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ABSTRACT
Africa has the most dynamic demographic development world
wide. Current projections predict a population of > 3 billion people 
by the end of the century. Sub-Saharan Africa alone will likely see 
a 40% increase in population between 2020 and 2050. Although it is 
well known that large parts of Africa are in a constant state of water 
stress, its surface water resources remain understudied. This study 
analyses long-term trends of surface water in Africa. It identifies 
causal impacts on major lakes and reservoirs for the timeframe 
2003–2020, as well as dynamic and causal similarities between the 
various lakes. For this, a set of daily time series based on Earth 
observation is employed. Global WaterPack data is used for a daily 
uninterrupted time series of the continent’s surface water area. 
Additionally, an array of relevant independent variables, namely 
precipitation, total evapotranspiration, groundwater, soil moisture, 
and gross primary productivity (GPP) in different land use areas is 
analysed. For causal identification, the Peter and Clark Momentary 
Conditional Independence algorithm is used. Findings show that >  
42% of African countries and > 34% of African ecoregions experi
ence shrinking surface water area. Over 80% of investigated surface 
water bodies are driven by the surface water in their upstream 
subbasins and GPP in agriculturally used areas. About 85% of 
investigated lakes are significantly driven by agricultural usage, 
often in the form of water abstraction, as referenced regional 
studies confirm. Our analysis demonstrates the feasibility of con
ducting causal analyses of surface water dynamics using Earth 
observation data. Dynamically similar lakes are often impacted by 
the same drivers, forming regional lake clusters. Considering the 
causes identified may greatly help adapt strategies for sustainable 
development. A causality analysis to identify drivers of surface 
water dynamics has, to our knowledge, never been performed 
before on this scale and at such high temporal resolution.
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1. Introduction

Surface water bodies are an integral part of the terrestrial landscape. They play a role in 
the hydrosphere, biosphere, and anthroposphere, acting as an above-ground storage of 
liquid water. Especially in water-scarce regions, the availability of surface water defines its 
ecological composition and whether humans can live there. However, climate and land 
use change can challenge the balance of feeding and draining hydrological parameters 
that define the dynamics of surface water bodies. Ongoing climate change leads to more 
variable and extreme events (Trisos et al. 2022). This directly affects the inflow of surface 
water bodies. On the other hand, increasing temperatures may force evapotranspiration 
and water withdrawal rates to rise (Trisos et al. 2022). Such changes in the natural 
hydrological dynamic can make traditionally used water resources unreliable or unavail
able, which increases water stress (FAO 2011; Yimere and Assefa 2022, Rolle, Tamea, and 
Claps 2022, Kone et al. 2024). This has a direct impact on the stability of local ecosystems 
and the livelihood of the local population (Trisos et al. 2022). The African population is 
projected to surpass 3 billion people by the end of the century, with current demographic 
trends indicating one of the most dynamic growth trajectories globally (Gu, Andreev, and 
Dupre 2021), it is essential to have a better understanding of the hydrological processes 
on the continent (Papa et al. 2023). So far, the renewable water resource potential has not 
been developed to its full potential (Ahmed et al. 2022; Cofie and Amede 2015; Owusu 
et al. 2022; Saruchera and Lautze 2019). Especially in areas with scarce or unreliable 
surface water resources, groundwater may be a reliable alternative to meet water 
demands. However, access to groundwater is restricted by the investment and infrastruc
ture needed for its extraction. Additionally, in some regions, such as around Lake Chad, 
the groundwater is too saline to be used for drinking or irrigation (Luxereau, Genthon, and 
Ambouta Karimou 2012). As a consequence, irrigation often relies on surface water 
(Yimere and Assefa 2022). Of the total irrigated agricultural area in sub-Saharan Africa, 
only 6% is fed by groundwater (Ahmed et al. 2022). Figure A1 provides a thematic outline 
of the manifold impacts on African surface water availability. Due to its short replenishing 
cycle, surface water can be a sustainable resource as long as it is not overused (Sogno, 
Klein, and Kuenzer 2022). In light of this, sustainable water planning schemes that go 
beyond the national scale are paramount (UN Economic Commission for Africa 2000). For 
this, an accurate understanding of surface water distribution, its dynamics, and its driving 
factors is critical.

Over the last decades, Earth observation (EO) and in particular remote sensing (RS) has 
seen increasing popularity for the investigation of hydrological systems on all spatial 
scales (Sogno, Klein, and Kuenzer 2022). It can provide the observations for long-term 
monitoring that is essential for informed decision-making, adaptation to climate change, 
and the reduction of adverse human impact (Phiri et al. 2023). Particularly in Africa, where 
ground measurements and long time series based on in-situ observations are largely 
unavailable, satellite RS is a valuable tool for gaining insights into the processes taking 
place on the ground. Within the thematic context of surface water, Africa-oriented RS 
studies are often performed for individual lakes or constellations of multiple neighbouring 
lakes, at a regional, or national scale. The motivation for these studies is often decreasing 
water availability, unreliable water resources, and increasing pressure on available water 
resources (Sogno, Klein, and Kuenzer 2022). These studies frequently focus on assessing 
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how the surface water body (or bodies) changed, identifying drivers of these changes, and 
evaluating impacts on local communities (Bekele et al. 2018; Deus and Gloaguen 2013). 
Impacts on surface water are approximated through comparison of land cover at inter- 
annual scales (e.g. Zekarias et al. 2021), trend comparisons (e.g. Adegbehin et al. 2021; 
Belete, Diekkrüger, and Roehrig 2016; Ndehedehe et al. 2017), or model-based predictions 
(e.g., Goshime, Haile, Rientjes, et al. 2021). However, as Uereyen et al. (2022a) show, 
understanding the influence that climate change and human intervention have on the 
land surface remains a challenging task that necessitates joint analyses of multivariate 
time series of all involved spheres. The identification of causal impacts requires high 
temporal resolution data to be accurate. So far, causal identification approaches in 
geoscience often rely on bivariate causality analysis frameworks, such as Granger causality 
(Feldman et al. 2020; Jiang, Liang, and Yuan 2015; Philippon et al. 2005). Due to their 
complexity, driver analysis studies are still rare. One of the few global investigations is 
conducted by Yao et al. (2023). Notably, however, this study used multiple linear regres
sion models, which provide limited information on cause-effect relationships and are 
prone to including spurious and unreliable links (Nowack et al. 2020). In contrast, causality 
analysis assesses whether there is a directional effect between independent and depen
dent variables that enhances the predictability of the dependent variable. Yet, within the 
traditional Granger causality framework, approaches are limited to bivariate analyses 
(Krich et al. 2020). Multivariate analyses therefore require alternative approaches. Peter 
and Clark Momentary Conditional Independence (PCMCI) is one of these alternatives and 
was specifically developed for causal identification in complex systems, such as the ones 
regularly observed in EO (Runge et al. 2019, 2023). Uereyen et al. (2022b), for example, use 
this approach to investigate multivariate impacts on land surface dynamics within the 
Indo-Gangetic river basins.

This study analyses all major standing water bodies in Africa with regard to their 
dynamics and potential drivers. For this, a multivariate system of directly and indirectly 
linked climatological and hydrological variables is investigated. Similarities in the dynamic 
interaction of surface water body areas with investigated independent variables based on 
cross-correlation analysis are identified. Additionally, causal impacts of subbasin-wide 
surface water as well as evapotranspiration, precipitation, gross primary productivity 
(GPP) in natural, irrigated, and unirrigated agricultural areas, soil moisture, and ground
water (each on subbasin and lake scale) on surface water area dynamics are analysed 
based on the PCMCI algorithm. We consider these variables for the PCMCI analysis 
because they can have a direct impact on surface water dynamics. The objectives are 
to 1) identify general trends of surface water in Africa 2) analyse potential drivers of all 
major lakes and reservoirs on the continent, 3) assess the impact of these drivers on 
investigated surface water bodies, and 4) identify patterns of dynamic and causal simi
larity amongst investigated water bodies.

2. Materials & methods

2.1. Study area

Covering the entirety of mainland Africa, Madagascar, as well as São Tomé and 
Príncipe, the Comoros, and the Canary Islands, the study area covers ca. 29953,000  
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km2. However, due to a general lack of large standing water bodies on the smaller 
islands, Madagascar is the only island included in this study. For Egypt, only the 
part west of the Suez Canal is considered in the analysis. Africa spans latitudes 
between ~ 35.5° North and ~ 35° South, placing it entirely within the subtropical 
and tropical regions. Elevations are between ca. −100 m.a.s.l. in the Qattara 
Depression in Egypt and ~ 5,900 m.a.s.l. at the peak of Mount Kilimanjaro. Apart 
from the mountainous ridge of the Ethiopian Highlands, the East African Rift, and 
the South African Plateau, most of the continent is at an elevation of  
< 1,000 m.a.s.l. The orographic features split the continent’s surface hydrology 
into several basins that partially drain into oceans via major rivers (Figure A2 
(a)). A considerable portion of surface water drains into endorheic basins, the 
largest being the Chad basin. The tropical region is mainly comprised of inner- 
tropical rainforest, monsoon, and savannah climates (Köppen-Geiger classes Af, Am, 
and Aw, respectively). North of the equator, the transition from tropical to hot 
desert climate (BWh) via arid hot steppe climate (BSh) is largely homogeneous 
(Figure A2 (b)). This area is known as the Sahel. At the northern shore of the 
continent, impacts of the Mediterranean Sea and the west wind drift lead to 
a wetter and more temperate climate with hot, dry summers (Csa). In the East, 
the mountainous areas lead to a shift towards cooler climates. In the South, the 
western area is predominated by hot desert and steppe, while the eastern and 
especially south-eastern areas are cold steppes and temperate regions.

As visible in Figure A2 (c), population concentration is generally low. Based on the 
constrained population density estimate for 2020 (Bondarenko et al. 2020), the aver
age population density in Africa is ~ 10 people per km2. However, especially within 
informal settlement structures in urban cores, population density can spike beyond 
10,000 people per km2. Although the majority of the African population currently lives 
in rural areas, many areas are rapidly transitioning towards urbanization. It is projected 
that by the end of the 2030s, the majority of the African population will live in urban 
areas (Trisos et al. 2022). The population of Africa is concentrated in several regions, 
especially around the African Great Lakes, in the Ethiopian Highland, along the eastern 
ridge of the South African Plateau, in the Niger and Volta basins stretching into the 
Sahel, and in the lower Nile area (Figure A2 (c)). Dense human population visibly 
overlaps with major lake and reservoir areas and their respective inflowing subbasins 
(Figure 1). Many lakes are clustered along the East African Rift, along the Niger and 
Volta, or along the Yobe River, which flows into Lake Chad from the west. Additional 
clusters exist in eastern South Africa, southern Mozambique, as well as at the Egyptian- 
Sudanese border. All of these major lakes are of great importance to the local flora and 
fauna, as well as to the people living there. Most lakes in Africa are exorheic, while 
only about 27% are endorheic (Figure 1(a)). Endorheic lakes are often brackish or salty, 
with salinity depending on the seasonal inflow of water (Figure 1(b)). Although such 
lakes are mostly not used for drinking water, they are still vital for the local population 
due to the local ecosystems’ dependence on these water bodies. Of the investigated 
major lakes in Africa, ~36% are managed or dammed (Figure 1(c)). These reservoirs are 
often multi-use. While these dams are most often important for satisfying the water 
needs of livestock, they are also used for hydroelectricity and irrigation (Zhang and Gu  
2023).
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2.2. Used datasets

As the focus of this study is on the investigation of trends, patterns, and causal relation
ships that impact surface water dynamics, it is entirely based on datasets that are fully 
published and have undergone a validation or accuracy assessment. Each utilized dataset 
is presented below and an overview table of the input data to the analysis is provided in 
the supplementary material (Table A1). As mentioned in the previous chapter, causal 
impacts can only be observed up to the temporal scale of the used datasets. We therefore 
focused on high temporal resolution datasets, although higher spatial resolution alter
natives (especially for surface water extent) may be available.

2.2.1. Surface water extent
The DLR Global WaterPack (GWP) is a dynamic surface water extent product based on 
MODIS Terra and Aqua observations. It covers the timeframe of 2003 to 2023. Within this 
study, the observed timeframe was from 2003 up to and including 2020. The GWP has 
a spatial resolution of ~250 m and a temporal resolution of one day. It provides binary 
information on surface water coverage per pixel (0 – no water, 1 – water) (Klein et al.  
2017). The dataset has already been used in various EO studies (e.g. Klein et al. (2021); 
Uereyen et al. (2022b)) and is available here: https://doi.org/10.15489/vcalr2s1qv66. GWP 
time series for analysed lakes was used as the dependent variable in this study. To account 
for the causal impact of upstream surface water on lake area dynamics, the surface water 
area was spatially aggregated over the entire inflowing subbasin as one of the indepen
dent variables.

2.2.2. Surface water level
Lake water level time series based on satellite altimetry were included in the dynamic 
similarity analysis. We utilized analysis-ready data from two sources: HYDROWEB and 
DAHITI. Both datasets are calculated from multi-mission altimetry data. HYDROWEB’s 
lake database was presented in detail by (Crétaux et al. 2011). The DAHITI approach and 
its database were presented by (Schwatke et al. 2015). Both datasets use similar input 

Figure 1. Overview of the major lakes investigated in this study with their respective inflowing 
subbasins portraying (a) endorheic and exorheic lakes, (b) whether lakes are freshwater, saline, or have 
a fluctuating salinity, and (c) lake type. Used datasets: basins (Lehner and Grill 2013), lakes (Messager 
et al. 2016). Background map: OpenStreetMap © OSM contributors.
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data, partially from the same sensors. We utilized both datasets to maximize the number 
of lakes for which water level time series can be obtained. For lakes where both 
HYDROWEB and DAHITI have a time series, there was nearly no deviation between the 
two datasets in our study area. This allowed us to use both datasets in conjunction to 
increase the temporal resolution. In the dynamic similarity analysis, we considered water 
level data for all lakes in Africa that are observed for the entirety of our time frame of 
interest (2003–2020). Table A2 provides an overview of the water bodies with water level 
data and the dataset it stems from. Both databases are openly accessible (HYDROWEB: 
https://hydroweb.next.theia-land.fr/.; DAHITI: https://dahiti.dgfi.tum.de/en/products/ 
water-level-altimetry/).

2.2.3. Meteorological variables
ERA5-Land is a dataset developed by the European Centre for Medium-Range Weather 
Forecasts (ECMWF). It is based on the ERA5 reanalysis but has some improvements that 
make it more accurate for land applications. The dataset has a spatial resolution of 9 km 
and a temporal resolution of 1 hour (Muñoz-Sabater et al. 2021). Depending on the 
parameter, the measurement unit varies. Temperature (T) and dewpoint temperature 
(D) are measured in kelvin. Potential evaporation (PET) and total evaporation (ET) are 
measured in metres of water equivalent. PET is open water evaporation (pan evaporation), 
while ET is all evaporation plus an approximation of transpiration from vegetation. As per 
ECMWF Integrated Forecasting System convention, downward fluxes are positive, mean
ing that negative values indicate evaporation and positive values indicate condensation. 
Surface solar radiation downwards (SSRD) is provided in joules per square metre and 
characterizes the incoming short-wave solar radiation. Total precipitation (P) is given in 
metres of water equivalent. It covers liquid and solid water but excludes fog, dew, and 
precipitation that evaporates in the atmosphere before it arrives at the surface of the 
Earth. The dataset is available here: https://climate.copernicus.eu/climate-reanalysis.

2.2.4. Vegetation
Gross primary production or gross primary productivity (GPP) is the amount of CO2 that is 
assimilated through photosynthesis. The measurement unit is kg C m−2. In this study, GPP 
was used to approximate vegetation activity and biomass. The dataset used was devel
oped by Joiner and Yoshida (2020). This dataset provides global gridded GPP estimates 
based on MODIS Terra and Aqua data that was used to globally upscale GPP estimates 
from FLUXNET 2015 eddy covariance tower sites (Joiner and Yoshida 2020). This dataset 
has a spatial resolution of ~5 km and a nominal temporal resolution of 1 day and is 
available here: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1835. The MODIS product 
that the GPP product is based on is produced with a rolling 16-day window. It covers the 
timeframe from March 2000 until and including July 2020, which spans the majority of the 
study period. For this study, pixels were filled with NA values if the quality flag of the 
dataset indicated missing data.

2.2.5. Underground water storage
The Global Land Water Storage dataset (GLWS2.0), developed by Gerdener et al. (2023), 
was used for assessing soil moisture (SM) and groundwater (GW). This dataset is based on 
an assimilation of monthly GRACE/-FO mass change maps into the WaterGap hydrological 
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model using the ensemble Kalman filter. In essence, observed total water storage anom
aly (TWSA) is distributed into the different water storages based on WaterGap. This 
process considers uncertainties both in the model and in the observations by attributing 
corresponding weights in the assimilation equation. The dataset has a spatial resolution of 
~50 km and a monthly temporal resolution and is available here: https://doi.pangaea.de/ 
10.1594/PANGAEA.954742. It covers the timeframe 2000–2019, which spans the majority 
of the study period.

2.2.6. Climate modes
Two indices were used in this analysis that characterize large-scale oscillations associated 
with extreme weather events, leading to droughts and floods in Africa (Jarugula and 
McPhaden 2023; Lüdecke et al. 2021): the Indian Ocean Dipole (IOD) index and the North 
Atlantic Oscillation (NAO) index. The IOD is based on a dipole in sea surface temperature 
between the Arabian Sea and the eastern Indian Ocean, south of Indonesia (Jarugula and 
McPhaden 2023). The index is based on satellite altimetry observations from TOPEX/ 
Poseidon and Jason I-III, which measure changes in sea level. The data is available in 
a weekly format here: https://sealevel.jpl.nasa.gov/data/vital-signs/indian-ocean-dipole. 
The NAO index is calculated based on a north-south dipole in atmospheric pressure at sea 
level between the Icelandic subpolar region (typically a low) and the subtropical Azores 
(typically a high) (Lüdecke et al. 2021). Data on the NAO index is available as a daily time 
series here: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml.

2.2.7. HydroLAKES
The HydroLAKES dataset includes standing inland surface water bodies across the globe. 
In total > 1.4 million polygons of natural and human-made lakes with a minimum surface 
area of 10 ha are included (Messager et al. 2016). The most recent version of the dataset, 
which is from 2016, was used in the study. The dataset is available here: https://www. 
hydrosheds.org/products/hydrolakes. All lakes with a surface water area of >100 km2 are 
included in the analysis.

2.2.8. HydroBASINS
The subbasins considered in this analysis are based on the HydroBASINS dataset. The 
HydroBASINS layers are derived from HydroSHEDS and were developed by Lehner and 
Grill (2013). The most recent version of this dataset is from 2014 and is available here: 
https://www.hydrosheds.org/products/hydrobasins. Of the two formats of this dataset 
available, this study used the standard format, which does not cut out lake areas. The 
dataset holds subbasins on various levels of aggregation, which are in line with the 
Pfafstetter coding system. For this analysis, upstream subbasins were aggregated for 
every lake for a Pfafstetter level of 6.

2.2.9. Agriculturally used areas
To estimate the impact of human intervention on surface water dynamics, we employed 
two datasets that characterize agriculturally used areas. Huising, Mwangi, and Buyengo 
(2020) described agriculturally used areas in general (including farmland, plantations and 
pastures) as part of the Soils4Africa project. Meier, Zabel, and Mauser (2018) showed 

INTERNATIONAL JOURNAL OF REMOTE SENSING 7

https://doi.pangaea.de/10.1594/PANGAEA.954742
https://doi.pangaea.de/10.1594/PANGAEA.954742
https://sealevel.jpl.nasa.gov/data/vital-signs/indian-ocean-dipole
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
https://www.hydrosheds.org/products/hydrolakes
https://www.hydrosheds.org/products/hydrolakes
https://www.hydrosheds.org/products/hydrobasins


irrigated agricultural fields globally. We used both static datasets as masks with the GPP 
time series introduced earlier to differentiate between natural primary productivity and 
human-used primary productivity. Here, we differentiated again between non-irrigated and 
irrigated areas. Both the agriculturally used areas and the irrigated areas dataset are freely 
available here https://www.soils4africa-h2020.eu/s4a-maps-agricultural-land-in-africa., and 
here https://doi.pangaea.de/10.1594/PANGAEA.884744, respectively.

2.3. Methodology

This study analyses potential drivers of surface water dynamics in Africa using a causal 
identification. The main advantage of this over purely correlation-based approaches is 
that spurious findings are minimized (Nowack et al. 2020). However, several preprocessing 
steps have to be taken to ensure that the framing assumptions of the causality analysis are 
not violated. Figure 2 shows the full workflow. The main processing steps are explained in 
the following subsections.

2.3.1. Preprocessing
Nearly all variables that were included in this analysis are natively in a raster format. Only 
water level and the indices for NAO and IOD are time series in tabular format. All major 
African water bodies (i.e. those with an area of >100 km2) in the HydroLAKES dataset were 
included in the study. This threshold has been set due to spatial resolution constraints. For 
convenience, these water bodies will be commonly referred to as lakes from here on out. 
In total, the lakes that were included in this analysis make up > 90% of the African lake 
surface area (243,212 km2 of 265,342 km2), according to HydroLAKES. Since HydroLAKES is 
a static dataset from 2016, a buffer of up to 10 km for each lake was applied to account for 
possible lake growth beyond the HydroLAKES polygon. The buffer creation respects 
neighbouring basins and buffer growth does not cross into the ocean. Buffers of neigh
bouring lakes were not allowed to overlap. In instances where buffers overlapped, the 
contested area was given to the lake with the closer centre point. In areas where a buffer 
extends into another lake, the contested area is assigned to the lake whose boundary was 
crossed.

For each lake and its respective subbasin, the investigated variables were aggregated 
spatially for each day in the observed timeframe. In the case of GPP, we utilized the 
agriculturally used areas mask and the irrigated croplands mask to differentiate between 
natural GPP, agricultural GPP at large, and GPP in irrigated areas, specifically. In the 
following, these three variables will be abbreviated to nGPP, aGPP, and iGPP.

The variables that are originally at a lower temporal resolution were upscaled to 
a daily resolution using a third-order polynomial interpolation, thereby creating n = 27 
daily time series for the n = 15 included variables. As indicated in Figure 2, from this 
point forward, all variables (water extent, water level, T, D, PET, ET, SSRD, P, nGPP, 
aGPP, iGPP, SM, GW, NAO index, and IOD index) were handled together as one ‘set’ for 
each of the lakes. Each set contained all raster-based variables on a lake and an 
upstream subbasin level, lake water level where available, as well as the indices for 
NAO and IOD. Throughout the analysis, the water extent time series on a lake level 
was the dependent variable. All independent variables (i.e. all other variables) were 
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used in dynamic similarity analysis to analyse behavioural similarities between the 
lakes. All independent variables with a direct impact on the lake area (i.e. surface water 
of the upstream subbasin, ET, P, nGPP, aGPP, iGPP, SM, GW) were considered in the 
causal identification.

Figure 2. Workflow of the driver analysis. The processing is split into five main steps. From left to right 
the input variables are: HydroLAKES shapefile and HydroBASINS shapefile, global WaterPack, water 
level, air temperature, dew point temperature, potential evapotranspiration, total evapotranspiration, 
solar irradiation downwards, precipitation, natural, agricultural GPP, GPP in irrigated areas, ground
water, soil moisture, North Atlantic Oscillation index, Indian Ocean Dipole index. Note that input 
variable names are abbreviated in the figure.
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2.3.2. Time series analyses
The time series in each set were gap-free. All time series were resampled to a daily 
resolution using a third-order polynomial interpolation. In observation-based time series, 
artefacts may still be present. To address this, outliers were removed using an additive 
time series decomposition and an interquartile range of 3.0 to classify outlier values. Any 
gaps that stem from outlier detection were closed using a third-order polynomial 
interpolation.

These initial processing steps produced sets of ‘clean’ time series for all investigated 
lakes (Figure 3(a)). All time series were split into trend, seasonality, and residual using an 
additive decomposition. The trend and seasonality time series, as well as the original full 
time series (Figure 3(b)), were used in further processing.

For the linear trend analysis, monthly aggregations of the daily GWP time series were 
produced for all African countries and ecoregions. For these, the minimum, mean, and 
maximum water area for each month for all areas of interest were derived. Then, linear 
regressions were fit for the entire study period (2003–2020) using the mean water area 
time series. The slopes of these regressions indicate the long-term water area trend. Trend 
significance is represented by p-values.

2.3.3. Dynamic similarity analysis
To evaluate if some lake extents respond similarly to the studied independent variables, 
their dynamic similarity was investigated. This analysis was performed on the trend time 
series only. As shown in Figure 3, the trend time series after decomposition were stripped 
of noise and seasonality. This allowed us to find similar behaviour (i.e. similar lake extent 
changes and similar responses to independent variables) in lakes at different times. All 
trend time series of all sets were normalized using a z-score using the following 
Equation (1). 

Figure 3. Major lakes in Africa (a) shown with buffered extent in red and example of a time series 
decomposition (b). An example time series decomposition for lake eyasi, an endorheic salt lake in the 
East African Rift. Reported flood events: OCHA (2023).
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Here, Zt is the z-score normalized value at time t, Xt is the original value at time t, µ is the 
mean of the time series, and σ is the standard deviation. The normalized trend time series 
of the independent variables were compared to the normalized trend time series of the 
dependent variable via the Euclidean distance between each observation of a first-order 
differencing of the two curves as shown in the following Equation (2). 

Where the Euclidean distance D at a time t was calculated as the absolute value of the 
difference between the changes in time series A (lake surface water area) and 
B (independent variable), which were expressed through a first-order differencing. By 
comparing the Euclidean distance for each observation, distance curves were produced 
for all independent variables for all lakes. Then the cross-correlation between the distance 
curves for all lakes was calculated as presented in the following Equation (3). 

Where x and y are distance curves for two lakes that are to be compared to each other, 
and �X and �Y are their respective means. τ is the time lag. To account for similar behaviour 
that takes place at very different times, τ 2 � 3650; 3650½ �. The cross-correlation R was 
calculated for each τ. Subsequently, the maximum cross-correlation was determined for 
all distance curves that were compared between two lakes and it was analysed for how 
many independent variables the maximum cross-correlation exceeded 0.5. This method 
assumes that lakes with the same causal links identified in PCMCI analysis and high 
dynamic similarity are subject to the same process because they respond similarly to 
the same drivers. The results of the dynamic similarity analysis were further used in 
postprocessing.

2.3.4. Causal identification
For the causal identification, the decomposed trend signal of the variables that are 
directly part of the hydrological cycle was used. The following drivers were used: evapo
transpiration, precipitation, natural GPP, GPP in irrigated areas, GPP in unirrigated agri
cultural areas, soil moisture, and groundwater (each for the upstream subbasin and the 
buffered lake area), as well as surface water area (for the upstream subbasin. The PCMCI 
algorithm is utilized to identify possible causal impacts of the investigated independent 
variables on the lake area. This approach was developed by Runge et al. (2019) and 
consists of two main steps, a PC1 condition selection and an MCI test. In the first step, 
potential causal parents are identified. These causal parents are correlations of the 
independent variables and the dependent variable with a time lag ensuring the ante
riority of the independent variable. Iteratively, the potential causal parents are reduced to 
only a few links for which the partial correlation under consideration of all other inde
pendent variables at all considered time lags remains significant. The PC1 portion of the 
analysis ultimately results in a convergence, reducing the field to only a few potential 
causal parents. This set contains actual causal links, as well as potential false positives. 
Therefore, the MCI step tests for conditional independence, removing false positives.
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As explained by Runge et al. (2019), the causal identification framework rests on several 
assumptions. For this analysis, it was assumed that all common drivers are covered in the 
observed variables and that all observed conditional independencies stem from the 
causal graphical structure. Further, it was assumed that no contemporaneous causal 
effects exist and that the analysed time series are stationary. To ensure accurate outcomes 
from the causal discovery, most of the auto-correlation within the time series was filtered 
out by disregarding the seasonality and residual signal. The remaining trend time series 
was first-order differentiated so that stationarity can be assumed.

The causal impact of the potential drivers is investigated based on the differentiated 
trend time series. This was done for the entire study period, but also for seasonally explicit 
subsets that cover the dry season and wet season of a lake. Within the causal identifica
tion, these seasonality subsets were enforced using a seasonality mask. This seasonality 
mask is a temporal mask that covers part of the investigated time series in causal 
identification using PCMCI. It masks a temporal subset of the dependent variable for 
which causal links are searched. In this analysis, two seasonality masks were employed: 
one to only consider periods when a lake’s seasonality curve is decreasing (= dry season) 
and one to only consider periods when a lake’s seasonality curve is increasing (= wet 
season). A maximum time lag of 90 days was allowed. This number was selected as 
a compromise between considering causal impacts with long lags and the computational 
effort that comes with identifying potential causal relationships in a multivariate setting. 
Variables with short lags should not be impacted by the high number of allowed lags, as 
PCMCI is robust to potential links with long lags that can be explained via links with 
shorter lags. In the season-specific runs, this time lag may extend into the masked part of 
the dependent variable’s time series. The results of the three causality identification runs 
undergo postprocessing steps.

Causally related independent variables that have been identified in the PCMCI analysis 
were considered if they had a high enough significance level (p < 0.05). Causal links that 
cross this threshold were considered relevant, and their causal impact was investigated 
further. This impact is defined by the strength value of an identified PCMCI connection 
(Krich et al. 2020). As indicated in Section 2.3.4., it was assumed that lakes with similar 
causal relationships and high dynamic similarity are subject to the same processes and by 
extension similar causal impact. In this processing step these causally and dynamically 
similar links were identified and analysed.

3. Results

The results of the time series dynamics and causality analyses are presented below, 
starting with the visualization of linear trends on administrative and ecoregion levels 
and ending with graphics that communicate the dynamic and causal similarity of ana
lysed lakes.

3.1. Linear trends

As illustrated in Figure A2 (b), Africa spans Köppen-Geiger climate zones ranging from Af 
to EF, with various meteorological systems exerting influence over regional weather 
patterns. Naturally, there are differences in the impacts on and interactions with the 
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surface water hydrology. Apart from meteorological differences, there are additional 
differences in soil permeability, biosphere interaction, and human interaction. The trend 
of surface water area therefore varied for different regions on the continent. Figure 4 
visualizes the general long-term trends of surface water availability based on GWP data. 
Figure 4(a) presents the trends in surface water per country. Trends are shown for the 
entire investigated timeframe (2003–2020). Of the 54 countries in Africa, 28 had an overall 
negative trend, while 24 showed an overall positive trend. However, for most countries 
the significance level of long-term trends was low. In total, significant surface water area 
trends could be identified in 16 countries. For six of these, trends were negative, while the 

Figure 4. Long-term linear trends (2003–2020) for Africa on a country (a) and ecoregion (b) scale. 
Areas, where the trend significance was low (p-value > 0.05), are dotted in the maps. Trends are 
shown for two examples of (a) and (b), respectively: (a1 – Ethiopia, a2 – Madagascar, b1 – 
Mediterranean woodlands and forests, and b2 – Lake Chad flooded savanna. Here, the significance 
of the trend is communicated as ‘*’, ‘**’, and ‘***’ corresponding to p-values of ≤ 0.05, ≤ 0.01, and ≤  
0.001, respectively. The blue line in the trend plots shows the respective mean surface water area per 
month based on daily observations. The blue area in the trend plots covers the values between the 
minimum and maximum observed water area per month. The orange line is the linear regression. 
Trends are given in km2 per month. Ecoregions: Dinerstein et al. (2017).
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other 10 exhibited positive trends. Trends in surface water area spanned from −1.373 km2 

per month in Madagascar to +5.814 km2 per month in Ghana.
Generally, countries on the northern coast of Africa all showed decreasing, albeit non- 

significant, trends ranging from Morocco’s −0.112 km2 per month to Egypt’s −1.217 km2 

per month. Countries in the Sahel saw mostly stable to positive trends, the strongest 
being recorded in Sudan (+4.449 km2 per month). Significant positive trends in surface 
water area were particularly evident in the eastern Sahel. Conversely, significant negative 
trends were observed for Madagascar, Malawi, Uganda, South Sudan, Djibouti, and 
Burundi. In East African countries north of and including Tanzania, surface water was 
increasing, with the strongest trend visible in Ethiopia (Figure 4(ai)). Countries in Central 
Africa saw stable water areas or slightly decreasing trends that are not significant. Lastly, 
most countries in the African Southeast see negative trends, the strongest being in 
Malawi (−1.165 km2 per month), and Madagascar (−1.373 km2 per month). Madagascar 
was faced with a particularly strongly declining trend (Figure 4(aii)) that indicates 
a decrease in surface water area of nearly 16.5 km2 per year.

Ecoregion-scale surface water trends (Figure 4(b)), provide a more nuanced under
standing of the surface water area changes on a country scale. In total, 66 of the 132 
African ecoregions experienced decreasing surface water area trends. In 45 of those, 
trends were significant. While increasing surface water area trends could be identified 
in 45 ecoregions, trends were significant in only 19 of Along the African Northern coast, 
the Mediterranean Forests, Woodlands & Scrub biomes exhibited significant decreasing 
surface water trends (Figure 4(bi)) In contrast, the Sahelian biomes, particularly the 
Sahelian Acacia savanna, the Inner Niger Delta flooded savanna, and the South Sahara 
desert exhibited strong increasing trends. Slight increases in surface water trends were 
visible for much of Eastern Africa. For Madagascar, much of the negative trend on 
a country scale stemmed from decreasing surface water area in the Madagascar dry 
deciduous forest on the western side of the island. Significant negative surface water 
developments for much of the Southeast African ecoregions, such as the Central 
Zambezian wet miombo woodlands, have also become clear. Here, the overall trend 
was −11.347 km2 per month, amounting to a water area loss of ca. 136 km2 per year. In 
contrast, although with significant inter-annual variability, the surface water trend for the 
Lake Chad region (Figure 4(bii)) was positive and significant for the investigated time
frame (+1.541 km2 per month).

3.2. Driver analysis

While the investigation of linear trends helps visualize large-scale changes, it cannot 
explain the underlying reasons for these changes. To this end, a driver analysis using 
the PCMCI algorithm was performed. Causal relationships over the entire investigated 
timeframe, as well as for temporal subsets that portray the lakes’ dry and wet seasons 
were identified. In the following, the most dominant causal links are analysed for each 
lake. Additionally, the total causal impact of external drivers is identified. Causal relation
ships with all independent variables that are directly part of the surface water hydrology 
could be found. This includes drivers that characterize gain (e.g. precipitation), storage 
(e.g. soil moisture), and loss (e.g. evapotranspiration) on a subbasin and lake scale. An 
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overview of lake characteristics, trends, and main drivers is also provided in Table A3 in 
the supplementary material.

3.2.1. Main causal impact on African lakes and reservoirs
Figure 5 presents the main driver for all major lakes in Africa over the entire observed 
study period, dry season, and wet season (5(a), 5(b), and 5(c), respectively). Regarding the 
entire study period, the most frequent dominant causal link was with surface water on 
a subbasin scale. This link was the most dominant in 67 of the 124 investigated African 
major lakes. Clear geographical aggregations were not identifiable. The second most 
frequent main driver was aGPP on a subbasin scale (17 of 124). Again, no clear aggrega
tion to a specific geographic region was visible. GPP was the main driver for 48 lakes 
(~39% of investigated lakes). This accounts for all types of GPP within the subbasin as well 
as GPP within the direct lake vicinity. Within the GPP group, aGPP was the dominant driver 
for most lakes. It was the most dominant driver for 17 lakes at the subbasin level and 13 
lakes in direct proximity to the lake. Following aGPP, nGPP was the dominant driver for 9 
lakes at the subbasin level and 5 lakes in proximity to the lake, while iGPP was the 
dominant driver for 2 lakes at the subbasin level and 2 lakes in direct proximity to the 
lake. The remaining ~ 7% of lakes that were not mainly impacted by upstream surface 
water or GPP of any kind were mainly impacted by ET within the subbasin (n = 3), P in the 
direct lake vicinity (n = 2), GW in the upstream subbasin (n = 1), or SM in the direct lake 
vicinity (n = 1). For two surface water bodies, Sebkha Adhilbate/Sebkha Tadet and 
Mellahet el Brega, the main driving impact over the entire timeframe could not be 
identified.

During the dry season (Figure 5(b)), ~53% of lakes were impacted mostly by upstream 
surface water. The second most frequent main driver was nGPP on a subbasin scale (n =  
13). Without distinguishing between land use or variable impact on subbasin level and 
lake level, 41 lakes were mostly impacted by GPP. Within the GPP group, aGPP was the 
dominant driver for most lakes (subbasin: 12, lake: 8), nGPP was the second most frequent 
dominant driver (subbasin: 13, lake: 4), and iGPP was the least frequent dominant driver 
(subbasin: 3, lake: 1). Together, upstream surface water and GPP were the most important 
drivers for ~ 86% of major African lakes during the dry seasons. The remaining lakes were 
dominantly driven by P on a subbasin scale (n = 2), SM on a subbasin scale (n = 2), ET on 
a subbasin scale (n = 2), or GW on a subbasin scale (n = 1). For 10 lakes, no main driving 
impact could be identified during the dry seasons. These lakes are almost exclusively 
concentrated around the equator (between 7° N and 4° S). The only surface water body 
outside this area, for which no drivers could be found is the Hakskeen Pan in South Africa, 
a periodically flooded salt pan. There was no apparent spatial aggregation for main 
impactors.

For the wet season (Figure 5(c)), 54 of the 124 investigated lakes (~44%) were 
mainly driven by surface water in the upstream subbasin. nGPP in the upstream 
subbasin was the dominant causal link for 14 lakes and thereby the second most 
frequent dominant causal link. Without distinguishing between land use, and taking 
into account both subbasin level and lake level, GPP was the most dominant driver for 
51 lakes (~41%). Within the GPP group, aGPP was the most frequent dominant driver 
(subbasin: n = 12, lake: n = 12). The second most frequent dominant driver was nGPP 
(subbasin: n = 14, lake: n = 9). iGPP was the least frequent dominant driver (subbasin: 

INTERNATIONAL JOURNAL OF REMOTE SENSING 15



n = 3, lake: n = 1). In total, ~85% of major African lakes were mainly impacted by 
upstream surface water or GPP during the wet season. The remaining ~ 15% of lakes 
were dominantly linked to P (subbasin: n = 2, lake: n = 2), SM on a subbasin level 
(n = 3), GW on a subbasin level (n = 1), or ET on a lake level (n = 1). For 10 lakes, the 
main driver during the wet season could not be identified. These water bodies are 
concentrated into two groups. One exists close to the equator (between 1° N and 4° S), 
while the other is confined to hot desert climates but more geographically extensive 
(Köppen-Geiger class BWh, see Figure A2b). As with the full study period observations 
and the dry-season-specific run, no clear spatial patterns were recognizable for the 
most prominent causal impact during the wet season.

Figure 5. Dominant causal impact on major lakes for (a) the entire time frame; (b) the lakes’ dry 
seasons; and (c) the lakes’ wet seasons.
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Most shifts of the most dominant causal impact do not follow a clear spatial pattern. 
For ~ 17% of investigated lakes, the most dominant causal impact did not change, 
whether the entire time series, only the dry season, or only the wet season was consid
ered. Of these lakes, ~91% were always mainly impacted by upstream surface water. Shifts 
in the main driver between different observed temporal windows often occurred between 
different GPP land uses in the upstream subbasin, and the lake vicinity. This shift occurred 
for ~ 73% of lakes within this group.

3.2.2. Identified external impact groups of African lakes
To understand the total causal impact from external impacts, meaning potential drivers 
other than upstream surface water, the individual causal relationships of investigated 
independent variables were aggregated into three external impact groups: The atmo
sphere group (consisting of P and ET), the biosphere group (consisting of nGPP, aGPP, and 
iGPP), and the soil group (consisting of soil moisture and groundwater). In this regard, 
external impactors were all independent variables included in the PCMCI analysis apart 
from surface water on a subbasin level. Going forward, these external impact groups will 
be referred to as EIGs. As explained in Section 2.3.3, causal impacts can be seen as largely 
independent from each other, allowing us to aggregate them into EIGs by adding the 
individual causal impacts together. This masks the causal impact of the individual vari
ables within one EIG but allows us to understand the total impact of that EIG on a surface 
water body. Overall, a significant causal impact from GPP irrespective of land use was 
observed for 109 lakes. GPP in agriculturally used areas (aGPP, and iGPP) drove 105 of the 
investigated lakes. Most of the lakes unaffected by GPP are seasonal salt lakes. 
Atmospheric parameters had a significant impact on 66 lakes, and GW and SM had 
a significant impact on 52 lakes. For easier visualization positive causal impacts were 
aggregated separately from negative causal impacts (Figure 6a, c, e vs. b, d, f), thereby 
showing external positive and negative driving impacts separately. The colouration of the 
lakes was based on the normalized impact of the positive/negative driver groups.

Considering the full time series (Figure 6a, b), the positive driving EIGs could be 
identified for ~ 71% of all investigated lakes (Figure 6(a)). There was no clear spatial 
pattern to the driving impacts of the individual variable groups. Of the lakes with an 
identified positive driving EIG, about ~ 55% were driven by biosphere interaction. These 
lakes are distributed all over the continent with no clear spatial agglomeration. Over 43% 
of lakes were at least partly driven by biosphere interaction that is subject to human 
intervention.

For ~39% of lakes, atmospheric interaction was part of the positive driving EIGs. These 
lakes are dispersed all over the continent. About 71% of these lakes are natural. The 
remainder are reservoirs or dammed lakes. Of the natural lakes, ~55% are endorheic and – 
with the exception of Lake Abayata – they all are situated in hot desert (‘BWh’) and steppe 
(‘BSh’) climates. Negative driving impacts were similarly heterogeneous (Figure 6(b)). No 
clear spatial patterns of individual impact groups were identifiable. Of the lakes for which 
negative driving impacts could be observed (n = 86), ~94% were negatively impacted by 
biosphere interaction, ~43% were negatively impacted by atmosphere interaction, and ~  
33% were negatively impacted by soil interaction. Human intervention, in the form of GPP 
in agriculturally used areas (aGPP, and iGPP) negatively impacted 57% of all lakes. 
Irrigated agriculture negatively impacted 29% of all lakes.
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Figure 6. Composition of positive and negative driving impacts on the dynamics of all major lakes over 
the entire observed time frame (a), (b), the dry seasons (c), (d), and the wet seasons (e), (f).
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For the dry season (Figure 6(c)), a pronounced positive driving impact from biosphere 
interaction was observed for 38 lakes. About 39% of the lakes that were driven by 
biosphere interaction are reservoirs or dammed lakes. Fewer lakes (21), were positively 
driven by soil interaction. Lastly, 18 lakes were positively driven by atmospheric interac
tion. Most of these lakes are concentrated in Eastern Africa Negative driving impacts 
during the dry season (Figure 6(d)) could be identified for 79 lakes. About 71% of these 
lakes were negatively driven by biosphere interaction during the dry season. As is visible 
in Figure 6(d), this negative impact was most prominent in Western and Central Africa. 
Additionally, 12 lakes were negatively driven by atmosphere interaction, and six were 
negatively driven by soil interaction.

For the wet season of investigated surface water bodies, biosphere interaction was 
a prominent positive driver, especially for lakes in the East and Southeast of Africa. In total, 
40 lakes were positively driven by biosphere interaction. Soil interaction positively 
affected 18 lakes throughout the continent, especially seasonal water bodies such as 
the Ntwetwe Pan and the Sua Pan in Botswana. Lastly, atmospheric interaction was 
a positive driver in 17 cases throughout the continent (Figure 6(e)). Lake Nasser in 
Egypt along with the nearby Toshka lakes, Lake Kivu in Rwanda, Lake Tanganyika in the 
Democratic Republic of the Congo, Guerrah Et Tarf in Algeria, and several reservoirs in the 
South of the continent were primarily impacted by this driver group. For 81 lakes, 
a negative driver could be identified that impacts the lakes’ wet seasons. 54 lakes were 
negatively driven by biosphere interaction. In 70% of these cases, a negative causal 
relationship existed with aGPP on a subbasin level. In ca. 39% of these cases, a negative 
causal relationship existed with nGPP. To a lesser degree, atmospheric interaction could 
be a negative driver. It was identified as such for 12 lakes, most of which are situated in the 
eastern part of the continent. Additionally, soil interaction was a negative driver in some 
cases. A majority of those are reservoirs, such as Mtera Reservoir in Tanzania, for which this 
negative driving relationship was especially apparent (Figure 6(f)).

3.2.3. Dynamic similarities and causal similarities
Based on the dynamic similarity of African lakes, they were aggregated into clusters 
(Figure 7(a)). In total, 21 clusters could be identified. As explained in section 2.3.3, dynamic 
similarity is defined as an alikeness in which lakes and reservoirs behave in response to 
any of the independent variables (listed in Table A1). These clusters each consist of two to 
14 lakes. Lakes without a dynamically similar counterpart were not assigned to any 
clusters. Dynamic similarity clusters were often confined to one basin and were defined 
by spatial proximity. However, there were several remote connections between clusters, 
such as the connection between the Chad cluster (H) and the Zambezi cluster (R). Several 
isolated clusters without any remote connections could be identified as well. One such 
example is the Nasser-Toshka cluster (C). As with the other isolated clusters (Chott cluster 
(A), Sebkha cluster (B), Senegal cluster (D), Ivory Coast cluster (F), Lagos-Nokoue Cluster 
(G), Sanaga cluster (I), Gabon cluster (J), Congo cluster (K), Edward cluster (O), and the Salt 
Pan cluster (S)), the isolation was due to the exceptional surface water hydrology of the 
lakes included. In general, more isolated clusters existed in Western Africa than in the East. 
In the western part of the continent, even the two identified major clusters (E, H) were 
largely independent of each other. Only two remote connections between the Volta-Niger 
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cluster (E) and the Chad cluster (H) could be identified. In contrast, remote connections 
between the Chad cluster (H) and the Zambezi cluster (R) were much more numerous.

Along the East African Rift, south of the Nile cluster (L), dynamic similarities were more 
abundant. Still, the degree of similarity varied, which allowed us to identify seven distinct 
dynamic similarity clusters from the Ethiopian Rift Valley to Mozambique. Specifically, the 
Ethiopian Rift cluster (M) was identified, extending from Abhe Bid in the Northeast to Lake 
Shala in the Southwest. Although the lakes Abaya and Chamo are geographically situated 
within the Ethiopian Main Rift as well, they were identified as part of the Lake Turkana 
cluster (N) further south along the Gregory Rift. Along the western branch of the East 
African Rift, the Albertine Rift the Victoria cluster (O) was identified. It consists of Lake 
Victoria and most of its surrounding lakes that drain into the Nile. West of the Victoria 
cluster the Edward cluster was identified, which only contains the lakes George and 
Edward. The Eyasi cluster (Q), southeast of the Victoria cluster, contains Lake Eyasi as 
well as all endorheic lakes between Lake Natron and Lake Sulunga. The Nyumba ya 
Mungu and Mteru reservoirs also belong to this cluster. Southwest of the Eyasi cluster is 
the Mweru cluster (R). This cluster consists of two cores with very high dynamic similarity. 
The first core consists of the lakes Kabamba, Zimbambo, Kisale, Upemba, and Kabele, 
which all lie in the Upemba Depression. The second core comprises the lakes Bangweulu, 
Kampolombo, and Chifunabuli, which all belong to the Bangweulu wetlands. Lastly, along 
the southern stretches of the East African Rift, the Zambezi (S) cluster could be identified, 
consisting of the lakes Malawi, Malombe, Chilwa, and Chiuta, the Itezhi-Tezhi Dam, and 
the Cahora Bassa, and Kariba reservoirs. All of the lakes and reservoirs in the Zambezi 
cluster drain into the Zambezi or its tributaries. Lastly, adjacent to the previously 

Figure 7. Dynamic similarity (a) and causal similarity (b). Lakes are attributed to clusters based on their 
dynamic similarity. Identified clusters are color-coded and enumerated with letters A-V. While all 
variables are considered for dynamic similarity, causal similarity is based only on causally related 
independent variables. Therefore, causal similarity links show connections between lakes that have 
similar dynamic interactions with the same causally related variables.
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mentioned Salt Pan cluster (T), two additional clusters are present in Southern Africa. One 
is the Southern cluster (U), which contains multiple South African reservoirs, but also the 
remotely connected Lake Ihotry, in Madagascar and Capanda Dam in Angola. The other 
one is the Southeastern cluster (V), which is almost exclusively made up of reservoirs.

The dynamic similarity clusters are distinguishable in Figure 7(b), attesting that the 
similarities also exist in causality and driver impacts. Some of the remote connections are 
resolved in Figure 7(b). However, within the individual clusters, many lakes shared causal 
similarities. Such was the case for example in the Chad cluster and the Ethiopian Rift 
cluster. Within the Mweru cluster, lakes in the Upemba Depression had very high degrees 
of causal similarity. Since causal similarities occur in instances where similar drivers and 
similar dynamic reactions of the water area to the investigated independent variables 
could be identified, these patterns appear to hold a thematic meaning, which is discussed 
in the following section.

4. Discussion

4.1. Implications of dynamic and causal similarities

As presented, the main causal impact on most lakes was related to upstream surface 
water. Additionally, several EIGs were identified. The causal impacts of individual EIGs did 
not adhere to neighbourhoods or basin borders. Of course, every observed lake is unique, 
but despite this individuality, clusters of dynamic and causal similarity could be identified. 
In the following, the findings for some of these clusters are interpreted and an assessment 
of the identified potential drivers is given. Generally, most clusters were impacted by 
human intervention, foremost water withdrawal for agricultural use, as could be seen 
from the driving impacts of aGPP and iGPP. This effect was less pronounced for clusters 
that primarily consist of endorheic salt lakes; here, atmosphere interaction, especially 
water loss to evapotranspiration, could be the main impactor. Each of the analysed lakes is 
important for their local ecosystem and population. However, in the context of this paper, 
the discussion is focused on two exemplary clusters that exist in water-scarce regions with 
relatively dense populations for which a satisfying amount of scientific literature to 
compare to this study’s findings is available.

4.1.1. Cluster E
Cluster E lies in a relatively densely populated area with much of the unurbanised land 
being used for agriculture (Bondarenko et al. 2020; Huising, Mwangi, and Buyengo 2020). 
At the same time, natural water availability from rainfall is deemed unreliable, which 
poses problems for agriculture. Consequently, crops in the area are watered using various 
techniques, such as diverting water from streams and rivers to dugouts and reservoirs of 
varying sizes (Ofosu 2014). To increase the reliability of surface water, several multi- 
purpose dams exist. In fact, all water bodies within the Volta-Niger cluster are reservoirs. 
Along tributaries to the White Volta, which ultimately drains into Lake Volta, lie Bagré Dam 
and Lake Kompienga. The reservoir of Bagré Dam was overall mainly driven by aGPP on 
a lake scale. This impact was negative. As Bagré Dam is a multipurpose dam, one of its 
uses is for irrigation of local agricultural fields. As such, on a subbasin level, iGPP had 
a negative causal impact on the lake area trend.
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During the wet season, the lake was mainly driven by upstream surface water from the 
upstream subbasin. This observed impact was positive and hints towards a lake recharge 
from incoming surface water. Additionally, aGPP and nGPP – both on the lake and the 
subbasin level – had a positive impact on the lake area. On the other hand, iGPP had 
a negative impact during this time of lake area increase. Lake Kompienga was positively 
driven by upstream surface water. On the other hand, aGPP and nGPP on a lake and 
subbasin scale had a negative impact. Further, evapotranspiration was a negative driver of 
lake area dynamics. We hypothesize that this lake is impacted by human intervention, just 
as Bagré Dam, but that the magnitude of this impact in relation to other causal factors, 
such as upstream surface water and precipitation, is lower than for Bagré Dam. For Lake 
Volta, Ndehedehe et al. (2017) report that due to upstream human interventions, under
standing the natural hydrological variability and the influence of climate variations on the 
basin’s freshwater systems is complicated. They summarize that declining trends in the 
water level of Lake Volta (e.g. 2011–2015) are consistent with declines in rainfall and net 
precipitation, and limited stream flow from the Volta River system (Ndehedehe et al.  
2017). This aligns with this study’s findings, which identified upstream surface water as 
one of the main driving factors for lake area dynamics over the entire time series. Further, 
evapotranspiration in the lake’s vicinity was found to have a negative causal impact on 
lake dynamics. This loss of water may have led to a decrease in lake area in phases of 
decreasing precipitation, as was the case for the phase from 2002 to 2014 (Ndehedehe 
et al. 2017). Upstream interventions, such as holding back water for agricultural use 
(Ndehedehe et al. 2017), were also identified in the causality analysis. Specifically, aGPP 
within the inflowing Volta Basin had a negative causal impact on the lake surface area 
during the lake’s wet season, which coincides with the main growing season. Additionally, 
iGPP had a negative impact on Lake Volta. This impact was most prominent during the 
lake’s dry season, which may hint towards water abstraction for off-season farming in the 
upstream basin.

For Nangbeto Dam, which is situated east of Lake Volta at the Mono River, very similar 
causal impact patterns were visible. Here, upstream surface water was the main driver 
throughout the time series, but all types of GPP had a significant negative causal impact 
overall and especially during the lake’s wet season (i.e. the main growing season). The 
negative impact of GPP in agricultural areas, both irrigated and unirrigated, was the most 
prominent. Studying water balance components of the Mono River Basin, Houteta et al. 
(2023) draw the same conclusions and attribute the water loss during the phase of May to 
October (which coincides with the growing season for vegetation in the area) to increased 
vegetation activity.

For Kainji Reservoir and Jebba Reservoir, which lie along the Niger, the causality 
analysis unveiled different driver impacts. For both reservoirs, over the entire study 
period, the main positive driver is GPP. Kainji Reservoir, which drains into Jebba 
Reservoir, was primarily driven by GPP from agricultural areas – both irrigated and 
unirrigated. Jebba Reservoir was mostly driven by natural and unirrigated agricultural 
GPP in the upstream subbasin. For both lakes the causal impact of GPP was complex. 
Considering the seasonal cycles of GPP and reservoir area, there was a seemingly clear 
driver-follower relationship that is led by subbasin-wide GPP. The results regarding 
subbasin-wide aGPP and iGPP impact align with findings provided by Aich et al. (2016) 
who concluded that land use/land cover changes in the Niger River Basin from natural 
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vegetation to intensely used croplands and pastures may lead to increased flooding (i.e. 
increasing water area). During the lakes’ dry seasons, the main driver for Kainji Reservoir 
was upstream surface water. This causal impact was positive, hinting towards an under
lying dependency of the lake on the upstream surface water availability. For the lakes’ wet 
seasons and over the entire time series, the impact of upstream surface water was in part 
positive, and in part negative. Both reservoirs are not only used for irrigation of agricul
tural areas nearby but also for flood control (Oyerinde et al. 2015). Dam management may 
explain the unclear causal link to upstream surface water.

In the far West of the cluster, two more reservoirs, Kossou Reservoir and Buyo Reservoir, 
are situated. Both of them lie within Côte d’Ivoire. Kossou Reservoir was positively driven 
by upstream surface water and negatively driven by GPP in the inflowing subbasin, 
irrespective of the land use. That being said, during the lake’s wet season, the negative 
impact of iGPP was far more dominant than that of aGPP and nGPP. Water abstraction and 
land use change, as presented by (Kouame et al. 2019) could explain this behaviour. Buyo 
Reservoir was also positively impacted by upstream surface water. Over the entire time
frame, a negative link with iGPP was identified. In addition, both reservoirs seem to be 
impacted by groundwater infiltration, as a link with GW suggests (Kouame et al. 2019) and 
(Obahoundje et al. 2022), also proposed a combination of human intervention and 
groundwater infiltration as potential drivers, at least for Kossou Reservoir.

4.1.2. Cluster M
Lake Ziway was negatively impacted by GPP over the entire observed timeframe. 
Especially GPP in agricultural land use areas in the lake’s immediate vicinity had 
a negative impact. Goshime et al. (2021a) report that there is extensive water withdrawal 
from the lake for irrigation, which seems to confirm a strong negative driving impact of 
iGPP in the direct lake vicinity, for the entire time frame, as well as during the lake’s wet 
season. Jha et al. (2021) state that climate change will likely increase temperatures in the 
region and decrease precipitation, which may lead to decreasing runoff and lake surface 
area. The causal impact of this interaction on the surface water trend could not yet be 
identified for Lake Ziway but may become apparent in the future. For Lake Abayata, 
however, a strong positive causal connection with precipitation could be identified. This 
falls in line with the suggestion of Goshime et al. (2021a) that the same issues that affect 
Lake Ziway, also affect Lake Langano and Lake Abayata. All three lakes are very close to 
each other and share high dynamic and causal similarities (Figure 7). The characteristic 
causal relationship with aGPP and iGPP that would hint towards water abstraction for 
agricultural use could be identified for Lake Langano as well. However, as Goshime et al. 
(2021b) confirm, the water abstraction from Lake Langano is much smaller compared to 
Lake Ziway, along with its causal impact. Additionally, the water abstraction from Lake 
Langano is done by diverting incoming streams. For Lake Abayata, the characteristic 
causal connections with GPP that would hint at agricultural use could only be conclusively 
identified on the subbasin scale. As Belete, Diekkrüger, and Roehrig (2016) point out, the 
water abstraction from Lake Abayata is mostly for industrial use. The continued abstrac
tion of incoming water is expected to lead to severe water scarcity (Goshime, Haile, 
Rientjes, et al. 2021). Further south in the Ethiopian Main Rift cluster is Lake Shala, 
which is neighbouring Lake Abayata, and only separated from it by a volcanic caldera 
rim. Shala is not directly affected by water abstraction, since its waters cannot be used due 
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to high alkalinity (Goshime, Haile, Rientjes, et al. 2021). This is in accord with the lack of 
a clear long-term trend for the lake’s water area. Apart from a clear positive causal effect of 
inflowing surface water, a complex, relationship with GPP was identified. Agricultural GPP 
from unirrigated areas in the inflowing subbasin had an overall negative effect on the lake 
and is especially inhibiting during the lake’s wet season. An impact from irrigated 
agricultural fields could not be identified. A positive causal connection to natural GPP 
existed during the dry season and considering the entire timeframe. Literature on Lake 
Shala in general (Elias et al. 2019), and on the background of this interaction specifically, is 
sparse. We hypothesize that while the observed positive link with nGPP describes a causal 
relationship, it may not be a driving relationship. Instead, the subbasin-wide nGPP could 
be driven by the same underlying factor, the availability of water in the subbasin. More in- 
depth analyses should be undertaken to clarify whether GPP drives lake surface water 
area in this example. Further, Mengistu, Demlie, and Abiye (2019) suggest a possible 
interaction with groundwater. While this could not be identified within our analysis, 
a possible pathway for this interaction is given by Baumann, Förstner, and Rohde 
(1975). They state that groundwater reservoirs are recharged by ‘meteoric waters’, i.e. 
incoming precipitation and ultimately infiltration of surface water into the groundwater 
reservoir.

4.2. Limitations and uncertainty

All variables investigated are sourced from validated and analysis-ready datasets. The 
investigated time series are thus largely reliable. To minimize the impact of potential 
observation errors even further, outliers were removed and the remaining gaps were filled 
in all time series. In the driver analysis, PCMCI was employed for causal identification. 
Thereby, this study overcomes the shortcomings of conventional correlation-based driver 
analyses. For this, however, the investigated time series had to be preprocessed so that 
the premises that exist for causal identification are fulfilled: Preprocessing the data was 
done to such a degree that stationarity of the time series can be assumed. Despite this, it 
is still possible that some of the analysed time series may not be stationary after 
preprocessing. PCMCI is comparatively robust to nonstationarity, but spurious links may 
occur if a causal dependency on a common unknown nonstationarity exists. Seasonality 
was excluded as far as possible. However, because a standardized time series decomposi
tion technique was used, some degree of autocorrelation may still be present in the 
cleaned time series. While this remaining autocorrelation may still introduce uncertainty 
into the identified causal relationship, the PCMCI algorithm is particularly suited for such 
cases (Nowack et al. 2020). However, the limitations of PCMCI also apply to this study. In 
particular, detection rates may be impacted negatively in highly deterministic systems. 
True causal links between two variables may be seen as independent because of a third 
variable that fully determines either of them. Some algorithms can handle causal identi
fication in such scenarios, but at the cost of higher false positive detection rates (Runge 
et al. 2019). While the amount of random noise in the investigated time series makes such 
a scenario unlikely, it is necessary to conduct additional investigations to confirm the 
causalities that have been found. It is also important to note that all of the independent 
variables that were studied are also affected by drivers. The causal relationships that drive 
water dynamics in upstream subbasins, for example, warrant their own analysis. We also 
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note that all datasets included in this study have their limitations which may affect the 
obtained results. In the case of GLWS2.0, inaccuracies in the WaterGAP hydrological 
model, which is being used in the assimilation process of GRACE/-FO may be inherited 
(Gerdener et al. 2023). Further, the limited spatial and temporal resolution of the soil 
moisture and groundwater time series may introduce uncertainty. By resampling the time 
series to a higher resolution, we assume that the unobserved points between two 
observations can be described through interpolation. Thereby small regional changes 
or highly dynamic behaviour will be overlooked. That being said, GLWS2.0 already 
exceeds other GRACE/-FO-based products significantly in its spatial resolution 
(Gerdener et al. 2023). High temporal resolution may not be as essential for below- 
ground water, as the reaction time of these factors is normally quite slow (Becker et al.  
2022). Most importantly, parts of the impact of human intervention, e.g. in the form of 
water withdrawal, could not be considered in this analysis. To this date, there is no reliable 
dataset on this factor for the entire continent of Africa, especially not at a viable temporal 
resolution for this analysis. The presented analysis seeks to estimate the impact of human 
intervention by splitting the GPP signal into natural, irrigated, and other agriculturally 
used areas. Through this, surface water abstraction for irrigation and the impact of non- 
irrigated agriculture on surface water dynamics may be presented. However, the datasets 
used for this land-use-based differentiation are static. Increases of agricultural areas, crop 
rotations, or renaturations therefore remain unobserved. There is potential for future 
enhancement for example in the consideration of human impact as a dedicated driving 
variable. Proxies for human land use beyond the distinction of GPP into natural, irrigated, 
and other agriculturally used areas could prove valuable, though their inclusion warrants 
careful consideration of the uncertainty that they might introduce to the analysis. Where 
available, runoff data could be used to accurately show how dependent lakes and 
reservoirs are on their inflows. It is important to acknowledge that while comparing 
surface water changes in the upstream subbasin with a target lake may provide some 
insight into potential relationships, this analysis should be considered a preliminary 
estimate rather than a definitive conclusion. Further research and analysis are required 
to fully understand the relationship between the investigated variables. Lastly, it can be 
argued that the dynamics of water area may not fully represent the changes in water 
volume of lakes and reservoirs, which is the more relevant term for hydrology and 
resource planning. The derivation of lake volume based on remote sensing data is 
possible, as multiple studies have shown for various geographic regions and at various 
spatial scales. However, such estimations are most often based on static bathymetric data, 
and changes in water volume are derived from changing lake water area or level (Sogno, 
Klein, and Kuenzer 2022). Thus, the drivers of lake area or lake height dynamics are likely 
very similar to the drivers of lake volume dynamics. In this study, the focus was water area 
time series based on the GWP as it currently is the only available dataset with daily 
observations for the investigated timeframe for the entire continent.

Despite these limitations, the findings of this analysis are thematically relevant. To the 
best of our knowledge, continent-wide causal identification and similarity analysis of 
standing surface water bodies at this temporal extent or resolution has never been 
conducted before. The implications of these findings for future research and decision- 
makers are discussed in the following.
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4.3. Potential directions for the future

The presented findings reveal that despite the unique nature of each lake shaped by 
complex hydrological settings and human interventions, there are still identifiable simila
rities. These similarities are mostly found within the same basin, but may also be in 
entirely different regions. In complex hydrological scenarios, such as the Chad Basin or 
the Ethiopian Main Rift cluster, where lakes are heavily impacted by human intervention, 
it is especially important to understand the causal relationships that drive surface water 
bodies. The methodology presented for the first time allows for such thematically pro
found analyses on a continental scale. As shown, the causal relationships found in this 
analysis generally align with the proposed drivers in literature. However, especially in light 
of the dynamically evolving situation in Africa with regard to ecology, socio-economic 
development, and climate change adaption, we stress the need for a transferable and 
continentally applicable approach for causal analysis. Considering the identified causal 
impacts on lakes in individual regions can contribute to more sustainable planning of 
water usage schemes or conservation projects. We specifically see added value for 
interested parties in international development aiming to support adapted sustainable 
planning at a continental scale. The developed dynamic and causal similarities bring 
together the identification of local dynamics and the grouping to larger clusters, relevant 
in decision-making beyond the national scale. However, there remains an acute need for 
more research at the regional level to provide the necessary context for large-scale 
causality analyses such as the one presented.

5. Conclusion

Reliable water access is crucial for sustainable development in Africa. In many regions of the 
continent, surface water access is already unreliable. Climate change and the predicted strong 
population increase will likely exacerbate this situation unless sustainable water planning 
schemes are implemented. To enhance the current understanding of the continent’s surface 
water distribution, dynamics, and driving factors, all major standing water bodies in Africa 
were analysed regarding their dynamics and potential drivers for the timeframe 2003–2020. 
This study has shown that for many regions in Africa, clear linear trends are visible that warrant 
careful consideration of current surface water usage. The results show that:

● Of the 54 African countries, 28 show an overall negative trend in surface water area, 
while 24 have an overall positive trend. For most countries the significance level of 
long-term trends is low. Only six countries have significant decreasing trends, while 
10 have significant increasing trends.

● Out of the 132 African ecoregions studied, 66 exhibit decreasing trends in surface 
water area, with 45 of these trends being significant. Increasing surface water area 
trends could be identified in 45 ecoregions. However, only in 19 of those areas are 
the trends significant.

● For a majority of investigated water bodies (~54%) a dominant causal link with 
upstream surface water could be observed for the entire timeframe. Second to 
this, ~27% of water bodies are most dominantly driven by GPP in agriculturally 
used areas.
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● GPP within a subbasin or on a lake level has a significant impact on almost all lakes (n  
= 109). This impact can be largely linked to intense agricultural usage and water 
abstraction, as referenced regional studies confirm. For ~ 85% of investigated lakes, 
GPP in agriculturally used areas is a significant driver.

● Over the observed timeframe, human intervention, in the form of GPP in agricultu
rally used areas, negatively impacted 57% of all investigated lakes. Irrigated agricul
ture negatively impacted 29% of all investigated lakes.

● Our analysis demonstrates the feasibility of conducting causal analyses of surface 
water dynamics using Earth observation data.

● Clusters of lakes and reservoirs exhibiting similar dynamic interactions and causal 
connections with the independent variables can be identified. In most cases, these 
clusters are spatially autocorrelated, although remote connections exist.

Accounting for the drivers of individual lakes may support the development of appro
priate usage and conservation strategies. Further, it enables large-scale comparisons, such 
as the identification of causally similar lakes, which may in turn hold potential for 
sustainable planning beyond the national scale. For over 20 years it has been well 
known that this is a necessary next step, now even more so considering the dynamic 
climatic, demographic, and socioeconomic developments that are taking place in Africa. 
The threats to water security that arise from human intervention and climate change will 
likely increase in severity with increasing population pressure in the coming years. Only 
sustainable planning that considers the complex causal relationships that underlie water 
availability can circumvent this disastrous scenario.
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