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Abstract

In recent decades, the increasing number of objects in Earth’s orbit has raised significant safety concerns for space-
craft operations. Particularly in Low Earth Orbit (LEO), missions are experiencing a rise in manoeuvre frequency to
maintain safety and operational continuity, mitigating the risk of colliding with hazardous objects. In this frame-
work, it is crucial to design, develop and maintain tools to compute fuel-efficient collision avoidance manoeuvres
(CAMs) in order to aid operators’ tasks while gradually minimizing the need for human intervention and advancing
towards spacecraft autonomy. Recent research efforts by the authors have focused on computing fuel-optimal CAMs
using convex optimisation. The dual objective is to minimize overall fuel consumption while respecting safety con-
ditions based on the probability of collision (PoC) reduction. Specifically, the approach combines sequential convex
programming, second-order cone programming, lossless convexification, and differential algebra to approximate the
non-convex optimal control problem progressively.

The aim of this study is to validate the convex CAM optimiser in the context of a real mission, incorporating op-
erational constraints that are specifically tailored for the US-German joint close-formation mission Gravity Recovery
and Climate Experiment - Follow-On (GRACE-FO), operated by the German Space Operations Center (GSOC) of
DLR. The mission represents an ideal test-bench for the CAM optimiser. The previously established methodology is,
in fact, improved by including constraints on the target relative orbital elements to facilitate formation re-acquisition
post-manoeuvre. The convex optimiser’s output is tested and validated against actual CAMs executed throughout
the mission’s duration, achieving enhanced fuel efficiency in terms of Delta-V, manoeuvre timing, and risk reduc-
tion. Moreover, the optimiser’s computational time significantly outperforms the time typically taken by operators to
implement CAM strategies.

Keywords: Collision Avoidance manoeuvre, Trajectory Optimisation, Convex Optimisation, Spacecraft Operations,
Formation-flying, Space Situational Awareness.

1. Introduction
Over the past decades, Earth’s orbital environment has

become increasingly hazardous for safe spacecraft opera-
tions due to a dramatic rise in the debris population [1].
This situation has become significantly more urgent with
the saturation of the most commonly used orbital regimes
and the emergence of mega-constellations in the space
sector. Consequently, spacecraft operators are experienc-
ing more frequent close encounter alerts, necessitating
more manoeuvres to ensure safety and operational conti-
nuity and to mitigate the risk of collisions with hazardous
objects.

Collision avoidance operations are a vital activity for
control centres, where accuracy and timing are crucial.
These operations are typically divided into three major

parts. The first is the conjunction risk assessment, an
operational process that evaluates the severity of a close
approach. The subsequent set of activities is triggered
only when a close approach is deemed critical, involv-
ing the preparation and execution of a collision avoid-
ance manoeuvre (CAM). During this stage, a manoeu-
vre is typically planned to reduce the PoC and uploaded
to the spacecraft at the nearest opportunity provided by
the ground station network, before the time of closest ap-
proach (TCA). During the execution of a CAM, the mis-
sion is normally interrupted as the spacecraft must tem-
porarily deviate from its operational orbit and/or orienta-
tion. For this reason, a third sequence of ground activ-
ities is undertaken to bring the spacecraft back to mis-
sion configuration. Assessing the criticality of an event
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is typically a well-established procedure, with Flight Dy-
namics Systems (FDS) equipped with algorithms to aid
in decision-making [2]. However, the responsibility for
planning and executing a CAM, as well as subsequent ac-
tivities to return the spacecraft to nominal configuration,
always rests with ground operators. CAM planning for
different missions is performed on a case-by-case basis
and requires manual intervention most of the time. The
recent rise in CAM frequency, particularly for missions
in low Earth orbit (LEO), has thus highlighted the need
to develop and maintain tools capable of autonomously
computing fuel-efficient CAMs with minimal human in-
tervention. These tools must be robust in challenging en-
vironments and specifically designed to accommodate the
operational constraints of each mission.
Significant effort has been made by the authors in the
direction of optimally computing CAMs. Traditionally,
the main objective of optimisers of such kind is to min-
imize the ∆v while reducing PoC or increasing the miss
distance to a safe threshold. In its discretised form, the
continuous thrust CAM optimisation problem falls under
the category of non-linear programming (NLP) due to the
non-linear nature of the objective function, the dynamical
model, and the metrics characterizing the close approach.
Additionally, the PoC constraints are non-convex. Within
the context of this work, the authors are solving the non-
convex challenges of the optimal control problem by pro-
gressively approximating it in a convex one. The specifics
of the optimisation method are detailed in references [3–
5]: the nonlinearity of the objective function is tackled
by introducing slack variables and applying lossless con-
vexification techniques [6–8]; the conjunction dynamics
is instead linearised with the use of differential algebra
(DA), which allows for the automatic linearization of the
motion under any dynamics; the PoC constraint is turned
into a linearized squared Mahalanobis distance (SMD)
constraint by means of a projection and linearization al-
gorithm [9]. The original multi-impulsive formulation of
the method [8] has been extensively enhanced to address
various CAM design scenarios using a low-thrust formu-
lation, including long-term [3] and multiple encounters
[5], as well as conjunctions occurring during continu-
ously propelled orbit transfers [4]. This paper aims to
further develop this line of research by adapting the exist-
ing methodology to real CAM scenarios from an ongoing
mission where the current algorithm lacks direct applica-
bility. Significant efforts, such as those in [10, 11], ad-
dress mission-imposed constraints, but they remain quite
general and are not specifically tailored to a particular
mission. Specifically, the formulation in reference [10]
is more tailored for Multi-Criteria decisions, while [11]
propose a multi-objective optimiser that is not completely
efficient for CAM computation. Reference [12], on the
other hand, remarkably incorporates station-keeping con-

straints by defining a target box for the post-manoeuvre
state and enforcing that the semi-major axis difference
relative to this box is zero at the final time. Despite this,
its formulation employs Linear Programming (LP), which
makes the method less accurate than that of a convex opti-
miser. Within the context of this work, we are incorporat-
ing operational constraints in the CAM solver specifically
tailored for the US-German joint close-formation mis-
sion Gravity Recovery and Climate Experiment-Follow-
On (GRACE-FO), operated by the German Space Op-
erations Center (GSOC) of the German Aerospace Cen-
ter (DLR). This mission consists of two twin Spacecrafts
that are controlled in close formation with an along-track
distance kept within the range 220 ± 50 km (more de-
tails of the mission are provided in Section 2). The in-
trinsic mission requirements for controlling the formation
present a challenging scenario to test the optimiser’s per-
formance. Specifically, we consider formation-keeping
constraints such as separation distance, relative altitude,
and target mean semi-major axis and eccentricity differ-
ences. The approach is validated using a real test case sce-
nario with the support of GSOC/FDS algorithms specifi-
cally designed for formation control monitoring. The op-
timised manoeuvre is compared in terms of processes and
performance to an actual CAM executed by the GRACE-
FO Flight Dynamics operators. Additionally, the opti-
miser is tested in a real multiple conjunction scenario en-
countered by operators during ground operations earlier
this year.

The paper is structured as follows. Section 2 gives
an overview of the GRACE-FO mission and how the for-
mation is controlled. Section 3 recaps the mathematical
background and implementation of the optimiser devel-
oped in [3–5, 8], and it additionally presents the oper-
ational constraints added to the formulation. Section 4
shows the test cases and the validation of the optimised
solution. Conclusions are drawn in Section 5.

2. GRACE-Follow-On mission
Launched in May 2018, the GRACE-FO mission car-

ries on the legacy of the original GRACE mission, which
began in 2002 and operated for 14 years before being de-
commissioned. Like its predecessor, GRACE-FO was de-
veloped by NASA and the German Research Centre for
Geoscience (GFZ) and is currently operated by the Ger-
man Space Operations Center (GSOC) of DLR. The mis-
sion consists of two identical spacecraft, GRACE-FO1
(GF1) and GRACE-FO2 (GF2), built by Airbus Defence
and Space. They are positioned in a polar, nearly cir-
cular orbit at an altitude of 500 km. The spacecraft are
flying in close formation with an average separation of
220 ± 50 km. Both satellites are equipped with laser
ranging interferometers (LRI), which precisely measure
their inter-satellite range. Variations in this distance are
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linked to changes in Earth’s mass distribution, such as the
presence of mountain ranges or underground water reser-
voirs. As Earth’s gravitational pull alters the distance be-
tween the satellites, scientists can calculate these changes
to detect shifts in mass distribution with remarkable pre-
cision. GRACE and GRACE-FO missions revolutionized
our understanding of the global water cycle, revealing
monthly variations in liquid water and ice masses. It also
contributed to our knowledge of large-scale changes in
Earth’s solid structure, enhancing scientific understand-
ing of Earth’s gravitation models and improving the ac-
curacy of environmental monitoring and forecasting. For
the interested reader, a way more detailed overview of the
mission can be found in [13].

2.1 Formation Relative Motion and Control
The motion of the deputy satellite (GF2) relative to

the main reference spacecraft (GF1) can be described us-
ing the theory developed in [14]. Given the osculating
Cartesian states of GF1 and GF2, denoted as x1 and
x2 ∈ R6 at time t ∈ R, the mean relative orbital elements
∆p can be computed through a nonlinear transformation
g(·) : R6 × R6 → R6:

∆p = g(x1,x2), (1)

In general, the vector ∆p ∈ R6 can be expressed as a
function of the mean orbital elements of the two space-
craft 

∆a

a∆ex

a∆ey

a∆ix

a∆iy

a∆ψ


=



a2 − a1

a1(e2 cos(ω2)− e1 cos(ω1))

a1(e2 sin(ω2)− e1 sin(ω1))

a1(i2 − i1)

a1(Ω2 − Ω1) sin(i1)

a1(ψ2 − ψ1)


(2)

where the set [a, e, i,Ω, ω, ψ]⊤ ∈ R6 represents the
mean Keplerian elements vector; ψ indicates the mean ar-
gument of latitude to avoid singularities for nearly circu-
lar orbits. Within this context, the relative eccentricity and
relative inclination are represented in vector form as fol-
lows:

a∆e = a

[
∆ex

∆ey

]
= aδe

[
cos(ϕ)

sin(ϕ)

]
(3)

a∆i = a

[
∆ix

∆iy

]
= aδi

[
cos(θ)

sin(θ)

]
(4)

where aδe and aδi represent the magnitudes of these
vectors, while ϕ and θ denote their phases, referred to as
the relative argument of perigee and the relative ascending
node, respectively. These parameters describe the geom-
etry of the relative orbit and define the points where the

maximum vertical and horizontal distances occur. Start-
ing from Eq. (2), it can be shown that the unperturbed rela-
tive motion can be broken down into the superposition of
a harmonic oscillation perpendicular to the orbital plane
and an elliptical in-plane motion, both governed by the
magnitude and phase of the vectors a∆e and a∆i. In ad-
dition, the radial and along-track separations exhibit sys-
tematic offsets and a linear drift due to ∆a and ∆ψ [14].
The ideal Keplerian motion of the formation is disturbed
by natural forces, leading to both periodic and long-term
(secular) variations in the relative orbital elements. For
formation-flying satellites, the short-period perturbations
essentially cancel out [14], leaving only long-periodic and
secular changes. For the GRACE-FO formation, the pri-
mary differential perturbations are caused by the Earth’s
asphericity and aerodynamic drag. A more detailed ex-
planation can be found in [15] and [14], but in essence,
Earth’s asphericity causes the relative eccentricity vec-
tor to trace a clockwise circle with a radius of δe at the
origin of the e-vector plane, with a period of approxi-
mately 100 days for sun-synchronous formations. The ef-
fect of aerodynamic drag is instead of particular interest
for the GRACE-FO mission, as differential drag has been
observed since the early phase of the satellites’ orbital
deployment, attributed to their differing ballistic coeffi-
cients. This discrepancy generates a relative along-track
acceleration, which in turn causes an along-track offset,
∆r2, to accumulate over time according to the following
equation:

∆r2 =
1

2
ϵ |r̈D|∆t2 (5)

where ϵ ∈ R+ represents the difference in the ballis-
tic coefficients of the two spacecrafts, |r̈D| ∈ R+ is the
magnitude of the acceleration due to aerodynamic drag,
and ∆t ∈ R+ is a time interval of interest. Equation 5
defines the primary mechanism through which the ma-
noeuvre control strategy maintains the formation within
the along-track distance requirements of 220 ± 50 km,
as further explained in Section 2.2. In general, to main-
tain the nominal formation configuration and to fulfill the
objectives of the mission, the evolving relative elements
are controlled by customized manoeuvres. Their direc-
tion and size can be computed using the simplified Gauss
equations:



δ∆a

aδ∆ex

aδ∆ey
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0 2 0

sin(ψ) 2 cos(ψ) 0
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0 0 cos(ψ)

0 0 sin(ψ)

−2 −3n(t− t∆v)
− sin(ψ)
tan(i)


∆vR

∆vT

∆vN



(6)

Equation 6 illustrates the impact of a manoeuvre in the
radial, along-track, cross-track (RTN) frame, with compo-
nents (∆vR,∆vT ,∆vN ), on the changes (δ(∗)) in the rel-
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ative orbital elements. These equations are generally valid
for near-circular, non-equatorial orbits and applicable for
GRACE-FO operations. It can be noted that the control
problem is decoupled: an in-plane thrust (∆vR,∆vT )
affects the relative eccentricity vector, the relative semi-
major axis, and the derivative of the relative argument of
latitude. Conversely, an out-of-plane thrust (∆vN ) influ-
ences the relative inclination vector. In this work, we will
focus solely on in-plane control, particularly on the effect
of along-track manoeuvres, for several reasons: the for-
mation control requirements concern only relative along-
track and radial separation. In-plane control is typically
executed through tangential manoeuvres due to their effi-
ciency in terms of propellant consumption. Furthermore,
CAMs are performed in the flight direction for the same
reason. Out-of-plane manoeuvres, on the other hand, are
only used to correct the inclination, and since GRACE-
FO has no stringent requirements regarding ∆i, they are
not relevant to this context.

2.2 Manoeuvre Cycle

As mentioned before, the primary objective of the FD
team is to maintain the formation within the along-track
distance range of 220 ± 50 km to ensure the continu-
ity of the LRI experiment. Recently, the science team at
JPL requested that the inter-satellite distance be kept be-
low 220 km, specifically between 170 and 220 km, since
the onboard accelerometers were calibrated only for this
range. While there is no indication that the accelerom-
eters would not work outside this range, this adjustment
was requested to match their calibration. To meet this
requirement, the manoeuvre cycle has been designed to
take advantage of the differential drag experienced by the
satellites since the early stages of the mission. The for-
mation is naturally decaying, but to maintain the correct
along-track distance, manoeuvres are preferred to be per-
formed using GF2. Figure 1 illustrates the natural drifting
cycle of the GRACE-FO formation. Starting with an ini-
tial mean semi-major axis difference of 10 meters (shown
on the right scale of the plot), the satellites gradually drift
apart. Since GF2 experiences greater drag than GF1, its
orbit decays more quickly, eventually reducing the rel-
ative semi-major axis difference to zero. At this point,
the drift direction reverses, and the satellites begin to ap-
proach each other, reducing their relative along-track dis-
tance, as shown on the left scale of the plot. The three
curves in blue, red, and green represent the nominal and
±3 − σ predictions for formation monitoring, based on
the current solar flux forecast. To maintain the forma-
tion, the manoeuvre cycle periodically raises GF2’s or-
bit by approximately 20 meters, supporting the natural
orbital decay. On average, this cycle lasts less than 90
days, depending on solar flux activity. Another key fac-
tor in maintaining the formation’s science configuration

is controlling the relative radial distance within a maxi-
mum threshold of ±30 m. It can be shown that the fac-
tors affecting the radial range are the relative semi-major
axis ∆a and the magnitude of the eccentricity vector a∆e.
When ∆a is initialized to 10 meters, a∆e is controlled to
stay within an absolute value of approximately 20 meters.
While eq. 6 suggest that, in theory, firing at specific values
of u with a double pulse strategy could reduce the eccen-
tricity vector to zero, this is not operationally achieved. In
fact, to minimise the number of manoeuvre performed and
thus the workload, FD team employs a single-pulse strat-
egy, firing at a specific value of u to keep a∆e constant
in magnitude (within the required limits) and directed to-
ward zero, as illustrated in figure 2.

2.3 Ground Activities Triggered by CAM Implementation
The described manoeuvre cycle can be interrupted

by a conjunction event. GSOC FD team receives and
monitors close-approach alerts in forms of Conjunction
Data Messages (CDMs), which are generated by the 19th
Space Defence Squadron (SDS) and relayed via NASA’s
Conjunction Analysis Risk Assessment (CARA) team.
Each time a new Orbit Determination (OD) solution be-
comes available, GSOC FD sends an updated ephemeris
to CARA. This last is then checked against the Special
Perturbation catalogue, and if necessary, new CDMs are
issued. These CDMs are retrieved and processed by the
GSOC Collision Avoidance System (CAS) to assess their
criticality. If a CAM is required, several ground activities
are initiated. The science team is notified of the upcom-
ing manoeuvre campaign, as the experiment temporarily
needs to be paused. In fact, the LRI communication can-
not be hold as the manoeuvre interrupts the formation rel-
ative pointing. The latest possible station passes for up-
loading the manoeuvre are identified. A key mission re-
quirement is that there should be at least 2 upload oppor-
tunities (a prime and a back-up pass) before TCA and a
pass shortly after execution to dump the relevant telemetry
and have an indication of the correct performance. Once
the prime upload time is defined, FD calculates the ∆v
and execution epoch, adjusting the burn duration to ac-
count for propulsion system rounding limitations. After
preparing the manoeuvre, a new screening is conducted
to reassess conjunction risks. The finalized manoeuvre is
then uploaded during the agreed station pass. Following
execution, GPS data is frequently dumped to calibrate the
manoeuvre and estimate the post-manoeuvre orbit. This
allows to perform an assessment on the formation status
after the CAM and to plan a subsequent formation keep-
ing manoeuvre to get back in science configuration.

3. Methodology
We consider a conjunction between a primary space-

craft, GF2, and a secondary object at a certain time tCA ∈
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Fig. 1. GRACE-FO along-track distance (starting as red curve - left
ordinate) and mean semi-major axis (blue dotted red curve - right ordi-
nate)

Fig. 2. Relative eccentricity vector con-
trol over one formation keeping cycle

R2. Primary and secondary states, respectively xp(tCA)
and xs(tCA) ∈ R6, are Gaussian Multivariate Random
Variables (MRVs) given by:

xp(tCA) ∼ N (ζp(tCA),Cp(tCA)), (7a)
xs(tCA) ∼ N (ζs(tCA),Cs(tCA)) (7b)

where, ζp(tCA) and ζs(tCA) ∈ R6 are the mean values,
Cp(tCA) and Cs(tCA) ∈ R6×6 are the covariance ma-
trices expressed in a Cartesian space. xp and xs can be
propagated employing Keplerian dynamics model as fol-
lows:

ẋp(t) = f(t,xp(t),u(t)), (8a)
ẋs(t) = f(t,xs(t),03), (8b)

where t ∈ R[t0,tf ] is the propagation time, belonging
to an interval for which t0 < tCA ≤ tf . t represents
the independent variable, while xp(t),xs(t), ẋp(t) and
ẋs(t) ∈ R6 are the time-dependent states of the primary
and the secondaries and their derivatives. u(t) ∈ R3 is
the control action, and f(·) : R[t0,tf ] × R6 × R3 → R6

is the continuous Keplerian function. The relative posi-
tion of the two objects is the subtraction of the first three
elements of the two normally-distributed MRV:

∆r = rp(tCA)− rs(tCA) (9)

Since Eq. (9) is a linear transformation, ∆r is also nor-
mally distributed:

∆r ∼ N (µp − µs,Pp + Ps) . (10)

where the argument tCA has been omitted because the
metrics are only defined at TCA. The standard optimal
control problem (OCP) in the continuous domain for the
short-term conjunction CAM problem is stated as follows:

min
u

J =

∫ tf

t0

u(t)dt, (11a)

s.t. ẋp = f(t,xp(t),u(t)), (11b)
PC(t) ≤ P̄C , (11c)
x(t0) = x0, (11d)

u(t) =
√
u1(t)2 + u2(t)2 + u3(t)2, (11e)

u(t) ≤ umax, (11f)

where PC ∈ R+ represents the PoC, and P̄C ∈ R+

is its maximum allowed limit value. In Problem (11),
Eq. (11a) represents the fuel minimization objective func-
tion, Eq. (11b) is the dynamics constraint, Eq. (11c) is
the PoC constraint, Eq. (11d) is the initial state bound,
Eq. (11e) is an auxiliary constraint to define the norm of
the control, and Eq. (11f) is the bound on the maximum
value of the control action. Since CAMs typically involve
a ∆v on the order of magnitude of [mm/s] or [cm/s], the
mass loss due to the manoeuvre is not considered in the
equations of motion and in the optimisation problem [8].

3.1 Encounter Dynamics

During short-term conjunctions, the high relative ve-
locity leads to near-instantaneous encounters [16]. As a
result, the path of relative motion can be effectively ap-
proximated as linear, and the event is typically analyzed
on the two-dimensional B-plane [8, 17–19]. This refer-
ence frame is centred on the secondary object, and it is
defined as the plane perpendicular to the relative veloc-
ity vector. Since TCA, by definition, is the time when
the miss distance is lowest, it follows that ∆rs(tCA) ·
∆vs(tCA) = 0 and thus the relative position lies on the B-
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plane. As outlined in [17, 20], the problem is traditionally
studied by centring the combined positional uncertainty
of both objects Pcomb(tCA) around the secondary object,
while a sphere of radius HBR = HBRs +HBRp, em-
bodying both objects dimensions, is centred around the
primary. This allows the primary’s state, which needs to
be optimised, to be treated as a deterministic variable. In
this framework, the PoC can be computed by integrating
the (PDF) of the relative position over the projection of
the combined sphere CHBR onto the B-plane.

PC =
1

(2π)
√
det (PB(tCA))

·

·
∫∫

CHBR

exp

(
−
∆r⊤BP

−1
B ∆rB
2

)
dA,

(12)

where ∆rB ∈ R2 and PB ∈ R2×2 are respectively the
projection of the relative position mean value and covari-
ance on the encounter B-plane at TCA. The argument of
the exponential function is the SMD at TCA, d2m ∈ R+,
divided by 2. Various approaches have been proposed to
numerically solve this integral over the years; in this work,
we will use Chan’s method [21], which is generally pre-
ferred over others because of its accuracy and computa-
tional efficiency [22]. By employing a numerical inver-
sion of Chan’s formula [19], it is possible to get the SMD
limit from a PoC limit for the conjunction (d̄2m = f(P̄C)).

3.2 Convex Formulation
The OCP Problem 11 is converted into a sequential

convex program (SCP), following the methods outlined
in [3–5]. The SCP iteratively approximates the global
solution of the OCP using a series of second-order cone
programs (SOCPs). Here, we briefly summarize the con-
straints and objective function. The original OCP in Prob-
lem 11 contains three sources of non-convexity:

1. The orbital dynamics in Eq. (11b) are nonlinear and
thus non-convex.

2. The constraint in Eq. (11c) is nonlinear due to
Eq. (12) and the inversion of Chan’s formula.

3. Both Eq. (11a) and Eq. (11e) produce a nonlinear
objective function.

In the following subsections, the dynamics constraint, the
PoC constraint, and the objective function are convexified
using different techniques. Detailed explanations of these
methods can be found in [3, 5].

3.2.1 Convexification of the Dynamics
The dynamics of the problem are first discretized and

then linearized using DA. In the following discussion, the
continuous time variable t ∈ R[t0,tf ] is substituted by the
discrete time variable ti ∈ {t0, t1, ..., tN}, whereN+1 is

xephi

xephi+1

∆xKep,ji+1

xji+1

Aj
i+1

A1
i+1

x̃ji

x̄Kep,ji+1

x̄Kep,1i+1

Fig. 3. Schematics of the dynamics constraints within the
ephemeris propagation framework.

the number of nodes of the discretization. The equations
that present the index i are valid for all i ∈ {0, ... , N}.
An ephemeris-based propagation approach is selected to
enhance the algorithm’s operational value. As a result, the
nominal trajectory is defined by the vectors xephi , which
are derived from the operator’s direct high-fidelity orbit
determination. At any iteration j > 1, the output state
and control from the previous iteration are used to build
the dynamics continuity constraint. A first-order Taylor
polynomial expanding the dynamics function in Eq. (14)
around this reference, which is denoted by x̃i ∈ R6, ũi ∈
R3; the reference trajectory is selected as xephi in the first
iteration. The states and control are expanded as

xji = x̃ji + δxi (13a)

uji = ũji + δui (13b)

Using DA and an Runge-Kutta integrationg scheme, the
state of the primary at node i+1 can be determined based
on the reference state of the previous node, x̃ji , using the
Keplerian model:

xKep,ji+1 = Txi(x̃
j
i + δxi, ũ

j
i + δui) (14)

where Txi(·) : R6 × R3 → R6 is the Taylor expansion of
the Keplerian dynamics, xi = x(ti), and ui = u(ti). The
left-hand member of Eq. (14) can be split into a constant
part and a linear part:

xKep,ji+1 = x̄Kep,ji+1 + δxKep,ji+1 . (15)

Both terms of the right-hand side of Eq. (15) can be ex-
pressed as follows:

x̄Kep,ji+1 = fi(x̃
j
i , ũ

j
i ), (16a)

δxKep,ji+1 = Aj
i+1δxi +Bj

i+1δui, (16b)

where fi(·) : R6 × R3 → R6 is the discretized version
of Eq. (8), Aj

i+1 ∈ R6 and Bj
i+1 ∈ R6 are the Keple-

rian state transition and control-state transition matrices,
respectively, automatically derived using DA. To ensure
fidelity to the ephemeris, information from the nominal
trajectory is incorporated at each iteration. Specifically,
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at iteration j, a segmented Keplerian propagation is per-
formed starting from the optimisation output of the pre-
vious iteration (j − 1) or from the nominal ephemeris if
j = 1, as described in Eq. (14). The linear deviation be-
tween the constant part of the Keplerian-propagated tra-
jectory at iteration j and the initial trajectory is then eval-
uated as:

∆xKep,ji+1 = x̄Kep,ji+1 − x̄Kep,1i+1 . (17)

where ∆xKep,ji+1 is used to linearly correct the nominal
ephemeris to account for the effect of the computed con-
trol at iteration j. Thus, the constant part of the propa-
gation that is used to define the dynamics continuity con-
straint is

x̄ji+1 = xephi+1 +∆xKep,ji+1 . (18)

This method allows for maintaining high-fidelity propa-
gation while generating sufficiently accurate linear Ke-
plerian maps to describe the node-wise evolution of the
trajectory, as shown in Fig. 3. It’s important to note that
this approach would become inaccurate if large devia-
tions from the nominal trajectory were expected. How-
ever, based on CAM optimisation theory, it is reasonable
to assume that deviations are on the order of kilometers,
since the manoeuvres are in the range of centimeters per
second. As a result, these deviations are almost negligible
on an orbital scale. The continuity constraint of the SOCP
is therefore defined by equating Eq. (13) and Eq. (15):

xj,ki+1 = Aj
i+1x

j,k
i +Bj

i+1u
j,k
i + cji+1 (19)

where ci+1 = x̄ji+1 −Aj
i+1x̃

j
i −Bj

i+1ũ
j
i is the residual

of the linearization corrected for the ephemeris propaga-
tion.1 This is an iterative process referred to as major it-
erations and denoted by index j. Once the optimisation
problem of a major iteration j is solved, the solution (xji ,
uji , for i ∈ {0, ... , N − 1}) becomes available and is used
as an expansion point for constructing Aj+1

i+1 and Bj+1
i+1 ,

and cj+1
i+1 , as described in the previous paragraph. The ini-

tial condition is fixed because the manoeuvre cannot alter
it

xj,k0 = xeph0 . (20)

3.2.2 Lossless Relaxation of the Control Magnitude Con-
straint

Equation Eq. (11e) is a non-convex equality con-
straint. Following [6], we introduce a lossless relax-
ation to convexify the constraint: Eq. (11e) is transformed
into an inequality constraint, and the control magnitude is
added to the optimisation vector. In this way, Eq. (11e)
becomes a second-order cone constraint. The variable ui
is now allowed to take values higher than the norm of the
control that acts on the dynamics

1In Eq. (19), the index k has been used to address the minor iterations
which are described in Section 3.2.4.

ui ≥
√
u2i,r + u2i,t + u2i,n (21)

The discretized forms of Eq. (11a) and Eq. (11f) become
respectively

J =

N−1∑
i=0

ui ·∆ti, (22)

with

0 ≤ ui ≤ 1, (23)

where ∆ti = ti+1 − ti is the time for which the control
is active from node i to i + 1. This linearization of the
objective function is lossless, meaning that the optimal
solution for the convexified problem is also optimal for
the original problem.

3.2.3 Trust Region Approach

Using a trust region constraint in the formulation of
the SOCP significantly improves the algorithm’s conver-
gence [23]. This approach, first introduced in [24] and
adapted in [3], builds on the definition of the nonlinear-
ity index (NLI) from [25].For detailed information on the
derivation of the constraint, readers are encouraged to
consult these sources. In essence, the approach treats the
trust region radius of an optimisation variable as inversely
proportional to its non-linearity. The resulting constraints
are:

ξi ◦ [x⊤
i ; u

⊤
i ]

⊤ ⪯ ξi ◦ [x̃⊤
i ; ũ

⊤
i ]

⊤ + ν̄ · 1, (24a)

ξi ◦ [x⊤
i ; u

⊤
i ]

⊤ ⪰ ξi ◦ [x̃⊤
i ; ũ

⊤
i ]

⊤ − ν̄ · 1, (24b)

where ξi is the measure of non-linearity of the associated
state vector in the second-order DA propagation of the dy-
namics [24]; ν̄ is a user-defined value that imposes a limit
to the maximum NLI available to the solution.

The introduction of the trust region constraint can
cause artificial infeasibility, so virtual controls are added
to the dynamics constraints, Eq. (19). The new constraints
with virtual controls become

xji+1 −Ai+1x
j
i −Bj

i+1u
j
i + υji+1 − cji = 0 (25)

where υji ∈ R6 is the virtual control vector for the node i
at major iteration j.

A term proportional to the magnitude of the virtual
controls is added to the objective function to minimize
their impact. This term is scaled by a weight factor κvc ∈
R, which must be set sufficiently high.

υi ≥ ||(υjca,i)||, (26a)

Jvc = κvc

N∑
i=0

υi, (26b)
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3.2.4 Linearized SMD Constraint

The PoC constraint for a single conjunction can be for-
mulated by leveraging the methodology proposed in refer-
ences [26] and [8]. The reader is invited to refer to this last
reference for an in-depth explanation of the process. An
iterative projection and linearization algorithm is utilized
to convexify the non-linear PoC constraint. The iterations
are nested inside the major iterations (used to linearize the
dynamics) and take the name of minor iterations, denoted
by the symbol k. For each conjunction node, the projected
convex sub-problem aims to find the point on the surface
of an ellipse that is closest to the relative position ∆rj,k−1

from the previous minor iteration. In the formulation of
the convex sub-problem, the index j is dropped since one
of these problems is solved multiple times inside the same
major iteration.

Let the covariance and relative position be expressed
in the B-plane reference frame B. It is possible to define
a transformation matrix V ∈ R2 that diagonalizes the co-
variance matrix. We call the reference frame in which the
covariance matrix is diagonal C. A simple quadratic op-
timisation problem is used to find the point on the ellipse
that is closest to the reference trajectory point

min
ẑC

||zkC −∆rk−1
q,C || (27a)

s.t. (zkC)
⊤(PC)

−1zkC ≤ d̄2m, (27b)

The objective Eq. (27a) imposes the minimization of
the Euclidean distance between the relative position of
the previous iteration and the optimisation variable zC .
Eq. (27b) is a relaxed condition on the optimisation vari-
able to be inside the ellipsoid. These relaxed conditions
are lossless since the minimization of the objective guar-
antees that the optimised variable is always positioned
on the ellipse’s surface, maximizing the distance from its
center.

Once zC is determined, the solution is transformed
back into the original reference frame using the equation
zkB = V ⊤zkC . After obtaining zj,k = zkB, a lineariza-
tion of the SMD constraint is applied, effectively turning
it into a keep-out zone (KOZ) constraint. Specifically, we
ensure that the new optimised relative position lies within
the semi-plane defined by the line tangent to the ellipse on
zj,ks . The equation of the constraint is, then

∇(d2m)j,k
∣∣∣
zj,k

· (∆rj,k − zj,k) ≥ 0. (28)

The base CAM optimisation problem, before the inclu-
sion of operational constraints, can thus be written as

min
u,x,ν

N∑
i=1

(∆tiui + κvcυi)

s.t. Eqs. (19) to (21), (23), (24), (26a) and (28)

(29)

3.3 Operational Constraints
In this subsection, the mission constraints are inte-

grated into the CAM optimisation problem, following the
formation control logic outlined in Section 2.

3.3.1 Relative Orbital Elements
To control the long-term evolution of the formation,

∆a and a∆e are controlled at the end of the window of in-
terest. Consider the transformation between the Cartesian
state of the two satellites and their relative mean Keplerian
orbital elements in Eq. (1). The first three elements of this
transformation yield, respectively, the mean semi-major
axis difference and the two components of the mean rel-
ative eccentricity vector. Calling the state of GF1 xref,i
Let us expand this transformation with respect to the state
of GF2 at the final time:

∆a

a1∆ex

a1∆ey

 =


g1(xref,N , x̃

j
N + δx)

g2(xref,N , x̃
j
N + δx)

g3(xref,N , x̃
j
N + δx)

 , (30)

where g1, g2 and g3 : R6 × R6 → R are the first three
components of the transformation, and x̃jN ∈ R6 is the
reference state from the output of the optimiser at the pre-
vious iteration. The first order expansion yields a linear
map for the relative semi-major axis, l ∈ R6, and one for
the relative eccentricity vector, L ∈ R2×6.

The relative semi-major axis should be inside a tight
band of amplitude 2b (20 m). So, the equation of the con-
straint is

−b ≤ ∆a ≤ b. (31)

Let us link perturbations in the final state to perturbations
in arel, via the first-order DA expansion

δ∆a = lj · δxj,kN . (32)

After a trivial procedure similar to the one shown for
Eq. (19), the final equation of the constraint becomes

lj · xj,kN ≤ lj · x̃jN −∆ā+ b (33a)

lj · xj,kN ≥ lj · x̃jN −∆ā− b (33b)

where ∆ā is the constant part of the first element of
Eq. (30), and x̃jN is the expansion point of the optimi-
sation.

The relative mean eccentricity vector is controlled in
a similar way, with the only difference that a target rel-
ative eccentricity vector is selected based on the strategy
presented in Section 2. Therefore, we want to target the
opposite point on the eccentricity plane

erel = −e0rel, (34)

where e0rel ∈ R2 is the relative eccentricity vector of the
unperturbed trajectory (ephemeris). Using the linear maps
as before, the requirement of Eq. (34) becomes

Ljxj,kN = Ljx̃jN − ērel − e0rel, (35)
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where ērel is the constant part of the last two elements of
Eq. (30).

3.3.2 Relative Altitude and Maximum Formation Altitude
We want to enforce two constraints on the altitude of

GF2. To simplify the polynomial expansion and ensure
the relative value remains positive, we express these con-
straints using the squared altitude of the spacecraft, avoid-
ing the need for square roots. Let rj,kN ∈ R3 denote the
Earth Centered Inertial (ECI) position of the final state at
iterations j and k (the first three elements of the state vec-
tor). The absolute altitude constraint, expressed in terms
of orbital radius, is given by

r2lo < ||rj,kN ||2 < r2up, (36)

where rlo and rup ∈ R+ are the lower and upper limits,
respectively. The perturbed final position can be written
as rj,kN = r̃jN + δr, where r̃jN is the expansion point from
the previous major iteration (first three elements of x̃jN ).
The polynomial expansion of the squared radius, then, can
be written as,

||rj,kN ||2 = ||r̃jN ||2 + 2r̃jN · δrN (37)

Substituting the absolute altitude requirement becomes
the convex constraint

2r̃jN · xj,kN ≤ 2r̃jN · r̃jN − ||r̃jN ||2 + h2up (38a)

2r̃jN · xj,kN ≥ 2r̃jN · r̃jN − ||r̃jN ||2 + h2lo (38b)

The requirement regarding the relative altitude between
the two satellites is automatically satisfied when the con-
straints on the relative orbital elements are respected.

3.3.3 Relative Distance
At the end of the CAM, GF2 must stay inside the tan-

gential separation bounds reported in Section 2

blo ≤ ∆rt ≤ bup. (39)

where ∆rt ∈ R is the tangential separation, and blo and
bup ∈ R are the lower and upper bounds, respectively.
Let us call R the rotation matrix between the ECI refer-
ence frame used for the propagation, E , and the RTN or-
bital frame of GF1, O. By definition, the position of GF1
in this frame is rO,1 = [||rE,1||2, 0, 0]⊤. The relative
position of GF2 is, therefore

∆rO = rO,2 − rO,1 = RrE,2 − rO,1. (40)

If we call R2 ∈ R3 the second row of R, the tangential
separation becomes

∆T = R2rE,2. (41)

Eq. (41) can be used to set a final constraint in terms of
tangential separation. Referring to a generic major itera-
tion j and minor iteration k, the final separation distance
constraint becomes

blo ≤ R2 · rj,kN ≤ bup, (42)

where, once again, rj,kN ∈ R3 is made up by the first three
elements of xj,kN .

The final optimisation problem, with all the opera-
tional constraints, is expressed as

min
u,x,ν

N∑
i=1

(∆tiui + κvcυi)

s.t. Eqs. (19), (21), (23), (24), (26a) and (28)
Eqs. (20), (33), (35), (38) and (42)

(43)

3.3.4 Tangential Thrust
As explained in 2.1, except in special operational sce-

narios, in-plane control is achieved solely through tangen-
tial manoeuvres. This constraint can be implemented into
the optimiser by forcing the radial and normal compo-
nents of the control to always be zero. Doing so sim-
plifies the problem significantly, as the second-order cone
constraint on the control becomes unnecessary:

min
u,x,ν

N∑
i=1

(
∆ti(u

+
T,i − u−T,i) + κvcυi

)
s.t. Eqs. (19), (24), (26a) and (28)

Eqs. (20), (33), (35), (38) and (42)

ui = [0, u+T,i − u−T,i, 0]
⊤

0 ≤ u+T,i, u
−
T,i ≤ umax,

(44)

where u+T,i and u−T,i ∈ R+ are the positive and nega-
tive components of the tangential thrust of node i, respec-
tively.

4. Real Test-Case Conjunctions Operations
For the following test cases, the maximum control ac-

celeration is conservatively set to umax = 0.18 mm/s2,
consistent with the largest manoeuvres performed by the
GRACE-FO operations team. The orbit is uniformly dis-
cretized with a time step of ∆t = 60 s, meaning the op-
timiser can produce a maximum single ∆v per time step
of:

∆vmax = umax∆t = 10.8 mm/s

Convergence on the major iterations is reached when the
virtual control all almost 0, i.e.,

∑N
i=0 υi < 10−14 and the

parameter ϵ ∈ R+ is below a threshold, set to 10−4: this
parameter is defined as

ϵ =

N−1∑
i=0

||uji − uj−1
i ||2. (45)

4.1 Single Encounter
Let us first consider an operational case in which GF2

undergoes a close encounter with an uncontrolled pay-
load. The states in True of Date (ToD) of the two objects
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at TCA epoch 2024-01-04 16:51:39.162 UTC are:

rp,CA = [−3718.784, 3046.446, 4898.430]⊤km,

vp,CA = [−4.335022, 3.302274, − 5.322456]⊤km/s.

rs,CA = [−3718.780, 3046.434, 4898.419]⊤km,

vs,CA = [5.045387, −2.27021, 5.239002]⊤km/s.

With respective positional covariance matrices as:

Pp =


64.8812 0.0 0.0

0.0 470939.6 0.0

0.0 0.0 36.36978

m2

Ps =


584.5167 −32943.42 −22.66674

−32943.42 2212296 −332.5021

−22.66674 −332.5021 76.23035

m2.

These data result in a miss distance of 16.4 m and a PoC
of 3.95 × 10−4, using Chan’s method with an HBR of
1.7 m. The manoeuvre is computed to reduce PoC below
10−6. As discussed above, when monitoring a close ap-
proach, operators typically tend to wait for the final CAM
GO/NO-GO decision, hoping that updated orbit assess-
ments will reduce the severity of the event. If the situa-
tion remains critical, a CAM is executed, followed by an
a posteriori formation-keeping manoeuvre after the con-
junction. In this scenario, the analysis begins two hours
before TCA and includes an additional two hours for the
formation-keeping manoeuvres. The behaviour of the op-
timiser, in the first instance, is assessed considering only
the CAM. In this case, the optimiser finds a single firing
spread over two nodes exactly 0.5 orbits before the con-
junction: the RTN components of the ∆v are

∆v = [−0.036, 10.511, −0.010]⊤mm/s.

It is clear from the literature [8, 19, 27] that this is to be
expected in a simple scenario like this since a tangential
firing half-an-orbit before TCA maximises the deviation
in the B-plane. The B-plane configuration can be seen
in Fig. 4. It is worth noting that employing the formula-
tion in Eq. (44) is very beneficial when the simple single
short-term encounter problem is addressed. Indeed, the
optimiser finds almost the same solution, free of the irrel-
evant R and N components, increasing the T components
by just 1 µm/s:

∆v = [0, 10.512, 0]⊤mm/s.

Including the formation-keeping (FK) constraints detailed
in Problem (43) yields the thrust profile in Fig. 7. The
first impulse is shifted back by one node compared to
the case with no FK requirements, but it is essentially
the same manoeuvre. As can be seen in Fig. 7, the FK
conditions are fulfilled by the two consecutive manoeu-
vres, one performed at TCA and the second 0.5 orbits
after. The total ∆v grows up to 3.9 cm/s, and it is still

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

Fig. 4. B-plane of the first conjunction. diamond: ballis-
tic, red dot: manoeuvred
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-10
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20
Ballistic
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w/ FK

Fig. 5. Evolution of the mean relative semi-major axis in
the single conjunction scenario.

mostly tangential, as expected from the theory in Sec-
tion 2. In particular,Figs. 5 and 6 show that, while the ma-
noeuvre with no FK requirements violates the mean rela-
tive semi-major axis and mean relative eccentricity vector
constraints, their inclusion allows us to target the required
conditions very accurately.

4.2 Multiple Encounters

As a second test case, we are presenting an interesting
operational scenario involving two consecutive conjunc-
tions that took place in January 2024. The first conjunc-
tion studied in the previous section is followed by a sec-
ond one two days later. As expected, the uncertainty at
the second TCA for both objects is higher than at the first
due to the increased propagation error in the OD solution
at the time of analysis. Despite this, it is valuable to assess
the effect of the optimiser’s computed CAM on both con-
junctions. The predicted states of GF2 and the secondary
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Fig. 6. Evolution of the mean relative eccentricity vector
in the single conjunction scenario.
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Fig. 7. ∆v for the optimised CAM with FK constraints.

object at TCA epoch 2024-01-06 11:27:48.122 UTC are:

rp,CA2 = [−4892.212, −4690.717, 1130.894]⊤km,

vp,CA2 = [−1.158113, −0.615334, − 7.507123]⊤km/s.

rs,CA2 = [−4891.089, −4692.144, 1129.967]⊤km,

vs,CA2 = [4.544310, −3.725686, 4.188866]⊤km/s.

The positional covariances of the two objects are

Pp2 =


212.117 0.0 0.0

0.0 5770985 0.0

0.0 0.0 74.174

m2

Ps2 =


3284.89 −366714.4 −52.3355

−366714.4 49998130 41402.66

−52.3355 41402.66 254.2109

m2.

These data result in a miss distance of 2.039 km and a
PoC of 3.6× 10−4, using Chan’s method with an HBR of
1.7 m. The manoeuvre is computed to reduce total prob-
ability of collision (TPoC) below 10−6, so the effect of
both conjunctions is combined to achieve a desired com-
prehensive collision risk. In this case, the testing scenario
is bound to start 3 hours before the first TCA and end
2 hours and 24 min after the second one. Once again, the
scenario is initially tested without applying the formation-
keeping constraint. In this case, the optimiser computes
two manoeuvres before the TCA. The first manoeuvre

-0.1 0 0.1

-0.5

0

0.5

-0.2 0 0.2

-10

0

10

Fig. 8. B-plane of the two conjunctions.

Fig. 9. ∆v with FK constraints. TCAs are the red lines

lowers the orbit, causing the primary object to arrive ear-
lier at the close approach, while the second burn adjusts
the drift, timing the approach to the second conjunction
differently. When the formation-keeping (FK) constraints
are applied, the situation changes. As shown in Fig. 9, the
first manoeuvre is executed half an orbit before the first
conjunction, raising the orbit, while a second burn, half
an orbit after the conjunction, lowers the semi-major axis
and reverses the drift. Finally, after the second conjunc-
tion, the optimiser proposes a small burn to adjust the ec-
centricity vector. As expected, this different approach in
disposing of the manoeuvres also leads to corresponding
changes in the B-plane configurations as shown in Fig. 8.
Fig. 10 represents the evolution of the mean relative semi-
major axis in the two scenarios. Clearly, if no FK is em-
bedded in the optimisation, the computed CAM causes a
divergence of the parameter from its allowed values. The
same is true for the mean relative eccentricity showed in
Fig. 11: Without the constraint, the magnitude of the vec-
tor increases up to 52.24 m, whereas the optimiser can
accurately target a value inside the 20 m-radius circle. In-
cluding the FK constraints allows for recovering an opti-
mal formation with minimal ∆v expenditure. Indeed, the
total ∆v goes from 1.898 cm/s to 4.026 cm/s when the
constraints are included (112% relative increase). How-
ever, applying the FK constraint enables the spacecraft to
return to its original state prior to the first conjunction.

In Table 1, the number of major iterations, total num-
ber of minor iterations, and computational times of the
simulations are compared. It is clear that the simple sce-
narios with one conjunction, including the FK constraints,
do not change the convergence speed significantly since
the number of iterations remains the same, and the com-
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Ballistic CAM w/ FK

Fig. 10. Evolution of the mean relative semi-major axis
in the multiple conjunction scenario.

E

S

Fig. 11. Evolution of the mean relative eccentricity vector
in the multiple conjunction scenario.

Table 1. Convergence properties of the performed simu-
lations.

Scenario nmaj [-] nmin [-] tcomp [s]

1 conj, w/o FK 3 4 1.33

1 conj, w/ FK 3 4 1.36

1 conj, tangential 3 4 1.30

2 conj, w/ FK 6 11 47.5

putation time is almost equal.

4.3 Validation
The testing scenarios in subsections 4.1 and 4.2 are

validated using GSOC FD’s flight-proven GRACE-FO
formation monitoring tool. Specifically, the effect of the
optimiser’s computed CAMs and subsequent formation-
keeping manoeuvres are analysed by simulating the for-
mation state in the FDS before conjunctions. For Sec-
tion 4.1, the optimiser’s CAM closely matches the one
executed by FD operators, differing by about 1 minute
20 seconds in timing but achieving a 13 % reduction in
∆v for the same risk reduction. This discrepancy arises
because operators tend to be more conservative, consid-
ering thruster performance forecasts based on manoeuvre

history. Additionally, The post-CAM formation state is
consistent with the results shown in Figures 5 and 6, with
a ∆a stabilizing around 22 meters and a∆e = (27,−22)
meters. Including the station-keeping manoeuvre com-
puted by the optimiser produces the ∆a and a∆e forma-
tion evolution plots shown in Figures 12a and 13a. No-
tably, to meet the requirements, a second manoeuvre is
performed about half an orbit after the TCA to reduce the
eccentricity vector magnitude below 20 meters. The mag-
nitude of this second ∆v is 5% smaller than the CAM,
providing a slight gain in ∆a aiming at extending the rel-
ative along-track drift cycle as discussed in Section 2.2.
Despite this, solar flux uncertainty continues to drive the
drift pattern, resulting in conditions similar to those be-
fore the CAM. Referring to the testing scenario in 4.2, the
computed manoeuvres are once again analysed using the
formation monitoring tool to assess their impact. The pair
of burns proposed by the optimiser, without considering
the formation-keeping control, would have shortened the
drift cycle and, at the same time, significantly increased
the eccentricity vector beyond the allowed threshold. Fig-
ure 12b and 13b are instead showing the formation evo-
lution when considering the FK constraints. Despite vari-
ations in the amplitude of oscillations, due to the high-
fidelity algorithm implemented in the formation monitor-
ing tool, the results align well with Fig. 10 and Fig. 11.
The formation is, in fact, brought back to science configu-
ration after the second conjunction. After the second con-
junction, the formation successfully returns to its science
configuration. The proposed formation-keeping manoeu-
vre slightly raises GF2, adjusting the eccentricity vector to
approximately (−5,−15) while also extending the along-
track distance for about 20 more days before further con-
trol is needed.

4.3.1 Proposed Optimiser Operational Usage

We propose a practical example of how to include
the optimiser in an operational pipeline for specialized
CAM activities. As discussed in Section 2.3, although
ground team coordination still constitutes the most time-
consuming task, the optimiser can streamline manoeuvre
planning. In fact, its primary strength lies in computa-
tional efficiency, and when tailored to a specific mission,
it greatly enhances automation, reducing human interven-
tion. Usually, in the first instance, operators compute an
avoidance manoeuvre that would bring the PoC to a safe
value, and then, secondly, they analyse how this would af-
fect the evolution of the formation in the short term. The
optimiser can already provide this information in advance,
and an automatic periodic process, as proposed in Fig. 14,
can be put in place. Specifically, the FDS can feed the op-
timiser with the latest OD of the formation in the form of
ephemerides, taking advantage of the process described in
Section 3.2.1. Additionally, it can also provide informa-
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(a)

(b)

Fig. 12. GRACE-FO formation monitoring tool: ∆a evolution for (a) the single encounter scenario and (b) the
multiple encounter scenario

(a) (b)

Fig. 13. GRACE-FO formation monitoring tool: a∆e evolution for (a) the single encounter scenario and (b) the
multiple encounter scenario
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Fig. 14. Proposed workflow on how to use the optimiser
for Collision avoidance operations.

tion, via its collision avoidance system, about all the close
approaches that the formation is facing in the next 7 days
and a mission-related constraint configuration file guiding
the optimiser’s calculations. The optimiser then returns
CAMs, possible FK manoeuvres and risk reduction plots.
Operators can review and validate these solutions before
uploading them to the spacecraft.

5. Conclusions and Future Work
This work builds on the authors’ previously estab-

lished line of research that focuses on computing a col-
lision avoidance manoeuvre (CAM) using a sequential
convex program (SCP) approach. Specifically, the pro-
posed methodology is enhanced by tailoring the algorithm
for a real mission scenario, namely the Gravity Recovery
and Climate Experiment-Follow-On (GRACE-FO), oper-
ated by DLR. This marks the first step toward making the
methodology applicable and usable in daily operations.

The original non-convex problem is convexified and
solved iteratively in the framework of SCP. To do this,
the collision risk is estimated via the Chan approximation
of the probability of collision (PoC). This allows for the
linearization of the squared Mahalanobis distance to for-
mulate the collision avoidance constraint as an elliptical
keep-out zone. The operational effectiveness of the algo-
rithm is further enhanced by using custom ephemerides
when convexifying the dynamics, ensuring a high level of
accuracy. Moreover, the proposed approach couples the
CAM execution with formation-keeping (FK) constraints,
which are fundamental in the considered scenario because
of the nature of the mission.

The optimiser is tested on two real conjunction scenar-
ios encountered by GRACE-FO in January 2024. Specifi-
cally, two cases are presented: a single close approach and
a scenario involving multiple consecutive conjunctions.
For both cases, the computed manoeuvres that combine
CAM and FK are validated using DLR’s flight-proven
formation monitoring software, demonstrating that the
proposed solutions could have been realistically imple-
mented.

The work concludes with a brief proposal on how the

solver could be integrated into the collision avoidance op-
erations pipeline. In future work, the authors plan to fur-
ther enhance the methodology by introducing the capabil-
ity to propose FK manoeuvres on both satellites compos-
ing the formation. Additionally, efforts will focus on con-
solidating testing and improving the optimiser’s formation
monitoring algorithms to enable long-term analysis of the
satellites’ formation.
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[7] Behçet Açıkmeşe and Lars Blackmore. Lossless
convexification of a class of optimal control prob-
lems with non-convex control constraints. Automat-
ica, 47(2):341–347, 2011. ISSN 0005-1098. doi:
https://doi.org/10.1016/j.automatica.2010.10.037.

[8] Roberto Armellin. Collision avoidance maneuver
optimization with a multiple-impulse convex formu-
lation. Acta Astronautica, 186:347–362, sep 2021.
ISSN 00945765. doi: 10.1016/j.actaastro.2021.05.
046.

IAC-24, A6, 7, 2, x87463 Page 14 of 16



75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by the International Astronautical Federation (IAF). All rights reserved.

[9] Yuanqi Mao, Daniel Dueri, Michael Szmuk, and Be-
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