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Abstract: Continuum joints use structural elastic deformations to enable joint motion, and their
intrinsic compliance and inherent mechanical robustness are envisioned for applications in which the
robot, the human, and the environment need to be safe during interaction. In particular, the intrinsic
compliance makes continuum joints a competitor to soft articulated joints, which require additional
integrated spring elements. For soft articulated joints incorporating rigid and soft parts, natural
motions have been investigated in robotics research to exploit this energy-efficient motion property
for cyclic motions, e.g., locomotion. To the best of the author’s knowledge, there is no robotic system
to date that utilizes the natural motion of a continuum joint under periodic excitation. In this paper,
the resonant behavior of a tendon-driven continuum joint under periodic excitation of the torsional
axis is experimentally investigated in a functional sense. In the experiments, periodic inputs are
introduced on the joint side of a tendon driven continuum joint with four tendons. By modulating
the pretension of the tendons, both the resonant frequency and the gain can be shifted, from 3 to
4.3 Hz and 2.8 to 1.4, respectively, in the present experimental setup. An application would be the
rotation of a humanoid torso, where gait frequencies are synchronized with the resonant frequency
of the continuum joint.

Keywords: soft robot materials and design; natural machine motion; tendon/wire mechanism

1. Introduction

Robots that coexist and collaborate closely with humans are expected to be intrinsically
safe, i.e., they should not pose a higher risk of injury than when they collaborate with other
minds. A significant ongoing development in robotics is to be found in the use of soft
materials inspired by biology [1,2], exploiting softness and body compliance through the use
of structurally deformable objects. Taking this a step further, the field of soft robotics adapts
and shapes compliant structures in a manner that facilitates desired variable impedance
characteristics [3] as well as allowing for more energy-efficient interactions [4]. Traditionally,
rigid-bodied robots are mainly used in production lines, where a deterministic and singular
task is performed, usually in an area closed off to humans. Thus, the emphasis is not on the
notion of safe interaction with people. However, in the ongoing convergence of human
and machine workspaces, the need to adapt the traditional paradigm in the development
of human-centric robotic systems emerges. Della Santina et al. [5] outlined the shift driven
by soft robotics as progressing from a traditional “design for accuracy, control for safety” to
a “design for safety, control for performance”.

Following this way of thinking, the development of compliant robotic structures comes
naturally, using elastic materials [6] such as silicones, rubbers, polyamides, or similar. Tak-
ing a cue from slender creatures such as snakes and octopuses, tendon-driven continuum
joints use cylindrical, elastic materials that are deformed to control their shape or the
position of their tip, see for example Figure 1. In the latter case, the deformation is achieved
by guided tendons, which, in contrast to rigid-body joints, cannot be described by a finite
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number of rotational axes [7], but are usually approximated by finite element methods,
state estimates [7], modeling approaches [8] or, in simple cases, analytical formulas [9].

1 Continuum 5 B plate (fixed)
2 Tendons 6 H plate
3 Tendon pulley 7 XH430-W350
4 Tendon terminal 8 Mounting plate

Figure 1. Illustration of the test bed used to characterize the continuum material.

Industrial systems based on continuum joints are often used in the medical field for
laparoscopy [10] or endoscopy [11,12]. The functional use of the joints is hereby restricted
to the structural adaptive property as well as the enabling of minimally invasive surgical
techniques. Robotic research systems like [13] also makes use of the intrinsic compliance via
the use of soft material structures which lead to increased robustness against impacts. This
goes hand in hand with a passive damping behavior, for example to stabilize a mounted
camera system. This idea of inherent shock resistance can also be realized with flexible
fluidic actuators [14,15]. They consist of a flexible shell that converts the potential energy
provided by the pressurized fluid into a mechanical force to generate motion.

Kakehashi et al. [16] presented a lightweight spine mechanism for humanoid robots
that mimics the musculoskeletal structure of the cervical vertebra, the thoracic vertebra,
and the lumbar vertebra by using a tendon-driven continuum joint. Here, a first step is
taken to reproduce the versatile freedom of movement of the spine in a robotic system.
The freedom of spinal motion is paramount, according to [17], and they claim that this is
a fundamental component of efficient human locomotion. A visual understanding of the
coupled spinal motion can be seen in the Figure 2. The investigation of the origin of the
rotation of the pelvis (along the longitudinal axis) has led to the observation that the pelvis
is not driven by an induced torque of the legs [17]. Prima fascie, no counter-acting torque of
the legs to the ground has been observed, and thus, this can only be explained by a driving
torque of the spine. The latter is explained by the lordotic (curved) spine, which translates
a primitive lateral bend into an axial torque, and thus, driving the pelvis.

Building on the functional use of passive compliance for the design of a robotic spine
in [13] and related control approaches for an underactuated, tendon-driven continuum
joint [7,18], this paper aims to explore the resonance behavior of a tendon-driven contin-
uum joint for periodic natural motions. Related works in this direction exploit periodic
natural motion for stiffness parameter identification [19] or stable open loop control [20]
a for two-segment soft robotic arm. While both works uses isolated bending directions
for their oscillatory motions, the current manuscript excites torsional oscillations only.
The contributions of this work are as follows:
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1. Experimental demonstration of the variable resonance and damping behavior of a
tendon-driven rotary continuum joint under periodic torsional excitation. The varia-
tion of the resonant frequency is achieved by changing the stress state caused by a
tendon mechanism.

2. In addition, an extension to an existing experimental setup [18] is presented, which
allows to analyze the dynamic properties of the periodically actuated continuum joint.

This paper is divided into five sections. In Section 2, the mathematical model is
outlined. Then, Section 3 follows the description of the experimental setup and materials
used. The performed experiments and their results are shown in Section 4. In the final
discussion, Section 5, these results are summarized and future experiments are discussed.

Figure 2. Illustration of the impulse-loaded spine and coupled motion postulated by the spinal engine
theory. The outline of the human was taken from [21]. Pelvic rotation, the curvature of the spine,
leads to shoulder rotation and vice versa.

2. Torsional Harmonic Oscillator Model

The motion of continuum joints involve a structural deformation. To accurately de-
scribe this deformation, rigorous modeling approaches are required. In the past, different
types of application cases for continuum joints and robots have produced a large amount
of different modeling techniques to describe their deformation and the overall motion
mathematically. The recent work of [22] classified the available models into four cate-
gories, Continuum mechanics models, Geometric models, Discrete material models, and
Surrogate models.

The aim of the present paper is the experimental characterization of the resonance
behavior of the continuum joint depicted in Figure 3 while torsionally excited. This
characterization will be done purely on experimental data by the frequency dependent
relation of input θd(t) and output φ(t). Secondly, the damping behavior of the free torsional
oscillator shall be characterized using a linear second order mechanical system. Similar
to the work from [23], the continuum joint mechanism is thereby approximated as a mass
less linear spring, the continuum, with a rigid body on the top end while the bottom end is
clamped to the ground. This model approach belongs to third category discrete material
models defined by [22].

The resulting differential equation to describe the experimentally observed damping
behavior is approximated as a free torsional oscillator with constant coefficients I, d, and k
for the resulting torsional angle φ at the tip of the continuum (rotation along the xB -axis,
see Figure 3):
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1 XM430-W350 5 Cage 9 Adapter
2 Rotation flange 6 Securing ring 10 Weights
3 Thrust bearing 7 Lever arm 11 Mounting screw
4 OpenCR1.0 board 8 Connecting cube 12 PCB mount

Figure 3. Sectional view of the test bed.

I φ̈ + dφ̇ + kφ = 0 , (1)

φ̈ + 2λφ̇ + ω2 φ = 0 . (2)

Whereby in Equation (2) the following substitutions have been made:

2λ ≡ d
I

, ω2 ≡ k
I

, (3)

to gain a generalized formulation. The inertia I along the rotation axis due to the structure
and additional weights m = 140 g employed is:

I = Im + Is = 2mr2 + Is ≈ 12.74 × 10−3 kg m2 , (4)

where r is the radial distance of the additional weights and Is is the inertia of the structure,
which is calculated by CREO. The damping parameter d in N m s is used to capture the
viscous damping properties of the silicone material and the friction in the tendon kinematics.
The stiffness parameter k in N m captures the torsional stiffness of the continuum, which
can be computed straightforwardly from the shear modulus G of the material, the second
moment of area J of the continuum cross section, and the length L of the continuum joint:

k =
GJ
L

=
0.29 N m2

0.095 m
= 3.052 N m . (5)

The parameters above are taken from a similar continuum joint setup in [24].
As depicted in Figure 4, the driving oscillation θd sin Ωt relative to the H frame is

induced by an oscillating pendulum motion on the top of the continuum, i.e., the resonance
testbed. In addition, the tendons attached to the bottom B and head H plates allow for a
change in the compression state of the continuum by varying simultaneously the length of
the tendons which results in a compression pi of the continuum.
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Figure 4. Model for the characterisation of the dynamic properties of the continuum material. Input
variables (magenta): θd, Ω, pi. Measured torsion (red) φ. System variables (black): d, k, ω0, m, Im, Is.
Geometry parameter (green): r.

3. Experimental Setup

The setup shown in Figure 1 is used as a test bed. For the cylindrically continuum
material, we use a two component silicone from [25] see Table 1, which is casted around
the connectors for the top and bottom adapter plates; for further details on the construction
process we refer to [18]. Four Dynamixel XH430-W350 motors are used in a symmetrical
arrangement to ensure a uniform pretension of the continuum element. The tendons are
guided under the center of the silicone and then directed to the respective outer pulley
units by idler rollers. This pulley unit is also present in the upper assembly, whereby the
steal tendon is then fixed with a terminal. The latter leads to our assumption for neglecting
the influence of the tendon elasticities, see also Section 5.2.

The forced oscillation is induced by another Dynamixel XM430-W350 by allowing it
to rotate relative to the upper plate, supported by a thrust bearing. This rotation causes the
lever arm and the weights attached to it to rotate. The rotation is captured by the integrated
MPU9250 gyroscope/accelerometer of the ROBOTIS OpenCR1.0 board, whereby the filter
of [26] is used to minimize the drift of the gyroscope. The time response of the filtered
orientation angles (φ, χ, ψ) of the H plate relative to the B plate is used for further analysis,
see Figure 3.

In order to be able to guarantee a consistent initial condition, it is necessary to apply a
defined pretension to the tendons at the beginning of each test series. This is achieved using
a current-controlled routine that applies a pretension to the tendons up to a defined motor
current value. Afterwards, the initial motor positions are stored and a final motor position
is determined by means of a linearized matrix mapping and the desired pretension position.
This final motor position is controlled by a proportional-integral position controller based
on the actual pose and the target pose so that the top plate is parallel to that of the y-z
plane in the H-frame, see Figure 3. The effects of different pretensioning control methods
provided by the used Dynamixels, i.e., position-controlled with and without motor current
limit, solely current-controlled, can be found in the Supplementary Material S1.

Table 1. Technical data of the continuum material being used, see also the online data sheet https:
//www.kaupo.de/shop/out/media/DRAGON_SKIN_SERIE.pdf (accessed on 4 June 2021) [25].

Property Dragon Skin®

Type (Shore A) 20
Spec. weight [g/cm3] 1.08
100% Young modulus [N/mm2] 0.33
Stiffness (Bending) [N m/rad] 97.4

https://www.kaupo.de/shop/out/media/DRAGON_SKIN_SERIE.pdf
https://www.kaupo.de/shop/out/media/DRAGON_SKIN_SERIE.pdf
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4. Experiments

In this section, the variable resonant behavior of the continuum joint used is shown by
an experimental setup. This corresponds to the main contribution of the present publication,
see contribution 1. Furthermore, the damping behavior is investigated, which should
provide further information with respect to a possible future modeling.

4.1. Resonance

The resonance behavior is determined by applying a frequency-discretized driving
oscillation θd sin Ωit, i = 1, . . . , nG of constant amplitude θd = 20◦, see Figure 5.

Figure 5. Frequency-discretized driving oscillation of constant amplitude.

Each group GΩi consists of five periods (this number was empirically chosen), each
taken after a transient delay time of 3 s, of the same frequency Ωi, causing the system to
reach a steady state oscillation. The mean value (⟨·⟩ represents the averaging operator)
of the measured forced amplitudes ⟨φm⟩GΩi over one group GΩi corresponds to the mea-
sured forced amplitude of this driving frequency group. Finally, this value is normalised
by the amplitude of the driving oscillation θd, which leads to the following amplitude
response [27]:

φ∗
r =

⟨φm⟩GΩi

θd
, (6)

which is used in the following figures.
The amplitude response for different pretensions, i.e., the uniform change in length

of the tendons, over the frequency (the amplitude response over time can be found in
Supplementary Video S1) is plotted in the left graph of Figure 6. The tube shown surround-
ing each solid average line represents one standard deviation, where nm = 3 measurements
were taken for each pretension. In this, the effect can be observed that as the pretension
increases, the resonance frequency fr shifts to higher frequencies and the resulting ampli-
tude response φ∗

r decreases. For a system behaving like a harmonic oscillator with constant
natural angular frequency ω0, a shift of its resonance maximum to smaller frequencies with
decreasing amplitude should be observed as Lehr’s damping factor D increases [27]. This
discrepancy will be discussed in the next section and possible explanations will be given.

The phase difference analysis, which characterises the resonance from another point
of view, is shown in the right graph of Figure 6. The resonant behavior arises from the
phase shift of π

2 , since the resulting velocity φ̇ is in phase with the external driving force,
and thus, the system permanently receives power. This power increase is only limited by
the dissipative friction. An alternative approach is to use the Lissajous curves, see Figure 7,
in which the phase shift can be shown in a qualitative way.

A certain shape corresponds to a certain phase shift. The advantage here is that no
numerical difference has to be computed in order to obtain a time difference, from which
the phase shift can be calculated. For an amplitude ratio of 1:1, an ascending line from the
lower left to the upper right corresponds to a phase shift ∆φ = 0, an evolving ellipse along
the former line, forms a circle and then an ellipse again towards a line but rotated to the left
undergoes the phase shifts ∆φ ∈ [0, π]. Technical limits become apparent here, as the driv-
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ing amplitude φd does not provide the nominal amplitude at high frequencies. Presumably,
this would allow for a wider resonance range with a higher amplitude response.

Figure 6. The graph on the left shows the amplitude response versus frequency w.r.t. different
pretensions, formulated by tendon elongations in mm. The right graph shows the phase difference
of the driving and measured oscillation. The examined pretensions are pi ∈ [0, 12] mm. Each curve
represents the average of the measurements taken and is surrounded by a tube representing one
standard deviation nm = 3.

Figure 7. Lissajous curves. Middle graph: Overlayed Lissajous curve for different frequencies.
A pretension of p = 4 mm was applied here. Technical limits of the drive motor can already be
observed at this point, as the driving amplitude θd does not remain constant at higher frequencies.
Left/right graphs: Schematic representation of the ideal shapes corresponding to a certain phase shift.

A generalised experiment on the sensitivity of the continuum’s compression state is
depicted in Figure 8. Here, the amplitude response changes over a continuous interval of
tendon lengths by iteratively adjusting the length of the four tendons pi simultaneously.

The point of resonance shifts to higher frequencies and the forced amplitude becomes
smaller with increased pretension. An additional effect occurs after reaching a certain
threshold of the pretension. Here, the normalized amplitude remains bounded to a value
of one. This can be understood as a type of saturation and thus defines a usable range in
which the resonant behavior of the continuum can be used. However, it cannot be ruled
out that unknown disturbance effects, i.e., insufficient driving frequency or force, are the
actual cause, so that further tests are necessary.
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Figure 8. Generalised visualization of the amplitude response over an interval of different pre-
tensions pi ∈ [0, 10] mm. The red line in the right graph indicates the corresponding maximum
amplitude responses.

4.2. Damping

In this section, the damping property of the overall system is analyzed, which becomes
relevant for modeling. For this purpose, the continuum is deflected to such an extent that
the steady-state amplitude response is already greater than one. After reaching the steady-
state oscillation, the driving oscillation is stopped at the zero position of the deflection
and the free oscillation of the continuum is recorded. This procedure can be seen in the
left graph of Figure 9. A parasitic effect, which can be seen in the small oscillation of the
stopped driven oscillation, can also be observed in the left graph. However, this is not
believed to have a significant effect on the following results.

Figure 9. Damped decaying oscillation of the system. The left graph describes the excitation and
the resulting decaying oscillation. The right graph illustrates the application of the non-linear least
squares method and states the corresponding derived quantities. No pretensioning was applied here.

Upon this decaying oscillation, the positive and negative peaks are detected and the
enveloping exponential decay curve A exp(−λt) is derived by utilizing a non-linear least
squares method [28], see the right graph of Figure 9. From this, the decay coefficient λfit is
used with the averaged angular frequency ⟨ω⟩ to obtain the Lehr’s damping of the system:

D =
λfit
⟨ω⟩ . (7)

The reciprocal value of this attenuation is proportional to the quality factor Q of
the system:

Q ∝
1
D

, (8)
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which can be used as a central quantity to describe the energy loss of the oscillatory
system [27]. Knowing the total inertia I, which has already been specified in Section 2,
the model-specific quantities d, k from Equation (2) can be determined as follows:

d = 2λI , (9)

k = ω2 I . (10)

In Figure 10, the measured damping behavior is shown over different pretensions
while a comparison is given with the prediction of the linear second-order model, see
Equation (2). With increasing pretension of the tendons, an increase in the decay coefficient
λfit can be observed. This is accompanied by a simultaneously increasing mean angular
frequency ⟨ω⟩. The quotient of these quantities, Lehr’s damping D, remains approximately
constant over the studied range. Therefore, the damping of the system d is less sensitive
towards a change of the compression state pi of the continuum. At the same time, this
means that the quality factor Q, and thus, the resonance sharpness is morphologically
similar. This finding merits further investigation.

Figure 10. Analysis of the damping behavior of the system over different pretensions. The numer-
ically determined parameters ⟨ω⟩, λfit, and the corresponding quotient D are listed in each case.
The examined pretensions are pi ∈ [0, 12] mm. In green, the prediction of the model, see Equation (2),
with the corresponding identified parameters is depicted for each damping characteristic found
experimentally.

5. Summary and Future Work

These observations indicate that the overall system, consisting of a cylindrical contin-
uum material and a tendon actuation, has a variable resonant frequency range that can
be modified by a suitable geometric structure, the choice of material and, in particular,
by pre-tensioning. The stiffness of the continuum is linear [24] in the range used, and
therefore, cannot be the cause of this behavior. Instead, the combination with a tendon
actuation creates a non-linear overall dynamics that allows the natural angular frequency
ω0 and the decay coefficient of the overall system, and thus, the onset of resonance, to be
varied. The observation that Lehr’s damping measure remains nearly constant, confirming
the similarity in principle with respect to the energy dissipation of the respective resonant
modes, requires further analysis.
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5.1. Real-World Applications

One real-world application which can make use of the functional observation described
above lies in the actuation of a robotic torso. Articulated spine mechanisms using metal
springs can be found in the works of [29,30]. Here, an additonal mechanism is used to alter
the torsional stiffness of the robotic upper body. In contrast, the continuum joint design
investigated in the work would combine the motion capabilities and the variation of the
torsional stiffness in one element.

The joint limits for a human torso can be found by the total mobility, see also Figure 11,
of the thoracic and lumbar spine around the trochanter major (•). This can then be deduced
to the following technical terms:

Roll = ±40◦

Pitch = −60◦ . . . 80◦

Yaw = ±40◦

Figure 11. Total mobility of the human thoracic and lumbar spine. The underlying images were taken
from the Human Anatomy Atlas [31] and superimposed in Gimp to form a composite illustration.

Given the results of Section 4.1, where we observed an amplitude response of up
to three with a given forced amplitude θd = 20◦, we fulfill the desired yaw range of
motion of a human torso. By combining the resonant behavior of such a joint, it is planed
to have a energy-efficient rotation during locomotion along the yaw axis of a robotic
torso. Additionally, the parallel stiffness induced by the continuum joint allows for weight
compensation or modulating the required joint torques for pitch and roll movements. Via
morphological design alternations, a curved structure can lead to motion couplings, which
reassembles the spinal engine described above.

5.2. Limitations

In the following subsections, five types of limitations of the experimental investigation
presented in this paper will be discussed.

5.2.1. Tendon Elasticities

The effect of the tendon elasticities is assumed to be negligible. This follows the
argumentation, that for the parallel arrangement of the tendons, their spring constants
sum up. Furthermore, steel tendons (CarlStahl TechnoCables, DE-73079, Süßen, Germany.
Article number: SE000105) are used, which have a comparable higher tensile strength of
1.57 kN mm−2. Combining this with the underactuated system, the authors believe that the
elasticities are predominately given by the continuum material. However, the kinematic
constraints of the tendons during the torsional movement, which may lead to a asymmetric
stress state over the periodic motion, needs further investigation and a clear understanding
for a consecutive modeling.

5.2.2. Transferability

The experiments investigates the behavior of a single joint type with a circular cross-
section, limiting the exploration of other cross-sectional shapes. Additionally, specific
lengths of mechanisms were not investigated, affecting stiffness and eigenfrequency. Future
research will address these limitations by analyzing the transferability of findings to other
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joint types and exploring the effects of different cross-sections and lengths on mechanical
properties. This discussion highlights avenues for further investigation in subsequent
experiments, as outlined in the outlook section.

Furthermore, the experimental investigation of the torsional oscillations and their reso-
nance behavior presented in this work is limited to a straight continuum joint configuration.
Torsional oscillations with a bent continuum are not investigated. Clearly, the deformation
state of the continuum will be asymmetric for large bending angles, yielding potentially
coupled oscillation with the same excitation, which potentially influences the found reso-
nance behavior. Furthermore, the resonance behavior with respect to a bending excitation
is not investigated, as was performed in, e.g., [19] for stiffness identification or [20] for open
loop control.

5.2.3. Anharmonicity

When looking at the amplitude response over different pretensions, the effect could be
observed that the point of resonance shifts to higher frequencies, not to the left as expected
for a harmonic oscillator with increasing Lehr’s damping D. This behavior may be due to
anharmonicity, i.e., the deviation of a system from being a harmonic oscillator [27]. This can
usually be observed by an asymmetry in the phase space, i.e., squeezing of the trajectory
of position over velocity/impulse. This is usually explained by a non-linear, anharmonic
force law [27]. For the corresponding phase space analysis, please refer to Supplementary
Video S1.

5.2.4. Actuation Saturation

Above a certain pretension pi ≈ 12 mm, an onset of saturation of the amplitude
response can be observed. It is unclear whether this is due to the lack of excitation capability
or whether there is a limit to the continuum with respect to the change in stiffness. However,
such a limit can be specified as a parameter to restrict the usable range.

5.2.5. Observational Error

Another possible source of error that should be considered is whether there are
obliterating dynamic effects so that the excitation applied to the lever arm does not actually
occur in the overall system. Such a deviation could lead to a systematic error in the
determination of the damping quantities, as the synchronization of the time instants of the
respective signals is significant here. To date, only a decreasing driving amplitude with
increasing frequency could be observed, which, however, does not negate the principal
resonant behavior.

5.3. Future Work

In future experiments, one analysis that may lead to a quantitative statement about the
benefits of resonant operation is the following. With increasing frequency of the constant
driving amplitude, a linear increase in the necessary driving motor current should be
observed. Therefore, the evaluation of the motor current in the resonant state of the overall
system should show a reduced current consumption. The ratio of the linear increase to this
reduction could serve as a measure of the energy saved.

In another experiment, this effect will be further investigated for different poses of the
continuum joint. In addition, the influence of different shapes of the continuum material
will be explored. This should serve as a demonstrator for motion couplings similar to those
described by the spinal engine theory.

Future research will focus on developing a more generalized frequency response
transfer function to predict the varying resonance behavior of the joint, encompassing
variations in cross-sectional shapes and lengths to provide a comprehensive understanding
of its mechanical behavior across different configurations. In addition to the aforemen-
tioned goals, it is important to note that while the current work focused on experimental
understanding, future endeavors will incorporate a model-based approach to further refine
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the frequency response transfer function for the joint, enhancing its predictive capabilities
and applicability across diverse scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app14209532/s1, Video S1: Experiment on the resonance behavior of the
continuum joint.
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