ELECTRON SCATTERING BY ELECTROSTATIC ELECTRON CYCLOTRON HARMONIC WAVES DURING STORM-TIME

Katja Stoll^{1,2}, Leonie Pick¹, Dedong Wang³, Bernhard Haas^{2,3}, Xing Cao⁴, Binbin Ni⁴, Yuri Shprits^{2,3,5}

¹ Institute for Solar-Terrestrial Physics, German Aerospace Centre (DLR), Neustrelitz, Germany ² Institute of Physics and Astronomy, University of Potsdam, Rotadam, Germany ³ GFZ German Research Centre for Geosciences, Potsdam, Germany ⁴ Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, China ⁵ Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA

Katja Stoll, Institute for Solar-Terrestrial Physics, July 17, 2024

Motivation

Haas et al., Sci Rep, 2023: Simulations of the March 2013 St. Patrick's Day storm \rightarrow missing loss process in the electron ring current

Motivation

Is the scattering by electron cyclotron harmonic waves (part of) the missing loss?

ECH wave event on 17 March 2013

Magnetic field and plasma density

Wave excitation, loss cone distribution

Model the electron distribution by (Ashour-Abdalla & Kennel, 1978)

$$f(\mathbf{v}_{\perp}, \mathbf{v}_{\parallel}) = \sum_{i=1}^{m} \frac{n_{i}}{\pi^{3/2} a_{\perp,i}^{2} a_{\parallel,i}} \exp\left(-\frac{\mathbf{v}_{\parallel}^{2}}{a_{\parallel,i}^{2}}\right) \cdot \left\{\Delta_{i} \exp\left(-\frac{\mathbf{v}_{\perp}^{2}}{a_{\perp,i}^{2}}\right) + \frac{1 - \Delta_{i}}{1 - \beta_{i}} \left[\exp\left(-\frac{\mathbf{v}_{\perp}^{2}}{a_{\perp,i}^{2}}\right) - \exp\left(-\frac{\mathbf{v}_{\perp}^{2}}{\beta_{i} a_{\perp,i}^{2}}\right)\right]\right\}$$

with electron density n_i , loss cone parameters Δ_i and β_i , and perpendicular and parallel thermal velocity $a_{\perp,i}$ and $a_{\parallel,i}$ (related to plasma temperature)

Fits to phase space density

 \Rightarrow obtain n_i , $T_{\perp,i}$, $T_{\parallel,i}$, Δ_i and β_i

Fits to phase space density

Dispersion relation (First band, L = 3.6**)**

Wave amplitude

ECH wave-induced diffusion coefficients L = 2.4 L = 3.0 L = 3.4 10^{-3} DLR 10^{-4}

Katja Stoll, Institute for Solar-Terrestrial Physics, July 17, 2024

Lifetimes from the edge of the loss cone

Lifetimes in VERB-4D

(a) ECH lifetimes at ${\it E}=1\,{\rm keV}$, ${\it \alpha}=50\,^{\circ}$

(b) ECH lifetimes at E = 5 keV, $\alpha = 50^{\circ}$

VERB-4D Simulations

Katja Stoll, Institute for Solar-Terrestrial Physics, July 17, 2024

Summary and Conclusion

- Calculated event-specific diffusion coefficients for ECH waves during March 2013 storm
- Implemented lifetimes to VERB-4D simulations
- Lifetimes due to direct scattering by ECH waves are too long to account for the missing loss
- Problems: Fit of loss cone distribution to phase space density, wave normal angle distribution