
Digital Twins for Process Optimization: Digitalization of Repair Processes in Aviation Johanna Aigner M.Sc. - johanna.aigner@dlr.de – Institute of Maintenance, Repair and Overhaul

Motivation

- \neg Ensuring the airworthiness and availability of aircraft: A complex, highly individual and manual task
- → Growing fleet sizes: Demand for more efficient maintenance and repair processes
- Digital and virtual technologies: Automation of individual process steps (e.g. inspection or scarfing)
- \neg Digital process: Integration of individual technologies in continuous chain
- \neg Digital process twin: Interaction with digital component twin

Prediction of optimal solution

Requirements on digital process twin

- → Interaction with digital component twin: Acquisition of component data, history, material properties
- → Based on component state: Simulation of possible repair alternatives (via algorithms trained on historical repairs)
- Assessment of simulated scenarios (based on objective, i.e. cost-effectiveness, quality, time-saving): Prediction of optimal process flow

→ According to optimum process flow: Resource planning, material acquisition, hangar planning

based on simulations assessment criteria (resources, duration, quality)

including corresponding

Digital process twin

- → Database of historic repairs (including component-related data and process-related data)
- → Simulation of suitable repair alternatives (including assessment-relevant information like duration, cost, ecological impact, quality and human factors)
- → Optimization of various simulation alternatives to predict repair process to be chosen
- \neg Storage of digital data along the actual repair process in order to update digital component twin and enrich digital process twin

Potentials of digitally supported repair processes

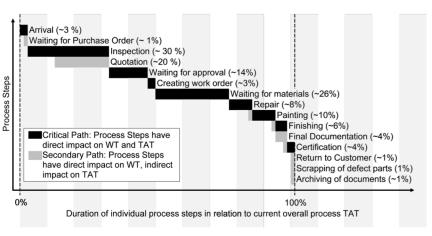


Figure: Turnaround time: Current repair process. [1]

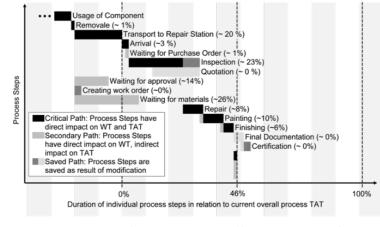


Figure: Turnaround time: Digitally supported repair process. [1]

	Process 1	Process 2	Process 3
Quality	+	-	++
Accuracy	0	0	0
Documentation	+	-	+
Robustness		++	-
Damage history	+	0	0
Duration	-	+	++
Cost	+	0	-
Reliability	0	+	-


Table: Qualitative assessment of process variants.

[1] Aigner, Johanna und Meyer, Hendrik und Raddatz, Florian und Wende, Gerko (2023) Digitalization of Repair Processes in Aviation: Process Mapping, Modelling and Analysis for Composite Structures. In: Deutscher Luft- und Raumfahrtkongress 2023, Stuttgart Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Bonn, 2023. Deutscher Luft- und Raumfahrtkongress 2023, Stuttgart, 2023-09-19 - 2023-09-21, Stuttgart, Deutschland. doi: 10.25967/6100

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Institute of Maintenance, Repair and Overhaul ©2024

