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AI-Empowered Physical Inversion of Water Quality and Benthic 

Parameters from Multi- and Hyperspectral Images

▪ WASI-AI tackles the 

spectral ambiguity 

problem.

▪ Speeds up the inversion 

process. 

▪ Despite the existing AI-

based models, WASI-AI 

is sensor-independent 

and adaptable to a wide 

range of bio-optical 

conditions in both 

optically shallow and 
deep waters.
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WASI-AI: Synergistic Integration of AI and Physics 
Poster ID: W-091

Significant Reduction of Processing Time

• The integration of AI significantly speeds up the

inversion, reducing the processing time from

hours/days to mere minutes.

• For instance, the WASI-2D processing takes up to ~26

hours in the case of the Sentinel-2 image of Lake

Constance, whereas it takes only ~2 minutes for

WASI-AI (749 times faster).
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▪ Physics-based WASI-2D retrieves the biophysical

parameters for a small subset of image pixels.

▪ A portion of the samples is utilized to train neural networks to

predict the fit parameters for all water pixels.

▪ The remaining portion of the samples is used to assess the

agreement between WASI-AI and WASI-2D.

▪ Without ambiguity problems, both methods produce similar

results for validation samples.

▪ In the presence of strong ambiguities, the results become

less correlated suggesting fine-tuning inversion parameters.

WASI-AI

A new methodology 

integrated as a new 

module within the Water 

Colour Simulator (WASI) 

software. 

Handling Spectral Ambiguity 

▪ Row (a): six fit parameters 

having all bands weighted 

equally.

▪ Row (b): the same six fit 

parameters with spectral 

weighting applied.

▪ Row (c): three fit parameters 

having all bands weighted 

equally without phytoplankton 

classification.

Example: Phytoplankton classification from a DESIS image of Lake Constance 
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Strong agreement between WASI-AI and WASI-2D

Reduced Noise on WASI-AI Maps
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Analyzing various 

multi- and 

hyperspectral images 

indicates strong 

agreement between 

WASI-AI and WASI-

2D results after 

handling ambiguity 

problems with an 

average R2 > 0.95 

and NRMSD < 3%.

Coefficient of variation (CV), the ratio between standard deviation and mean of 

pixel values within sliding windows of 5×5, quantifies the noise level. An average 

relative CV < 0.9 indicates lower noises on WASI-AI maps than WASI-2D. 
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