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» Motivation for solar nowcasting

* Present a state-of-the-art and a novel generative nowcasting approach
» Qualitative analysis of generative model

= Quantitative evaluation including ramp rate evaluation

= Conclusion & Outlook
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Motivation

 Forecast of solar irradiance (e.g. GHI) for the next
minutes

» Sudden local changes in irradiance due to cloud
passings
- Inhomogeneous distribution of the solar resource
—> Local fluctuations of generated power
- Represents challenge for integration of solar energy $
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 Anticipate ramp events, leading to:
—>Increased awareness for plant/grid operator
—>Minimization of storage requirements
- Optimized trading
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 Cloud information in spatially and temporally high
resolutions - All-Sky-Imagers
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All-Sky-Imager: Ground-based camera observing complete hemisphere using
fish-eye lens

Kontas: 10.09.2019 15:20:00 Metas: 10.09.2019 15:20:00
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Data-driven Solar Nowcasting ‘#7
State-of-the-art vs Generative Models DLR

State-of-the-art Generative Model

Regression
Model

Deep
Learning

Video
Prediction
Model

Regression

Model Model

Regression
Model
» DL model generates forecast directly = 2-step approach:
from input (sky images and/or time = VP model predicts next frames
series data) » Regression model computes corresponding irradiance

= QOptimized on RMSE of irradiance » Independent optimization of VP and regression model
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Data-driven Solar Nowcasting #
State-of-the-art vs Generative Model DLR

State-of-the-art Generative Model
» High errors are reduced due to RMSE * Cloud motion, shape change, and
optimization dissipation are implicitly modeled by the
= good approximations of expected video prediction model.
energy yield * Increased interpretability due to

additional intermediate results

= But: Smoothening of forecast curve
* Fluctuations are better represented

» short-term fluctuations are not well
represented * Video prediction models can create
multiple ,future scenarios”

= Uncertainty estimation

= Black-box model

= forecasts cannot be interpreted so
easily
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Generative Nowcasting #
Model Architecture DLR

Diffusion-
» VP-Model: based
= Architecture: Diffusion-transformer VP Model
[1,2]

» |nput: sky images of past 5min
= Qutput: next 5min sky images
* Image Size: 128x128

» Regression Model:
= CNN (ResNet34 architecture [3])
» [nput: Single sky image
= Qutput: GHI (clear-sky-index)
» Trained on real sky images

v

Bijan Nouri, DLR, EUPVSec 2024



Bijan Nouri, DLR, EUPVSec 2024



Qualitative Analysis of Video Prediction ‘#7
DLR

Sam Ies of generated images Observed sky

N

2019-10-01 08:15:00+00:00 (LT=0min)

2019-11-19 14:34:00+00:00 (LT=0min)

2019-10-08 10:40:00+00:00 (LT=0min)
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Qualitative Analysis of Video Prediction

Nowcasts

i DLR

Forecasts for Clear Sky and Cloudy Examples for LT 5min

800 A ¥ —— sample_0

—— sample_1
600 + —— sample 2
= ref
400

200 A \

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

GHI [W/m?] pred vs ref at 2019-09-24 08:51:30+00:00: 517.7, 532.2, 517.2, 541.2

GHI [W/m?] pred vs ref at 2019-10-08 08:20:00+00:00: 134.6, 157.9, 147.6, 181.1
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= Artifacts in generated images lead to outliers in irradiance predictions
- Deterministic forecast by median of all samples
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Quantitative Evaluation

Evaluation of Deterministic Forecasts

Dataset:

» 28 manually selected days of previous benchmark study of 2019 [4]

Comparison to state-of-the-art:

= DL model based on vision and timeseries transformer [5]

Forecasting Metrics:
= RMSE, MAE, MBE

Ramp Event Validation:

= Ramp Event Definition:
|AGHI|

At

> 17 = Ramp

t: if 3 Ramp in FH = Ramp Event

= Evaluation by confusion matrices and fl1-score:

precision X recall
F1=2X

precision + recall
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Quantitative Evaluation

Deterministic Forecasting Metrics

State-of-the-art Model
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SOTA still slightly better in RMSE
MAE almost identical
No bias for generative model
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Quantitative Evaluation
Ramp Event Detection

State-of-the-art

i DLR

F1=0.46 F1=0.23
threshold=50 W/m?/min

» The SOTA DL models detect |
observed ramps

= Strong decrease in F1-Score for higher
thresholds
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Selection of ; predicted

threshold depends lve model predicts majority of
on application [6]

events while maintaining high
¥%0) of no-ramp events

* Only slight decrease in F1-Score for higher
thresholds
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Conclusion ‘#7
DLR

= Summary:

» Quality of solar nowcasting models depends on use case

» State-of-the-art models often achieve good error scores but may not be well-suited for ramp event
detection (optimization on RMSE)

» Presentation of diffusion-based generative model for solar nowcasting
= Diffusion transformer for predicting future synthetic sky images
= CNN regression model for predicting irradiance (GHI)

= Validation of nowcasts based on standard metrics and ramp events
» SOTA and generative model achieve similar results on standard metrics
= Generative model superior in ramp event detection

= Qutlook:
» |mprove video prediction model by training on larger, more versatile dataset
» |Increase the resolution of synthetic images and extend the forecast horizon (~30 min ahead)
= Combined optimization of both models (video prediction & irradiance model)
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