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Abstract The non-equilibrium gas-surface interactions (GSI) between hot nitrogen gas
and 4.3K nitrogen ice were investigated. For this, molecular dynamics (MD) scattering
simulations were carried out, comparing a flat and a rough aggregated surface model.
The sticking probability and accommodation coefficients were determined for use in direct
simulation Monte Carlo (DSMC) simulations. It was found that the sticking probability
is similar for both models, but not unity despite the low wall temperature of 4.3K and
the accommodation coefficients correspond to partial accommodation. Additional focus
is laid on uncertainty estimation, initial and final energy distributions and the modeled
system size.
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AC Accommodation coefficient.

AIMD ab initio molecular mechanics.

DLR Deutsches Zentrum für Luft und Raumfahrt, German Aerospace Center.

DSMC Direct simulation Monte Carlo.

EOM Equations of motion.

FF Force field.

GSI Gas–surface interaction.

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator.
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MB Maxwell-Boltzmann (distribution).

MD Molecular dynamics.
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MM Molecular mechanics.

NPT Isothermal–isobaric ensemble.

NVE Microcanonical ensemble.

NVT Canonical ensemble.

PBC Periodic boundary conditions.

PDF Probability density function.

PES Potential energy (hyper)surface.
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1 Introduction

1 Introduction

1.1 Motivation

Understanding the flow and impingement effects of small rocket motor plumes is highly
relevant for spacecraft design. It allows to assess contamination risks at spacecraft surfaces
depending on their relative position to the thrusters.[1] While this is less relevant for
commercial missions, e.g. cubesats, contamination is a major concern in missions that
bear sensitive scientific instruments. One example is the planned lander mission to Jupiter
moon Europa, where the exhausts especially during the final descent would significantly
contaminate the landing site.[2] These contaminants (e.g. NH3) could easily be mistaken
for signs of life. But any other scientific instrument mounted on a spacecraft could possibly
be disturbed by plume contamination, e.g. by discoloring.[3,4]

Such contamination effects are researched in large scale experiments at the German
Aerospace Center (DLR) Göttingen in a unique test chamber called the High-Vacuum
Plume Test Facility for Chemical Thrusters (STG-CT).[5] To mimic space-like conditions
in a test chamber, any plume that misses targets must not scatter back into the chamber.
Additionally, the test should be conducted under high vacuum during thruster operation.
At a typical flow rate of 3 g s−1 for the operated rocket motors, substantial pumping is re-
quired to sustain vacuum during operation. For this purpose, experiments are conducted
within a 1.6m diameter, 5m long cylindrical vacuum chamber with a helium cooled sur-
face acting as a cryopump. By cooling the cylinder with boiling helium, a vacuum of
1× 10−5 mbar during operation can be maintained. The residual pressure is the equilib-
rium H2 pressure at the wall temperature of 4.2−4.7K. At these temperatures, all plume
components except H2 are assumed to freeze out at the chamber wall on first impact.
The rocket motor plume of a so-called monopropellant hydrazine thruster consists of the
decomposition products of the catalytic and thermal decomposition of hydrazine over
a heated Pt/Ir catalyst. Under full decomposition they are assumed to be 1:2 N2 and
H2, but typically varying percentages of NH3 are also present.[6] Alongside these main
components, various side products of incomplete decomposition are present in reality.
Indeed, the degree of decomposition of ammonia is a design parameter for this type of
engine. For the present work, full decomposition is assumed and hydrogen is neglected,
setting the focus on only the main component of the plume by mass, N2.
The cryopump surface is approx. 20 years old technical copper. It can be assumed that it
is rough, potentially porous and coated with various contaminants. Among these may be
copper oxidation products, reaction products from incomplete hydrazine decomposition
remains and water. Correctly representing this surface in simulations is clearly unfeasible.
Instead, only the situation after some plume freeze-out has already happened will be
discussed. It is assumed that the mass flow of a typical rocket motor is high enough to
completely cover the surface with N2 ice in the beginning of an experiment. Afterwards,
the dominating interaction is only of the plume with the surface it originated.
In conjunction with experiments, the rarefied gas flow during operation is simulated using
the direct simulation Monte Carlo (DSMC) method.[7–9] This is a coarse–grained method
for simulating rarefied flows at kinetic scales. In this method, gas-wall interactions are
described by statistical models called scattering kernels. The required parameters are usu-
ally derived by fitting either to experiment or to molecular dynamics (MD) simulations.[10]
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1 Introduction 1.2 Current state-of-the-art

Experimental data is not readily available for the case of the STG-CT, so the ab initio
derivation from MD will be attempted. The model used in this work is the Cercignani-
Lampis-Lord (CLL) scattering kernel[11,12] due to its simplicity and widespread use and
implementation.
Due to the complexity of the real system, representing it in MD simulations is problem-
atic. Different model choices for gas and surface could influence simulations to a large
amount and in unforeseen ways. Instead of aiming for the most realistic representation,
variations in the model should be compared for their effect on the scattering behaviour.
This approach facilitates qualitative understanding over quantitative determination for a
specific set of approximations. Only a very limited number of models is feasible within
the context of this thesis, however. To do this, a baseline model is defined and a series of
derived systems is simulated. The baseline model is designed to be as simple as possible:
plume and ice consist of only molecular nitrogen and the surface structure is a flat cubic
α phase single crystal at 4.3K. The second structural model is a surface that is incremen-
tally built up via deposition. The molecular projectiles for the deposition will be drawn
from the same ensemble as the parametrization projectiles.
The main questions asked in this study are a) How accurate is the assumption of total
freeze-out for the STG-CT wall? b) What are averaged gas-wall interaction parameters for
the N2 on N2 system at typical operation parameters, under the above approximations?
These questions shall be investigated using MD simulations of the scattering process,
where a large number of individual trajectories of projectiles is analyzed. This workflow
is used to determine the sticking probability s and to parametrize the CLL kernel. Special
attention is given to uncertainty estimates for the determined parameters. Additionally,
the minimum size of the slice of wall in such simulations is questioned. The process of
sampling individual molecules from a gas ensemble by randomizing impact speed and
angle is examined for its validity.

1.2 Current state-of-the-art

MD was previously used to study gas-surface interactions, an overview is given in Table
1.1. Many of the referenced works also determined sticking probabilities or parametrized
scattering kernels. The general method typically involves the following aspects. The wall
is built from the crystal structure and partitioned into layers, where the bottom-most is
typically fixed, some are thermostatted and the rest moves freely. The projectile particle
is sampled from some distribution or at concrete values of impact angle and energy. A
large number of simulations is carried out over which the scattering behaviour is then
averaged in post-processing. This work will attempt to adapt this methodology to the
new system of the STG-CT cryopump wall. Contrary to most mentioned works, the
sticking probability is of high interest as well additionally to the scattering kernel. As a
consequence of the low surface temperature and resulting high sticking probability, the
available number of data points for the scattering kernel is unusually low. While most
previous studies argued that the wall sample size is unimportant, this work attempts to
make an informed decision on system size based on observed impact effects.
Many of the previously published works applied the method to systems very different
to the STG-CT problem. The surfaces modeled were often perfectly flat, which is very
far from the reality of a technical copper surface covered with plume ice. Furthermore,
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1 Introduction 1.2 Current state-of-the-art

Table 1.1: Overview of systems studied in previous works where gas-surface scattering via MD
was used to derive a sticking probability, scattering kernel or similar models. If
several species were studied, only the ones most relevant to this work are given here.
For the surface temperatures, only the lowest temperature considered is given here.

Authors Gas Surface Ts / K structure

Blömer et al. 1999[13] N2 Pt 50 flat
Bolton et al. 1999[14] Ar H2O 0 flat

Yamanishi et al. 1999[15] O2 graphite 298 flat
Bruno at al. 2000[16] Xe GaSe 182 rough lattice

Yamamoto et al. 2007[17,18] N2 Pt 300 Xe adsorbate
Daun 2009[19] N2 graphite 3000 flat

Spijker et al. 2010[20] Ar Pt 300 flata

Pham et al. 2012[21] Ar Pt 200 45◦ pyramids,
deposited rough

Liang et al. 2013[22] Ar Pt(100) 300 flat
Gorji et al. 2014[23] N2 Cu(110) 650 flat

Reinhold et al. 2014[24] N2
hydroxylated

silicon 300b hydroxylatedc

Mehta et al. 2016[25] N2 graphite 677 flat

Mehta et al. 2017[10] N2
graphite,
quartz 300 unstructured

fused quartz
Andric et al. 2018[26] N2 graphite 300 flat
Liang et al. 2018[27] Ar Pt 300 flat

Liao et al. 2018[28] CH4 graphite 350 incomplete
upper layer

Andric et al. 2019[29] N2 graphite 300 flat

Nasab et al. 2019[30] noble
gases

DGEBA
epoxy resin 300 rough

Liang et al. 2021[31] Ar Pt 150 flat
Liu et al. 2021[32] Ar graphite 500 flat

Nejad et al. 2021[33] Ar Au 300 flat
Wang et al. 2021[32] Ar graphite 300 flat
Nejad et al. 2022[34] N2 Ni 288 flat

Wu et al. 2022[35] N2 Pt 300 sinusoidal
pattern

Brann et al. 2023[36] CH4 CH4 20 flatd

This work N2 N2 4.3 deposited rough
a However, all gas particles were simulated at once, so collision with adsorbed

particles seems possible.
b also considered fully rigid surface.
c Flat single crystal surface, which on the atomistic scale is arguably rougher

than e.g. a Pt surface.
d but includes random CH4 orientation
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cryogenic wall temperatures were rarely considered. Notably, the combination of both a
cryogenic and a rough wall was found to be exceedingly rare. The surface materials tend
to follow for which materials experimental reference scattering data exists (metal crystals
or graphite), while the STG-CT surface is assumed to consist of the plume ice (rough
N2 with H2 and NH3 contaminants). The force fields sometimes included unphysical
components like a returning spring force (Einstein lattice)[13,37] for the surface atoms or
they were held in place completely rigid.[24] However, the distribution of energy through
the slab is suspected to play an important role in scattering and adsorption-desorption
mechanisms. For multiple collision impacts, the importance of the efficiency of energy
redistribution in the lattice for the scattered projectile was already mentioned in the work
by Bolton et al..[14]

Some works stand out as especially relevant. As shown in Table 1.1, the studies by Blömer
et al.,[13] Bolton et al.,[14] Bruno et al.,[16] Pham et al.,[21] Liang et al.[27] and Brann et
al.[36] considered surfaces below room temperature. Out of these, the recent work of Brann
et al.[36] is the only example of a molecule scattering from cryogenic ice made from the
same molecule. Furthermore they not only used a thermalized gas at some temperature
but fast directed projectiles in accordance with their beam expansion experiments. This
is a very close match to the rocket motor plume system, hence their results will primarily
be comparable to this study. Some differences stand out, however. They considered the
fixed impact angle 0◦ 1. This work however will consider a distribution of impact angles,
due to the complex distribution of impact angles found in the cylindrical chamber. The
lowest impact energy they used (0.51 eV) is higher than what will be assumed for N2
here, 0.23 eV. They also set the initial rotational energy to zero while in this work it is
sampled according to the temperature of the plume, similar to the work by Andric et
al..[29] The methane ice slab by Brann et al. was not built by deposition. Consisting
of six molecule layers, the bottom three remained fixed, making for only three moving
layers. They also did not simulate a periodic box and instead used artificially heavier
molecules as boundaries. All other works mentioned concerning polyatomic projectiles,
including this work, apply the rigid rotor approximation, while [36] consider molecular
vibration. While the nitrogen bond is very stiff and therefore the rigid rotor approximation
is robust, methane C-H bonds are weaker, so vibrational excitation up on collision is more
likely. These differences could alter the scattering behaviour significantly, as more impact
energy can be dissipated. According to a rheologic study of the two ices,[38] both materials
show similar hardness and brittle failure between 5− 30K. It is possible that the higher
impact energy and the added effect of vibration have opposite effects and cancel to some
degree. In the work of Bolton et al.,[14] Ar was scattered from a 0K water crystal. The
surfaces may be similar to some degree, except for water forming strong hydrogen bonds
and therefore being a stiffer surface. Comparison to their work could become relevant if
ammonia is introduced to the problem. They laid great focus on studying the dynamic
effects of the impact on the lattice, inspiring some analysis methods used in this work.
The study by Blömer et al.[13] was not considered for comparison due to the very small
system size of their Pt surface.
Out of the works that considered rough surfaces, two stand out as particularly relevant for
comparison. The work by Pham et al.[21] used deposited surfaces to simulate roughness.

1They report having run simulations with 45◦, but do not give results from these except finding a lower s.
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They did, however, consider the Ar-Pt system. Monoatomic systems lack rotational
internal degrees of freedom, rendering the comparison to nitrogen flawed. The lowered
Pt wall temperature of 200K is noteworthy, but it is unlikely that it behaves similar to
nitrogen at 4.3K. The work by Mehta et al.[10] is interesting for comparison due to them
studying a naturally rough surface with nitrogen as projectile at similar impact energies.
However, they did not consider wall temperatures below 300K. Their definition and
analysis of DSMC parameters was partially inherited in this work.
This work will attempt to adapt the methodology to the new system of the STG-CT
cryopump wall. Many aspects of the methodology were taken over to this work, notably
the method of sampling a large number of single trajectories with given initial velocities
and impact angles. Compared to the cited works, there are some notable differences. The
sticking probability is of a high interest as well additionally to the scattering kernel. With
the low surface temperature and consequential high sticking probability, the available
number of data points for the scattering kernel is very low. An expandable workflow for
surface deposition is developed to sample ice surfaces similar to how they would form from
the freeze-out of the rocket motor plume. Special attention is given to the system size.
While most previous studies argued that the wall sample size is unimportant, this work
attempts to make an informed decision on system size based on observed impact effects.
The process of sampling individual molecules from a gas ensemble by randomizing impact
speed and angle is examined for its validity.

2 Theory

Using MD for scattering kernel parametrization is an interdisciplinary field between com-
putational chemistry and rarefied gas flows aerodynamics. There are some differences
in the vocabulary of the fields. The following sections discuss methods relevant for this
work, in the order from abstract and macroscopic to concrete and atomistic. Finally,
uncertainty estimation is discussed.

2.1 Isotherms

Consider a solid surface at some temperature Ts. Above the surface is a gas at some pres-
sure p. The gas may adsorb onto the surface, building up a surface coverage θ. The surface
may be flat, rough or porous, requiring different modelling approaches. Consequently, dif-
ferent definitions for the coverage may be appropriate. A sorption isotherm is a function
θ(p) mapping some measure of surface coverage to the gas pressure.[39] A Master thesis
project at DLR implemented the Langmuir isotherm into the SPARTA DSMC code.[40]

Inspired by this model, it was originally thought that the process of plume freeze-out in
the STG-CT could be modeled by an isotherm. After a literature review on isotherms,
no option was found to make them applicable to the problem. One central assumption of
isotherms is, as the name implies, a constant temperature during deposition and desorp-
tion and thus the fluid and the surface being in thermal equilibrium. This assumption is
hard to justify with the plume from the 1000K source impinging on the 4.3K cryopump
surface and then freezing out.
An additional complication is the definition of pressure. The nature of a cryopump is
to reduce the temperature of the wall such that the gas equilibrium pressure drops to
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2 Theory 2.2 Direct simulation Monte Carlo

negligible amounts. At Ts < 5K, the solid nitrogen vapor pressure is negligible, as
shown in Figure 6.1. However, the hydrogen vapor pressure is on the order of 10−5 mbar,
which might influence the nitrogen adsorption in some way. The static pressure of the
rocket motor plume greatly varies depending on the angle to the nozzle, but can reach
several orders of magnitude more than the hydrogen dynamic pressure. As an alternative,
scattering kernels (c.f. 2.3) were found to be applicable models, since they allow the
temperature of the gas to change. Instead of pressure, they are functions of particle
velocities.

2.2 Direct simulation Monte Carlo

The DSMC method was pioneered by G. Bird[7–9] in the 1960s. It is a probabilistic method
for the simulation of rarefied gas flows. A gas is called rarefied if the particles’ mean free
path is longer than some representative length scale. This favors the treatment of the fluid
as discrete particles over continuum fluid methods. There are some similarities to MD. In
both methods the trajectory of point masses through position-momentum phase space is
propagated. MD, however, operates on the nm-scale, while DSMC operates on the length
scale of the mean free path. This scale changes substantially with the local number density.
The method is therefore only realistically applicable for large scale problems in low density
environments. While in MD the particle movement is deterministic and follows classical
mechanics, DSMC particles interact statistically, where particle movement is separated
into two parts: a) deterministic free flight, b) collisions. DSMC collisions are a stochastic,
instantaneous change of velocity for selected collision partners. For each timestep, all
particles that share a simulation cell may be randomly chosen as collision partners. In
this process, they may exchange energy in any modes. In the DSMC context, particles are
“simulation particles”, a symbolic collection of real particles with approximately similar
properties. They may represent a large number of real particles.
It is not within the scope of this work to apply the determined parameters to DSMC
simulations or to describe the method in detail. For a more thorough review of the
method, the reader is referred to the book by G. Bird.[9]

2.3 Scattering kernels

The following general discussion is adapted from Gorji et al.[23] A particle impinging
on a wall is described by the two states before (ψ′ψ′ψ′ = (v′n, v

′
tx , v

′
ty , ω

′
1, ω

′
2)) and after

(ψψψ = (vn, vtx , vty , ω1, ω2)) the collision. The velocity of the projectile in surface normal-
and tangential direction is vvv = (vn, vtx , vty) and the rotational state of a linear rigid rotor
is given by ωωω = (ω1, ω2). The apostrophe refers to initial conditions before the collision.
Scattering kernels are functions k(ψψψ|ψ′ψ′ψ′) that give the probability of outcome conditions
given the incident conditions. They are a form of probability density function (PDF). For
the discussion of scattering kernels, the normalized coordinates φ′φ′φ′ = (ξ′n, ξ

′
t1
, ξ′t2 ,Ω

′
1,Ω

′
2)

and φφφ = (ξn, ξt1 , ξt2 ,Ω1,Ω2) are introduced, with the normalized translational and rota-
tional velocities ξξξ = (ξn, ξt1 , ξt2) and ΩΩΩ = (Ω1,Ω2).
Many scattering kernels exist, out of which the Maxwell kernel is one of the oldest and
simplest. The CLL (Cercignani-Lampis-Lord[11,12]) kernel is commonly used in engineer-
ing DSMC simulations.[32,41] The CLL kernel improves on the Maxwell kernel by allowing
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2 Theory 2.3 Scattering kernels

partial accommodation and typically matches experimental results qualitatively, but not
quantitatively.[42] Among its shortcomings are the inability to describe coupling of internal
energy (i.e. rotation) to translational modes.[23] Due to its common usage and implemen-
tation in codes like SPARTA, the CLL kernel is the most relevant kernel to parametrize
for this work.

2.3.1 Accommodation coefficients

Scattering kernels typically feature parameters, usually determined from experiments or
MD simulations. These parameters are often energy or momentum accommodations co-
efficients (ACs). In general, the energy AC is defined as

αE =
Ei − Ef

Ei − Es

. (2.1)

Momentum ACs (often denoted σ) are defined likewise and can be converted via α =
σ(2 − σ). The suffixes mean i for initial, f for final and s for surface. Es is a constant
equal to the kinetic energy of the most probable velocity in the Maxwell-Boltzmann
distribution at surface temperature. ACs are not defined for Ei = Es. Because of the low
wall temperature considered, it will generally be assumed that Ei > Es, except stated
otherwise. The AC states by how much the energy approaches the surface thermal energy
after the scattering event. A value of 1 means full accommodation (i.e. diffuse reflection
at wall temperature). α = 0 describes an adiabatic event, i.e. specular reflection. The
interpretation of values outside the 0, 1 range can be confusing. An overview of the value
range is given in Table 6.1. Values larger than one are possible if the final energy is lower
than that of the surface. Negative AC values are possible if the projectile gains energy
during the process. While both outcomes are unlikely for the total energy, they may
happen in individual degrees of freedom (modes).
When determining the AC from a finite set of individual simulations, there are different
possibilities to derive a single averaged parameter from the distributions of initial and
final energies. By taking averages of the energies, equation 2.1 can be formulated as a
difference of means (equation 2.2) or as a mean of differences (equation 2.3). From here
on, they are indexed ‘diff.o.m.’ and ‘m.o.diff.’ and are given by

αdiff.o.m. =
〈Ei〉 − 〈Ef〉
〈Ei〉 − Es

(2.2)

and
αm.o.diff. =

〈Ei − Ef〉
〈Ei − Es〉

=
〈∆Ei,f〉
〈∆Ei,s〉

, (2.3)

respectively. The mean of a distribution is symbolized by 〈 〉. Alternatively, the AC can
be calculated for every Ei, Ef pair. The mean or median can then be determined from
the resulting distribution of ACs.

2.3.2 Maxwell

According to the Maxwell kernel, there are two possible scattering outcomes: diffuse
scattering or entirely specular scattering. It is defined by one parameter α, the fraction
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2 Theory 2.3 Scattering kernels

of particles that are fully thermalized and diffusely re-emitted. The fraction of specularly
deflected particles is thus 1 − α. The Maxwellian PDF, which is a combination of the
single-valued specular and the diffuse kernel, can be expressed as[23]

fM(φφφ|φφφ) = (1− α)δ(ξξξ − ξξξ′R) +
α

2π

√
m

kBTs
ξz exp

(
−m|ξξξ|2

2kBTs

)
, (2.4)

with the Dirac delta function δ and the reflective velocity ξξξR = (ξx, ξy,−ξz) if z is the
surface normal direction.
Its main shortcoming is the inability to describe partial accommodation. It is con-
strained to velocities either exactly equal to the incident velocity or equal to the Maxwell-
Boltzmann distribution at wall temperature. Similarly, it is constrained to scattering
angles either equal to the incident angle or to the cosine law of perfectly diffuse des-
orption. For systems with a hot gas scattering from cryogenic walls, it is unlikely that
projectiles undergo specular reflection without energy exchange. Nor is it likely they are
completely absorbed and diffusely re-emit at wall temperature of 4.3K, unless it is H2.
The Maxwell kernel is therefore suspected to be unsuitable for application in this work.

2.3.3 CLL

The kernel by Cercignani and Lampis[11] with later modification by Lord[12] is given by

fCLL(φ|φ′φ|φ′φ|φ′) =
2 ξn

π2αnαtαr

exp

((
ξξξt −

√
1− αt ξξξ

′
t

)2
αt(2− αt)

)

× I0

(
2
√
1− αn ξ

′
nξn

αn

)
exp

(
−ξ

2
n + (1− αn)ξ

′2
n

αn

)
× exp

(
−
(
ΩΩΩ−

√
1− αrΩΩΩ

′)2
αr

)
.

(2.5)

Here, αn, αt, αr are the energy ACs for normal, tangential and rotational energy of a
fixed rotor and In is the nth order Bessel function.
The projectile kinetic energy is separated in two components, normal and tangential to
the surface. Separate ACs αn, αt are used for these dimensions and αr for rotational
energy. Vibrational internal energy is neglected in this study, so the CLL kernel features
three parameters. The tangential AC is given by

αt =
Et,i − Et,f

Et,i − Es

, (2.6)

the normal AC by
αn =

En,i − En,f

En,i − Es

, (2.7)

and the rotational energy AC by

αn =
Eri − Er,f

Er,i − Es

. (2.8)
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2.3.4 Further models

Many extensions to CLL have been published.[23,27,43] In this work, they are not considered
because they are not implemented in the SPARTA code[40] used at DLR at the time of
writing.
The main shortcoming of such scattering kernels is the globality of the parameters. In this
context, globality means that the kernel parameters are not a function of any projectile
property, meaning projectiles of various angles or velocities will be handled with the
same ACs. In the context of impact angles, this is also called isotropy of the kernel. This
assumption could become problematic once the physics of the impact qualitatively change
within the distribution. The kernel is an approximation to the mean scattering behaviour
observed in the reference data, limited by the functional flexibility of the kernel.
To reproduce the observed scattering behaviour more precisely, a non-global mapping
could be used. There are tradeoffs for the gained precision. While a global kernel can be
used from one or a few numbers published elsewhere, sophisticated models require special
training data, e.g. a MD database for the scattering problem at hand. Implementation of
such models is also nontrivial, as available DSMC codes likely need to be modified. Some
examples of fitting post-collision distribution of velocities have been published.[28,29,31–35]

Some use Machine-Learning (ML) models or the PDF of the reference data is used directly.

2.4 Sticking probability

A scattering kernel is only concerned with particles that leave the surface. In the context
of a cryopump, it is expected that most particles will aggregate on the surface. DSMC can
handle this by deleting particles that hit the surface under certain conditions, governed by
a probability parameter. This sticking probability is also a quantity that can be measured
for real surfaces using the King and Wells technique.[44,45]

In MD, the sticking probability is determined by performing many simulations and count-
ing how often the projectile either adsorbed (Nsticking) or scattered (Nscattered),

s = P (sticking) = 1− P (scattering) = Nsticking

Nsticking +Nscattered
. (2.9)

A classification of MD trajectories is required to determine s statistically from a set of
simulations. The specific criteria for these outcomes need to be defined carefully.
A particle is considered scattered once its distance from the surface exceeds the cutoff
distance as used in the Lennard-Jones potential, 8Å. A particle is considered to be fully
accommodated to the surface (“sticking”) when it does not fulfill the aforementioned
condition within 50 ps. This value was chosen as a conservative guess based on values
used in the literature in the range of 10 ps to 50 ps.[24,25,32,35,36] Inspired by the study by
Bolton et al.,[14] an additional criterion for sticking is implemented to save computational
effort. According to this criterion, the projectile total energy (kinetic + projectile–ice
potential energy) needs to be lower than the desorption energy. This quantity is tracked
with a moving average for the last 10 ps. If this mean falls below the desorption energy,
the trajectory is counted as sticking. In ice models with defects and mixed phases with
NH3 and H2, the desorption energy could prove hard to define and a conservative upper
bound will be chosen.
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2.5 Molecular Dynamics

For a comprehensive introduction to the topic, the reader is referred to the book by Tuck-
erman.[46] Furthermore, the following overview is based on [47]. MD is the propagation
of a system of atoms or molecules in time via integration of the particles’ equations of
motion (EOM). The goal of such simulations is usually to estimate a property of the bulk
material like phase transitions, structure and dynamic behaviour. At the start of any
MD simulation, the system is initialized. This usually includes setting initial positions
and velocities of all atoms and the parameters of their interaction. The core loop of the
method is:

1. Calculate energies and forces

2. Numerically integrate equations of motion (apply timestep ∆t)

3. Diagnostics and post-processing
The following overview approximately follows the same order.

2.5.1 Potential energy hypersurface and force fields

One of the most important aspects of MD simulations is the model that governs how
particles interact with each other. This is closely related to the energy of the system, as
the force acting on a particle can be inferred from the energy gradient. A scalar function
for the potential energy with respect to all atomic positions, V (r), is defined. It is referred
to as the potential energy hypersurface (PES) or just the potential and contains central
approximations.
To define a PES, the Born-Oppenheimer approximation is assumed. Because atomic nuclei
are much heavier than electrons, the electrons move much faster. Thus, the nuclei are
assumed to move in a field of electrons that instantaneously adapts to nuclear movements.
Therefore, the energy of the system is given by the nuclear positions r without regard of
electron coordinates.
It is a central approximation of any MD simulation and defines the physics that can
and can’t be represented. Therefore, the choice of methods used to calculate it greatly
depends on the question that is sought to be answered by the simulation and the available
computational power. There are various possible approaches.
If quantum effects need to be resolved and the system size and simulation time are low
enough, methods of quantum chemistry can be used. This is called ab initio MD (AIMD).
AIMD is relevant if electronic structure effects of the system are relevant, but the com-
putational effort is much higher.
Molecular Mechanics (MM) is another possible approach where the forces between atoms
are estimated based on their pre-defined bond situation and different parametrized poten-
tials. Such potentials are called force fields (FF). The potential of the system is expressed
as a sum over individual contributions:

Vtotal = Vbonds + Vangles + Vdihedrals + Velectrostatic + Vvan−der−Waals + Vspecial. (2.10)

Each term is a sum over all individual contributing particles. Depending on which species
and phenomena are studied, only some of these contributions may be considered and with
varying approximations.
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For van-der-Waals interactions, a parametrization of the Lennard-Jones 6-12 potential
(LJ) or related functions is common practice:

VLJ = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (2.11)

where ε is the zero crossing point of the potential and σ the equilibrium distance. All
equations in this work are given in SI units unless stated otherwise.
For covalent bonds, parametrizations of the Morse potential

VMorse(r) = De

(
1− e−α(r−re)

)2
, α2 =

µω2

2De

, ω =

√
k

µ
, µ =

m1m2

m1 +m2

(2.12)

are often used. Here, De is the bond dissociation energy, µ is the reduced mass and k the
spring constant of the bond. If only small deviations from the equilibrium bond distance
occur, the harmonic spring is often used instead. Similarly, the potentials for angles and
dihedrals can be approximated by simple parametrized functions.
If charged particles are included, their Coulomb potential

Velectrostatic(r) =
1

4πε0

N∑
i=1

qi
|r − ri|

(2.13)

for N particles with charges qi at positions ri is included as well. Since it is a long-ranged
interaction, there is usually a cutoff after which it is indirectly solved, e.g. via particle
mesh Ewald summation.[48]

The assumed requirement to the FF used in this study was reproducing reasonable struc-
tures and interaction energies at both Ts < 5K and during impacts of the order of 1 eV.
The the 5-atom rigid rotor model PHAST-N2

[49] was chosen. It was tested to correctly
reproduce the different ice phases above and below 35K while also giving accurate pres-
sures and densities at 298K. The choice was also biased by PHAST being a family of
force fields for which H2 was available. This facilitates easier extension of the method to
mixed phase ices and parametrization of the H2 scattering kernel in future work. Their
potentials are given by

VPHAST = VLJ + Velectrostatic. (2.14)
The interaction sites and parameters are given in Table 2.1.
One pitfall of MM is the mixing of different parametrizations for different atom types.
Let the LJ interaction parameters for atom types A and B be given by εA, σA and εB, σB.
Note that the parameters for each index describe the potential between atoms of that
respective type only, therefore they are also sometimes written as e.g. σAA. The most
consistent method of obtaining the interaction parameters for the pair AB would require
to repeat the parametrization process with both particles. Instead, so called mixing rules
are common approximations for the interaction between atoms A and B. The Waldman-
Hagler mixing rules,[50]

σAB =

(
σ6

A + σ6
B

2

) 1
6

(2.15)

εAB =
√
εAεB

2σ3
Aσ

3
B

σ6
A + σ6

B
, (2.16)
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Table 2.1: Parameters of PHAST-N2 for WH mixing rules. With R, the distance of the atom to
the center of mass is given. The sites N2A correspond to the real nitrogen atoms, N2C
(the center of mass) and N2F carry additional LJ interaction sites. The N2A and N2C
sites carry charge, resulting in a quadrupole of approximately Θ = −1.514D Å.[49]

Site M / Da qi / e R / Å ε
kB

/ K σ / Å

N2C 0.000 1.0474 0.000 27.2601 3.4203

N2A 14.007 −0.5237 ±0.549 0.0000 0.0000

N2F 0.000 0.0000 ±0.784 15.3094 3.0777

were recommended for use with the FF employed in this work.[49]2

2.5.2 Integration methods

The EOM considered in MD are usually not the ones originally derived by Newton.
Instead, the Cartesian coordinates of all particles in the system can be described as
generalized coordinates q. This allows for coordinates like bond distances or bond angles
to be used directly, making their integration and energy calculations easier. In analogy,
generalized velocities can be defined as q̇ (Lagrangian mechanics). Instead of velocities,
generalized momenta p can be defined instead. This idea is introduced in Hamiltonian
mechanics. The tuple q,p can then be seen as the coordinates in phase space of the
system. The Hamilton EOM are

dq
dt

=
∂H
∂p ,

dp
dt

= −∂H
∂q (2.17)

with the Hamiltonian H = T (p) + V (q) which provides the total energy of the system.
Note that everywhere else in this work, T refers to a temperature while here, T (p) refers
to the kinetic energy.
The integration of the EOM would be trivial if analytic integrals would exist. Since
they do not exist, numeric integration is employed. For numeric integration, the problem
is discretized into finite time steps dt ≡ ∆t. Many different algorithms for numeric
integration exist with advantages for different applications.
The integration algorithm used for discretization of the EOM should be symplectic. In
the phase space of a system with any number of degrees of freedom, a high-dimensional
equivalent of area within that phase space may be defined. A symplectic integrator is one
that preserves this area. One major advantage of symplectic integrators is that conserved
system properties, e.g. total energy, are more reliably conserved than with non-symplectic
integrators like the Euler method or Runge-Kutta integrators. The methods discussed in
the following are symplectic integrators.
Verlet integration is a symplectic first-order method. The order of a method states the
highest order of derivatives that come up in the system of equations solved by it. The

2Contrary to the equation given in the PHAST-N2 paper, Waldman and Hagler state a sixth root for σAB in
their paper. The author assumes a printing error and follows the WH equation.
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original algorithm published by Loup Verlet[51] did not calculate the velocities of parti-
cles, however. The Velocity Verlet integration[52] is an extension to the regular Verlet
integration algorithm. It is a second-order method that calculates the velocities at every
timestep. For MD simulations, they are a convenient quantity to have available, e.g.
to calculate temperatures. In the general framework of positions xxx, velocities vvv, and
accelerations aaa, the Velocity Verlet algorithm states

xxx(t+∆t) = xxx(t) + vvv(t)∆(t) +
1

2
aaa(t)∆t2, (2.18)

vvv(t+∆t) = vvv(t) +
aaa(t) + aaa(t+∆t)

2
∆t. (2.19)

The accelerations aaa = 1
m
FFF are given by the particle masses and the forces FFF . The latter

are equivalent to the negative gradient of PES,

FFF (t) = −∇V (xxx, t) = −d V (xxx, t)

dxxx
. (2.20)

The original publication by Verlet also introduced the concept of neighbor lists. This is
a method where for every particle, the indices of all its relevant neighbors in interaction
distance are tracked and updated throughout the simulation. While initially adding over-
head in computational effort and memory usage, this method may considerably speed up
calculations. Interactions of particles that are far apart may be omitted entirely from
direct interaction calculations. It is still used today and is also employed in this work.

2.5.3 Thermostats and barostats

For other ensembles than the microcanonical (NVE) ensemble, certain global properties
like temperature and pressure need to be regulated. This task is not trivial and over the
history of MD many different approaches were developed. In order to keep the temper-
ature constant, a naive approach would be to periodically re-scale all velocities of atoms
in such a way that the overall temperature is correct. Algorithms (thermostats) that
implemented this approach include the Berendsen thermostat.[53] It was shown to violate
the energy equipartition theorem, distributing energy from fast frequency modes to low-
or zero frequency modes like translation, known as the flying icecube effect.[54] Instead
of conserving total kinetic energy, the distribution of energy in all degrees of freedom,
e.g. rotation, needs to follow the correct distribution to truly mimic the canonical (NVT)
ensemble.
Other thermostats directly modify the EOM. The Langevin thermostat[55] introduces sto-
chastic motion, mimicing Brownian motion. Nosé-Hoover thermostat chains[56] introduce
additional degrees of freedom, equivalent to one or more heat baths, into the EOM. The
latter has been shown to correctly sample the canonical ensemble. However, this ap-
proach is not derived from a Hamiltonian and can not be integrated with symplectic
integrators.[57] For the rigid rotors considered in this work, Kamberaj et al.[58] derived
symplectic integrators that correctly sample the canonical ensemble.
Algorithms constraining the pressure are called barostats. The Nosè-Hoover barostat[59]

can both alter the EOM and scale the simulation box boundaries to regulate pressure.
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2.5.4 Evaluation of trajectories

Because of the finite amount of particles and the resulting statistical noise, individual
points in time are unlikely to be representative. In these cases, properties from MD simu-
lations are averaged. Many properties, however, can be calculated during the simulation
for every step or averaged over series of steps. To monitor the simulation progress and
status, properties like temperature or special coordinates can be tracked.
The goal of a representative average is covering as much of the relevant phase space as
possible, which can take enormous amounts of simulation time if certain parts of phase
space are behind energetic barriers. An alternative approach to covering phase space
involves a high number of parallel systems starting in different positions in said phase
space.
The assumption that, given enough time the system will explore all of the accessible
phase space is called ergodicity. In an ergodic system, averaging over time is equivalent
to averaging over the ensemble. In this work, ergodicity is assumed for time averages of
wall properties like its temperature.

2.6 Error estimation

2.6.1 Bootstrapping

Let X = (X1, X2, ..., XN) be some data from which a statistic θ(X) (e.g. the mean) is cal-
culated. If this data is normally distributed, the uncertainty of θ may be estimated using
(multiples of) the standard deviation to obtain confidence intervals. The bootstrap[60] is a
resampling method that can estimate the uncertainty of a statistic when the distribution
of underlying data is not normally distributed. It is simple to implement and makes no
assumption on the underlying distribution. However, it still makes assumptions:

• The data is seen as discrete (categorical) and only values that are in the original
population are possible.

• Each data point contributes equally.

• The sample cumulative distribution function (CDF) of each bootstrap sample is the
population CDF.

For data on an integer or continuous scale, the first point may be confusing. By intuition,
if the data x1 = 4.1 and x2 = 4.2 were observed, it seems trivial that x3 = 4.15 should
also be possible. However it can be argued that all data are discrete once observed. Given
the choice of assuming continuous but normally distributed or discrete and arbitrarily dis-
tributed data, the latter can be argued to produce more reliable uncertainty estimates.[61]

The third assumption can be understood as requiring that the given data is randomly
sampled from its population. If the samples were systematically influenced to differ from
their population, the bootstrap will not be able to infer that population.
A bootstrap is performed by drawing N times with replacement from the original data
to create a new sample Xb, for which the statistic θb = θ(Xb) can be calculated again.
Doing this B times yields the bootstrap distribution of θ, from which an uncertainty can
be inferred. In the case of the mean, it approaches the normal distribution by the central
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limit theorem as B increases. The uncertainty of the statistic can be estimated as the
standard deviation of this distribution.
The Bayesian bootstrap[62] is the Bayesian interpretation of the frequentist bootstrap.
The two methods are closely related. From a Bayesian perspective, the classic bootstrap
distribution is an approximation for the posterior of the Bayesian bootstrap. In imple-
mentation, the only difference between the Bayesian bootstrap method to the regular
bootstrap is in the weights assigned to the data. The classic bootstrap weights corre-
spond to the number of times ni that data was drawn, wi = ni

N
. The sum of these

weights naturally sums up to one. However, they are discrete and bound to multiples
of 1

N
. The Bayesian bootstrap assigns continuous weights from the Dirichlet(01, ..., 0N)

distribution. This can be imagined as drawing N − 1 random numbers between zero and
one χ = χ0, ..., χN−1, sorting them, and appending zero and one to the beginning and
end of the resulting list. The weight wi is then the difference between the numbers χi−1

and χi. The reason to include zero and one to the list is that the weights must sum up
to one, which would not be the case if the differences w0 = χ1 and wN = 1− χN−1 were
omitted. Another difference is that with low N , the classic bootstrap weights have a high
probability to be zero. It can be argued that observed data should not be completely
omitted in samples.

2.6.2 Standard error of the mean

If the statistic θ(X) is the mean, the central limit theorem states that in the limit of infinite
samples, the distribution of θ will approach the normal distribution. This does not depend
on the original distribution of X. The uncertainty of the mean may be estimated from
the standard error of the mean (SEM),

σ〈x〉 =
σ√
N
. (2.21)

Here, σ is the standard deviation of the population X and N the sample size. As more
samples are considered, the mean is known to more certainty. This is not to be confused
with the variability in X itself, measured by σ, as the distribution may be broad but its
mean well determined.

2.6.3 Sticking probability

The sticking probability s is determined from categorical data, each trajectory is classified
as either sticking or scattering. The Bayesian bootstrap is thus well suited for estimating
the uncertainty of this parameter. With N trajectories classified as either “sticking”
or “scattering”, B Bayesian bootstrap samples are drawn, resulting in B new sticking
probability samples s. Their distribution is then described by the mean

〈s〉 = 1

B

B∑
b

sB (2.22)

and standard deviation

σ =

√√√√ 1

B

B∑
b

(sB − 〈s〉)2. (2.23)
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The 95% confidence interval is then given by ±1.96σ.

2.6.4 Accommodation coefficients

The error of the ACs can be estimated by error propagation. The general equation

∆f(x1, x2, ..., xn) =

∣∣∣∣ ∂f∂x1
∣∣∣∣∆x1 + ∣∣∣∣ ∂f∂x2

∣∣∣∣∆x2 + ...+

∣∣∣∣ ∂f∂xn
∣∣∣∣∆xn (2.24)

can be applied in two different ways depending on the exact definition of the AC. As
discussed for equations 2.2, 2.3, a difference of means (diff.o.m.) or a mean of differences
(m.o.diff.) can be used. In this work, these two definitions were numerically identical,
but they produce different errors according to equation 2.24, namely

∆αdiff.o.m. =

∣∣∣∣ 〈Ef〉 − Es

(〈Ei〉 − Es)
2

∣∣∣∣∆〈Ei〉+
∣∣∣∣ 1

〈Ei〉 − Es

∣∣∣∣∆〈Ef〉+
∣∣∣∣ 〈Ei〉 − 〈Ef〉
(〈Ei〉 − Es)

2

∣∣∣∣∆Es (2.25)

and
∆αm.o.diff. =

∣∣∣∣ 1

〈∆Ei,s〉

∣∣∣∣∆〈∆Ei,f〉+
∣∣∣∣ 〈∆Ei,f〉
〈∆Ei,s〉2

∣∣∣∣∆〈∆Ei,s〉. (2.26)

All energies and energy differences are expected to be not normally distributed. In that
case, the error of the means ∆〈E〉 and ∆〈∆E〉 may be estimated from Bayesian boot-
strapping or via the SEM.
An alternative method to estimate the uncertainty of α is from its distribution. If α is
calculated for every Ei, Ef pair, one obtains a distribution of ACs. From this, depending
on its distribution, the standard deviation, SEM or bootstrap error can be calculated.

3 Methods

3.1 Simulation setup

All MD simulations were performed using LAMMPS.[63] The scattering simulations were
ran in the NVE ensemble and integrated using Velocity Verlet.[64] Molecules were treated
as rigid rotors within the fix rigid/nve/small style in LAMMPS. Time steps were 1 fs
in scattering simulations and up to 5 fs in minimization simulations.
The PHAST-N2 FF used involes charged particles. The Coulomb solver used was the
pppm/stagger method[65–67] with a relative force accuracy of 10−6 and a cutoff distance
for the direct solver of 8Å.
Simulations were performed with full periodic boundary conditions. The box size in
vertical (z) direction was chosen in such a way that, at minimum, the projectile was
more than the Lennard-Jones interaction range (rLJ = 8Å) away from a surface in any
direction. To make a consistent choice between all compared surfaces, additional space
(1.5 times the regular size) was left free for the potentially less dense deposited surface.
Additionally, two unit cells space for the thermostat and fixed layers in the deposition
simulations needed to be left free. The final box height was

lz = a (1.5nz + 2) + 2rLJ + 2Å = 96.4Å, (3.1)
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where nz = 8 unit cells was the baseline slab height and extra buffer was left to accommo-
date the total length of a PHAST molecule (1.6Å). All projectile molecules were spawned
at 9Å above the surface.
Analysis of the results was performed using Python 3.11.5 and the packages NumPy
1.25.2,[68] SciPy 1.11.2[69] and MDAnalysis 2.6.1.[70,71] Visualizations were done using Mat-
plotlib 3.7.2.[72]

3.2 Quantification of temperature and energy sampling

Several different temperatures can be defined in the context of an expanding rocket motor
plume.

• Total temperature Tt

• Rotational temperature of the expanding plume Trot

• Total translational temperature (thermal movement after subtracting the constant
stream velocity), Ttrans, can be split up into:

• Translational temperature in stream-direction (parallel component)

• Translational temperature normal to stream direction (normal component)

All except the last of these are some function of the distance to the nozzle.
In a rocket motor, the high internal energy (high bulk temperature) inside the nozzle
is converted into a directed constant stream velocity and a lower translational (random
direction movements) temperature. The fraction of those temperatures according to pa-
rameters of the nozzle and gas can be estimated by the isenthalpic relation[73]

Ttrans

Tt
=

(
1 +

γ − 1

2
M2

)−1

(3.2)

where Ttrans is the remaining translational temperature after expansion and Tt is the
total temperature before expansion, γ = cp

cv
is the adiabatic index and M is the Mach

number. This relation can be derived from the ideal gas law and some further assumptions,
i.a. stationary flow and only one allowed direction of flow. Using typical values for
monopropellant hydrazine thrusters as they are tested at DLR Göttingen, γ = 1.4 and
M = 6, the fraction is 0.122. Since the total source temperature varies with different
thrusters and their degree of hydrazine decomposition, no accurate general value can be
selected. An estimation of Tt = 1000K was selected as a generally valid typical value.
In a supersonic expansion, with increasing distance from the source, the number of particle
collisions decreases until practically no energy is exchanged anymore. Rotational and
translational temperature decrease until they freeze at different values.
To estimate a typical value of final rotational temperature for systems similar to mono-
propellant hydrazine thrusters in the STG-CT, an experimental measurement of the final
rotational temperature of N2 expansion[74] and G. Bird’s theoretical estimation[75] were
considered. The fraction depends on the distance between source and wall, therefore an
accurate number is not easily available. If the scattering dynamics at a specific distance
from the gas source is of interest, this ratio could be given with more detail. In this work,
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a typical mean value of Trot
Ttrans

= 1.3 was chosen. Therefore, the translational temperature
will be estimated as Ttrans = 122K and the rotational temperature as Trot = 159K.
Discretizing this system is realized by drawing random samples from the distributions of
its parameters. The speed of the projectile vprojectile follows the constant stream velocity of
the beam vstream, modified by a random component vT drawn from the Maxwell-Boltzmann
distribution for one degree of freedom, f(T ).

vprojectile = vstream + vT . (3.3)
The estimation of the constant stream velocity was derived from the estimate of Tt. A
NASA report by Price and Evans (1968)[6] maps the stream velocity and bulk temperature
of monopropellant hydrazine rocket motors to the degree of hydrazine decomposition (Fig.
2 there). From their data, the estimated value of 1000K was used to determine the stream
velocity at the same degree of hydrazine composition as 1259m s−1.

Figure 3.1: Distribution of velocities used for impact sampling. 104 samples with parameters
vstream = 1259m s−1, Ttrans = 122K.

The resulting distribution of speeds for 10 000 samples is shown in Figure 3.1. The
distribution of rotational energy given some rotational temperature for a rotor with two
degrees of freedom follows

Erot(Trot) =
kBTrot

2
χ2
2 , (3.4)

where kB is the Boltzmann constant and χ2
2 is the chi-squared distribution for two de-

grees of freedom. In analogy, the distribution of translational energy is given by the χ2
1

distribution, from which the distribution of speeds can be derived as

v =

√
2Etrans

m
. (3.5)
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To represent a rocket motor plume with these properties in MD simulations, a suffi-
ciently high number of individual single-impact simulations using discrete samples from
the respective Boltzmann energy distributions needed to be averaged over. By perform-
ing single-impact simulations, it is assumed that individual projectiles will never come
close to one another. This assumption can be supported by a brief order-of-magnitude
estimation. With a rocket motor mass flow of 3 g s−1[5] and looking at only the nitrogen
formed with full decomposition, the number of molecules impinging on the cryopump wall
is Ṅ = 0.1mol s−1. The mean particle number flow for the simulated area is then

Ṅsim = ṄNA · Asim

ASTG−CT
≈ 1000 s−1 ≈ 1× 10−9 ps−1. (3.6)

With simulation times of 50 ps, the mean time between impacts is therefore seven to eight
orders of magnitude longer.

3.3 Baseline parametrization

The simulation parameters for the baseline model are summarized in Table 6.2.

3.3.1 Surface preparation

The unit cell was derived from the experimental crystal structure by R. W. G. Wyckoff.[76]

Coordinates were scaled to relative coordinates, in which the center point and orientation
of each molecule was inferred. Using this information, PHAST molecules were constructed
with their corresponding pseudo atoms and atomic distances. The unit cells were then
scaled to a cell parameter of a = 5.6Å. This value lies in-between the experimental one
(a = 5.644Å[76]) and the one found for PHAST-N2 (a = 5.485Å[49]), to allow for relaxation
rather than expansion during minimization. The structure of the molecules themselves
was kept constant and was checked to be not affected by scaling.
Initial slab geometries were generated in the form of LAMMPS data files by repeating
the unit cells using moltemplate.sh.[77] The ice structure was minimized before further
simulations using the following procedure.

1. 5 ps NVT dynamics at 4.3K initial minimization.

2. 5 ps NPT dynamics at 4.3K and 1Pa for box relaxation.

3. 10 ps NVE dynamics as baseline.

For the first step, the Langevin thermostat as implemented in LAMMPS in fix rigid/
nve/small langevin was used. It was chosen for stability and the effective cooling, as
starting directly with NPT minimization would typically crash LAMMPS irrespective of
the chosen cell parameter. Another reason is the random character of the method, allowing
to repeat simulations from different positions in phase space by changing nothing but the
random number generator seed.
In the second step, the Nosé-Hoover thermostat[56] and barostat were employed as im-
plemented in LAMMPS’s fix rigid/npt/small. The box was only allowed to change
equally in the x and y dimensions and shrank by 1− 2%.
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3 Methods 3.3 Baseline parametrization

The additional thermalization step was to allow the system to be integrated exactly like
in the impact simulations. This way allows later comparison of thermodynamic properties
to the unperturbed systems without any projectile, should the need arise.

3.3.2 Property sampling

In the scattering simulations, all system properties that are not model parameters in
CLL needed to averaged out by sampling from distributions of values for each property.
This is especially important for such properties that are not resolved at all in DSMC or
fluids simulation, like molecule orientation, atomic-scale impact position on the surface or
the specific state of the surface. Distributions were defined for every property and every
individual simulation would sample from them using a different seed.
The distributions for translational and rotational energy of the projectile are given in
3.2. They are sampled from the respective temperatures Ttrans, Trot assuming Boltzmann
distributed energies with one and two degrees of freedom, respectively.
The polar angle was drawn from a uniform distribution between 0◦ and 75◦. A lower limit
for the impact angle of 10[10,21] – 15◦[13,24] or more is typical in the relevant literature and
of practical reason for the simulations. The azimuth angle was drawn from a uniform
distribution between 0◦ and 360◦.
The impact position was sampled uniformly from the whole surface. With the random
number n,

ximpact, yimpact = nlx,y, (3.7)
where lx,y is the length of the box in x or y direction. To determine a random rotation
direction, the axis of rotation is chosen as a random angle ϕ around the N2 bond axis.
The two axes are orthogonal to maximize the moment of inertia. An angle of ϕ = 0◦

corresponds to a rotation axis pointing towards negative z. The atomic initial speeds are
given by the rotational energy as

|v| =

√
2Erot

r2i I
(3.8)

where |v| is the COM-frame rotational speed of the N atom, r2i is its distance from the
COM (0.549Å in PHAST-N2) and I is the moment of inertia. These speeds are then
mapped on the projectile atoms according to

v = ±|v|

 0
sinϕ
cosϕ

 . (3.9)

The orientation of the projectile molecule is randomized by transforming the atomic po-
sitions and initial velocities with a random rotation matrix. The latter were sourced from
the scipy.rotation package. Additionally, the state of the surface is randomized by
running NVE dynamics for a random time from 0 to 50 ps.

3.3.3 Trajectory analysis

To determine the outcome of all simulations, they first need to be categorized into either
sticking or scattering. Scattering is detected when the projectile returns to a distance from
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3 Methods 3.4 N2 deposition simulation

the surface greater than the Lennard-Jones cutoff of the force field (8Å), after which the
simulation is aborted to save computational effort. Sticking is defined as the projectile not
fulfilling the aforementioned condition after 50 ps. To further save computational effort,
a stopping criterion for sticking is added, inspired by the study of Bolton et al.[14] The
total energy of the projectile is tracked as the mean over the whole simulation. Once it
drops below the desorption energy of α-phase nitrogen ice, 69meV,[78] the simulation is
aborted and counted as sticking. The reasoning is that the projectile has not had enough
energy to emerge from the potential well for a considerable time.
For all simulations where scattering was detected, the initial and final velocity components
of the projectile atoms were extracted for further analysis. Because the amount of data
would be cumbersome, the full 10k scattering trajectories were not kept. Instead, the 3D
velocity vector of the two projectile atoms vproj,1, vproj,2 were logged for each 0.1 ps frame.
From this data, the COM velocity vCOM

proj could be extracted as the mean of the atomic
velocities for each dimension, respectively, because the masses are equal.

vCOM
proj =

1

2

vx,1 + vx,2
vy,1 + vy,2
vz,1 + vz,2

 . (3.10)

From this vector the x and y components were used to determine the tangential kinetic
energy Et and the z component for the normal kinetic energy En. The projectile rotational
energy Er was calculated from its angular velocity ω as

Er =
IN2

2
ω2. (3.11)

Here, the moment of inertia of the PHAST-N2 model, IN2 = 1.402 × 10−46 kg m2, was
used.

3.4 N2 deposition simulation

N2 is incrementally deposited onto a predefined α-N2 surface of minimal depth. For the
projectiles, the same energy distribution as in 3.3 was used, keeping all “sticking” classified
molecules on the surface. As an additional stopping criterion, the temperature average
over 2 ps needs to fall below 4.5K. The binding energy criterion was adjusted to the same
averaging time window.
Below the incrementally built ice, four additional atom layers (two unit cells) were in-
cluded, taken from a previous minimized structure. Of these, the lowest layer was kept
fixed. A rigid bottom layer avoids that the slab accumulates a downwards center of mass
velocity. The remaining three layers were used as thermostat layers by integrating their
motion with Nosé-Hoover NVT.
The deposition of molecules could lead to scattering and sputtering, so the number of
simulations needed was not known beforehand. The surface was defined as finished when
the same number of molecules as in the baseline model, 3200, were successfully deposited.
As a final step, the thermostat and fixed layers below the aggregate were deleted and the
z coordinates of the rest reset to start at zero height. Four surfaces were created this
way differing in the sets of random seeds used to sample all projectile properties. These
simulations needed to be run in serial unlike the scattering simulations, increasing runtime
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from minutes to days. They were sped up by almost one order of magnitude by relaxing
the presumably conservative long range force accuracy requirement of the Coulomb solver.
Instead of 10−6 with the pppm/stagger method, 10−4 with the pppm[67] method was used.
The switch in the used method follows the documentation of LAMMPS, which states that
the prior is recommended for higher and the latter for lower force accuracy.

3.5 System size considerations

As Bolton et al. established in 1999[14] in the context of determining the sticking prob-
ability from MD simulations: “the rate of energy transfer away from the collision center
[needs] to be taken into account”. However in MD simulations, periodic boundary condi-
tions (PBC) can cause artifacts, impeding energy dissipation in the lattice. To prevent
this, the system size must be large enough, while size is limited by the computational
effort. Two artefacts are considered: a) a rise in temperature in the whole slab due
to the impact energy and b) the impact wave wrapping around the periodic boundary,
re-entering the simulation and interacting with itself and the adsorbed projectile. The
bottom of the ice may act as another reflecting boundary because the vacuum-facing
layer can not propagate energy further downwards. In this way, the impact wave could
artificially facilitate desorption. Generally, the instantaneous scattering process was ob-
served to be faster than the global heating and the impact wave re-appearing at the site
of impact. However, the mechanism of initial sticking and desorption shortly afterwards
is possible and was observed in initial trial simulations.
The sticking criterion described in 2.4 was designed to correctly handle such cases and
stop the simulation early when the desorption mechanism was no longer possible. An
approximate goal for the minimum system size was set. The first is that within the 50 ps
maximum simulation time, the ice should not heat up more than 1K from a high energy
impact. Secondly, the impact wave should be negligible by the time it reaches the box
border at the sides and bottom.
Trial simulations with different sizes were compared to determine a sufficient system size
(c.f. 4.7). The simulation parameters of these tests are summarized in Table 6.5. These
simulations should represent an upper bound to the energy a projectile may deliver to
the slab. It was found that for the flat surfaces used, the sticking probability was reliably
100% if the projectile was shot with zero angle into the exact simulation box center.
This point, at any system size, always lied between surface molecules, facilitating energy
uptake. Scattering only became a likely process if projectiles directly hit surface molecules.
As an upper bound for the impact energy, 3000m s−1 were chosen. No rotational energy
was given to the projectile, as that could have increased the possibility of scattering.

3.6 Rotation energy fraction

The initial energy of the projectile can be distributed over translational and rotational
degrees of freedom. Before parametrizing the baseline model, how much this distribution
affects the sticking probability and ACs was tested. The simulation parameters of this
test are summarized in Table 6.4. The impact position was sampled randomly from the
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central unit cell. Given a random number n in the interval (0, 1),

ximpact, yimpact =
lx,y
2

− a

2
+ na, (3.12)

where lx,y is the length of the box in x or y direction and a is the unit cell parameter.
For this test, the projectile energy was fixed at 0.58 eV. Simulations were compared with
all energy in translation (vstream = 2000m s−1 and with half of the energy in rotation
(vstream = 1414m s−1). The simulation was performed at various fixed polar angles α =
(15, 30, 45, 60). For each combination of angle and rotational energy fraction (0 or half),
400 simulations were carried out. The individual simulations differed in the seed used for
their starting conditions, from which certain projectile properties were sampled.

4 Results and discussion

4.1 Deposited surfaces

The baseline and deposited surfaces were prepared according to the procedures described
in 3.3 and 3.4, respectively. To avoid a systematic error, four surfaces were created via
deposition, each differing only in the random number generator seeds used in each simu-
lation. The resulting surfaces are compared to the baseline surface in Figure 4.1. A char-
acterization is summarized in Table 4.1. For better visibility of their three-dimensional
structure without the means of video, a Gaussian density surface mesh was rendered.
The parameters for this mesh were a radius of 1.032Å, an isovalue of 0.15 and 30% trans-
parency. Generally, the deposition continued the α crystal structure and did not form
many defects. Out of the four surfaces, two were found to have enclosed a hole and one
surface had two holes. These holes were formed due to one molecule missing on its lat-
tice site without visible perturbation of its surrounding. The deposition yielded rough
surfaces due to incomplete layers. The height difference between surface atoms was three
to five atom layers, equal to approximately two unit cells. According to the surface area
of the mesh, the effective surface area increased by ca. 10% compared to the flat surface.
The defects are not expected to be substantial enough to qualitatively change the speed
of energy dissipation in the lattice, so any differences in sticking probability or ACs are
expected to occur due to the roughness of the surface.

Table 4.1: Characterization of the surfaces simulated in this work.

Surface Mesh surface area / Å2 # of incomplete layers # of holes enclosed

Baseline, Figure 4.1a 7298.53 0 0
Deposit 1, Figure 4.1b 8036.55 4 2
Deposit 2, Figure 4.1c 8000.70 5 1
Deposit 3, Figure 4.1d 7966.77 3 0
Deposit4 , Figure 4.1e 8061.69 3 1
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(a) (b) (c) (d) (e)

Figure 4.1: Images of the surfaces. An isosurface mesh is rendered to highlight the three-
dimensional structure. From left to right, the baseline model (a) and the surfaces
of the deposited model (b-d). The images of the deposited surfaces look higher be-
cause they still contained the four artificial bottom layers that were deleted before
scattering.

4.2 Sticking probability

For all five surfaces, 10 000 scattering simulations were performed. The sticking proba-
bility was then calculated according to equation 2.22. The uncertainty was estimated via
Bayesian bootstrapping with 104 bootstrap samples. This distribution in s was found to
be approximately normally distributed, so the standard deviation was used to determine
95% confidence intervals as ∆s = 1.96σ. The outcomes are summarized in Table 4.2.

Table 4.2: Outcomes of 10 000 trajectories for each surface and the resulting sticking probabilities.
Uncertainties in parentheses are the 95% confidence interval (1.96σ) after B = 104

bootstrap samples.

Surface Nsticking Nscattered s

Baseline, Figure 4.1a 9842 158 0.984(3)
Deposit 1, Figure 4.1b 9823 177 0.982(4)
Deposit 2, Figure 4.1c 9881 119 0.988(3)
Deposit 3, Figure 4.1d 9752 248 0.975(4)
Deposit 4, Figure 4.1e 9823 177 0.982(4)

Deposit total 39279 721 0.982(2)

The sticking probability of all surfaces was found to be very high. The difference between
the baseline and deposition models is minimal and covered by the confidence interval.
There appears to be a trend that the deposited surfaces make for slightly lower sticking
probabilities, with 3/4 of the test surfaces being below the baseline value. Between the
surfaces of the deposition model, the discrepancy is higher than the confidence interval.
This shows the importance of taking several sampled surfaces into account can be seen. If,
by chance, only deposit surface 2 (Figure 4.1c) would have been evaluated, the observed
trend would be opposite. This indicates that the statistical noise between the surfaces is
higher than the calculated confidence interval suggests. From here on, if not mentioned
otherwise, all discussions of the deposited surface(s) consider the entirety of the data from
the four sampled surfaces.
Bisschop et al.[78] measured a lower limit for N2 sticking to N2 at 14K of s ≥ 0.85, although
for 300K thermal projectiles. All findings in this work are in agreement to this lower
limit. Brann et al.[36] (c.f. Table 1.1) measured the sticking probability for CH4 sticking
to 20K CH4 and found s = 0.97 via experiment and s = 0.91 via MD simulations. The
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lowest impact energy they used was 0.49 eV. While it might be surprising that this work
matches their experiment better than their MD simulations, this is likely attributable to a
combination of the differences between the considered models as discussed in 1.2. Notably,
their consideration of methane and including vibration might allow for more impact energy
being redistributed into internal energy, increasing s compared to nitrogen. On the other
hand, the use of double the impact energy likely decreases s. In work by Thompson et
al.,[79] the sticking probability was measured directly for methane on various 33.5K D2O
morphologies. They considered different impact energies and found s = 0.90 at 0.27 eV,
the closest match to this work, for crystalline CD4. Unfortunately, none of the three
experiments allows direct comparison to this study due to the differing impact energies,
species or wall temperatures. The results of this study indicate a higher s than the cited
MD simulations, which qualitatively matches the expected trend for a lower impact energy
and lower surface temperature.
Thompson et al.[79] also studied the effect of surface structure. In their experiment,
only beyond impact energies of 0.5 eV did the surface structure make a strong difference.
And even then, only a porous material had a qualitative effect on s, while the difference
between crystalline and amorphous ice was small. The deposited surfaces simulated here
did not form an amorphous structure, but they seem to support this result at least for
rough surfaces. For the case of the STG-CT, this means that the exact structure of the ice
might play a diminishing rule for N2 freeze-out. The results indicate that the lower limit of
s ≥ 0.85 might be conservative and it is to be expected that up to around 2% of nitrogen
molecules will scatter at least once. However, these results all follow the assumption that
only nitrogen is present in the ice. Mixed phases with hydrogen and ammonia might shift
these results. The surfaces simulated in this work were close to ideal crystals despite
the deposition method. A mixed species surface might be less structurally ordered and
therefore less able to redistribute the impact energy. As a consequence, scattering and
sputtering might be more likely. Additionally, hydrogen is less strongly bound to the
surface and could be sputtered more easily by heavier projectiles. It is therefore assumed
that the results of this work represent an upper bound to the sticking probability in the
experiment.

4.3 Scattered energy distribution

The velocities of scattered projectiles were extracted from all trajectories. From the
latter, the kinetic energy components normal and tangential to the surface normal vector(
0 0 1

)
were calculated. In the work by Brann et al.,[36] the final velocity distributions

were found to follow the Maxwell-Boltzmann (MB) distribution. This was investigated by
fitting the PDF with the respective number of degrees of freedom f to each mode using
linear least squared regression. To also include the final rotational energy, the final energy
components were considered instead of the velocity. The degrees of freedom assumed for
the normal, tangential and rotational energy components were (fn, ft, fr) = (1, 2, 2). With
the dimensionality fixed, the only varied regression parameter was the temperature. The
distributions and the fits are shown in Figure 4.2. The fits for normal and rotational
energy qualitatively match the data. For the tangential energy, the match is poor in the
baseline surface and slightly off for the deposited. The difference between the two could
be accounted for by statistical noise, as the latter has four times the data. Still, the
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Figure 4.2: Final energy distribution of all projectiles that underwent scattering. The energy is
given in units of multiples of the wall thermal energy, 0.37meV. From left to right, the
normal, tangential and rotational energy distribution are shown. Top row: baseline
surface; bottom row: deposited surface. Fitted Maxwell-Boltzmann distributions are
shown as well.

tangential energy seems to not quite follow the MB distribution, with more probability
density at medium and less at low energy.
The temperatures obtained from the fits can be compared to the initial temperature
components of the projectiles. With the mean impact velocity of 1259m s−1 (corresponds
to T initial = 2670K), it can be estimated how much energy the projectiles exchanged
with the surface. The fraction T fit

T initial approximates how much energy was retained, so
1 − T fit

T initial is an approximation to the energy AC in the case of a 0K wall. The data for
this approximation are shown in Table 4.3.

Table 4.3: The approximation 1− T fit

T initial to the AC from the scattered energy distributions.

Surface normal tangential rotational

Baseline 0.925 0.647 -0.53
Deposit total 0.933 0.725 -0.53

According to this approximation, the projectiles lose most normal energy upon the impact,
coinciding with the high sticking probability. Some tangential energy is retained and the
projectile is likely to gain rotational energy from the impact. It should be noted that this
approximation is flawed, since the initial state of the plume is not equivalent to a gas at
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2670K. However, the results match the calculated ACs (c.f. Table 4.4) remarkably well.

4.4 Accommodation coefficients

The accommodation coefficients were calculated according to 2.3.3 and are summarized
in Table 4.4. Due to the high sticking probability, the amount of available data points
is low compared to a typical numbers of trajectories used in literature (≈ 2000[29,36])
to parametrize a scattering kernel. The baseline and deposited surface data differ to a
factor of four in available data. Therefore the latter are expected to be determined to
higher confidence. If higher confidence were needed, more scattering simulations could
be performed. The computational costs of the present data set sum up to approximately
1000 node hours. The errors are calculated according to the mean of differences definition,
c.f. equation 2.26. For this, the energy difference errors ∆〈∆Ei,f〉 and ∆〈∆Ei,s〉 were
required. Their distributions were not bell-shaped, so Bayesian bootstrapping was applied.
B = 10 000 samples were drawn and due to the central limit theorem, the resulting
distribution of mean values were normally distributed. The standard deviations of these
mean distributions were used as energy difference errors.

Table 4.4: Accommodation coefficients for all surfaces. Errors in parentheses are calculated ac-
cording to equation 2.26.

Surface αn αt αr

Baseline, Figure 4.1a 0.92(14) 0.63(6) 0.07(13)
Deposit 1, Figure 4.1b 0.87(14) 0.75(8) -0.27(24)
Deposit 2, Figure 4.1c 0.91(19) 0.70(6) -1.54(45)
Deposit 3, Figure 4.1d 0.86(13) 0.70(5) 0.95(10)
Deposit 4, Figure 4.1e 0.89(16) 0.69(5) -0.70(24)

Deposit total 0.88(8) 0.71(3) -0.24(11)

In general, the results indicate that most energy in surface normal direction is lost. Slightly
more energy is retained in tangential direction. Rotational energy seems to be ambiguous
with large variations between the surfaces and a slightly negative mean value. Upon
comparison of the surfaces, the normal energy AC matches within the uncertainty, but is
slightly lower for the deposited surfaces. This trend matches that found for the sticking
probability. For the tangential energy AC, the scattering from the baseline surface was
observed to retain less surface-parallel energy. It seems reasonable that scattering from
a rougher surface would be more diffuse than from a flat surface. The baseline αt value
is still relatively close. This could mean that the atom-level roughness of the surface
accounts for most of the dispersion of scattering angles. The rotational AC varies strongly
between surfaces. Overall, it seems to be close to zero for the baseline surface and typically
negative for deposited surfaces. A possible interpretation is that a rougher surface offers
more impact sites where the projectile is hit off-center, a process that transfers impact
energy into rotational energy.
In comparison to the estimations from temperature fits (c.f. Table 4.3), the ACs are very
close. This temperature estimation method was found to be well suited to estimate ACs.
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It would be suited in the situation where individual projectile information is not available
but only temperatures in individual degrees of freedom. The ACs derived here may be
most closely compared to data by Brann et al (c.f. Table 1.1). They did not report
AC values, but they could approximately be derived from their Ei − Ef plots (Figure 6
there). They found a combined translational AC of 0.98 and αr = −0.04. The rotational
AC matches results here quite well with their model being flat and therefore closest to
αbaseline
r = 0.07. The combined translational ACs in this study are 0.73 for the flat and

0.75 for the rough surface. The translational AC not matching may in part be caused by
their single impact angle, as αn matches their result better than αt.
To gain further insights into the value distributions and uncertainty, the ACs were also
calculated individually for each trajectory. The resulting distributions are shown in Figure
4.3. Using them, several methods of obtaining the ACs and their uncertainties could be
compared, summarized in Table 4.5. Large AC outliers were observed especially in the
αr distribution, but also for αt. The causes for these outliers were the ones discussed in
2.3.1. Especially prominent are the high negative values in αr. They are all cases of a
projectile shifting energy from a different degree of freedom into rotational energy, leaving
the surface with much more Er than it initially had, while still having lost energy to the
surface in total. The less extreme outliers (α > −60) were caused by their respective
factor of energy gain. In some cases, Ei > Es by a very small amount, causing ∆Ei,s

to approach zero and leading to the very high negative AC values (α < 100). High
positive ACs were caused by sampled initial (mainly rotational) energies that were below
Es, causing a negative denominator in the AC, combined with gaining rotational energy
(negative numerator). The closer the sampled energy is to the surface energy, the higher
the AC. AC values just slightly > 1 were also observed, which were caused by cases of
Ef < Es. This observation showed all outliers, despite their cause, signal energy gain,
although their sign and magnitude may be skewed by some value being close to Es. It is
possible that such extreme outliers rarely were encountered or reported in previous work
due to the surface temperature here being so close, but not equal to zero. Yamamoto et
al.[17] reported individual ACs, mentioning large outliers around a specific initial velocity
value. They discarded them as numerical error.
The αr values found in this study indicate strong coupling between translational and ro-
tational modes. Additionally, energy was transferred into tangential translational motion,
which can be as simple as a projectile entering with a near-normal angle and scattering
more towards the surface-parallel direction. Both are entirely sensible scattering char-
acteristics and the high AC values can be seen as artifacts of breaking down individual
modes. Outliers for ACs of indiviual modes may reach arbitrarily high values when certain
energy values coincidentally align. For such cases, the median could be a better suited
method for determining the averaged AC of several trajectories. When comparing the
central 5− 95% confidence intervals of the distributions with outliers (c.f. Figure 4.3) to
the reported ACs, the median values match the bulk of the distribution better.
In light of the broad AC distributions, the errors calculated via the m.o.diff. approach
seem to underestimate the uncertainty if many outliers are present. For αn and αt,
it approximately covers the differences between ACs calculated via equation 2.1, the
mean of the AC distribution and its median, but not for αr. However, the bootstrap
uncertainties for αt and especially αr are very large and rather represent the broadness
of the distribution, but not the uncertainty of their mean. The SEM (c.f. 2.6.2) may be
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used alternatively because it is not expected to overestimate as harshly. It is also given in
Table 4.5. The SEM uncertainties are up to an order of magnitude lower than the error
propagation method if no outliers are present. Going forward, uncertainties may be best
reported according to the SEM if many outliers are present and with error propagation if
not. Bootstrapped errors instead might be best used to quantify the extent of outliers or
broadness of the distribution in lieu of histograms like in Figure 4.3.
For comparison, the errors according to the differences of means approach (c.f. equation
2.25) were calculated. As energy errors ∆〈Ei〉 and ∆〈Ef〉, the standard deviation of
B = 104 Bayesian bootstrap samples of the mean were used. Additionally, it was also
calculated using the SEM of the respective energy distributions. For the error of the
surface energy ∆Es, for all trajectories, the surface temperatures during the randomized
pre-run were used. The standard deviation was used to approximate the extent of energy
fluctuations of the thermostat which came out as approx. ∆Ts = 0.1K. Expressed as
an energy, ∆Es = ∆TskB. The diff.o.m errors were very high because they took into
account the total broadness of the energy distributions. The respective SEM errors were
the lowest overall.

Figure 4.3: The distributions of individual ACs in the baseline model. Left column: baseline
surface, right column: deposited surfaces. From top to bottom: normal, tangential,
rotational energy AC. For each, the full histrogram (left) and the subset within the
5%-95% quantiles (right) are shown.
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Table 4.5: Different methods to calculate ACs and their errors. To allow comparison of differences,
values are given with additional significance

Baseline Deposit
Parameter αn αt αr αn αt αr

Equation 2.1 0.922 0.632 0.070 0.880 0.714 -0.235
Mean of individual ACs 0.884 0.652 -1.555 0.823 0.708 -3.906
Median of individual ACs 0.935 0.678 0.219 0.927 0.734 0.214

Error propagation, m.o.diff. 0.137 0.061 0.132 0.077 0.032 0.111
Error propagation, m.o.diff., SEM 0.097 0.044 0.094 0.055 0.023 0.080
Error propagation, diff.o.m. 0.424 0.358 6.470 0.651 0.265 9.774
Error propagation, diff.o.m., SEM 0.010 0.037 0.145 0.010 0.013 0.148
Bootstrap of individual ACs 0.145 0.288 11.060 0.256 0.373 47.148
SEM of individual ACs 0.011 0.023 0.870 0.010 0.014 1.776

4.5 Energy component sampling

The practice of depositing and scattering particles by sampling random angles and ve-
locities to estimate an ensemble with a defined temperature is common practice in the
literature (c.f. Table 1.1). The clear advantage is the ease of implementation in common
MD codes like LAMMPS. It was questioned how well this approximation represents a
rocket motor plume ensemble. Parallel and orthogonal to the direction of propagation, it
would be expected that energy components were MB-distributed. This distribution would
be modified by the angle between plume propagation direction and surface normal. In
this work, this angle is averaged and its distribution should not greatly modify the energy
component distribution shape. The sampled initial energy in the normal and tangential
modes for the 40000 trajectories in the deposit simulations are shown in Figure 4.4. The

Figure 4.4: Sampled initial translational energies regardless of trajectory result

distribution is not MB-distributed. As a consequence, the definition of initial projectile
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temperatures is technically incorrect. Presumably, this is caused by the sampling method
of impact angles. Representing a plume ensemble correctly could be an involved problem.
The aforementioned angle between plume and surface would need to be considered. How-
ever, it is not trivially known. Each simulation box features its own distribution of angles
between the plume source and all walls. Whether such treatment is necessary remains to
be determined for every new use case. In this study, the approximation of averaging over
all impact angles equally is assumed to be sufficient.

4.6 Scattering angles

Figure 4.5: Histogram of scattering angles of the baseline model (left) and the deposited model
(right).

The scattering angles of all scattered projectiles were recorded. Their distribution for
both models are shown in Figure 4.5. Within statistical noise, no difference between the
distributions could be discerned. This finding agrees with the similar tangential ACs
found for both models. Since for the flat model αt was slightly lower, for very large
amounts of data it could be expected that the scattering distribution for the baseline
would favor higher angles.

4.7 System size choice

For any scattering simulation, a choice must be made for the size of the considered section
of the wall. If the wall section were too small, artifacts like artificial heating and wrapping
of the shock around the periodic boundary could influence the scattering. On the other
hand, an unnecessarily large wall section increases computational effort. The influence
of the system size on impact dynamics was studied as described in 3.5. A broad range
of sizes from 6× 6× 4 to 18× 18× 10 unit cells (nx × ny × nz) was considered initially.
The average kinetic energy at the outer box borders was monitored after the impact. A
peak was visible for all sizes with a smaller amplitude the larger the size. The subset of
sizes around which the peak amplitude started to plateau was selected for more detailed
analysis. Combinations of z heights from 6 to 10 unit cells and xy grid sizes from 8 to
12 unit cells were considered. Simulations with a projectile velocity of 3000m s−1 and
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normal incidence angle (α = 0) were performed. These parameters were chosen so that
no scattering would occur. The simulations thus served as an upper bound for the impact
energy that could be transferred to the surface by one projectile. All properties discussed
in the following were averaged over 80 simulations that differed in the seed used for the
Langevin NVT thermostat for minimization, in order to randomize the surface state.
Regarding the temperature increase, all sizes of approximately 2000 molecules or more
were in the order of magnitude of ∆T = 1K. The smallest size that completely fulfilled
the condition was 10× 10× 8 with 3200 atoms and ∆T = 0.99K.
The slab was divided into a xy grid following the unit cells. The mean kinetic energy per
atom in every unit cell was evaluated on this grid for the top and bottom unit cells. This
grid could be visualized as an animation of the impact, with a colormap representing the
average kinetic energy in a cell. The xy grid size was chosen so that in such a movie, with
logarithmic scaling, the visible shock barely extended up to the boundary. This condition
was reached with 10× 10 unit cells.
To estimate the amount of impact energy reaching the bottom layer, the mean kinetic
energy at the outermost cells from the top and bottom were compared. The z size
was chosen so that this difference between the layers did not qualitatively change with
increasing thickness anymore, which was the case for nz = 8. All simulations from this
point on were thus performed with a size of 10× 10× 8 unit cells.

4.8 Rotational energy influence

Simulation were carried out as described in 3.6. The resulting sticking probabilities are
shown in Figure 4.6. The uncertainty of sticking probabilities was estimated via Bayesian
bootstrapping with Nsamples = 400, B = 1000 (c.f. 2.6.1).
It was found that the difference in sticking probability is substantial. Consequently, how
the fraction of rotational energy would be sampled in the following steps was important
for determining s. This result was used to inform the decision taken in 3.2. One peak at
30◦ where the two lines show an inversion could not be explained. Statistical noise could
not be ruled out, since both points roughly lie within their respective uncertainty bands.

4.9 Error discussion

The harshest approximation in this work is arguably neglecting all species except nitro-
gen. Hydrogen and ammonia are expected to have a large influence on the ice structure.
Additionally, the sticking probabilities and ACs for those molecules are of interest as well.
Due to the scope of this master thesis, the harsh approximation was needed to develop
the method and workflow, but extension to more realistic problems is needed.
There are downsides to the rigid rotor approximation used here. It is implicitly assumed
that vibrational excitation does not notably change the collision process and its outcome.
In further studies, a force field which allows for vibrations should be considered to confirm
or deny this assumption.
There is no guarantee that the force field used here captures the scattering physics cor-
rectly, as it was not designed specifically for this purpose. To confirm, ab initio MD could
be run with a representative test case to see whether they qualitatively or quantitatively
differ. Such a test case could be done with a smaller simulation box for performance
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Figure 4.6: Sticking probability of selected impact angles. The total impact energy is fixed at
0.581 eV. The two lines represent simulations with all energy in translation (x = 0)
and half of that energy in rotation (x = 0.5). Each data point is the average of 400
individual simulations. Error bars are estimated uncertainties from 1000 Bayesian
bootstrap samples of the simulations.

reasons. This test could have two steps:

1. Minimization: whether minimization from similar starting structure would lead to
the similar ice structure and lattice parameters.

2. Scattering: Using the exact same projectile properties between QM and PHAST,
for a few trajectories, how much will the outcome differ?

Since the initial axis of rotation is locked to be perpendicular to the molecular bond,
not all possible rotational states are covered by this method. In future work, it could be
attempted to additionally sample rotational states with a lower moment of inertia.

5 Conclusions

The system of hot nitrogen gas scattering from cryogenic nitrogen ice was investigated
for two models, a flat crystal and a rough deposited surface. Sticking probabilities and
accommodation coefficients were determined for both models, they are summarized in
Table 5.1. Using deposition to incrementally build a rough surface was extended to a
polyatomic molecular ice. No prior work of MD simulations of the scattering of hot
nitrogen on nitrogen was found, nor similar systems in the context of hydrazine rocket
motor decomposition products on cryopump surfaces. The workflow presented here has
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given special focus to determining that the system size is large enough. As a result, it
was chosen much larger than what is typical in the literature.[10,13,18,26,28,29,32] Previous
studies typically used simple LJ potentials. This work introduced the more sophisticated
PHAST-N2 force field with ghost sites and charge treatment to the problem.

Table 5.1: Summary of the sticking probabilities and accommodation coefficients determined
in this work. Results from literature are compared. The most applicable system or
condition was chosen for comparison when several were included in the studies.

Model Ts / K s αn αt αr

Baseline 4.3 0.984(3) 0.92(14) 0.63(6) 0.07(13)
Deposited 4.3 0.982(2) 0.88(8) 0.71(3) -0.24(11)

Bisschop et al.[78] 14 ≥ 0.85 – – –
Thompson et al.[79] 33.5 0.90 – – –

Brann et al.[36] experiment 20 0.97 – – –
Brann et al.[36] MDa 20 0.91 0.89b 11

Mehta et al.[10]c 300 0.3 1.06 0.87 –
a Inferred from their reported Ei and Ef .
b They only report a combined translational AC.
c They report the values for different impact angles, the mean is given here.

The sticking probability was reported for their 1100m s−1 data set and the
ACs for their 750m s−1 data set.

The determined sticking probabilities generally match literature values for cold surfaces.
They may be interpreted as an upper boundary due to the approximations taken. Scat-
tering was shown to be possible and the assumption of the whole plume freezing out to
be inexact. In comparison to a study concerning a 300K surface (Mehta et al.[10]), the
sticking probability differs significantly. This highlights the importance of similar surface
temperature for meaningful comparison of these parameters.
Not many ACs were reported in literature that represent similar physical systems. In
the one that does (Brann et al.[36]), the rotational AC matches in the sense that it sug-
gests energy is transferred from translational to rotational modes. The high value is a
consequence of them setting the initial rotational energy to zero and the very low surface
temperature. While they only report a combined translational AC, it qualitatively fits
this study’s results. The trend of a higher normal than tangential AC matches the re-
sults from Mehta et al..[10] They indicate that especially tangential momentum is partially
conserved upon scattering. It shows that the often taken approximation of fully diffuse
scattering may be inappropriate for the system of the STG-CT. In general, the obtained
parameters are expected to be an improvement over the previous assumption in DSMC
simulations of the STG-CT with s = 1 and therefore no scattering kernel.[80]

In future work, the workflow should be extended to consider more species. Mixed nitro-
gen/hydrogen could be formed using the deposition method. First results have shown that
challenges arise with high hydrogen concentrations. The resulting ices were less crystalline
and showed severely lowered thermal conductivity, limiting cooling efficiency of the ther-
mal layers. For deposition of such surfaces, the cooling scheme between impacts would
need to be extended. Such extensions could involve applying the thermostat to portions

34



References References

of the aggregate between impacts. Furthermore, the definition of the hydrogen concentra-
tion becomes slightly ambiguous. One fraction is defined for the sampling of projectiles,
but the concentration in the surface is affected by both the differing sticking probabilities
and sputtering yields between N2 and H2. The scattering simulations could be performed
using hydrogen as projectile to obtain the same parameters for this species as well. In
preliminary results, the sticking probability for hydrogen on N2 and mixed ices was found
to be still high. Similarly, ammonia could be incorporated into plume and ice. Extending
the work to bipropellant rocket motors should be possible by using higher velocities and
energies and exchanging the respective main combustion products.
The CLL kernel parametrized here or other methods that can utilize the MD data could
be used to simulate the STG-CT with DSMC. A comparison of the results compared
to previous work[80] could show whether the ab initio determined sticking probability
and ACs are advantageous. Future work could also focus on improving the technique of
sampling velocity vectors from a plume ensemble.
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6.1 N2 vapor pressure

Figure 6.1: Vapor pressure of solid nitrogen as determined by Fray et al.[81] (solid line), extrapo-
lated to the region below21.2K to 18K.

6.2 Accommodation coefficient codomain

Table 6.1: Some exemplary values the AC can take and their cause. Values given in arbitrary
units. Comments are from the frame of reference of the projectile, not the surface.

Relation Ei Ef Es α comment

Ei = Ef < Es 1 1 2 1 specular reflection from hotter surface
Ei = Ef > Es 2 2 1 1 specular reflection from colder surface
Ef = Es < Es 1 2 2 1 diffuse reflection from hotter surface
Ef = Es > Es 2 1 1 1 diffuse reflection from colder surface
Ei < Ef < Es 1 2 3 0.5 partial accommodation to hotter surface
Ei < Ef > Es 1 3 2 2 energy gain beyond surface energy
Ei < Ef > Es 2 3 1 -1 energy gain despite colder surface
Ei > Ef < Es 2 1 3 -1 energy loss despite hotter surface
Ei > Ef < Es 3 1 2 2 energy loss beyond surface energy
Ei > Ef > Es 3 2 1 0.5 partial accommdoation to colder surface
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6.3 Simulation details

Table 6.2: The physical and simulation settings used for the parametrization of the baseline model.
All distributions given are sampled random uniform, except stated otherwise like for
the temperatures. Thermostats are Nosé-Hoover if not stated otherwise.

Type Parameter Value

physical Surface temperature Ts 4.3K
Surface structure α-N2

(
Pa3

)
Gas translation temperature Ts 122K
Gas rotational temperature Ts 159K
Plume base velocity vstream 1259m s−1

Incidence polar angles 0◦–75◦
Incidence azimuth angles 0◦–360◦
Projectile impact position Random full surface

simulation System size 10× 10× 8 unit cells
Initial simulation box size 56Å × 56Å × 96.4Å
Relaxed box width lx/ly 55.261Å
Periodic boundary conditions full periodicity
Minimization scheme 5ps Langevin NVT + 5ps NPT
Randomization pre-run 10ps + 0–50ps NVE
Time step size ∆t 1 fs
Interaction cutoff distance 8Å
Long range Coulomb solver pppm/stagger[65–67] 10−6

Sticking criterion 〈Vproj〉 < −0.5 kcal mol−1 &
〈Ekin〉 < 0.2 kcal mol−1

Number of simulations averaged 10 000
Impact simulation length tmax 50ps
Trajectory files saved no
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Table 6.3: The physical and simulation settings used for the parametrization of the deposited
model. All distributions given are sampled random uniform, except stated otherwise
like for the temperatures. Thermostats are Nosé-Hoover if not stated otherwise.

Type Parameter Value

physical Surface temperature Ts 4.3K
Surface structure deposited surfaces
Gas translation temperature Ts 122K
Gas rotational temperature Ts 159K
Plume base velocity vstream 1259m s−1

Incidence polar angles 0◦–75◦
Incidence azimuth angles 0◦–360◦
Projectile impact position Random full surface

simulation System size 10× 10× 8 unit cells
Initial simulation box size 56Å × 56Å × 96.4Å
Relaxed box width lx/ly 55.63Å, 55.63Å, 55.63Å, 55.5439Å,
Periodic boundary conditions full periodicity
Minimization scheme 5ps Langevin NVT + 5ps NPT
Randomization pre-run 10ps + 0–50ps NVE
Time step size ∆t 1 fs
Interaction cutoff distance 8Å
Long range Coulomb solver pppm/stagger[65–67] 10−6

Sticking criterion 〈Vproj〉 < −0.5 kcal mol−1 &
〈Ekin〉 < 0.2 kcal mol−1

Number of simulations averaged 4× 10 000
Impact simulation length tmax 50ps
Trajectory files saved no
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6 Appendix 6.3 Simulation details

Table 6.4: The physical and simulation settings used for the test of the influence of projectile
rotational energy. Thermostats are Nosé-Hoover if not stated otherwise.

Type Parameter Value

physical Surface temperature Ts 4.3K
Surface structure α-N2

(
Pa3

)
Plume base velocity vstream 2000m s−1

Rotational energy [0 eV, 0.29 eV]
Incidence polar angles [0, 15, 30, 45, 60]
Incidence azimuth angles 0◦–360◦

Projectile impact position central 5.6× 5.6Å2

simulation System size 10× 10× 8 unit cells
Initial simulation box size 56Å × 56Å × 62.8Å
Periodic boundary conditions full periodicity
Minimization scheme 5ps Langevin NVT + 5ps NPT + 10ps

NVE
Randomization pre-run none
Time step size ∆t 1 fs
Interaction cutoff distance 8Å
Long range Coulomb solver pppm/stagger[65–67] 10−6

Sticking criterion 〈Vproj〉+ 〈Ekin〉 < 1.59 kcal mol−1

Number of simulations averaged 400
Impact simulation length tmax 50ps
Trajectory files saved yes
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6 Appendix 6.3 Simulation details

Table 6.5: The physical and simulation settings used for the test of the influence of the system
size. Thermostats are Nosé-Hoover if not stated otherwise.

Type Parameter Value

physical Surface temperature Ts 4.3K
Surface structure α-N2

(
Pa3

)
Plume base velocity vstream 3000m s−1

Rotational energy 0 eV
Incidence polar angles 0◦

Incidence azimuth angles –
Projectile impact position exact xy-center

simulation System size Various
Initial simulation box size Various, 5.6Å3 per unit cell
Periodic boundary conditions full periodicity
Minimization scheme 2ps Langevin NVT + 18ps NVT +

10ps NVE
Randomization pre-run none
Time step size ∆t 1 fs
Interaction cutoff distance 8Å
Long range Coulomb solver pppm/stagger[65–67] 10−6

Sticking criterion none
Number of simulations averaged 80
Impact simulation length tmax 50ps
Trajectory files saved yes
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