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Agenda

▪ Motivation for solar nowcasting 

▪ Present a state-of-the-art and a novel generative nowcasting approach

▪ Qualitative analysis of generative model

▪ Quantitative evaluation including ramp rate evaluation 

▪ Conclusion & Outlook
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MOTIVATION FOR SOLAR 
NOWCASTING
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Motivation

What is solar nowcasting?

• Forecast of solar irradiance (e.g. GHI) for the next 
minutes

What are ramp events and what are their effects?

• Sudden local changes in irradiance due to cloud
passings
→ Inhomogeneous distribution of the solar resource
→ Local fluctuations of generated power
→ Represents challenge for integration of solar energy

What are the benefits of nowcasting?

• Anticipate ramp events, leading to:
→Increased awareness for plant/grid operator
→Minimization of storage requirements
→Optimized trading

What are the requirements?

• Cloud information in spatially and temporally high 
resolutions → All-Sky-Imagers
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Motivation

5
Bijan Nouri, DLR, EUPVSec 2024

All-Sky-Imager: Ground-based camera observing complete hemisphere using 

fish-eye lens
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GENERATIVE NOWCASTING
APPROACH
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Data-driven Solar Nowcasting
State-of-the-art vs Generative Models
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State-of-the-art Generative Model

▪ DL model generates forecast directly 

from input (sky images and/or time 

series data)

▪ Optimized on RMSE of irradiance

▪ 2-step approach:

▪ VP model predicts next frames

▪ Regression model computes corresponding irradiance

▪ Independent optimization of VP and regression model
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Data-driven Solar Nowcasting
State-of-the-art vs Generative Model

▪ High errors are reduced due to RMSE 

optimization

▪ good approximations of expected 

energy yield

▪ But: Smoothening of forecast curve

▪ short-term fluctuations are not well 

represented

▪ Black-box model

▪ forecasts cannot be interpreted so 

easily
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State-of-the-art

▪ Cloud motion, shape change, and 

dissipation are implicitly modeled by the 

video prediction model.

▪ Increased interpretability due to 

additional intermediate results

▪ Fluctuations are better represented

▪ Video prediction models can create 

multiple „future scenarios“

▪ Uncertainty estimation

Generative Model



Generative Nowcasting
Model Architecture

▪ VP-Model: 

▪ Architecture: Diffusion-transformer

[1,2]

▪ Input: sky images of past 5min 

▪ Output: next 5min sky images

▪ Image Size: 128x128 

▪ Regression Model:

▪ CNN (ResNet34 architecture [3])

▪ Input: Single sky image

▪ Output: GHI (clear-sky-index)

▪ Trained on real sky images
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QUALITATIVE ANALYSIS OF VIDEO 
PREDICTION
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Qualitative Analysis of Video Prediction
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Observed skySamples of generated images



Qualitative Analysis of Video Prediction
Nowcasts
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Forecasts for Clear Sky and Cloudy Examples for LT 5min 

▪ Artifacts in generated images lead to outliers in irradiance predictions

→ Deterministic forecast by median of all samples
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QUANTITATIVE EVALUATION
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Quantitative Evaluation
Evaluation of Deterministic Forecasts

▪ Dataset:

▪ 28 manually selected days of previous benchmark study of 2019 [4]

▪ Comparison to state-of-the-art:

▪ DL model based on vision and timeseries transformer [5]

▪ Forecasting Metrics:

▪ RMSE, MAE, MBE

▪ Ramp Event Validation:

▪ Ramp Event Definition:
∆𝐺𝐻𝐼

∆𝑡
> 𝜏 ⟹ 𝑅𝑎𝑚𝑝

𝑡: 𝑖𝑓 ∃ 𝑅𝑎𝑚𝑝 𝑖𝑛 𝐹𝐻 ⟹ 𝑅𝑎𝑚𝑝 𝐸𝑣𝑒𝑛𝑡

▪ Evaluation by confusion matrices and f1-score: 
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|∆GHI| ≥ ꞇ

|∆GHI| < ꞇ

Forecast Horizon (FH)

ꞇ=100

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁



Quantitative Evaluation
Deterministic Forecasting Metrics
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State-of-the-art Model Generative Model

▪ SOTA still slightly better in RMSE 

▪ MAE almost identical

▪ No bias for generative model



Quantitative Evaluation
Ramp Event Detection
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State-of-the-art Generative Model

▪ The SOTA DL models detect less than 1/3 of 

observed ramps 

▪ Strong decrease in F1-Score for higher 

thresholds

F1=0.50F1=0.46 F1=0.23 F1=0.46

▪ The generative model predicts majority of 
actual ramp events while maintaining high 
rate (>80%) of no-ramp events 

▪ Only slight decrease in F1-Score for higher 
thresholds 

Selection of

threshold depends

on application [6]
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CONCLUSION & OUTLOOK
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Conclusion

▪ Summary:

▪ Quality of solar nowcasting models depends on use case

▪ State-of-the-art models often achieve good error scores but may not be well-suited for ramp event 

detection (optimization on RMSE)

▪ Presentation of diffusion-based generative model for solar nowcasting

▪ Diffusion transformer for predicting future synthetic sky images

▪ CNN regression model for predicting irradiance (GHI)

▪ Validation of nowcasts based on standard metrics and ramp events

▪ SOTA and generative model achieve similar results on standard metrics

▪ Generative model superior in ramp event detection

▪ Outlook:

▪ Improve video prediction model by training on larger, more versatile dataset

▪ Increase the resolution of synthetic images and extend the forecast horizon (~30 min ahead)

▪ Combined optimization of both models (video prediction & irradiance model) 
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