mean UTHi values, 
with the high latitude zones exhibiting higher trends than the tropics. Trends seem to be larger than in the mean 
UTHi values, ranging between 0 and 1.39%/decade for 70%, between 0 and 1.14%/decade for 80%, between 
− 0.01 and 1.27%/decade for 90% and between 0 and 1.04%/decade for 100%.

All trends exhibit relatively low standard error, and they are tested for statistical significance in the 99% 
confidence level. For the 70 and 80% thresholds, trends are significant except in the 10–20° N/S zones. The 
trends for the 90 and 100% thresholds are significant except in the 10–20° N and the 0–20° S zones. Near global 
average trend values are 0.69%/decade for 70%, 0.57%/decade for 80%, 0.43%/decade for 90%, and 0.3%/decade 
for 100%. The trends decrease with increasing thresholds which implies changes in the distribution of UTHi. 
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Fig. 2. Trend analysis applied on the monthly mean de-seasonalized anomalies of UTHi. Trends are calculated 
for the period between 1979–2020. Statistically significant trends (P < 0.01, Mann-Kendall trend test) are 
marked with green triangle symbols.

 

Fig. 1. Mean UTHi over the period from 1979 to 2020. Red (blue) colours demonstrate dry (humid) areas.
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Table 1 summarizes the observed trends in the mean UTHi values and in the values that are found in the upper 
tail of its probability density function, exceeding 70%, 80%, 90% and 100%.

Discussion
Results from the analysis presented in this paper can be compared to studies similar in nature as the one by Irvine 
and Shine27 where they investigated the change in the frequency of Cold Ice Supersaturated (CISS) regions from 
the 1979–2005 (historical) period to mid-21st century and until the end of it with the help of global climate 
models. In their study, they conclude that the change of such regions is regional rather than globally uniform. 
They take a close look at the northern hemisphere polar regions, the mid latitudes as well as the tropical regions 
which contain the northern and southern parts of the tropics. In the northern polar region, they report an 
increase in the CISS frequency of 1.7% points by mid-century and 4.9 by the end of the century. In the northern 
hemisphere midlatitudes there is a small increase in the frequency of the CISS regions of around 0.7 and 0.9% 
points until the mid-21st century and the end of it, respectively. Some discrepancies are found between the 
models on the sign of the change. In the tropics, they report a strong decrease in the CISS frequency of 3.3% 
points by the mid-century and of 8.8 points by the end of the century. On a global scale, they report a multi-

Trends
(% dec−1) Mean UTHi 70% fraction exceedances 80% fraction exceedances 90% fraction exceedances 100% fraction exceedances

50–60°N 0.51 0.98 1.00 1.03 0.80

40–50°N 0.43 1.19 0.97 0.75 0.47

30–40°N 0.41 1.23 0.89 0.53 0.28

20–30°N 0.02 0.40 0.30 0.14 0.07

10–20°N –0.12 0.04 0.05 –0.01 0.00

0–10°N 0.05 0.62 0.53 0.25 0.11

0–10°S –0.18 0.20 0.20 0.08 0.05

10–20°S –0.19 0.00 0.01 –0.01 0.01

20–30°S –0.01 0.38 0.25 0.11 0.06

30–40°S 0.13 0.85 0.51 0.27 0.16

40–50°S 0.29 1.32 0.95 0.76 0.53

50–60°S 0.48 1.07 1.14 1.27 1.04

Table 1. Trends (% per decade) in UTHi and its fraction exceedances above 70, 80, 90 and 100% for the period 
between 1979–2020 per 10-degree latitude zone. Bold: statistically significant with P < 0.01 according to the 
Mann-Kendall trend test.

 

Fig. 3. Trend analysis applied on the monthly mean de-seasonalized anomalies of fraction exceedances of 
UTHi above 70%, 80%, 90% and 100%. Trends are calculated for the period between 1979–2020.
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model-mean decrease of CISS frequency from 11% (historical period) to about 7% (end of century). Comparing 
our trends analysis’ results on the fraction exceedances anomalies to the Irvine and Shine research27, there is 
agreement in the sense that there is no globally uniform response, and that the high UTHi values tend to increase 
in the last 40 years in the midlatitudes. Negative trends are not observed in the tropics, at least regarding the 
monthly mean upper tail UTHi values. Some statistically significant negative trends can be found in the tropics 
in the mean UTHi values, but no negative trends can be found in the tropics for the upper-tail UTHi values.

Wright et al.28, investigated the zonal mean relative humidity response between two model simulations. One 
with 1979 concentrations of greenhouses gases and one with doubled CO2. Results from their Fig. 1 indicate a 
distinctive pattern dependent on latitude, where the relative humidity decreases throughout the tropical upper 
troposphere, subtropics and extratropical free troposphere, with a slightly more noticeable decrease in the 
Southern Hemisphere. The same figure also shows a reversal of this trend in the midlatitudes. Comparing our 
findings to this study, there is agreement regarding the general pattern of the response. In our data, mean UTHi 
values tend to decrease in the tropics. That trend reverses in the midlatitudes and keeps increasing until below 
the polar regions. There is also a slightly more negative trend in the southern part of the tropics which coincides 
with their findings.

Likewise, Sherwood et al.29 used 18 general circulation models comparing the first ten years of simulations to 
ten years after the CO2 has doubled. Rate of CO2 increase is about 1% per year. Specifically, they examined the 
relative humidity changes divided by the change in global mean sea surface temperature for the same duration 
to obtain a climate sensitivity of relative humidity. Their results show negative changes in relative humidity in 
the midlatitude and tropical upper most troposphere. Large increases in relative humidity are estimated around 
the extratropical tropopause and just above the tropical tropopause, each of which reaches about 2% or more 
per kelvin of warming. Again, there is a qualitative agreement between our results and the study29 regarding the 
observation of negative trends in the tropics and the reversal of the trend as we move to higher latitudes.

We note here that Wright et al.28 identified changes in circulation and temperature due to a doubling of 
atmospheric CO2 as key drivers for the simulated RH changes, while Sherwood et al.29 reached similar 
conclusions about the mechanisms that govern global and regional RH changes in a warmer climate. Our results, 
which are based on observational data, align with and generally support the modelling results. Therefore, some 
possible physical reasons for the observed trends in mean UTHi can be linked to changes in circulation and 
temperature due to increased greenhouse gases.

But we must be aware of the difference between relative humidity (a local quantity) on one hand and UTH (a 
vertical integral of relative humidity) on the other. Two of the authors (Gierens and Eleftheratos11) investigated 
changes in UTH under constant RH. As UTH or UTHi are weighted averages of profiles of RH, there are two 
possibilities: Either the weighting function that defines UTH changes in a warmer atmosphere or the RH profiles 
change, or both. The authors showed that, if the distribution of RH remained constant, climate change would 
modify the weighting functions such that lower UTH would result, in contrast to what the satellite data show. 
Thus, the distribution of RH cannot be constant, it must shift to higher values far enough to overcompensate 
the UTH-decreasing effect of the weighting function. This means that as the temperatures rise, the absolute 
humidity is rising as well, but more than what is needed to compensate for the decrease in RH. Why this is so 
is not known and has, to our knowledge, never been asked. One possibility is that the temperature increase 
is stronger in the lower than in the upper troposphere (see Table 1 in Gierens and Eleftheratos11). This effect 
is strong in the extratropics but weak in the tropics, thus consistent with the trends that we find. This could 
mean that more water vapour than is needed to balance the RH changes can be transported up into the upper 
troposphere, leading to an increase in upper tropospheric RH in the extratropics and subsequently in the UTH 
field.

Our results of negative trends in UTHi in most of the tropical regions (Fig. 2) may be linked to changes in 
the Hadley Circulation (HC) and increasing dryness due to CO2-induced warming. Lau and Kim30 analysed 
model projections from CMIP5 (Coupled Model Intercomparison Project Phase 5) and found robust signals 
of both strengthening and weakening components of the Hadley Circulation caused by CO2-induced warming, 
which drive a pattern of global dryness featuring widespread reduction of tropospheric humidity and increased 
frequency of dry months, particularly over subtropical and tropical land regions. They report a strengthening of 
the HC manifested in a “deep-tropics squeeze”, i.e., a deepening and narrowing of the convective zone, enhanced 
ascent, increased high clouds, suppressed low clouds, and a rise of the level of maximum meridional mass 
outflow in the upper troposphere of the deep tropics. Their study emphasized the physical connection of RH 
pattern with changes in HC. The anomalous RH pattern stems from the different response rates of moisture 
convergence and temperature as a function of height and latitude. As a result of CO2-induced warming, both 
tropospheric temperature and absolute humidity are increasing everywhere. In the deep tropics, below 400 hPa, 
RH is enhanced due to strong convection. However, in the layer from 400 hPa to 150 hPa, the RH decreases. 
This is due to the faster rate of warming in the upper troposphere compared to the lower troposphere, as a result 
of the moist adiabatic constraint. Here, high RH air transported from below by convection encounters regions 
of higher temperature in the upper troposphere, resulting in an RH deficit. This RH deficit pattern is further 
modified by subsidence anomalies associated with changes in HC as discussed in their Fig. 330. According to 
these findings, it is not surprising that we find decreases in our mean UTHi in most of the tropical regions.

Furthermore, the results of Lau and Kim30 of increased high clouds in the tropics agree with our results 
of increasing trends in ice saturation and supersaturation, as the latter are the natural humidity conditions 
associated with the formation and persistence of cirrus clouds. Decreases in ice supersaturation in the tropics, as 
reported by Irvine and Shine27 by the end of the century, do not emerge from our analysis of observational data 
at least for the period under consideration 1979–2020. We expect the positive trends in ice supersaturation to 
continue, but we cannot predict with certainty until when or if they will turn negative in the future.
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When considering both Figs. 2 and 3, it appears that most of the tropical regions have negative trends in 
Fig. 2, while the tropical regions in Fig. 3 do not have negative trends. This shows that there is an increasing 
frequency of high UTHi cases and simultaneously a decrease of the UTHi mean. This obviously means that the 
probability density function (pdf) of UTHi has changed. To investigate the changes in the pdf of UTHi, Fig. 4 
shows the pdfs of UTHi for the northern and southern midlatitudes and the tropics, for the periods 1979–1999 
and 2000–2020, and for the whole period 1979–2020. A logarithimic scale is used on the y-axes to highlight the 
difference between the pdfs in the extreme values (i.e. for UTHi > 70/80/90/100%). Although the shape of the 
pdf has not changed much from the period 1979–1999 to the period 2000–2020, there appears to be a shift in 
the pdf toward higher UTHi values and toward fewer lower values, although the latter is not apparent from the 
logarithmic scale. Why the pdf has changed in the past 40 years and how it will evolve in the future is an open 
question for future research.

Finally, we briefly mention some things that emerge from this study that other studies have not revealed. The 
above-mentioned studies are modelling studies based on the output of climate models. Our results are not based 
on climate simulations but on observational data. Creation of a continuous satellite data set of ice saturation and 
supersaturation for the last 40 years was not attempted in the modelling studies. The qualitative agreement of our 
results with the modelling studies reveals that our data support the model results. If there are any discrepancies, 
they probably point to model deficiencies. Our results focus on both mean UTHi values   and values   in the high 
tail of the UTHi distribution. The modelling studies did not analyse long-term observational data of the bulk and 
the high tail of the UTHi pdf in parallel, as we have done here. Our findings of increasing trends in ice saturation 
and supersaturation reveal a change in the pdf of UTHi over the past 40 years toward higher UTHi values, as 
discussed above, that was not revealed by the modelling studies.

Conclusions
To conclude, we have produced a homogeneous timeseries of UTHi values spanning 1979–2020 from HIRS 
satellite observations. The data are produced by the 2nd order retrieval26, which was necessary to make the 
HIRS2/3–4 data consistent not only in the bulk, but also in the upper tail of the distribution. Before the 
application of the retrieval algorithm, we adjust the T6 data by removing a false trend related to the increase of 
the CO2 concentrations. We also perform a bias correction in the numerator of the UTHi retrieval algorithm to 
counter apparent jumps around the year 2000. Then we perform a trend analysis on the UTHi data focusing on 
the mean values as well as on the upper tail of the data. For the mean values, trend analysis shows that estimated 
trends are about 0.4–0.5% per decade in the northern midlatitudes, between 0.1 and 0.5% per decade in the 
southern midlatitudes, and that there are negligible or negative trends in the tropics (–0.19 to 0.05%). For the 
UTHi threshold exceedances in the northern midlatitudes, we observe positive trends of about 0.9 to 1.2%/
decade for 70%, 0.9 to 1%/decade for 80%, 0.5 to 1%/decade for 90% and 0.3 to 0.8%/decade for 100% UTHi 
threshold exceedances values. For the southern midlatitudes we observe positive trends of about 0.8 to 1.3%/
decade for 70%, 0.5 to 1.1%/decade for 80%, 0.3 to 1.3%/decade for 90% and 0.2 to 1% for 100% UTHi threshold 
exceedances values. For the tropics, trends are between 0 and 0.6%/decade for 70%, 0 to 0.5%/decade for 80%, 0 
to 0.25%/decade for 90%, and 0 to 0.1%/decade for 100% UTHi threshold exceedances values.

Fig. 4. Change in the probability density function of UTHi in the northern and southern tropics and 
midlatitudes from the first 20 years (1979–1999, blue lines) to the second 20 years (2000–2020, red lines). 
Logarithmic scale is used in y-axes. The curves have similar shape, but the pdf of the period 2000–2020 has a 
longer tail to high and supersaturated values. The black lines show the pdfs for the whole period 1979–2020.
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Overall, our results indicate that the mean UTHi is increasing globally with about 0.15% per decade with 
a latitude-dependent varying trend. This estimate is based on brightness temperature measurements between 
1979 and 2020 by the HIRS satellite instruments and therefore our UTHi quantity is a radiance-based quantity. 
The estimated trend of 0.15% dec–1 points to an overall increase in UTHi of about 0.6% in the last 40 years. Our 
analysis also reveals that the observed statistically significant increasing trends in the midlatitudes are larger for 
values near or above the ice saturation point than at mean UTHi values, which may have implications in the 
formation of cirrus and contrails since it is known that the in-situ formation of cirrus clouds via the homogeneous 
(e.g. Koop et al.31) and heterogeneous (e.g. Murray et al.32; Hoose and Möhler33) nucleation pathways greatly 
needs ice supersaturation conditions. Analysis of the probability density function (pdf) of UTHi for the northern 
and southern midlatitudes and the tropics (Fig. 4) indicates that the pdf of UTHi has changed after the year 2000. 
Although the shape of the pdf has not changed much from the period 1979–1999 to the period 2000–2020, there 
appears to be a shift in the pdf towards higher UTHi values and fewer lower values. Such a shift implies a large 
change in the tail of the distribution, meaning that the conditions for in-situ cirrus cloud formation and contrail 
formation can occur much more often after a slight change in the mean supersaturation. This is expected to be 
accompanied by changes in cirrus clouds and contrails from aircraft emissions, with implications for climate, 
however the analysis of the cloud behaviour and the dependence of cirrus cloud trends on ice supersaturation 
trends is beyond the scope of this study.

Methods
The data used for this study originate from the HIRS instrument onboard the NOAA satellites 6 to 17 and the 
METOP satellites 02 and 01 ranging between 1979 and 2020. Satellites NOAA 6–14 carried the HIRS2 version 
of the instrument whereas NOAA 15–17 and METOP 02 and 01 carried the HIRS3 or HIRS4 version. From 
the HIRS instrument, the brightness temperatures at channels 12 (T12) and 6 (T6) were retrieved. As the data 
were produced by HIRS instruments which were onboard different satellites, they could not be mixed directly 
to produce a homogeneous long time series due to the changes and variations this instrument has undergone 
over the years. Changes in channel frequencies, filter functions, instantaneous field of view (IGFOV), as well as 
the switch from HIRS version 2 to HIRS version 3 and 4 are some of the alterations applied to this instrument24. 
The switch from HIRS2 to HIRS3/4 was accompanied by a change in the central wavelength of channel 12 from 
6.7 μm to 6.5 μm and a subsequent step change in the measured brightness temperature values with an average 
discontinuity of about 7 K. HIRS2 data span until July 2005 whereas HIRS3/4 data begin from January 1999. 
Therefore, between 1999 and 2005 there is an overlap period where both instruments are active. Shi and Bates23 
tried to solve this discontinuity issue between HIRS2 and HIRS3/4 measured T12 values by performing inter-
satellite calibrations which worked well for the tropics23,34. But it turned out that the correction was not good 
enough in the lower tail of the T12 distribution, that is, for high values of UTHi, where a large unphysical trend 
to higher values was observed in the data35.

The continuous increase of Carbon dioxide (CO2) concentrations from approximately 330 ppmv to 410 ppmv 
between 1979 and 2020, has resulted in a decrease in the brightness temperatures of channel 6 of about 2 K, as 
simulations show. To account for this false trend, the T6 values have been corrected with an adjustment that is 
proportional of the difference between the mean CO2 concentration in each month and a reference value of our 
choice (370 ppmv). Details on the procedure of the T6 data correction are provided in the Supplement Part S1.

Next, the change between the HIRS2 to HIRS3/4 version and the consequent break in the time series needs 
to be examined. This break in the T12 dataset creates a discontinuity in the retrieved UTHi dataset. Gierens 
and Eleftheratos26 came up with two sets of coefficients for the T12 data, one for HIRS2 and one for HIRS3/4 to 
counter this issue. Although this removed most of the discontinuity of about 7 K, smaller discontinuities of the 
order 0.1 K remained, as a breakpoint analysis36,37 revealed. These small discontinuities have been determined 
in latitude zones of 5° and after the resulting correction no further breaks are evident. Details are provided in 
the Supplement Part S2.

The trend estimates presented in Table 1 were determined from linear fits applied to monthly de-seasonalized 
UTHi data. Data were de-seasonalized by subtracting the long-term monthly mean (1980–2019) pertaining 
to the same calendar month. Statistical significance of trends was determined by applying the nonparametric 
Mann-Kendall rank statistic trend test38 to the de-seasonalized series.

The monthly UTHi data cover the period 1979–2020 and are available on a 2.5o grid from 60o N to 60o S. The 
spatial resolution of 2.5o is useful to study systematic changes of the humidity conditions that are favourable for 
cirrus cloud formation on large scales, but apparently, the monthly 2.5o dataset cannot be used for short-term 
analyses, for example, weather forecasts of cirrus clouds which require high temporal and spatial resolution.

Data availability
Monthly UTHi data and deseasonalized monthly UTHi anomalies analysed in this study, as well as the respec-
tive fractions of UTHi threshold exceedances above 70, 80, 90 and 100%, are available in the Zenodo repository, 
https://zenodo.org/records/13755230.
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Part S1. Brightness temperatures corrections at channel 6 (𝑻𝟔) 

To account for the false trend in the 𝑇6 data due to the increased 𝐶𝑂2 concentrations (Shi et al., 2016), 

the 𝑇6 values have been corrected with the following steps. First, we calculate the ratio of the temper-

ature decrease compared to the 𝐶𝑂2 increase: 

 
d[𝑇6]

𝑑[𝐶𝑂2]
=  

−1.98 𝐾

(410 − 330) 𝑝𝑝𝑚𝑣
= −0.02475

𝐾

𝑝𝑝𝑚𝑣
 

Equation 1 

 
Then we establish a reference value of 370 ppmv and we apply the following correction algorithm in 
each 𝑇6 value. 

𝑇6′( 𝑚) = 𝑇6(𝑚) + |−0.02475| ∗ ([𝐶𝑂2(𝑚) − 370]) 
Equation 2 

 
Where 𝑇6′ represents the corrected 𝑇6 values. By applying this formula, the 𝑇6 values are adjusted by 
a value proportional of the difference between the 𝐶𝑂2 concentration in each month and the reference 
value of our choice. The correction algorithm is applied on a monthly scale meaning that all 𝑇6 values 
that fall under the same month are adjusted with the same correction value. Figure S1 shows the 𝑇6 
data for the tropics and midlatitudes before and after the corrections due to the 𝐶𝑂2 increase. The left 
panel (blue lines) shows the false trend in 𝑇6 due to the 𝐶𝑂2 increase and the right panel (red lines) 
shows the corrected 𝑇6 data where the false trend in 𝑇6 has been corrected.  
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a 

 
b 

Figure S1. 𝑇6 temporal distribution on a monthly scale over 1979–2020 before (left) and after (right) 
the bias correction due to the 𝐶𝑂2 increase for the tropics (a) and the mid-latitudes (b). Trends per 
decade ± the standard error are included. 

 

Part S2. Brightness temperatures corrections at channel 12 (𝑻𝟏𝟐) 

A simple bias correction method was followed. First, we calculate the result of the equation 𝑎 +

𝑏 × 𝑇12 + 𝑐 × 𝑇12
2  for all the point 𝑇12 data (coefficients 𝑎, 𝑏, 𝑐 for HIRS2 and HIRS3/4 𝑇12 data are from 

Table 1 of Gierens and Eleftheratos, 2019). Then we resample this equation result in a 2.5° by 2.5° grid 
separately for HIRS2 and HIRS3/4. Per 5° of latitude, we estimate a mean value of this equation across 
all months, and we do the same for HIRS2 and HIRS3/4 grids. Subtracting the HIRS3/4 from the HIRS2 
mean value for the same latitude zone we get a correction value that is dependent on latitude. 
Afterwards, these correction values are added to the HIRS3/4 equation result for all point data. 
Correction values are provided in Table S1. Then, UTHi is recomputed in monthly, daily, decadal time 
scales in the 2.5 by 2.5 grid. 
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 In order to test this methodology and compare the datasets before and after the bias corrections, we 
use a breakpoint analysis based on the calculation of the external variance between two consecutive 
segments of the UTHi timeseries. 

 

Table S1. Difference of the mean HIRS2 and HIRS3 monthly a + b × T12 + c × T12
2  values per 5-degree 

latitude range. 

 Latitude zone Difference  Latitude zone Difference 

N
o

rt
h

er
n

 H
em

is
p

h
er

e
 

55-60°N –0.0274 

S
o

u
th

er
n

 H
em

is
p

h
er

e
 

55-60°S –0.0285 

50-55°N –0.0344 50-55°S –0.0214 

45-50°N –0.0427 45-50°S –0.0285 

40-45°N –0.0542 40-45°S –0.056 

35-40°N –0.0609 35-40°S –0.08 

30-35°N –0.0675 30-35°S –0.1007 

25-30°N –0.0924 25-30°S –0.1065 

20-25°N –0.1128 20-25°S –0.1216 

15-20°N –0.1276 15-20°S –0.1358 

10-15°N –0.1235 10-15°S –0.1319 

5-10°N –0.0962 5-10°S –0.1136 

0-5°N –0.0899 0-5°S –0.0951 

 
 
To identify the breaks in a time series we decompose the total variance into external and internal 
variance. Then, since there is one break in the timeseries that we are aware of (HIRS2 to HIRS3/4 tran-
sition) we consider a timeseries with 1 break dividing into 2 segments. Internal variance is the variance 
inside each one of the segments whereas external variance is the variance between the means of the 
two segments (Lindau, 2003; Lindau and Venema, 2013). Identifying the maximum external variance, 
which is the maximum difference in the means of the two segments, can give us information on 
whether there is a break, as well as where (in which time frame) this break occurs. The relevant algo-
rithm is provided in Eq. 3. 
 

1

𝑛 − 1
∑ ∑(𝑥𝑖𝑗 − �̅�)

2

𝑛𝑗

𝑗=1

𝑁

𝑖=1

=  
1

𝑛
∑ 𝑛𝑖(𝑥�̅� −  �̅�)2 +

1

𝑛
∑ ∑(𝑥𝑖𝑗 −  𝑥�̅�)

2

𝑛𝑗

𝑗=1

+
1

𝑛(𝑛 − 1)

𝑁

𝑖=1

 

𝑁

𝑖=1

∑ ∑(𝑥𝑖𝑗 − �̅�)2

𝑛𝑗

𝑗=1

𝑁

𝑖=1

 

Equation 3 

 

In Eq. 3, the left side of the equation is the total variance. The right side contains the decomposition 
of the total variance to the external (left term), the internal (middle term) and a third term, the error 
of the total mean. Since the last term of a given time series remains a constant then the sum of the 
external and internal variance is a constant too and it is independent of the number of segments that 
we separate the timeseries into. The length of the time series is considered as 𝑛. It consists of N seg-
ments and each of the segments containing 𝑛𝑖 members. Single values in the time series are defined 
as 𝑥𝑖𝑗, where 𝑖 is the segment and 𝑗 is the place of each value in each segment. The mean of the 𝑛𝑖  

elements is defined as 𝑥�̅� whereas �̅� is total mean of the time series (Lindau, 2003; Lindau and Venema, 
2013). Calculating the external variance in a loop while dividing it always in two segments for all pos-
sible partition combinations of the timeseries and noting each time the external variance, should lead 
us to the time frame in which the external variance is maximum. For example, the first combination of 
partitions will separate the time series into two parts. The first part will consist of 𝑛1 = 1 values and 
the second part of 𝑛2 = 𝑛 − 𝑛1 values. In the next iteration the first part will consist of 𝑛1 = 2  and 
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the second part will consist of 𝑛2 = 𝑛 − 𝑛1 and so on. When all iterations are completed then we can 
identify the period in which the external variance is maximum and therefore there is an evident break 
in the time series. As an additional validation method, we separate the dataset into time series for 
each 10 degrees of latitude to see if there is the break is identified in all the latitude zones or just in a 
few. If the break occurs in all latitude zones and always in the same period which collides with the 
overlap period (1999–2005) of the HIRS2 to HIRS3/4 transition, then it is possible that there is direct 
link. We use the monthly averaged data for this analysis. 

Afterwards, we apply the breakpoint analysis in the UTHi and the UTHi anomalies before and after the 
bias correction as was described above. To calculate the UTHi anomalies we de-seasonalize the data 
by subtracting the long-term (1980-2019) average January, February etc. from each corresponding 
month. Figure S2 shows the difference in external variance behavior. Mean external variance over all 
latitudes after the bias correction is significantly smaller and no longer peaks visible between 1999–
2005.  

The time series of fraction exceedances of UTHi above certain thresholds are also tested with the 
breakpoint analysis using the external variance as a criterion for the identification of breaks. Fraction 
exceedances grids are calculated by counting the number of UTHi values that satisfy the condition UTHi 
>70% (or 80%, 90%, 100%) that fall in a 2.5 by 2.5-degree grid and then dividing by the total number 
of UTHi values that fall in the same grid. It is important to note that to account for any sub-grid-scale 
variability and the relatively coarse resolution of the geographical data grid compared to the actual 
sizes of the ISSRs, it is appropriate to also select UTHi thresholds lower than 100% as others have done 
when facing the same issue (Irvine and Shine, 2015). The horizontal scale of the data grid is 2.5°x2.5° 
whereas a typical length of an ISSR is 150 km (Gierens and Spichtinger, 2000). Newer studies about the 
pathlengths of ISSRs along flight tracks, lead to shorter mean pathlengths (Spichtinger and Leschner, 
2016). Fraction of UTHi exceedances have approximately the same behaviour as the mean UTHi values, 
exhibiting relatively higher external variance around 1999–2005 (the instrumentation change period) 
before the bias correction. After the bias correction, the external variance no longer exhibits a strong 
peak around 1999. Figure S3 (a, b, c, d) shows the mean external variance timeseries (which is calcu-
lated for each 10° of latitude and then is averaged over) and the respective standard deviation, for the 
fraction of UTHi exceedances over 70%, 80%, 90% and 100%. Subfigures (b, d, f, h) contain the calcu-
lated external variance timeseries for the fraction of UTHi exceedances anomalies for the same thresh-
old values. 

The figures show that after the bias corrections, there is no longer a significant break visible in the 
UTHi time series both in the mean values as well as in the upper tail of the distribution of the data. 
Given these, we then calculated UTHi on 2.5° × 2.5° data grid for 60°S–60°N on a daily, monthly, and 
decadal time scale. Finally, trends over the 40-year period are calculated.  
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a 

 
b 

Figure S2. Mean external variance of (a) UTHi and (b) UTHi anomalies across all latitudes (60°N–60°S) 
± the respective standard deviation (shade) before (black) and after (blue) the bias correction. The 
external variance time series is calculated first for each 10° of latitude and then averaged for 60°N–
60°S. 
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Figure S3. Mean external variance of the fraction of UTHi exceedances above (a) 70%, (c) 80%, (e) 90%, 
(g) 100% and the respective standard deviation before (black) and after (blue) the bias correction. 
Subfigures b, d, f, h, show the calculated mean external variance timeseries for the fraction exceed-
ances anomalies of 70%, 80%, 90%, 100% respectively, between 60°N and 60°S and the standard devi-
ation signified with the shady areas. The external variance is calculated first for each 10° of latitude 
and then averaged for 60°N–60°S. 
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