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Abstract

In this paper we consider a Metzner–Kapturowski-like decoding algorithm for high-order interleaved

sum-rank-metric codes, offering a novel perspective on the decoding process through the concept of an

error code. The error code, defined as the linear code spanned by the vectors forming the error matrix,

provides a more intuitive understanding of the decoder’s functionality and new insights.

The proposed algorithm can correct errors of sum-rank weight up to d−2, where d is the minimum

distance of the constituent code, given a sufficiently large interleaving order. The decoder’s versatility is

highlighted by its applicability to any linear constituent code, including unstructured or random codes.

The computational complexity is O
(
max{n3, n2s}

)
operations over Fqm , where n is the code length

and s is the interleaving order.

We further explore the success probability of the decoder for random errors, providing an efficient

algorithm to compute an upper bound on this probability. Additionally, we derive bounds and approxi-

mations for the success probability when the error weight exceeds the unique decoding radius, showing

that the decoder maintains a high success probability in this regime.

Our findings suggest that this decoder could be a valuable tool for the design and security analysis of

code-based cryptosystems using interleaved sum-rank-metric codes. The new insights into the decoding

process and the high success probability of the algorithm even beyond the unique decoding radius

underscore its potential to contribute to various coding-related applications.

Index Terms

Channel coding, decoding, sum-rank metric, interleaved codes, Metzner–Kapturowski, code-based

cryptography, cryptanalysis, high-order interleaving

I. INTRODUCTION

The need for post-quantum cryptography has become increasingly important due to recent

advances in the design and realization of quantum computers. This has led to the National Insti-
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tute of Standards and Technology (NIST)’s post-quantum cryptography standardization process,

which has shown that many promising candidates for key encapsulation mechanisms (KEMs)

belong to the family of code-based systems. Three of these candidates are still in the current

4th round [1].

Most code-based cryptosystems are based on the McEliece cryptosystem [2], which uses a

public code that can only be efficiently decoded with knowledge of the secret key as its trapdoor.

However, a major drawback of code-based cryptosystems is their large public key sizes when

compared to other schemes based on, e.g., lattices or isogenies. Completely unstructured (i.e.,

random) codes require a large key size, while the usage of highly structured codes often results

in vulnerabilities that can be exploited in structural attacks.

Interleaving has been proposed as one approach to mitigate the key-size issue in variants of

the McEliece cryptosystem based on interleaved codes in the Hamming and rank metric [3]–[5].

By allowing for a larger decoding radius and a higher error weight, denoted by t, interleaving

increases the attack cost for the same-sized parameters. This effectively reduces the public-key

size while maintaining the same security level. The interleaving order, denoted by s, plays a

crucial role in the decoding process and the overall performance of the cryptosystem.

There exist list and probabilistic unique decoders for interleaved Reed–Solomon (RS) codes

in the Hamming metric [6], for interleaved Gabidulin codes in the rank metric [7], and for

interleaved linearized Reed–Solomon (LRS) codes in the sum-rank metric [8]. However, these

decoders are tailored to a particular code family and explicitly exploit the code structure. In

contrast, the Metzner–Kapturowski decoder, originally proposed in the Hamming metric, exploits

a high interleaving order s to successfully decode errors with high probability, independent of the

constituent code [9]. This purely linear-algebraic decoder has been further studied and generalized

to the rank [10] and sum-rank metric [11].

The sum-rank metric is part of a metric family that includes both the Hamming and the rank

metric as special cases and can be seen as a blend of these two metrics. In this framework,

codeword vectors are discretely organized into blocks of equal length. The sum-rank metric

offers a balanced approach between the Hamming and rank metric, potentially making it more

challenging for adversaries to exploit system vulnerabilities.

Compared to the Hamming metric, the rank metric has a higher generic decoding complexity

for a given error weight. However, for the same decoding “attack complexity”, it allows for

smaller error weights and therefore smaller code parameters, which in turn leads to smaller key
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sizes.

However, many rank-metric cryptosystems rely on highly structured codes, which have been

subject to attacks and have been broken in some cases. Significantly, many attacks effective

in the Hamming metric may prove ineffective in the rank metric and vice versa (e.g. [12]).

Given this unique attribute, the sum-rank metric offers a balanced approach, potentially making

it more resistant to attacks that exploit vulnerabilities specific to either the Hamming or rank

metric. By carefully choosing the block size and the number of blocks, the sum-rank metric

can be tuned to achieve a desired balance between security and key size. This flexibility makes

the sum-rank metric an attractive option for designing code-based cryptosystems that are secure

against quantum and classical attacks while maintaining practical key sizes.

The goal of this paper is twofold: (1) to provide more intuition about Metzner–Kapturowski-

like decoders by using an interpretation involving an error code and (2) to extend the results

from our previous work [11]. For (1), we make a connection to a code that we call the error

code, which is spanned by the s rows of the error matrix. This perspective allows us to provide

a more intuitive understanding of the decoding process by relating it to properties of the error

code. Furthermore, this new error-code perspective enables us to simplify proofs and derive new

interpretations for the special cases in the Hamming and rank metric. For (2), we investigate

the success probability for high interleaving orders but randomly chosen errors that are not

necessarily full-rank. We provide an algorithm to efficiently compute and upper bound this

probability and present a more precise analysis of the decoding condition and bounds on its

occurrence probability for arbitrary error weight. We derive lower and upper bounds, as well as

an approximation for the success probability, in the case of t ≥ d− 1, where d is the minimum

distance of the underlying code, using random coding techniques. We also provide simulation

results to support the tightness of our analysis. The outcome of this analysis reveals that the

success probability remains relatively high even for t ≥ d−1. We provide examples to illustrate

these bounds and approximation.

We present a Metzner–Kapturowski-like decoding algorithm for high-order interleaved sum-

rank-metric codes with an arbitrary linear constituent code that can correct errors of sum-rank

weight t up to t < n − k, where n and k denote the length and dimension of the linear con-

stituent code, respectively. Remarkably, the proposed algorithm works for any linear constituent

code, including unstructured or random codes, making it highly versatile. The computational

complexity of the algorithm is in the order of O(max{n3, n2s}) operations over Fqm . Note
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that the decoding complexity is independent of the code structure of the constituent code since

the proposed algorithm exploits properties of high-order interleaving only. This gives valuable

insights for the design of McEliece-like cryptosystems based on interleaved codes in the sum-

rank metric. Since the sum-rank metric generalizes both the Hamming and the rank metric,

the original Metzner–Kapturowski decoder [9] as well as its rank-metric analog [10] can be

recovered from our proposal.

II. PRELIMINARIES

A. Notation

Let q be a power of a prime and let Fq denote the finite field of order q and Fqm an extension

field of degree m. We use F
a×b
q to denote the set of all a× b matrices over Fq and F

b
qm for the

set of all row vectors of length b over Fqm .

Let b = [b1, . . . , bm] ∈ F
m
qm be a fixed (ordered) basis of Fqm over Fq. We denote by ext(α)

the column-wise expansion of an element α ∈ Fqm over Fq (with respect to b), i.e.,

ext : Fqm → F
m×1
q

such that α = b · ext(α).

For a vector v = [v1, . . . , vn] ∈ F
n
qm , the notation is extended element-wise as follows

ext(v) = [ext(v1), . . . , ext(vn)] ∈ F
m×n
q ,

where ext(v) is a matrix with columns ext(vi) ∈ F
m×1
q for i = 1, . . . , n.

Similarly, for a matrix M = [Mi,j] ∈ F
k×n
qm , the notation is extended element-wise as follows

ext(M) =




ext(M1,1) · · · ext(M1,n)
...

. . .
...

ext(Mk,1) · · · ext(Mk,n)


 ∈ F

mk×n
q ,

where ext(M) is a matrix obtained by replacing each element Mi,j of M with its corresponding

column-wise expansion ext(Mi,j) ∈ F
m×1
q , for i = 1, . . . , k and j = 1, . . . , n.

For a matrix A of size a× b and entries Ai,j for i ∈ {1, . . . , a} and j ∈ {1, . . . , b}, we define
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the submatrix notation

A[c:d],[e:f ] :=




Ac,e . . . Ac,f

...
. . .

...

Ad,e . . . Ad,f


 .

The Fqm-linear row space of a matrix A over Fqm is denoted by Rqm(A). Its Fq-linear row

space is defined as Rq(A) := Rq(ext(A)). We denote the row-echelon form of A as REF(A)

B. Sum-Rank-Metric Codes

Let n = [n1, . . . , nℓ] ∈ N
ℓ with ni > 0 for all i ∈ {1, . . . , ℓ} be a length partition1 of n,

i.e., n =
∑ℓ

i=1 ni. Further, let x = [x(1) | x(2) | · · · | x(ℓ)] ∈ F
n
qm be a vector over a finite

field Fqm with x(i) ∈ F
ni
qm for each i ∈ {1, . . . , ℓ}. The rank of each block x(i) is defined as

rkq(x
(i)) := rkq(ext(x(i))), where ext(x(i)) ∈ F

m×ni
q is the column-wise expansion of x(i) over

Fq.

The sum-rank weight of x with respect to the length partition n is defined as

wt
(n)
ΣR(x) :=

ℓ∑

i=1

rkq(x
(i)), (1)

and the sum-rank distance between two vectors x,y ∈ F
n
qm is given by

d
(n)
ΣR(x,y) := wt

(n)
ΣR(x− y).

Note that the sum-rank metric coincides with the Hamming metric when ℓ = n (i.e., ni = 1 for

all i ∈ {1, . . . , ℓ}) and reduces to the rank metric when ℓ = 1.

An Fqm-linear sum-rank-metric code C is an Fqm-subspace of F
n
qm . It has length n (with

respect to a length partition n), dimension k := dimqm(C) and minimum (sum-rank) distance

d := min{d
(n)
ΣR(x,y) : x,y ∈ C,x 6= y}.

To emphasize its parameters, we write C[n, k, d] in the following.

C. Interleaved Sum-Rank-Metric Codes and Channel Model

A (vertically) s-interleaved code is a direct sum of s codes of the same length n. In this paper

we consider homogeneous interleaved codes, i.e., codes obtained by interleaving codewords of

1Note that this is also known as (integer) composition into exactly ℓ parts in combinatorics.



6

a single constituent code.

Definition 1 (Interleaved Sum-Rank-Metric Code) Let C[n, k, d] ⊆ F
n
qm be an Fqm-linear

sum-rank-metric code of length n with length partition n = [n1, n2, . . . , nℓ] ∈ N
ℓ and minimum

sum-rank distance d. Then the corresponding (homogeneous) s-interleaved code is defined as

IC[s;n, k, d] :=








c1
...

cs


 : cj ∈ C[n, k, d]





⊆ F

s×n
qm .

Each codeword C ∈ IC[s;n, k, d] can be written as

C =




c
(1)
1 c

(2)
1 . . . c

(ℓ)
1

...
...

. . .
...

c
(1)
s c

(2)
s . . . c

(ℓ)
s


 ∈ F

s×n
qm

or equivalently as

C =
[
C(1) | C(2) | · · · | C(ℓ)

]

where

C(i) :=




c
(i)
1

c
(i)
2

...

c
(i)
s



∈ F

s×ni
qm

for all i ∈ {1, . . . , ℓ}.

As a channel model we consider the additive sum-rank channel

Y = C +E

where

E =
[
E(1) |E(2) | . . . |E(ℓ)

]
∈ F

s×n
qm

with E(i) ∈ F
s×ni
qm and rkq(E

(i)) = ti for all i ∈ {1, . . . , ℓ} is an error matrix with wt
(n)
ΣR(E) =

t :=
∑ℓ

i=1 ti.
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D. The Error Support

Let E ∈ F
s×n
qm be the error matrix with wt

(n)
ΣR(E) = t. Then E can be decomposed as

E = AB, (2)

where A =
[
A(1) | A(2) | . . . | A(ℓ)

]
∈ F

s×t
qm is a block matrix with submatrices A(i) ∈ F

s×ti
qm

satisfying rkq(A
(i)) = ti, and

B = diag (B(1), . . . ,B(ℓ)) ∈ F
t×n
q (3)

is a block-diagonal matrix with submatrices B(i) ∈ F
ti×ni
q satisfying rkq(B

(i)) = ti for all

i ∈ {1, . . . , ℓ} (see [13, Lemma 10]).

The rank support suppR

(
E(i)

)
and the dual rank support supp⊥

R

(
E(i)

)
of one block E(i) for

i ∈ {1, . . . , ℓ} are defined as the row space of E(i) and its orthogonal complement, respectively

suppR

(
E(i)

)
:= Rq

(
E(i)

)
= Rq

(
B(i)

)
,

supp⊥
R

(
E(i)

)
:= Rq

(
E(i)

)⊥
= Rq

(
B(i)

)⊥
.

The second equality in each line follows from (2) and [14, Theorem 1].

The sum-rank support of the error E with sum-rank weight t is then defined as

suppΣR(E) := suppR

(
E(1)

)
× suppR

(
E(2)

)
× · · · × suppR

(
E(ℓ)

)
(4)

=Rq

(
B(1)

)
×Rq

(
B(2)

)
× · · · × Rq

(
B(ℓ)

)
.

Additionally, we define the dual sum-rank support as

supp⊥
ΣR (E) := supp⊥

R

(
E(1)

)
× supp⊥

R

(
E(2)

)
× · · · × supp⊥

R

(
E(ℓ)

)

=Rq

(
B(1)

)⊥
×Rq

(
B(2)

)⊥
× · · · × Rq

(
B(ℓ)

)⊥
.

Given two supports suppΣR(E1) and suppΣR(E2), we denote

suppΣR(E1) ⊆ suppΣR(E2)

if suppR

(
E

(i)
1

)
⊆ suppR

(
E

(i)
2

)
holds for all i ∈ {1, . . . , ℓ}. The notation ⊂ follows the same

principle but implies a strict subset.
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Finally, we define

F
n
q := F

n1
q × · · · × F

nℓ
q .

III. DECODING OF HIGH-ORDER INTERLEAVED SUM-RANK-METRIC CODES

In this section, we propose a Metzner–Kapturowski-like decoder for the sum-rank metric,

which generalizes the decoders presented in [9], [10], [15]. The proposed decoder can correct

errors of sum-rank weight t up to d− 2 in general. Additionally, under specific conditions, the

decoder can correct errors of sum-rank weight t up to n − k − 1, where n is the length of the

code and k is the dimension of the code. The following assumptions are required for the decoder

to succeed:

• High-order condition: The interleaving order s is greater than or equal to the sum-rank

weight of the error, i.e., s ≥ t.

• Full-rank condition: The error matrix has full Fqm-rank, i.e., rkqm(E) = t.

It is worth noting that the full-rank condition automatically implies the high-order condition,

as the Fqm-rank of a matrix E ∈ F
s×n
qm cannot exceed the interleaving order s.

Throughout this section, we consider a homogeneous s-interleaved sum-rank-metric code

IC[s;n, k, d] over Fqm with a constituent code C[n, k, d] defined by a parity-check matrix

H =
[
H(1) |H(2) | . . . |H(ℓ)

]
∈ F

(n−k)×n
qm

with H(i) ∈ F
(n−k)×ni

qm . The goal is to recover a codeword C ∈ IC[s;n, k, d] from the matrix

Y = C +E ∈ F
s×n
qm

that is corrupted by an error matrix E of sum-rank weight wt
(n)
ΣR(E) = t assuming the high-order

and full-rank conditions.

As with the original Metzner–Kapturowski algorithm and its adaptation to the rank metric,

the presented decoding algorithm consists of two steps:

1) The decoder determines the error support suppΣR(E).

2) Erasure decoding is performed using the syndrome matrix S = HY ⊤ = HE⊤ to recover

the error E itself.

The following result is adapted from [13] and shows how the error matrix E can be re-

constructed from the sum-rank support suppΣR(E) and the syndrome matrix S. We relax the

original condition to make the result more applicable.
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Lemma 1 (Column-Erasure Decoder [13, Theorem 13]) Let B = diag (B(1), . . . ,B(ℓ)) ∈

F
t×n
q be a basis of the error support suppΣR(E) of the error matrix E ∈ F

s×n
qm , and let

S = HE⊤ ∈ F
(n−k)×s
qm be the corresponding syndrome matrix.

Assume that HB⊤ is full-rank. Then, the error matrix E can be uniquely recovered as

E = AB, where A ∈ F
s×t
qm is the unique solution of the linear system

S = (HB⊤)A⊤.

Furthermore, E can be computed in O((n− k)3m2) operations over Fq.

Remark 1 From [13, Lemma 12], it directly follows that for t < d, the condition that HB⊤ is

full-rank is always satisfied.

A. Recovering the Error Support

Let t = [t1, . . . , tℓ] denote the rank profile of the error matrix E, where ti = rkq(E
(i)) for

i ∈ {1, . . . , ℓ}. In the following, we assume that E fulfills the full-rank condition, i.e., its Fqm-

rank is equal to its sum-rank weight t. Note that the full-rank condition is satisfied if and only if

rkqm(A) = t for an every A ∈ F
s×t
qm as in (2). Under these assumptions, we have that the rows

of E span an Fqm-linear [n, t] code, denoted as

E := Rqm(E) , (5)

which we refer to as the error code.

Let GE ∈ F
t×n
qm denote the generator matrix of E . Note that we can decompose GE as

GE = AEB, (6)

where AE =
[
A

(1)
E | . . . | A

(ℓ)
E

]
∈ F

t×t
qm with rkqm(AE) = t and B is the same matrix as defined

in the error decomposition (2) and (3). Each block A
(i)
E is a matrix of size t × ti. The rank

profile t determines the ranks of the individual blocks A
(i)
E , i.e., rkqm(A

(i)
E ) = ti.

It follows directly from the definition (5) of the error code, that

suppΣR (E) = suppΣR (E).

Because of this property, we say that the error code E is support-restricted by the row support

of E with E ⊂ F
n
q .
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Let us now consider the parity-check matrix of the error code E , denoted by HE ∈ F
(n−t)×n
qm .

By definition of the parity-check matrix, we have GEH
⊤
E = 0.

Lemma 2 Let HE =
[
H

(1)
E | . . . |H

(ℓ)
E

]
∈ F

(n−t)×n
qm be the parity-check matrix of the [n, t]

error code E with length partition n. Then, we have

suppΣR(HE) = supp⊥
ΣR (E).

Proof: Since HE is a parity-check matrix of E , we have rkqm(HE) = n− t. With respect

to the sum-rank metric, we can partition the parity-check matrix of the error code as

HE =
[
H

(1)
E | . . . |H

(ℓ)
E

]
(7)

such that H
(i)
E ∈ F

(n−t)×ni

qm for all i ∈ {1, . . . , ℓ}.

To satisfy the check equations, we must have

GEH
⊤
E = 0 ⇔ (AEB)H⊤

E = 0 ⇔ BH⊤
E = 0.

From (7) and the block-diagonal structure of B (see (3)), it follows that

B(i)H
(i)
E

⊤
= 0 ∀i ∈ {1, . . . , ℓ}.

By the rank-nullity theorem and since B(i) is over Fq, we have dim
(
Rq

(
H

(i)
E

))
≤ ni− ti for

all i ∈ {1, . . . , ℓ}. However, since HE must have n− t many Fqm-linearly independent rows and
∑ℓ

i=1 ni − ti = n− t, we conclude that dim
(
Rq

(
H

(i)
E

))
= ni − ti, and hence

Rq

(
H

(i)
E

)
= Rq

(
B(i)

)⊤
∀i ∈ {1, . . . , ℓ}.

By the definition of the sum-rank support, this concludes the proof.

Theorem 1 Let C be an Fqm-linear [n, k] sum-rank-metric code with generator matrix G ∈

F
k×n
qm , parity-check matrix H ∈ F

(n−k)×n
qm , and minimum sum-rank distance d. Let E = AB ∈

F
s×n
qm be a matrix with A ∈ F

s×t
qm , B ∈ F

t×n
q , rkqm(E) = t, and wt

(n)
ΣR (E) = t. Let t ≤ n−k−1

and suppose that

rkqm


H



 B

b




⊤

 = t+ 1 ∀ b ∈ F

n
q \ suppΣR (E) s.t. wt

(n)
ΣR (b) = 1. (8)
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Further, denote by GE ∈ F
t×n
qm the generator matrix of the error code E := Rqm(E). Consider

the Fqm-linear code S = E + C defined as

S := Rqm(GS) (9)

with generator matrix

GS :=


 G

E


 .

Then, for any valid parity-check matrix HS ∈ F
(n−k−t)×n
qm of the Fqm-linear [n, k+ t] sum-rank-

metric code S, we have

supp⊥
ΣR (HS) = suppΣR (E). (10)

Proof: First, partition HS into blocks according to the length partition n, i.e.,

HS =
[
H

(1)
S | · · · |H

(ℓ)
S

]

with H
(i)
S ∈ F

(n−k−t)×ni

qm for all i ∈ {1, . . . , ℓ}. We want to show that supp⊥
ΣR (HS) = suppΣR (E).

By the definition of the support for the sum-rank metric, this means that we need to show that

supp⊥
R (H

(i)
S ) = suppR (E(i)) = Rq

(
B(i)

)
∀i ∈ {1, . . . , ℓ}.

Define µi := rkq (H
(i)
S ) for all i ∈ {1, . . . , ℓ}. Then, H

(i)
S can be decomposed as

H
(i)
S = C

(i)
S D

(i)
S

with C
(i)
S ∈ F

(n−k−t)×µi

qm , D
(i)
S ∈ F

µi×ni
q , and rkq(C

(i)
S ) = rkq(D

(i)
S ) = µi.

Recall from the definition of the sum-rank support (4) and its dual support (10) that we have

supp⊥
ΣR (HS) = Rq

(
D

(1)
S

)⊥
× · · · × Rq

(
D

(ℓ)
S

)⊥

and

suppΣR (E) = Rq

(
B(1)

)
× · · · × Rq

(
B(ℓ)

)
,

respectively. The goal is to show that Rq

(
D

(i)
S

)⊥
= Rq

(
B(i)

)
for all i ∈ {1, . . . , ℓ}, which is

equivalent to proving Rq

(
D

(i)
S

)
= Rq

(
B(i)

)⊥
. This will be achieved in two steps:

1) Show that Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}.
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2) Demonstrate that µi < dim (Rq

(
B(i)

)⊥
) = ni − ti is not possible for any i ∈ {1, . . . , ℓ},

implying µi = ni − ti and hence Rq

(
D

(i)
S

)
= Rq

(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}.

Step 1: Proving Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}.

To prove Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
, we instead show that Rq

(
B(i)

)
⊆ Rq

(
D

(i)
S

)⊥
. By definition,

HS is a parity-check matrix for S = E + C. Thus,

HSG
⊤
E = 0 ⇔ HSB

⊤A⊤
E = 0

where GE is the generator matrix of the error code as defined in (6). Since AE ∈ F
t×t
qm is

non-singular, we have that

HSB
⊤ = 0⇔H

(i)
S B(i)⊤ = 0 ∀i ∈ {1, . . . , ℓ}. (11)

This implies that all rows of B(i) are in the Fqm-right kernel of H
(i)
S , and since B(i) is over Fq,

we have that Rq

(
B(i)

)
⊆ Rq

(
D

(i)
S

)⊥
. Consequently, Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
.

Step 2: Showing that µi < dim (Rq

(
B(i)

)⊥
) = ni − ti is impossible for any i ∈ {1, . . . , ℓ}.

Since Rq

(
D

(i)
S

)
⊆ Rq

(
B(i)

)⊥
, µi > ni− ti is not possible for any i ∈ {1, . . . , ℓ}. Assume that

µi′ < ni′ − ti′ for at least one i′ ∈ {1, . . . , ℓ}, i.e., let µi′ = ni′ − ti′ − δ ∈ Z with δ > 0. Without

loss of generality, set i′ = ℓ.

Given that rkq (D
(ℓ)
S ) = nℓ − tℓ − δ, there exists a full-rank matrix Q(ℓ) ∈ F

nℓ×nℓ
q that allows

us to bring D
(ℓ)
S into column-echelon form. Hence,

D
(ℓ)
S Q(ℓ) =

[
0︸︷︷︸

∈F
(nℓ−tℓ−δ)×(tℓ+δ)
q

D̃
(ℓ)
S

]

where D̃
(ℓ)
S ∈ F

(nℓ−tℓ−δ)×(nℓ−tℓ−δ)
q with rkq (D̃

(ℓ)
S ) = nℓ − tℓ − δ.

Further, let

Q(ℓ) = [Q
(ℓ)
1 | Q

(ℓ)
2 ]

with Q
(ℓ)
1 ∈ F

nℓ×(tℓ+δ)
q and Q

(ℓ)
2 ∈ F

nℓ×(nℓ−tℓ−δ)
q . Since Q(ℓ) is full-rank, we have that Q

(ℓ)
1 is

full-rank too, i.e., rkq (Q
(ℓ)
1 ) = tℓ + δ. Thus,

D
(ℓ)
S Q

(ℓ)
1 = 0. (12)

That means we can multiply (12) from the right with some full-rank transformation matrix
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T ∈ F
(tℓ+δ)×(tℓ+δ)
q such that

D
(ℓ)
S

[
B(ℓ)⊤ | B̃(ℓ)⊤

]

︸ ︷︷ ︸
=Q

(ℓ)
1 T

= 0. (13)

Define the following block-diagonal matrix

Q =




B(1)
0 · · · 0

0 B(2) · · · 0

...
...

. . .
...

0 0 · · · B(ℓ)

0 0 · · · B̃(ℓ)




∈ F
(t+δ)×n
q .

Then we have that

DSQ
⊤ = 0 (14)

since D
(i)
S B(i)⊤ = 0 for i ∈ {1, . . . , ℓ− 1} and by assumption (13), D

(ℓ)
S

[
B(ℓ)⊤ | B̃(ℓ)⊤

]
= 0.

Now, without loss of generality, let δ = 1. By the decoding condition (8), we have that

rkqm
(
HQ⊤

)
= t+ 1

must hold. Thus, there exists a vector g ∈ Rqm(H) such that

gQ⊤ =
[
0 . . . 0 gt+1

]
6=
[
0 . . . 0

]
∈ F

t+1
qm .

Since the first t leftmost positions of gQ⊤ are zero, by (11) and the fact that the matrix formed

by the t leftmost columns in Q⊤ forms a basis of all Rq

(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}, which

are also bases for Rqm
(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}, this implies that g ∈ Rqm(B)⊥.

Also recall that HS fulfills the parity-check constraints for both codes simultaneously: the

error code E and the component code C. That means that

S = C + E ⇔ S⊥ = C⊥ ∩ E⊥

⇔Rqm(HS) = Rqm(H) ∩Rqm(B)⊥ .

Since for this specific g we have that g ∈ Rqm(H) and also g ∈ Rqm(B)⊥, it follows that g ∈

Rqm(HS). Expanding g over Fq also implies that there exists a vector g′ ∈ Rq(HS) = Rq(DS)
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such that

g′Q⊤ =
[
0 . . . 0 g′t+1

]
6=
[
0 . . . 0

]
∈ F

t+1
q .

But by (14), for all g′ ∈ Rq(DS) we need to have that

g′Q⊤ =
[
0 . . . 0 0

]
∈ F

t+1
q .

This constitutes a contradiction, and thus µℓ < nℓ − tℓ is not possible. This also holds for any

other i′ 6= ℓ, and therefore µi < ni − ti is not possible for any i ∈ {1, . . . , ℓ}.

When δ = 1, we obtain one additional zero column in g′Q⊤. Similarly, when δ = 2, we

get two additional zero columns. Since a contradiction arises for δ = 1, it follows that the

assumption cannot hold for any δ > 1 as well. For δ = 0, we do not get a contradiction, and

thus µi = ni − ti for all i ∈ {1, . . . , ℓ} is the only valid option.

This proves that Rq

(
D

(i)
S

)
= Rq

(
B(i)

)⊥
for all i ∈ {1, . . . , ℓ}, and therefore Rq

(
D

(i)
S

)⊥
=

Rq

(
B(i)

)
for all i ∈ {1, . . . , ℓ}, hence supp⊥

ΣR (HS) = suppΣR (E).

Remark 2 Due to the properties of the error code and the relationship Y = C + E, the

following row spaces over Fqm are the same

Rqm




 G

GE




 = Rqm




 G

E




 = Rqm




 G

Y




 .

Thus, the rows of all three matrices are generating sets for the code S = C + E .

Note, that a parity-check matrix HS for S can be obtained by stacking GS with Y and

then performing Gaussian elimination. This fact leads to the following observation for very high

interleaving orders.

Remark 3 The error-code perspective on the Metzner–Kapturowski-like algorithm allows for

new insights for very high-order interleaving orders, i.e., for s ≥ k+ t. In particular, if the rows

of the transmitted codeword C form a generating set for C, i.e., if rkqm(C) = k and the error

matrix E fulfills the full-rank condition, we have that rkqm(Y ) = k+ t and the rows of Y form

a generating set for S = C + E .

This allows us to compute a parity-check matrix HS for S directly from the received matrix Y

as a basis for the right Fqm-kernel of Y and recover the support of the error as supp⊥
ΣR (HS) =
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suppΣR (E) (see (10) in Theorem 1). Remarkably, we can recover the support of the error E

without knowing the codes C and S.

This observation could be relevant for cryptosystems which rely on (secret) very high-order

interleaved codes, since the knowledge of the error support could reduce the security level

significantly, see e.g. [16].

We now present a theorem that establishes a direct connection between the syndrome matrix

S and the parity-check matrix HS of the sum code S = C + E . This theorem provides a

straightforward method to compute HS from S as used in the existing Metzner–Kapturowski

variants for the Hamming and the rank metric.

Theorem 2 Let IC[s;n, k, d] be an Fqm-linear interleaved sum-rank-metric code with compo-

nent code C, which has parity-check matrix H ∈ F
(n−k)×n
qm . Let E ∈ F

s×n
qm be an error matrix

with rkqm(E) = t and wt
(n)
ΣR (E) = t ≤ n − k − 1 and let E be the error code spanned by

the rows of E. The received word is Y = C + E, where C ∈ IC. The syndrome matrix is

S = HY ⊤ = HE⊤, where S ∈ F
(n−k)×s
qm .

Let P ∈ F
(n−k)×(n−k)
qm be a full-rank matrix such that PS is in row-echelon form, i.e.,

PS =



S
′

0



 −→ PH =



H
′

HS





where S′ ∈ F
t×s
qm , H ′ ∈ F

t×n
qm then HS ∈ F

(n−k−t)×n
qm is a parity-check matrix for the sum-rank-

metric code S = E + C as defined in (9).

Proof: Since P is invertible, multiplying both sides of S = HE⊤ by P yields

PS = PHE⊤.

As H has full row rank rkqm(H) = n− k and rkqm(E) = t, we have

rkqm(S) = rkqm(HE⊤) = min{rkqm(H), rkqm(E)} = min{n− k, t} = t.

By the rank-nullity theorem, rkqm(PS) = rkqm(S) = t, so PS has t non-zero rows. As PS is

in row-echelon form, we can write

PS =


S

′

0


 ,
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where S′ ∈ F
t×s
qm has full row rank.

Partitioning PH conformally with PS, we have

PH =



H
′

HS



 ,

where H ′ ∈ F
t×n
qm and HS ∈ F

(n−k−t)×n
qm . Since PHE⊤ = PS, we have



H
′

HS



E⊤ =



S
′

0



 ,

which implies HSE
⊤ = 0. As the rows of E span E , this means HS satisfies the parity-check

equations for E . By construction, HS also satisfies the parity-check equations for C, as it is a

submatrix of PH . And since HS has n − k − t rows and is of full-rank, it is a parity-check

matrix for the sum-rank-metric code S defined in (9), which contains both C and E .

B. A Metzner–Kapturowski-like Decoding Algorithm

Using Theorem 1 and Theorem 2, we can formulate an efficient decoding algorithm for high-

order interleaved sum-rank-metric codes. The algorithm is given in Algorithm 1 and proceeds

similar to the Metzner–Kapturowski(-like) decoding algorithms for Hamming- or rank-metric

codes. As soon as HS is computed from the syndrome matrix S, the rank support of each block

can be recovered independently using the results from Theorem 1. This corresponds to finding a

basis in the form of a matrix B(i) ∈ F
ti×ni
q such that ext(H

(i)
S )(B(i))⊤ = 0 for all i ∈ {1, . . . , ℓ},

where ti is determined by the rank-nullity theorem as ti = ni − rkq(H
(i)
S ) according to (10).

Theorem 3 Let C be a codeword of an s-interleaved sum-rank-metric code IC[s;n, k, d] and

let H be the parity-check matrix of the corresponding constituent code C. Furthermore, let

E ∈ F
s×n
qm be an error matrix of sum-rank weight wt

(n)
ΣR(E) = t that fulfills t ≤ s (high-order

condition) and rkqm(E) = t (full-rank condition). Let B be a basis of the Fq-row space of

E. If (8) holds, then C can be uniquely recovered from the received word Y = C +E using

Algorithm 1 in a time complexity equivalent to

O
(
max{n3, n2s}

)

operations in Fqm .
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Algorithm 1: Decoding High-Order Interleaved Sum-Rank-Metric Codes

Input : Parity-check matrix H of C, Received word Y = C +E with

C ∈ IC[s;n, k, d] and wt
(n)
ΣR(E) = rkqm(E) = t

Output: Transmitted codeword C

1 S ←HY ⊤ ∈ F
(n−k)×s
qm

2 Compute P ∈ F
(n−k)×(n−k)
qm s.t. PS = REF(S)

3 HS =
[
H

(1)
S |H

(2)
S | . . . |H

(ℓ)
S

]
← (PH)[t+1:n−k],[1:n] ∈ F

(n−t−k)×n
qm

4 for i ∈ {1, . . . , ℓ} do

5 Compute B(i) ∈ F
ti×ni
q s.t. ext(H

(i)
S )(B(i))⊤ = 0, where ti = ni − rkq(H

(i)
S )

6 B ← diag(B(1),B(2), . . . ,B(ℓ)) ∈ F
t×n
q

7 Compute A ∈ F
s×t
qm s.t. (HB⊤)A⊤ = S

8 C ← Y −AB ∈ F
s×n
qm

9 return C

Proof: Lemma 1 states that the error matrix E can be factored as E = AB. The decoding

procedure in Algorithm 1 starts by finding a basis B of the error support suppΣR(E) and then

uses erasure decoding with respect to Lemma 1 to recover A. The matrix B is computed by

transforming S into row-echelon form using a transformation matrix P (see Line 2). In Line 3,

HS is obtained by choosing the last n−k− t rows of PH . According to Theorem 2, the matrix

HS serves as a parity-check matrix for both the error code E associated with the error matrix

E and the component code C. Then using Theorem 1 for each block (see Line 5) we find a

matrix B(i) whose rows form a basis for Rq

(
ext(H

(i)
S )
)⊤

and therefore a basis for suppR(E
(i))

for all i ∈ {1, . . . , ℓ}. The matrix B is the block-diagonal matrix formed by B(i) (cf. (3) and

see Line 6) for i ∈ {1, . . . , ℓ}. Finally, A can be computed from B and H using Lemma 1 in

Line 7. Hence, Algorithm 1 returns the transmitted codeword in Line 9. The complexities of the

lines in the algorithm are as follows:

• Line 1: The syndrome matrix S = HY ⊤ can be computed in at most O(n2s) operations

in Fqm .

• Line 2: The transformation of [S | I] into row-echelon form requires

O
(
(n− k)2(s+ n− k)

)
⊆ O

(
max{n3, n2s}

)
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operations in Fqm .

• Line 3: The product (PH)[t+1:n−k],[1:n] can be computed requiring at most

O(n(n− k − t)(n− k)) ⊆ O
(
n3
)

operations in Fqm .

• Line 5: The transformation of [ext(H
(i)
S )⊤ | I⊤]⊤ into column-echelon form requires

O(n2
i ((n− k − t)m+ ni)) operations in Fq per block. Overall we get

O

(
ℓ∑

i=1

n2
i ((n− k − t)m+ ni)

)
⊆ O

(
n3m

)

operations in Fq since we have that O
(∑ℓ

i=1 n
2
i

)
⊆ O(n2).

• Line 7: According to Lemma 1, this step can be done in O((n− k)3m2) operations over

Fq.

• Line 8: The product AB =
[
A(1)B(1) | A(2)B(2) | . . . | A(ℓ)B(ℓ)

]
can be computed in

O
(∑ℓ

i=1 stini

)
⊆ O(sn2) and the difference of Y − AB can be computed in O(sn)

operations in Fqm .

The complexities for Line 5 and Line 7 are given for operations in Fq. The number of Fq-

operations of both steps together is in O(n3m2) and their execution complexity can be bounded

by O(n3) operations in Fqm (see [17]).

Thus, Algorithm 1 requires O(max{n3, n2s}) operations in Fqm .

Note that the complexity of Algorithm 1 is not affected by the decoding complexity of the

underlying constituent code since a generic code with no structure is assumed.

IV. FURTHER RESULTS AND REMARKS

A. Probabilistic Decoding for Uniform Random Errors

In practical settings, the full-rank condition may not always hold. Therefore, we consider the

performance of the decoder when the error is drawn uniformly at random from the set of all error

matrices of a given sum-rank weight t. We then derive an upper bound on the error probability,

which, for fixed code parameters, decays exponentially with respect to the difference between

the error weight t and the interleaving order s.



19

Note that we still require the high-order condition, i.e., s ≥ t. Otherwise, no error can possibly

satisfy the full-rank condition since

rkqm(E) ≤

ℓ∑

i=1

rkqm(E
(i)) ≤

ℓ∑

i=1

rkq(E
(i)) =

ℓ∑

i=1

ti = t

holds, and E has size s× n (with s ≤ n).

For the sake of simplicity in the analysis, we focus on the case where the length partition

n = [n1, . . . , nℓ] has constant block lengths, i.e., there exists a positive integer η such that ni = η

for all i ∈ {1, . . . , ℓ}.

We introduce the following sets, which are integral to the proofs of the forthcoming theorems

in this section.

First define µ as the maximum possible Fq-rank of each block of the error matrix, given by

µ := min{sm, η}. (15)

Next, we define the set of all possible rank profiles t = [t1, . . . , tℓ] for any error matrix with

ℓ blocks and sum-rank weight t, where each component ti is bounded by µ as

Tt,ℓ,µ :=

{
t ∈ {0, . . . , µ}ℓ :

ℓ∑

i=1

ti = t

}
.

This set will be used to enumerate all possible rank profiles.

For a given length partition n, we define the set of all error matrices with sum-rank weight

t as follows

E
(n)
t :=

{
E =

[
E(1) | · · · | E(ℓ)

]
∈ F

s×n
qm : wt

(n)
ΣR(E) =

ℓ∑

i=1

rkq(E
(i)) = t

}
.

This set contains all possible error matrices with the specified sum-rank weight t and length

partition n. For a fixed rank profile we define

E
(n)
t :=

{
E =

[
E(1) | · · · | E(ℓ)

]
∈ F

s×n
qm : rkq(E

(i)) = ti
}
.

and from (2) we have that we can decompose the error into E = AB with A ∈ F
s×t
qm and

B ∈ F
t×n
q with A and B both of full-rank. Let us define the set of all possible matrices A

At :=
{
A ∈ F

s×t
qm : wt

(t)
ΣR(A) = t

}
(16)
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and all possible matrices B as

Bt :=
{
diag(B(1), . . . ,B(ℓ)) ∈ F

t×n
q : rkq (B

(i)) = ti and B(i) ∈ F
ti×η
q ∀i ∈ {1, . . . , ℓ}

}
. (17)

When drawing E uniformly at random from E
(n)
t the marginal distribution for the correspond-

ing rank profile t ∈ Tt,ℓ,µ is given by

Pr[t] =
1

|E
(n)
t |

ℓ∏

i=1

NMq(sm, η, ti)

where NMq(sm, η, ti) denotes the number of matrices over Fq of size sm× η of rank ti which

can be computed as (see [13])

NMq(sm, η, ti) =

ti−1∏

j=0

(qsm − qj)(qη − qj)

qti − qj
.

Lemma 3 For a given rank profile t = [t1, t2, . . . , tℓ] of the error E, the probability that E has

Fqm-rank equal to t, given t is then

Pr[rkqm(E) = t | t] = Pr[rkqm(A) = t | t]

=
∏t−1

j=0(q
sm−qjm)

∏ℓ
i=1

∏ti−1
j=0 (qsm−qj)

where A is a matrix drawn uniformly at random from the set defined in (16).

Proof: Every error matrix E can be decomposed as in (2), i.e., E = AB. Since A is the

only part influencing the Fqm-rank of E and is unique if an arbitrary block-diagonal matrix B

with Rq(B) = Rq(E) is fixed (see, e.g., [14, Theorem 1]), we obtain

Pr[rkqm(E) = t | t] = Pr[rkqm(A) = t | t].

Recall that Bt is defined in (17) as the set of all block-diagonal matrices B with Rq(B) =

Rq(E) and rank profile t. By the law of total probability, we then have

Pr[rkqm(E) = t | t] =
∑

B∈Bt

Pr[rkqm(A) = t | t,B] · Pr[B | t]

=
∑

B∈Bt

Pr[rkqm(A) = t | t] · Pr[B | t]

= Pr[rkqm(A) = t | t],
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where we used the fact that Pr[B | t] = 1
|Bt|

since B is uniformly distributed over Bt. The

probability Pr[rkqm(A) = t | t] can be computed as

Pr[rkqm(A) = t|t] =
|{A′ ∈ F

s×t
qm : wt

(t)
ΣR (A′) = rkqm(A

′) = t}|

|{A′ ∈ F
s×t
qm : wt

(t)
ΣR(A

′) = t}|
.

Consider any matrix A ∈ {A′ ∈ F
s×t
qm : rkqm(A

′) = t}. Since A is full-rank over Fqm and

s ≥ t, we can make several observations about the ranks of its blocks A(i). First, the Fqm-rank

of each block A(i) is equal to its corresponding rank profile component, i.e., rkqm(A
(i)) = ti.

Moreover, the Fq-rank of each block A(i) is lower bounded by its Fqm-rank, meaning that

ti ≤ rkq(A
(i)). At the same time, the Fq-rank of each block A(i) is upper bounded by min(ti, s),

because the rank of a matrix cannot exceed its number of rows or columns. In this case, each block

A(i) has dimensions s× ti, so its Fq-rank is at most min{ti, s}. However, since t =
∑ℓ

i=1 ti ≤ s,

we have ti ≤ s for all i ∈ {1, . . . , ℓ}, which implies that min{ti, s} = ti. By combining the

lower and upper bounds, we conclude that rkq (A
(i)) = ti for all i ∈ {1, . . . , ℓ}. This implies

that for any A ∈ {A′ ∈ F
s×t
qm : rkqm(A

′) = t} we have that wt
(t)
ΣR(A) = t and therefore, we

have the following equality

{A′ ∈ F
s×t
qm : wt

(t)
ΣR (A′) = rkqm(A

′) = t} = {A′ ∈ F
s×t
qm : rkqm(A

′) = t}

and hence

Pr[rkqm(A) = t|t] =
|{A′ ∈ F

s×t
qm : rkqm(A

′) = t}|

|{A′ ∈ F
s×t
qm : wt

(t)
ΣR(A

′) = t}|
=

∏t−1
j=0(q

sm − qjm)
∏ℓ

i=1

∏ti−1
j=0 (q

sm − qj)

where
∏t−1

j=0(q
sm − qjm) is the number of all full-rank matrices of size s × t over Fqm and

∏ℓ
i=1

∏ti−1
j=0 (q

sm − qj) is the number of all matrices in F
s×t
qm with sum-rank weight t with

corresponding length partition t (see [13]).

Lemma 4 Let E be an error matrix drawn uniformly at random from the set E
(n)
t . Then, the

probability that rkqm(E) = t is given by

Pr[rkqm(E) = t] =

∏t−1
j=0(q

sm − qjm)

|E
(n)
t |

·
∑

t∈Tt,ℓ,µ

ℓ∏

i=1

[
η

ti

]

q

. (20)

Proof: Recall the sets At and Bt defined in (16) and (17), respectively.

According to Lemma 3, for a fixed rank profile t, we can draw A ∈ At and B ∈ Bt



22

independently and uniformly from their corresponding domains and obtain E = AB with

wt
(n)
ΣR(E) = t such that E is uniformly drawn at random from Et.

This means the probability Pr[rkqm(E) = t] is

Pr[rkqm(E) = t] =
∑

t∈Tt,ℓ,µ

Pr[t] · Pr[rkqm(A) = t | t]

=
∑

t∈Tt,ℓ,µ

∏ℓ
i=1NMq(sm, η, ti)

|E
(n)
t |

·

∏t−1
j=0(q

sm − qjm)
∏ℓ

i=1

∏ti−1
j=0 (q

sm − qj)

=

∏t−1
j=0(q

sm − qjm)

|E
(n)
t |

·
∑

t∈Tt,ℓ,µ

∏ℓ

i=1NMq(sm, η, ti)∏ℓ
i=1

∏ti−1
j=0 (q

sm − qj)
.

Here, we first apply the law of total probability to express Pr[rkqm(E) = t] as a sum over all

possible rank profiles t ∈ Tt,ℓ,µ. Then, we use the fact that A and B are drawn independently and

uniformly from their respective domains to compute the conditional probability Pr[rkqm(A) =

t | t].

Next, we simplify the expression using the definition of the Gaussian binomial coefficient:

Pr[rkqm(E) = t] =

∏t−1
j=0(q

sm − qjm)

|E
(n)
t |

·
∑

t∈Tt,ℓ,µ

∏ℓ
i=1

∏ti−1
j=0

(qsm−qj)(qη−qj)
(qti−qj)∏ℓ

i=1

∏ti−1
j=0 (q

sm − qj)

=

∏t−1
j=0(q

sm − qjm)

|E
(n)
t |

·
∑

t∈Tt,ℓ,µ

ℓ∏

i=1

ti−1∏

j=0

(qη − qj)

(qti − qj)

=

∏t−1
j=0(q

sm − qjm)

|E
(n)
t |

·
∑

t∈Tt,ℓ,µ

ℓ∏

i=1

[
η

ti

]

q

.

In the first step, we rewrite the numerator using the definition of NMq(sm, η, ti). Then, we cancel

out the common terms in the numerator and denominator, leaving only the Gaussian binomial

coefficients in the final expression, which completes the proof.

At first glance, the expression in (20) does not appear to be computationally efficient. However,

in [18], it was shown that the term |E
(n)
t | can be efficiently computed using a dynamic program-

ming approach. Inspired by this, we propose a similar procedure to compute the right-hand side

of (20). To this end, let us define

Φq,η(t, ℓ) :=
∑

t∈Tt,ℓ,µ

ℓ∏

i=1

[
η

ti

]

q



23

where Φq,η(t, ℓ) represents the sum over all possible rank profiles t for a given sum-rank weight

t. For each rank profile, the q-binomial coefficient
[
η

ti

]

q
counts the number of subspaces of

dimension ti in an η-dimensional space over Fq. This expression can be computed recursively

as

Φq,η(t, ℓ) =





[
η

t

]

q

if ℓ = 1

min{η,t}∑

t′=0

[
η

t′

]

q

· Φq,η(t− t′, ℓ− 1) else

. (21)

The recursive relation can be understood as follows: For the base case, when ℓ = 1, there is

only one block, and the number of subspaces of dimension t in an η-dimensional space over Fq

is given by the q-binomial coefficient
[
η

t

]
q
. For ℓ > 1, we consider all possible dimensions t′ for

the first block, ranging from 0 to min{η, t}. For each choice of t′, we multiply the number of

subspaces of dimension t′ in the first block, given by
[
η

t′

]
q
, with the number of ways to distribute

the remaining sum-rank weight t− t′ among the remaining ℓ− 1 blocks, recursively computed

by Φq,η(t− t′, ℓ− 1).

Algorithm 2: Compute Φq,η(t, ℓ)

Input : Parameters: q, η, t and ℓ

Output : Φq,η(t, ℓ)

Initialize: N(t′, ℓ′) = 0 ∀t′ ∈ {1, . . . , t} and ℓ′ ∈ {1, . . . , ℓ}

1 for t′ ∈ {1, . . . , t} do

2 N(t′, 1)←
[
η

t′

]
q

3 for ℓ′ ∈ {2, . . . , ℓ} do

4 for t′ ∈ {1, . . . , t} do

5 N(t′, ℓ′)←
∑min{η,t′}

t′′=0 N(t′ − t′′, ℓ′ − 1) ·
[
η

t′′

]
q

6 return N(t, ℓ)

Theorem 4 Algorithm 2 is correct and requires ℓ · t2 integer multiplications.

Proof: The correctness of Algorithm 2 follows from the recursive relationship established

in (21) with the base cases Φq,η(t, 1) =
[
η

t

]
q
.

Regarding the complexity, the algorithm performs ℓ·t2 integer multiplications. This is because,

for each ℓ′ ∈ {2, . . . , ℓ} and each t′ ∈ {1, . . . , t}, the inner loop runs over min{η, t′} values,
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leading to at most t iterations per combination of ℓ′ and t′. Thus, the total number of iterations

is ℓ · t2.

Corollary 1 The success probability in (20) can be computed with polynomially-bounded com-

plexity.

Proof: The success probability in (20) is given by

∏t−1
j=0(q

sm − qjm)

|E
(n)
t |

·
∑

t∈Tt,ℓ,µ

ℓ∏

i=1

[
η

ti

]

q

.

We analyze the complexity of computing each term in this expression:

• |E
(n)
t | can be computed with polynomially bounded complexity, as shown in [13].

•
∑

t∈Tt,ℓ,µ

∏ℓ
i=1

[
η

ti

]
q

can be computed with polynomially bounded complexity according to

Theorem 4.

• The computation of
∏t−1

j=0(q
sm − qjm) is also polynomially bounded. The terms qsm and

qjm can be computed using repeated squaring, and their differences and products involve

polynomially-bounded integer operations.

The overall complexity is dominated by the complexity of computing |E
(n)
t | and the term

∑
t∈Tt,ℓ,µ

∏ℓ
i=1

[
η

ti

]

q
, both of which are polynomially bounded. Thus, the success probability

can be computed with polynomially bounded complexity.

Theorem 5 Let IC[s;n, k, d] be an Fqm-linear homogeneous s-interleaved sum-rank-metric

code with component code C of minimum sum-rank distance d, and let t ≤ min{s, d − 2}.

Furthermore, let

Y = C +E

where C is a codeword of the interleaved code IC[s;n, k, d] and E ∈ F
s×n
qm is an error matrix

uniformly drawn at random from E
(n)
t . Then the probability that Algorithm 1 cannot decode,

which is the probability that rkqm(E) 6= t, is bounded from above as

Pr[rkqm(E) 6= t] ≤ tq−m(s−t+1). (22)
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Proof: From Lemma 4, we have

Pr[rkqm(E) = t] =

∏t−1
j=0(q

sm − qjm)

|E
(n)
t |

·
∑

t∈Tt,ℓ,µ

ℓ∏

i=1

[
η

ti

]

q

.

Next, we consider the following inequality to bound the denominator |E
(n)
t |

|E
(n)
t | =

∑

t∈Tt,ℓ,µ

ℓ∏

i=1

[
η

ti

]

q

ti−1∏

j=0

(qsm − qj)

≤
∑

t∈Tt,ℓ,µ

ℓ∏

i=1

[
η

ti

]

q

ti−1∏

j=0

qsm

=
∑

t∈Tt,ℓ,µ

(
ℓ∏

i=1

[
η

ti

]

q

)
qsmt.

Using this inequality, we can further bound Pr[rkqm(E) = t] as follows

Pr[rkqm(E) = t] ≥

∏t−1
j=0(q

sm − qjm)

qsmt

=

t−1∏

j=0

(1− qm(j−s)) ≥ 1− tqm(t−s−1).

At this point, we have the same equation as in the rank-metric case. The last step follows

from [10, Theorem 10].

Finally, the claim of the theorem follows from the fact that

Pr[rkqm(E) 6= t] = 1− Pr[rkqm(E) = t].

In Figure 1, we show the actual value of the failure probability, using Algorithm 2 to evalu-

ate (20) and compare with the derived upper bound from (22). The failure probability is presented

in logarithmic scale (base 10) versus the difference between the interleaving order s and the sum-

rank error weight t for two different parameter sets.

Figure 1a illustrates the failure probability for very small code parameters, with q = 2, m = 2,

n = 10, and t = 4. On the other hand, Figure 1b shows the failure probability for larger, but

still relatively small, code parameters, with q = 2, m = 10, n = 30, and t = 11.

From these plots, we can observe several key points:

1) As the code parameters increase, the difference in failure probability between the rank
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Fig. 1: Logarithmic failure probability vs. s− t for different values of ℓ with q, m, n and t.

metric (ℓ = 1), sum-rank metric (1 < ℓ < n), and Hamming metric (ℓ = n) becomes

negligibly small. This suggests that for sufficiently large code parameters, the choice of

metric has a diminishing impact on the failure probability.

2) The failure probability declines exponentially fast as s − t increases, which is expected

based on the expression of the upper bound in (22).

3) The gap between the upper bound and the actual failure probability narrows as the code

parameters increase. In Figure 1b, with larger code parameters, the bound and the actual

values are more closely aligned compared to Figure 1a. This suggests that the derived

upper bound becomes tighter and more accurate for larger code parameters.

B. Decoding Radius

For the decoder presented in Algorithm 1 to succeed and uniquely recover the error, the

following conditions must be satisfied:

1) The error matrix E must satisfy the high-order and full-rank conditions, i.e., s ≥ t and

rkqm(E) = t. Note that the full-rank condition already implies a high interleaving order,

since for E to have rank t, the interleaving order s must be at least t.
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2) The parity-check matrix H must satisfy the condition in (8), which can be expressed as

rkqm


H


 B

b



⊤

 = t+ 1 ∀ b ∈ F

n
q \ suppΣR (E) s.t. wt

(n)
ΣR (b) = 1

where B is a basis of the row support of the error with respect to the sum-rank metric as

in (3).

For t ≤ d−2, the second condition is always true, which can be shown by applying [13, Lemma

8]. However, for t ≥ d− 1, the decoder becomes probabilistic and returns a unique solution to

the decoding problem only if the second condition is satisfied. When considering the average

over all error matrices E, the probability of this condition being met becomes a property of the

code itself, as it depends on the parity-check matrix H and therefore on the code’s distance

spectrum. Note that the decoder in Algorithm 1 can correct errors with a maximum weight of

t ≤ min{n − k − 1, µℓ}. The term n − k − 1 ensures that the common parity-check matrix

of the error code and the component code has at least one non-zero row, which is necessary

for successful decoding. The term µℓ represents the maximum sum-rank weight for the given

parameters, as defined in (1), with µ given in (15).

Figure 2 illustrates the decoding regions for Algorithm 1 when the error matrix E satisfies

the full-rank condition, i.e., rkqm(E) = t. This condition is crucial for the success of the

decoding algorithm. Figure 3 further explores the relationships between various conditions and

the decoding success for error matrices drawn uniformly at random. It shows that when the

conditions as in Theorem 5 are met, such as s − t or m being large, the probability of the

full-rank condition being satisfied is high. Consequently, this leads to two important results: (1)

unique decoding is always possible for t ≤ d − 2 when the full-rank condition is satisfied, and

(2) decoding is possible with high probability for t ≤ n− k − 1 when m is large.

0 d− 2 min(µℓ, n− k − 1)

Unique decoding
always possible

Probabilistic
decoding

t

Fig. 2: Illustration of the decoding regions for Algorithm 1 if full-rank condition is satisfied.

Theorem 6 Let H ∈ F
(n−k)×n
qm be a matrix chosen uniformly at random from F

(n−k)×n
qm . We

assume that qm is large enough such that the probability of H having full Fqm-rank is close to
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s − t is large m is large

Full-rank condition
satisfied with

high probability

Unique decoding
for t ≤ d − 2

Decoding with high
probability for

t ≤ n − k − 1

Fig. 3: Relationships between parameters, conditions and decoding success for uniform errors.

1. Consider an error matrix E picked uniformly at random from the set E
(n)
t , where E, A, and B

are as in (2), and wt
(n)
ΣR(E) = t =

∑ℓ

i=1 ti, satisfying the full-rank condition, i.e., rkqm(E) = t.

Then, on average, the probability that the condition (8) is satisfied is bounded from below and

above as follows

PLB ≤ Pr[(8) is satisfied] ≤ PUB

where

PLB :=


1−

1

|E
(n)
t |
·
∑

t∈Tt,ℓ,µ

ℓ∏

i=1

NMq(sm, η, ti) ·
Nt

qm(n−k−t)


 ·

t−1∏

j=0

(
1−

1

qm(n−k−j)

)
(23)

with

Nt := min{qm(n−k),

ℓ∑

i=1

(qni − qti)} (24)

and

PUB :=
t∏

j=0

(
1−

1

qm(n−k−j)

)
.

Proof: The proof consists of two parts, one for the lower bound and one for the upper

bound.

First, we show the lower bound. Condition (8) can only be satisfied if HB⊤ is of full Fqm-

rank. Since H is chosen uniformly at random, HB⊤ is also a matrix uniformly distributed over
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F
(n−k)×t
qm . The probability of HB⊤ having full Fqm-rank is given by

p1 :=

t−1∏

j=0

(
1−

1

qm(n−k−j)

)
.

Now, consider a specific vector b ∈ F
n
q \ suppΣR (E) and append it to B. Note that for the

bound we omit the restriction with wt
(n)
ΣR (b) = 1. The probability that H [B⊤ | b⊤] is of full

Fqm-rank, given that HB⊤ is of full Fqm-rank, is equal to

p2 :=

(
1−

1

qm(n−k−t)

)

which is the probability that the (t + 1)-th additional column in H [B⊤ | b⊤] is linearly

independent of the t remaining columns. This must hold true for any b ∈ F
n
q \ suppΣR (E)

simultaneously. Define the event Zi as the (t + 1)-th column in H [B⊤ | b⊤i ] for a given

bi ∈ F
n
q \suppΣR (E) being linearly dependent on the remaining t columns, with i ∈ {1, . . . , Nt}

and

Nt ≥ min{qm(n−k), |Fn
q \ suppΣR (E)|}.

The cardinality |Fn
q \ suppΣR (E)| is given by

ℓ∑

i=1

(qni − qti),

which is the sum of the cardinalities of the blocks that correspond to |Fni
q \Rq

(
B(i)

)
| = qni−qti .

By applying the union bound on the events Zi, the probability that (8) is not satisfied is

bounded from above as

Pr[(8) is not satisfied] ≤ (1− p1) + p1 ·
∑

t∈Tt,ℓ,µ

Pr[t] · Pr

[
Nt⋃

i=1

Zi

]

≤ (1− p1) + p1 ·
∑

t∈Tt,ℓ,µ

Pr[t] ·
Nt∑

i=1

Pr[Zi]

where Pr[t] is the marginal distribution of the rank profiles, given by

Pr[t] =
1

|E
(n)
t |

ℓ∏

i=1

NMq(sm, η, ti).
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Now, assuming that all Zi are independent, we have that for a given t,

Pr[Zi] = 1− p2 =
1

qm(n−k−t)
.

Therefore,

Pr[(8) is not satisfied] ≤ (1− p1) + p1 ·
∑

t∈Tt,ℓ,µ

Pr[t] ·

Nt∑

i=1

Pr[Zi]

= (1− p1) + p1 ·
∑

t∈Tt,ℓ,µ

1

|E
(n)
t |

ℓ∏

i=1

NMq(sm, η, ti) ·

Nt∑

i=1

1

qm(n−k−t)

= (1− p1) + p1 ·
∑

t∈Tt,ℓ,µ

1

|E
(n)
t |

ℓ∏

i=1

NMq(sm, η, ti) ·
Nt

qm(n−k−t)
.

Consequently,

Pr[(8) is satisfied] = 1− Pr[(8) is not satisfied]

≥ 1−


(1− p1) + p1 ·

∑

t∈Tt,ℓ,µ

1

|E
(n)
t |

ℓ∏

i=1

NMq(sm, η, ti) ·
Nt

qm(n−k−t)




= p1 − p1 ·
∑

t∈Tt,ℓ,µ

Nt ·
∏ℓ

i=1NMq(sm, η, ti)

|E
(n)
t | · q

m(n−k−t)

= p1 ·



1−
∑

t∈Tt,ℓ,µ

Nt ·
∏ℓ

i=1NMq(sm, η, ti)

|E
(n)
t | · q

m(n−k−t)





=



1−
∑

t∈Tt,ℓ,µ

Nt ·
∏ℓ

i=1NMq(sm, η, ti)

|E
(n)
t | · q

m(n−k−t)




t−1∏

j=0

(
1−

1

qm(n−k−j)

)

which establishes the lower bound PLB.

For the upper bound, we observe that the probability that condition (8) is satisfied is upper

bounded by the event that at least one matrix H [B⊤ | b⊤] ∈ F
(n−k)×(t+1)
qm is of full Fqm-rank,

where b ∈ F
n
q \ suppΣR (E). This probability is equal to the probability that a random matrix

in F
(n−k)×(t+1)
qm is of full Fqm-rank (see [19]), which is given by

PUB :=

t∏

j=0

(
1−

1

qm(n−k−j)

)
.

This completes the proof.
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C. Simulation Results

We now investigate the tightness of the upper and lower bounds on the failure probability

of condition (8) derived in Theorem 6. While these bounds provide theoretical guarantees, they

may not always give a precise estimate of the actual failure probability. To assess their accuracy

and explore alternative approximations, we conduct simulations.

The following presents an approximation obtained by modifying the proof of Theorem 6.

Although this approximation does not provide strict bounds, it may yield more realistic estimates

of the failure probability and serves as a basis for comparison with the simulated results.

If, in the proof of Theorem 6, we ignore the dependence of the events Zi for i ∈ {1, . . . , Nt},

we obtain neither a lower nor an upper bound on the failure/success probability of condition (8)

for a random parity-check matrix H . Nevertheless, we state the expression under that circum-

stance and use it as an approximation. We then show through simulation that this approximation

provides a more realistic estimate of the success probability for relative small η. From the proof

of Theorem 6, it is straightforward to show that, in this case,

Pr[condition (8) is satisfied] ≈
t−1∏

j=0

(
1−

1

qm(n−k−j)

)
·
∑

t∈Tt,ℓ,µ

Pr[t]

(
1−

1

qm(n−k−t)

)Nt

. (25)

It is worth noting that, in the case of the Hamming metric, the events Zi for i ∈ {1, . . . , Nt}

are actually independent. This is because the rows of the matrix B consist solely of (scaled)

unit vectors. For the Hamming metric, we have Nt = n− t. When multiplying B⊤ on the right

side of H , we effectively select specific columns of H . Moreover, for any additional unit vector

b, we select another column from H to form H · [B⊤ | b⊤], choosing from the remaining

n − t columns. Given the assumption that the entries of H are independently and uniformly

distributed, these selected columns are also independent.

In contrast, this independence does not hold for the rank metric. In the rank-metric case,

the matrices B⊤ and [B⊤ | b⊤] can be any full-rank matrices, rather than being limited to

(scaled) unit vectors. Consequently, when multiplying these matrices on the right side of H ,

we obtain linear combinations of the columns of H rather than simply selecting individual

columns. These linear combinations introduce dependencies among the events Zi, violating the

independence assumption.

We investigate the tightness of the upper and lower bounds on the failure probability of con-

dition (8) derived in Theorem 6 by comparing them with simulated values and an approximation
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(given in (25)). The simulation was performed using a Monte Carlo approach with 105 samples

for each point. Each sample involved picking a random parity-check matrix and evaluating the

failure probability. We have implemented the simulation with the help of the computer-algebra

system SageMath [20].

Figure 4 shows parameters η = 1, ℓ = 24, n = 24, q = 2, m = 2, and k = 8, which correspond

to the Hamming metric. In this case, we observe that the approximation closely matches the

simulated values, and both the upper and lower bounds hold. This reinforces our theory that

the approximation is exact in the Hamming-metric case. In Figures 5 and 6, we increase η to 2

and 3, respectively, while keeping the code parameters constant (i.e., length and dimension). As

we move away from the Hamming metric by increasing η, we observe that the approximation

becomes less accurate, and the lower bound provides a better estimate. In all plots, the upper

bound is relatively loose compared to the lower bound.

Notably, for all scenarios, the success probability for t = 14, which is the second-largest value

possible to decode for the given code parameters, stays above 40%, which is a relatively high

success probability.
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Fig. 4: Success probability vs error weight t for q = 2, m = 2, n = 24, k = 8, η = 1, and

ℓ = 24 with interleaving order s = t.

D. Examples

In this section, we present two examples to illustrate the decoding process using Algorithm 1

with small code parameters and randomly chosen codes. The first example demonstrates a
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Fig. 5: Success probability vs error weight t for q = 2, m = 2, n = 24, k = 8, η = 2, and

ℓ = 12 with interleaving order s = t.
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Fig. 6: Success probability vs error weight t for q = 2, m = 2, n = 24, k = 8, η = 3, and ℓ = 8
with interleaving order s = t.

successful decoding, while the second example showcases a decoding failure where the condition

in (8) is not satisfied.

Example 1 (Successful Decoding) Let Fqm = F23 with primitive element α and primitive

polynomial α3 + α + 1. Consider an interleaved sum-rank-metric code IC[s;n, k, d] of length

n = 6 with n = [2, 2, 2], k = 2, η = 2, ℓ = 3, d = 3, and s = 3, defined by the parity-check
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matrix

H =




1 0 0 0 α2 + 1 α

0 1 0 0 1 α2

0 0 1 0 α α

0 0 0 1 α2 + α + 1 α + 1



.

Suppose the codeword

C =




α2 + 1 1 1 1 α2 + α α + 1

α + 1 α2 + α α2 α 1 α + 1

0 0 1 α α2 1




is corrupted by an error

E =




0 α2 + 1 α2 + 1 α2 + 1 0 0

1 0 α2 α2 0 0

α+ 1 α α + 1 α + 1 0 0




with CH⊤ = 0, rkqm(E) = wt
(n)
ΣR(E) = 3 and t = [2, 1, 0]. The received word is Y = C +E,

given by

Y =




α2 + 1 α2 α2 α2 α2 + α α + 1

α α2 + α 0 α2 + α 1 α + 1

α + 1 α α 1 α2 1


 .

The syndrome S = HY ⊤ is computed as

S =




0 1 α + 1

α2 + 1 0 α

α2 + 1 α2 α + 1

α2 + 1 α2 α + 1



.

We find a matrix P ∈ F
(n−k)×(n−k)
qm with rkqm(P ) = n− k = 4, such as

P =




1 α2 + 1 0 α2 + α + 1

α+ 1 α2 + 1 0 α2 + 1

α2 + α + 1 α + 1 0 α + 1

0 0 1 1



,
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which transforms PS into row-echelon form.

The last n− k − t = 1 rows of PH yield

HS =
[
0 0 1 1 α2 + 1 1

]
.

Expanding each sub-block of HS over F2 yields

ext
(
H

(1)
S

)
=




0 0

0 0

0 0


 , ext

(
H

(2)
S

)
=




1 1

0 0

0 0


 , ext

(
H

(3)
S

)
=




1 1

0 0

1 0


 .

Note that ext
(
H

(1)
S

)
is an all-zero matrix, indicating that this block corresponds to a full-rank

error.

Next, we compute a basis for each of the right kernels of ext
(
H

(1)
S

)
, ext

(
H

(2)
S

)
, and

ext
(
H

(3)
S

)
such that

ext
(
H

(1)
S

)
B(1)⊤ = 0, ext

(
H

(2)
S

)
B(2)⊤ = 0, ext

(
H

(3)
S

)
B(3)⊤ = 0

and

rkq(B
(1)) = n1 − rkq(H

(1)
S ) = 2,

rkq(B
(2)) = n2 − rkq(H

(2)
S ) = 1,

rkq(B
(3)) = n3 − rkq(H

(3)
S ) = 0.

This gives us

B(1) =


1 0

0 1


 ∈ F

2×2
q , B(2) =

[
1 1

]
∈ F

1×2
q , B(3) =

[ ]
∈ F

0×2
q .

The matrix B is then given by

B = diag
(
B(1),B(2),B(3)

)
=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0



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Finally, solving for A, i.e.,

HB⊤A⊤ = S




1 0 0 0 0

0 1 0 0 0

0 0 1 1 0


A⊤ =




0 1 α + 1

α2 + 1 0 α

α2 + 1 α2 α + 1

α2 + 1 α2 α + 1




yields

A⊤ =




0 α2 + 1 α2 + 1

1 0 α2

α + 1 α α + 1




=⇒ Ê = AB =




0 α2 + 1 α2 + 1 0

1 0 α2 0

α + 1 α α + 1 0




and Ê = E. Note that decoding is possible since rkqm(H [B⊤ | b⊤]) = t + 1 = 4 for all

b ∈ F
n
q \ suppΣR (E) such that wt

(n)
ΣR (b) = 1.

Example 2 (Decoding Failure) Let Fqm = F22 with primitive element α and minimal polyno-

mial α2 + α + 1. Further let IC[s;n, k, d] be an interleaved sum-rank-metric code of length

n = 6 with n = [2, 2, 2], k = 2, d = 4, η = 2, ℓ = 3 and s = 3, defined by the parity-check

matrix

H =




1 0 0 α + 1 0 α

0 1 0 1 0 1

0 0 1 α 0 0

0 0 0 0 1 α + 1



.

Suppose that the codeword

C =




0 α 1 α + 1 α + 1 1

α 0 α + 1 α 1 α

0 α 1 α + 1 α + 1 1



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is corrupted by an error

E =




α 0 α α 0 0

1 1 α+ 1 α + 1 0 0

α 1 α+ 1 α + 1 0 0




with rkqm(E) = wt
(n)
ΣR(E) = 3 and t = [2, 1, 0]. The resulting received word is then Y = C+E

and thus

Y =




α α α + 1 1 α+ 1 1

α + 1 1 0 1 1 α

α α + 1 α 0 α+ 1 1


 .

The syndrome is then

S = HY ⊤ =




α + 1 α + 1 0

α α α

1 α α

0 0 0



.

We can find P ∈ F
(n−k)×(n−k)
qm with rkqm(P ) = n− k = 4, hence

P =




0 α α 0

α α α 0

α α + 1 0 0

0 0 0 1




such that PS is in row-echelon form. The last n− k − t = 1 rows of

PH =




0 α α 1 0 α

α α α 0 0 1

α α + 1 0 α 0 0

0 0 0 0 1 α + 1




yields

HS =
[
0 0 0 0 1 α+ 1

]
.
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Next we expand every sub-block of HS over F2 and obtain

ext
(
H

(1)
S

)
=


0 0

0 0


 , ext

(
H

(2)
S

)
=


0 0

0 0


 , ext

(
H

(3)
S

)
=


1 1

0 1


 .

Next we compute a basis for each of the right kernels of ext
(
H

(1)
S

)
, ext

(
H

(2)
S

)
and ext

(
H

(3)
S

)

such that

ext
(
H

(1)
S

)
B(1)⊤ = 0, ext

(
H

(2)
S

)
B(2)⊤ = 0, ext

(
H

(3)
S

)
B(3)⊤ = 0

and

rkq(B
(1)) = n1 − rkq(H

(1)
S ) = 2,

rkq(B
(2)) = n2 − rkq(H

(2)
S ) = 2,

rkq(B
(3)) = n3 − rkq(H

(3)
S ) = 1,

which gives us

B(1) =



1 0

0 1



 , B(2) =



1 0

0 1



 , B(3) =
[ ]

.

The matrix B is then given by

B = diag
(
B(1),B(2),B(3)

)
=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



.

In fact, we have that rkq(B
(1)) + rkq(B

(2)) + rkq(B
(3)) = 4 > t = 3, and therefore we cannot

uniquely recover the error E anymore. This is because the decoding condition in (8) is not

satisfied, since there exists b ∈ F
n
q \ suppΣR (E) such that wt

(n)
ΣR (b) = 1 and rkqm(H [B⊤ |

b⊤]) 6= t + 1 = 4. That is, for b =
[
0 0 1 0 0 0

]
, we have

H
[
B⊤ | b⊤

]
=




1 0 α + 1 0

1 1 1 0

0 0 α + 1 1

0 0 0 0




=⇒ rkqm
(
H
[
B⊤ | b⊤

])
= 3 < 4.
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E. Special Cases of the Algorithm for Hamming and Rank Metric

The decoder presented in Algorithm 1 is a generalization of the Metzner–Kapturowski decoder

for the Hamming metric [9] and the Metzner–Kapturowski-like decoder for the rank metric [15].

In this section, we highlight the differences in how the proposed decoder operates in three

distinct metrics: the Hamming metric, the rank metric, and the sum-rank metric. Note that both

the Hamming and rank metrics are special cases of the sum-rank metric. We also emphasize the

analogous definitions of the error support for all three cases. To differentiate between the error

weights in each metric, we use the following notation: tH for the Hamming metric, tR for the

rank metric, and tΣR for the sum-rank metric.

In the Hamming metric, the support of an error matrix E is defined as the set of indices

corresponding to the non-zero columns of E, that is,

suppH(E) := {j : the j-th column of E is non-zero}.

However, this classical support notion does not directly coincide with the definition of the

sum-rank support from (4). Nonetheless, there is a one-to-one correspondence between these

concepts. We demonstrate this by first describing suppΣR(E) and then relating it to suppH(E).

Since each of the blocks E(1), . . . ,E(ℓ) has length one in the Hamming-metric setting, at most

one rank error can occur per block. Thus, the i-th block B(i) in the error decomposition E =

A · diag(B(1), . . . ,B(ℓ)) from (2) has size t
(i)
H × 1 with t

(i)
H ∈ {0, 1}. If the i-th block for an

i ∈ {1, . . . , ℓ} is erroneous, the matrix B(i) contains one nonzero Fq element, which implies

Rq

(
B(i)

)
= Fq. If, on the other hand, the block E(i) is error-free, the matrix B(i) has size 0×1

and its row space Rq

(
B(i)

)
is the trivial vector space {0} ⊆ Fq. Thus, the sum-rank support

suppΣR(E) = Rq

(
B(1)

)
× · · · ×Rq

(
B(ℓ)

)
of E is a Cartesian product containing copies of Fq

and {0} in the respective positions. This allows us to define a bijection between the sum-rank

support and the classical definition of Hamming support given above. Namely,

suppH(E) 7→ suppΣR(E) =
n

×
i=1

Xi with Xi =





Fq if i ∈ suppH(E)

{0} if i /∈ suppH(E)

maps a subset of the indices {1, . . . , n} to the corresponding sum-rank support contained in F
n
q

with n = [1, . . . , 1]. We stick to suppH(E) to explain the consequences for decoding in the

Hamming metric in the following.
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An error matrix E with tH errors in the Hamming metric can be factored into E = AB, where

the rows of B are (scaled) unit vectors corresponding to the tH error positions. Consequently,

the support of E is the union of the supports of the rows Bi of B (∀i ∈ {1, . . . , tH}), i.e.,

suppH(E) =

tH⋃

i=1

suppH(Bi).

When the full-rank condition for the Metzner–Kapturowski decoder is satisfied, the zero

columns in HS reveal the error positions and determine the error support. In this case, we

have

suppH(E) = [1 : n] \

n−k−tH⋃

i=1

suppH(HS,i)

where HS,i denotes the i-th row of HS . Note that this equality corresponds to (10) in the general

case. The process of recovering the error support suppH(E) from HS is depicted in Figure 7.

The rank-metric case is analogous to the Hamming-metric case but with a different definition

of the error support. An error matrix E with rank rkq(E) = tR can be decomposed as E = AB.

The rank support suppR(E) of E is defined as the row space of B, which is spanned by the

union of all rows Bi of B, where Bi is the i-th row of B. This coincides exactly with the more

general definition in the sum-rank metric from (4) for ℓ = 1. Thus, the support of E is given by

suppR(E) =
⊕tR

i=1
suppR(Bi)

where
⊕

denotes the addition of vector spaces, i.e., the span of the union of the considered

spaces. If the full-rank condition on the error matrix is satisfied, the rank support of E can be

determined by the Fq-kernel of HS [10].The Fq-row space of HS can be computed by taking

the span of the union of spaces suppR(HS,i), where HS,i is the i-th row of HS . Consequently,

the support of E is given by

suppR(E) =
(⊕n−k−tR

j=1
suppR(Hsub,j)

)⊥
.

In the sum-rank metric, according to (4), we have

suppΣR(E) = suppR (B(1))× suppR (B(2))× · · · × suppR (B(s))

=
(⊕n−k−tΣR

j=1
suppR(B

(1)
j )
)
× · · · ×

(⊕n−k−tΣR

j=1
suppR(B

(ℓ)
j )
)
.
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Based on Theorem 1, we have

suppΣR(E) =
(⊕n−k−tΣR

j=1
suppR(H

(1)
S,j)
)⊥
× . . .

· · · ×
(⊕n−k−tΣR

j=1
suppR(H

(s)
S,j)
)⊥

.

The relation between the error matrix E, the matrix HS , and the error supports for the

Hamming metric, rank metric, and sum-rank metric are illustrated in Figures 7, 8, and 9,

respectively. In particular, Figure 9 demonstrates the process of determining the sum-rank support

suppΣR(E) from the row spaces of the blocks H
(i)
S for i ∈ {1, . . . , ℓ}.

E

error positions

=

A

·

B

1
1

1

1

error positions

HS =

all-zero columns in error positions

⇒ suppH(E) =
tH⋃
i=1

suppH(Bi) =

= [1 : n] \
n−k−tH⋃

i=1

suppH(HS,i)

Fig. 7: Illustration of the error support for the Hamming-metric case with E = AB ∈ F
s×n
qm ,

A ∈ F
s×tH
qm , B ∈ F

tH×n
q and HS ∈ F

(n−k−tH )×n
qm . Bi is the i-th row of B and HS,i the i-th row

of HS .

V. CONCLUSION

In this paper, we consider a Metzner–Kapturowski-like decoding algorithm tailored for high-

order interleaved sum-rank-metric codes. By leveraging the novel concept of an error code, we

provided a fresh perspective on the decoding process. This approach not only enhances our

understanding of the decoder’s functionality but also offers new insights.

Our proposed algorithm demonstrates significant versatility, being applicable to any linear

constituent code, including those that are unstructured or random. This general applicability

positions our decoder as a robust tool for a wide range of coding scenarios. Furthermore, the
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E

=

A

·

B

Fq

HS = suppR (E) =
(⊕n−k−tR

i=1 suppR(Hsub,i)
)⊥

Fig. 8: Illustration of the error support for the rank-metric case with E = AB ∈ F
s×n
qm , A ∈

F
s×tR
qm , B ∈ F

tR×n
q and HS ∈ F

(n−k−tR)×n
qm . Hsub,i the i-th row of HS .

E

blocks with rank errors

E(1) · · · E(ℓ)

=

A
A(1) · · · A(ℓ)

·

B
B(1) · · · B(ℓ)

error blocks

HS =

H
(1)
S

· · · H
(ℓ)
S

all-zero blocks at position of full-rank errors

suppΣR (E) =
(⊕n−k−tΣR

j=1 suppR(H
(1)
S,j)
)⊥
× · · · ×

(⊕n−k−tΣR

j=1 suppR(H
(s)
S,j)
)⊥

Fig. 9: Illustration of the error support for the sum-rank-metric case with E = AB ∈ F
s×n
qm ,

A ∈ F
s×tΣR
qm , B ∈ F

tΣR×n
q and HS ∈ F

(n−k−tΣR)×n
qm . A(i) and B(i) are the i-th block of A and

B and H
(i)
S,j the j-th row of H

(i)
S .

computational complexity of our algorithm, which is on the order of O(max{n3, n2s}) operations

over Fqm , is independent of the code structure of the constituent code. This independence

underscores the potential of our approach for practical implementations.

We also explored the success probability of our decoder, both within and beyond the unique

decoding radius. Our analysis revealed that the decoder maintains a high success probability
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even for error weights exceeding the unique decoding radius.

Our work not only extends the results of previous studies but also provides valuable insights

for the design and security analysis of code-based cryptosystems based on interleaved sum-rank-

metric codes.

The algorithm considered in this work is designed for interleaved codes in which the con-

stituent codes are aligned vertically, also called vertically interleaved codes. From the error code

perspective, this means that the error code’s row support is restricted. In an alternative model, the

codewords could be aligned horizontally (horizontal interleaving), resulting in the error code’s

column support being restricted. The adaptation of the considered algorithm to this horizontal

interleaving model is not straightforward and remains an open problem.

Future research could explore further optimizations of the decoding algorithm and its appli-

cation to other metrics.
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[11] T. Jerkovits, F. Hörmann, and H. Bartz, “On Decoding High-Order Interleaved Sum-Rank-Metric Codes,” in Code-Based

Cryptography, J.-C. Deneuville, Ed. Cham: Springer Nature Switzerland, 2023, pp. 90–109.



44
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