Initial Evaluation of Underrepresented Occupants in Highly Autonomous Vehicles using VIVA+ Human Body Model

Andrew Harrison, SIMBIO-M 24th September 2024

Content & Overview

- Motivation and Background
- Tool and Process Overview
- Model Preparation
- Simulation Test Matrix
- Results
- Closing remarks

The research is funded by the European Union under Horizon 2020 for project number 101076868

[DLR Urban Modular Vehicle](https://www.dlr.de/en/fk/research-and-transfer/projects/global-projects/urban-modular-vehicle-umv) People Mover (UMV PM)

aware2all.eu

The research was conducted in cooperation with

University of Stuttgart
Institute of Engineering and Computational Mechanics

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them."

Institut für Fahrzeugkonzepte

Highly Autonomous Vehicles (HAVs) - Safety Considerations

Institut für Fahrzeugkonzepte **DLR**

Tool & Process Overview: Workflow

Tool & Process Overview: FE-Models & Input

Simplified sled model and support of the state of the Simplified sled model

Seat configuration of DLR UMV People Mover

Simplified Sled model

- Reduced to a simplified sled with UMV PM seating configuration
- Honda Odyssey second row passenger seat [5]
- Integrated seat belt system
- Two seat back angles: 18 $^{\circ}$ and 45 $^{\circ}$
- 40km/h Pulse (Höschele et al. 2022)
- Cabin interior interaction not considered

VIVA + 50F model (v1.0.1) [6]

- **50th percentile female model:** Tailored to represent an average female physique
- **Robustness:** superior resilience compared to alternatives
- **Computational efficiency:** simpler internal organs, kinematic joints
- **Rigid and simplified lumbar spine: Inadequate for** strain-based injury analysis.

Model Preparation: HBM metrics and physically disabled occupant

Model Preparation: HBM Posture and positioning

**2x AMD EPYC 7601, 32 cores, 2.2GHz*

Model Preparation: Seatbelt Restraint System

Simulation Test Matrix

Results: 50F-A (Case 2) vs. 50F-B (Case 4)

R L

Seatbelt B vs. Seatbelt A (case 4 vs. 2):

- Better retention of occupant $(-20mm_{x,T11}$ vertebrae, $t_{70ms})$
- Reduction in 0-3+ rib fracture probability
- Reduced loading and rotation of pelvis
- Leg lift-off present at t_{70ms} in both cases
- General kinematics similar

50DF-B (Case 5)

89,999908

Results: 50F-B (Case 4) vs. 50DF-B (Case 5)

50F-B (Case 4)

Andrew Harrison, SIMBIO-M, 24. September 2024 11 Andrew Harrison, SIMBIO-M, 24. September 2024 **Case 5, 50DF-B**

Results: 50DF-B (Case 5) vs. 50DF-C (Case 6)

Andrew Harrison, SIMBIO-M, 24. September 2024 Andrew Harrison, SIMBIO-M, 24. September 2024
 Case 6, 50DF-C

Institut für Fahrzeugkonzepte **DLR**

Results: 50F-B (Case 4), 50DF-B (Case 5) and 50DF-C (Case 6)

Results, Kinematic: 50F-B (Case 4), 50DF-B (Case 5) and 50DF-C (Case 6)

Results: 50F-Br, 45° reclined seatback (Case 7)

Seat belt interaction with the neck

- Large forward excursion with "clothesline" response
	- Sudden loading of ribs and pelvis
- The shoulder belt migrate towards the neck region
	- Increased $F_{x, tension}$ and $M_{y,extension}$ of neck
- Increased risk of Proximal Femur fracture in comparison to other cases with leg "lift-off"

Institut für
DLR Fahrzeugkonzepte $\sqrt{111}$

Results: All cases

Summary

3-point seatbelt:

• **Current 3-point passenger belt** restraint system **insufficient** for passengers of Highly Autonomous Vehicles. **Greater occupant excursions observed** in comparison to advanced belt systems. **Clotheslining** is observed for **reclined occupants**, extreme loads to neck and thorax.

3-point seatbelt (physically disabled occupant):

- **Seatbelt slippage** of **disabled occupant** caused **increased pelvic, torso and head rotations**, particularly evident in **pelvic rotation** (2x). Approximately **18% increase** of **BrIC** injury risk due to rotational velocity based injury metric.
- 3-point seatbelt **effectiveness reduced by 35%** for **disabled occupant** based on probability of unfractured ribs. **Neck transverse shear loading increased by 60%** for disabled occupant resulting from observed torso and head rotation.

4-point seatbelt:

• Significant **reduction in rib fracture probabilities** observed with **4-point harness**, increasing **seatbelt effectiveness by 50%** for **disabled occupants. Neck tensile forces reached threshold at 45ms**, requires mitigative systems to reduce neck loading.

Leg lift-off observed in each case without footrest. **Greater risk** of **occupant-occupant** and **Occupant-Interior** collision due to greater excursion. Effects to lower-extremity injuries requires further study.

Thank you for your attention!

Andrew Harrison, andrew.harrison@dlr.de

German Aerospace Centre, Institute of Vehicle Concepts

Andrew Harrison, SIMBIO-M, 24. September 2024

Contact Energy Distribution

References

- 1. Höschele, P.; Smit, S.; Tomasch, E.; Östling, M.; Mroz, K.; Klug, C.: Generic Crash Pulses Representing Future Accident Scenarios of Highly Automated Vehicles. SAE International Journal of Transportation Safety, Vol. 10, No. 2, pp. 09–10–02–0010, 2022.
- 2. Mroz, K.; Östling, M.; Klug, C.; Höschele, P.; Lubbe, N.: Supplementing Future Occupant Safety Assessments with Severe Intersection Crashes Selected Using the SAFER Human Body Model. SAE International Journal of Transportation Safety, Vol. 10, No. 2, pp. 09–10–02–0011, 2022.
- 3. Klug, C.; Ressi, F.; Leo, C.; Iraeus, J.; John, J.; Putra, I.P.A.; Svensson, M.; Keller, A.; Trummler, L.; Schmitt, K.U.; Kowalik, M.; Levallois, I.; Linder, A.: Comparison of Injury Predictors and Kinematics of Human Body Models Representing Average Female and Male Road Users in Car Crashes. 2024.
- 4. Kullgren, A.; Stigson, H.; Axelsson, A.: Developments in car crash safety since the 1980s. In on the Biomechanics of Injury (IRCOBI), I.R.C. (Ed.): 2020 IRCOBI Conference Proceedings, Online (postponed): IRCOBI, 2020.
- 5. Bridges, W.; Ganesan, V.; Barki, G.; Jayakumar, P.; Davies, J.; Umashankar, S.K.M.: Integrated Seat Belt System Model Development.
- 6. John, J.; Klug, C.; Kranjec, M.; Svenning, E.; Iraeus, J.: Hello, world! VIVA+: A human body model lineup to evaluate sex-differences in crash protection. Frontiers in Bioengineering and Biotechnology, Vol. 10, p. 918904, 2022

References

- 7. Forman, J.L.; Kent, R.W.; Mroz, K.; Pipkorn, B.; Bostrom, O.; Segui-Gomez, M.: Predicting Rib Fracture Risk With Whole-Body Finite Element Models: Development and Preliminary Evaluation of a Probabilistic Analytical Framework. Vol. 56, 2012.
- 8. Iraeus, J.: Stochastic finite element simulations of real life frontal crashes. With emphasis on chest injury mechanisms in nearside oblique loading conditions. Ph.D. thesis, Department of Surgical and Perioperative Sciences, Umeå, 2015.
- 9. Post-processing with Dynasaur: https://vivaplus.readthedocs.io/en/latest/user-guide/postprocessdynasaur/
- 10.Dahlgren, M.; Vishwanatha, A.; Soni, A.; Engstrand, K.; Fors- berg, J.; Yeh, I.: Belt Modelling in LS-DYNA®. 2020.
- 11.TUC Project: Far Side Load Case. https://tuc-project.org/ far-side-load-case/.