Representation of the State of Baden-Württemnberg to the EU

"Automated and Connected Driving for a Successful Mobility Transition: Why We Need Coordinated Digital Test Fields at the European Level!"

Accelerating the shift: Key business, societal, and policy requirements for transitioning to shared electric automated mobility

Dr. - Ing. Dimitrios Milakis

Senior Researcher, European Research Coordinator, Institute of Transport Research, German Aerospace Center (DLR) Co-leader CCAM Association Cluster 6 "Societal aspects and people needs"

Presentation outline

- 1. Introduction
- 2. Key questions
- 3. Conceptual model
- 4. SEAM* status analysis
- 5. SEAM acceleration analysis
- 6. Conclusions

*Shared Electric Automated Mobility

1. Introduction

Three revolutions of automobility (shared-electric-automated): scientific evidence

1. Introduction

Three revolutions of automobility (shared-electric-automated): business evidence

THE REVERSE TRAFFIC PYRAMID bicycle innouation lab WALKING/RUNNING CYCLING UTILITY BICYCLES PUBLIC TRANSPORT ------...... TAXI / TRANSPORT CAR SHARING OWN CAR

Baidu Beijing, Wuhan, Chongqing, Sahngai (Pilot - Commercial)

(Pilot - Commercial)

Cruise San Francisco, Austin, Phoenix (Pilot)

MOIA Hannover, Hamburg (Pilot - Commercial)

Photos: Waymo, Cruise, Baidu, MOIA, Zoox

Photos & video: dlr.de

1. Introduction

Three revolutions of automobility (electric-shared-automated): next-gen concepts U-SHIFT

Concept

Flexible and modular design: Pods easily swapped to change functionality (e.g., passenger shuttle, last-mile delivery).

Benefits

- Cost-effectiveness and scalability: Round-the-clock operation, increased usability and efficiency across different needs and times.
- Urban adaptability and integration: linked to infrastructure sensors and a central traffic control system (passenger shuttles, mobile sales, medical units).
- Enhanced accessibility and user experience: low-floor entry, appealing interior design.

Status

□ Prototype phase and pilot testing: Mannheim, 2023; 10000 passengers, 2800 km

 What is the status of the shared (particularly pooled) electric automated mobility transition?

2. How could this transition be accelerated?

3. Conceptual model

Figure 2: Conceptual model of the possible transition pathways of the private automobility regime.

4. SEAM status analysis

Business development

- □ The ride-pooling market: emerging phase (ca.1000 services running), with B2G projects dominating and B2C projects disappearing (Foljanty, 2024).
- □ B2G projects: USA, Germany and Japan; funded for 12 months; small fleets less than 10 vehicles.

4. SEAM status analysis Stakeholders

- □ Vehicle manufacturers: limited plans for shared mobility (decline in vehicle sales, threatening competitors).
- Users and societal groups:
 - ✓ Total cost of ownership for private AVs (ca. 0.2 €/Km) is lower than shared AVs (solo & pooled; ca. 0.3 €/Km)
 - ✓ Inherent attractiveness of ownership (convenience, independence, habit/inertia, private space)
 - ✓ Aversion to sharing (inconvenience, privacy concerns, insecurity, discomfort).
 - ✓ Symbolic dimensions of car ownership (socio-economic status, subjective identity, superiority, individuality)

Public authorities:

- Loss or reconsideration of transportation-related revenues (sales and property taxes, license plate and registration fees, parking tickets, and traffic fines)
- ✓ Negotiations with a complex network of new actors and structural changes in administration.

5. Accelerating SEAM transition Enhancing forces

- 1 Number of flagship legislative/regulatory changes related to SEAM within a period.
- **2** Magnitude of change in funding or incentives introduced by new policies.
 - Time taken from policy proposal to implementation.
 - Number of sectors activated (e.g., transportation, energy, urban planning)

5. Accelerating SEAM transition Supply side (examples)

Policy Category	Action/Policy	Benefit	Beneficiaries
Infrastructure	Install SEAM-only lanes in existing urban roadways	Reduces congestion for SEAM vehicles, promoting faster transit	SEAM users
	Public-Private partnerships for SEAM infrastructure development	Facilitate collaborative projects to build SEAM infrastructure.	SEAM users, OEMs, Tech companies, local authorities
Technology	Offer tax incentives for SEAM R&D activities	Encourages innovation and development of SEAM technologies	OEMs, tech companies, startups
	Urban innovation hubs (large scale, infrastructure integration, continuous engagement, regulatory flexibility)	Establish urban areas as live testing grounds for new SEAM technologies, allowing real-world experimentation and feedback.	SEAM users, citizens, OEMs, tech companies, local authorities
Regulation	Streamline permitting for SEAM pilot projects	Facilitates experimentation and quicker deployment	Tech companies, startups local authorities
	Inclusion of SEAM options in all new developments (charging, depots, stops, etc)	Ensures developers adopts SEAM- friendly planning	SEAM users, developers, SEAM service providers, local authorities

5. Accelerating SEAM transition

Demand side (examples)

Policy Category	Action/Policy	Benefit	Beneficiaries
Economic	Congestion charging for non-SEAM vehicles	Encourages shift to SEAM to avoid fees, reduces traffic and pollution	SEAM users, citizens, SEAM service providers
	Discounted SEAM fares during off-peak hours	Offers direct financial incentives, reducing costs for users	SEAM users
Social	Awareness campaigns about SEAM benefits	Increases public knowledge and acceptance	Citizens, SEAM service providers, local authorities
	Community-based programs to trial SEAM services	Builds community support and practical understanding of SEAM	Citizens, SEAM service providers, local authorities
Legal	Recognition programs for early SEAM adopters	Rewards early adopters publicly, encouraging others to follow	SEAM users
	Require SEAM usage for certain government travel	Demonstrates government commitment to SEAM, serving as a role model	SEAM service providers, public sector

6. Conclusions - takeaways

Three revolutions of automobility: socioeconomic benefits can be realized only if electrification, automation and sharing are all introduced to the transport system.

Status of SEAM transition: SEAM faces challenges due to economic (vehicle manufacturers), instrumental, affective, symbolic (users and societal groups), tax-revenue, governance and administrative (public authorities) reasons.

Dual activation approach: Activation of both supply and demand sides is critical.

Importance of policy features: Frequency, amplitude, speed, and scope are critical policy features for accelerating transition to SEAM

Stakeholder engagement: Addressing unique needs and challenges of stakeholders will facilitate a smoother and faster transition.

References

- Milakis, D. van Arem, B., van Wee, B., 2017. Policy and society related implications of automated driving: A review of literature a directions for future research. Journal of Intelligent Transportation Systems: Technology, Planning and Operations, 21 (4), 324-348.
- Milakis, D., Müller, S., 2021. The societal dimension of the automated vehicles transition: Towards a research agenda. Cities 113: 103144.
- Milakis, D., Seiber, D., 2024. The illusion of the shared electric automated mobility transition. Transportation Research Interdisciplinary Perspectives 26, 101171.
- Nikitas, A., Thomopoulos, N., Milakis, D., 2021. The Environmental and Resource Dimensions of Automated Transport: A Nexus for Enabling Vehicle Automation to Support Sustainable Urban Mobility. Annual Review of Environment and Resources 46: 167-192.