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Zusammenfassung 
Gewächshäuser in Südspanien bieten ein hohes Potential für agrivoltaische Lösungen. 

Sie versprechen mit einer effizienteren Landnutzung ökologische Vorteile und 

ökonomische Gewinne im Vergleich zu konventionellen Gewächshausbetreibern. 

Dennoch gibt es noch ein unzureichendes Verständnis über die Auswirkungen von 

verringertem Sonnenlicht auf das Pflanzenwachstum. Aus diesem Grund müssen 

Modelle entwickelt und kalibriert werden, die sowohl die Pflanzenproduktion als auch 

die Stromerzeugung integrieren, um den lukrativsten und nachhaltigsten 

Kombinierungsansatz zu identifizieren. Die vorliegende Masterarbeit untersucht den 

Tomatenertrag unter verschiedenen Beschattungszonen (0%, 30%, 50%) durch auf 

dem Dach installierte PV-Dummies in einem typischen „raspa y amagado“ 

Gewächshaus im Süden Spaniens. Dies beinhaltet die Messung, Analyse und 

Vergleich der Erträge in den unterschiedlichen Zonen. Außerdem wurde das „Reduced 

State-Variable Tomato Growth Model” von Jones et al. (1999) als biophysikalischer 

Modellansatz kalibriert und getestet, um das Wachstum von Tomatenpflanzen unter 

dynamischen Bedingungen im Gewächshaus zu simulieren. Das Modell soll dann die 

Erträge unter den verschiedenen Beschattungsbedingungen möglichst genau 

vorhersagen können. Um dies zu ermöglichen, erfolgte eine Sensitivitätsanalyse 

mittels der „Extended Fourier Amplitude Sensitivity Test“ Methode und eine 

Kalibrierung mit Hilfe des „Particle Swarm Optimization“ Algorithmus. Die Bewertung 

der Modellqualität wird durch verschiedene Qualitätskriterien wie beispielsweise den 

„Root Mean Squared Error“ (RMSE) und „Mean Absolute Error” (MAE) etc. festgestellt. 

Die Ergebnisse zeigen eine gute Übereinstimmung zwischen den simulierten und 

gemessenen Erträgen in allen Zonen, wobei beispielsweise der RMSE zwischen 9,15 

und 9,84 liegt. Die Anwendung des PSO-Algorithmus erwies sich als geeignet zur 

Kalibrierung des TOMGRO-Modells. Die Arbeit kommt zu dem Schluss, dass die 

Nutzung und Anpassung präziser Pflanzenmodelle zur Simulation und Vorhersage des 

Tomatenertrags in Gewächshäusern sehr vorteilhaft ist. Nach Anpassung mit einer 

zusätzlichen Validierungsperiode wird für zukünftige Arbeiten empfohlen, das 

angepasste Pflanzenwachstumsmodell in ein integriertes agrivoltaisches 

Gewächshausmodell zu implementieren, um den wirtschaftlichsten Ansatz zwischen 

Strom- und Pflanzenproduktion zu ermitteln.  
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Abstract 
Greenhouses in southern Spain offer great potential for agrivoltaic solutions. With more 

efficient land use, they promise ecological benefits and economic gains compared to 

conventional greenhouse operators. However, there is still insufficient understanding 

of the effects of reduced sunlight on plant growth. For this reason, models that integrate 

both crop production and electricity generation need to be developed and calibrated to 

identify the most lucrative and sustainable combination approach. This master thesis 

investigates the tomato yield under different shading zones (0%, 30%, 50%) by roof-

mounted PV dummies in a typical ‘raspa y amagado’ greenhouse in the south of Spain. 

This includes measuring, analyzing and comparing the yields in the different zones. In 

addition, the ‘Reduced State-Variable Tomato Growth Model’ by Jones et al. (1999) 

was calibrated and tested as a biophysical modeling approach to simulate the growth 

of tomato plants under dynamic greenhouse conditions. The model should then be 

able to predict yields as accurately as possible under different shading conditions. To 

make this possible, a sensitivity analysis was carried out using the ‘Extended Fourier 

Amplitude Sensitivity Test’ method and calibration using the ‘Particle Swarm 

Optimization’ algorithm. The evaluation of the model quality is determined by various 

quality criteria such as the ‘Root Mean Squared Error’ (RMSE) and ‘Mean Absolute 

Error’ (MAE) etc.. The results show good agreement between the simulated and 

measured yields in all zones, with the RMSE, for example, lying between 9.15 and 

9.84. The application of the PSO algorithm proved to be suitable for calibrating the 

TOMGRO model. The work concludes that the use and adaptation of accurate crop 

models to simulate and predict tomato yield in greenhouses is very beneficial. After 

adaptation with an additional validation period, it is recommended for future work to 

implement the adapted crop growth model into an integrated agrivoltaic greenhouse 

model to determine the most economical approach between electricity and crop 

production. 
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1 Introduction 
The term agrivoltaic describes the combination of agriculture and photovoltaic (PV). 

Since years it’s a topic of rising interest and research on the topic is rapidly increasing. 

On the one hand experimental test sites are set up at different locations all over the 

word, while on the other hand, modelling approaches are developed and tested, all in 

order to find the most economically rewarding combination of crop and PV yield. This 

master thesis is going to zoom into this very broad topic and focus on crop yield 

production and modelling for an agrivoltaic greenhouse experiment conducted in 

Southern Spain.  

This first chapter serves as a general introduction and motivation for the topic of 

agrivoltaic with a focus on greenhouses and the region of Southern Spain. 

1.1 The potential of agrivoltaic solutions for greenhouses in Southern 

Spain 

Food production has changed dramatically in recent decades. The growth of the 

world's population, the current human-induced global warming, the increase in 

prosperity and the globalization of agriculture have led to an increased demand for 

food, which in turn has led to a more intensive use of resources such as land, energy 

and water. This intensive agriculture not only puts a strain on the environment through 

higher greenhouse gas emissions and the loss of natural habitats, but also leads to a 

heavy burden on limited water resources. In addition, rising energy prices can increase 

the cost of farming and have a direct impact on crop prices. This complex, interrelated 

system and its interactions and challenges is described as the global ‘Food-Energy-

Water Nexus’ (Smajgl et al., 2016). This system requires an integrated approach to 

enable the sustainable use of limited resources in the future. In this context, agrivoltaic 

solutions offer a promising potential to realize this (Dinesh and Pearce, 2016; Smajgl 

et al., 2016).  

Figure 1 shows two open-field agrivoltaic installations implemented by Fraunhofer ISE, 

the German test site in Heggelsbach, already in operation since 2016, and the 

Chilenian test site in Curacavi, installed in 2016 (Fraunhofer ISE, n.d.). 

Agrivoltaic is not only limited to open-field agriculture. Nowadays, there are several 

Figure 1: Experimental agrivoltaic systems installed by Fraunhofer ISE in Germany (a,b) and Chile (c) (Fraunhofer 
ISE, n.d.).  
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different approaches for agrivioltaic, e.g. 

the combination with farming, aquaculture 

or horticulture (greenhouses). Especially 

greenhouses offer a promising potential, 

due to the already existing infrastructure. 

The so-called ‘Mar de Plastico’ (‘Sea of 

plastic’) in the province of Southern Spain 

(fig. 2), for example, is a network of plastic 

greenhouses, which has expanded rapidly 

in recent years and now covers some 

33,000 hectares (fig. 3). This infrastructure is ideal for agrivoltaic greenhouse solutions, 

as photovoltaic (PV) concepts could be installed on the existing greenhouse 

framework. In addition to the existing infrastructure, the province of Almería is one of 

the sunniest places in Europe (fig. 4), with local high irradiation levels, which makes 

greenhouse cultivation possible at any time of the year (AEMET, 2024). However, plant 

development in greenhouses highly depends on irradiance distribution among other 

Figure 2: Bird's eye view of the Mar de plástico in 
Almería (Economía 3, n.d.). 

Figure 3: Evolution of greenhouse land coverage in the province of Almeria (based on data of (Instituto 
de Estadística y Cartografía de Andalucía, 2021; Junta de Andalucia, 2021; Junta de Andalucía, 2020)). 

Figure 4: The monthly total of sunhours over the year in Almería (Andalucía), Spain (World Weather & Climate 
Information, 2024). 
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factors, so that too little or too much light 

can both harm plants (Dueck et al., 

2012). In Southern Spain, for example, 

the irradiation levels are so high that 

several times throughout the year the 

light transmission of the greenhouse 

plastic covers is actively reduced by the 

application of chalk paint (fig. 5). This 

procedure is commonly known as 

‘blanqueo’ (Valera et al., 2016). Light 

management is therefore necessary for optimal plant growth. Agrivoltaic concepts can 

actively support this light management of the grower. The shading provided by PV 

panels and the absorption of sunlight hitting the roof can create a more stable 

microclimatic environment for the plants. In addition to this ecological advantage and 

the land-saving aspect, the combination of plant cultivation and solar power generation 

also results in numerous economic benefits for the individual farmer, as agrivoltaic 

farms generally outperform conventional agriculture economically (Dinesh and Pearce, 

2016). Overall, this innovative solution of greenhouse cultivation and simultaneous 

renewable energy production thus promises a more sustainable future, both locally for 

Southern Spain and globally, ensuring food and energy needs are met. 

1.2 Objectives 

In order to optimally utilize or plan a agrivoltaic greenhouse system so that plants do 

not suffer damage, or in other words to identify the most lucrative method of combining 

cultivation and electricity generation to get the most economic yield from both, 

integrated agrivoltaic yield models need to be developed, as the influence of decreased 

irradiance is not yet fully understood and critical threshold for healthy plant 

development is unknown (Willockx et al., 2022). 

This work focuses exclusively on the component of plant growth. For its modeling, a 

biophysical model-based approach for tomatoes was selected, which can be integrated 

into the overall agrivoltaic yield model after successful calibration and validation. The 

tomato growth model is calibrated and evaluated using measurement data from a real-

scale tomato greenhouse in Southern Spain with different shading levels by PV 

dummies on the roof.  

The research objectives of this work are, on the one hand, the analysis of tomato yield 

in different shading zones in an agrivoltaic plastic greenhouse. And on the other hand, 

this work aims to examine how well the selected tomato growth model is suitable as a 

tool for the simulation of tomato yield with different shading. Various measures of 

quality are used to interpret how well the simulation approximates the actual measured 

values for the different shading conditions. In this way, statements can be made about 

the quality of the tomato growth model and the selected calibration approach, which 

are crucial for further follow-up simulations with different shading variants as input 

parameters. 

Figure 5: Applying white chalk paint to the roofs of a ‘raspa 
y amagado’ greenhouse. 
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2 State of the art in agrivoltaic greenhouse crop modeling with 

a focus on tomatoes 
In order to be able to classify the relevance and need of this work, the current state of 

research in the modeling of agrivoltaic greenhouse crops with a focus on tomatoes, 

which are influenced in their natural growth by different shading, is explained below. 

First of all, previous pilot projects have shown that the design of agrivoltaic solutions 

must be tailored to the site-specific climatic conditions, such as variations in control 

strategies, climate parameters and greenhouse designs. Furthermore, their results are 

limited to the investigated cases and not directly transferable to more Southern 

locations such as Almeria (Katsikogiannis et al., 2022; Kempkes et al., 2018; Willockx 

et al., 2022). In Southern Europe, experimental studies have also been carried out to 

investigate the effects of shading on the yield and quality of greenhouse crops, using 

various PV configurations with different artificial shading geometries and shading ratios 

(Aroca-Delgado et al., 2019; Cossu et al., 2018; Cossu et al., 2020; Ezzaeri et al., 

2018; López-Díaz et al., 2020; Ureña-Sánchez et al., 2012). In a so-called ‘Venlo’ 

greenhouse with a linear arrangement of PV dummies, it was found that yield 

production was delayed towards the end of the season with a shading ratio of over 30 

%. In the study by Ureña-Sánchez et al. (2012), no reduction in tomato yield was 

determined with a PV coverage of 10 % arranged in a checkerboard pattern for a ‘raspa 

y amagado’ plastic greenhouse typical in Southern Spain. However, no modeling was 

carried out in these studies, so that a Lack on agrivoltaic studies with crop models for 

greenhouse yield simulation exists. 

Regarding modeling of greenhouse crop yield, there are numerous studies on 

greenhouse crop models, but not in combination with an agrivoltaic greenhouse or with 

different shading by PV panels. Numerous models for the growth of greenhouse crops 

have been developed in the past. The reduced TOMGRO model was designed by 

Jones et al. (1999) and explains plant behavior under dynamic greenhouse conditions. 

Heuvelink (1999) developed the TOMSIM model, which focuses on the light absorption 

of the plant canopy. Cohen and Gijzen (1998) developed the universal growth model 

HORTISIM, which was useful for environmental control and greenhouse management. 

Zhao et al. (2019) developed SIMPLE, which is a simple but general crop model that 

can be used for various crops. And also Vanthoor by Vanthoor et al. (2011) is a well-

structured explanatory model and uses the buffer theory. A comparison of growth 

models and model fusions with machine learning approaches, as in the study by Gong 

et al. (2023), to estimate and simulate greenhouse tomato yield has been conducted 

(Fink et al., 2023; Gong et al., 2023; Heuvelink and Bertin, 1994; Lin et al., 2019). The 

results showed that the reduced TOMGRO model has always been applicable for the 

greenhouse yield estimation. Consequently, numerous studies have tested the 

reduced TOMGRO model and investigated different sensitivity methods and calibration 

algorithms at real greenhouse sites in Southern Spain, Italy, central Mexico and 

northern Europe (Bacci et al., 2012; Gong et al., 2021; Ramírez et al., 2004; Varella et 
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al., 2010; Vazquez-Cruz et al., 2014). The best results were obtained with the 

Extended Fourier Amplitude Sensitivity Test (eFAST) and the Particle Swarm 

Optimization (PSO) calibration algorithm. For this reason, it was decided to use these 

methods in this work. The studies indicated that the differences in optimal control 

strategies, local climate parameters and greenhouse structures mean that Tomgro 

requires more accurate parameter identification and calibration tailored to existing 

greenhouse conditions, which will also be taken care of in the presented work.  

This work presents the first application of a crop growth model for tomato yield 

prediction in an agrivoltaic greenhouse. 

3 Material and methods 
In this chapter, the material and the methods are explained and the experimental setup 

on the one hand and the methodology of model development on the other are clarified. 

3.1 Experimental setup 

In this subchapter, the study area, the period of the growing season and the 

construction of the greenhouse are presented in order to better understand the 

conditions described in 3.1.4. In addition, the monitoring devices and the information 

about the tomato plant are explained. 

3.1.1 Study area and time frame 

The experiment is performed in a so-called ‘raspa y amagado’ plastic greenhouse in 

the eastern region of Almería, Southern Spain, which are simple constructions covered 

completely by light transmitting plastic materials (fig. 7). The experiment took place 

during the winter growing season from September to March. The tomato plants in the 

greenhouse were transplanted on 16.09.2023. The plants were then removed from the 

greenhouse on 18.03.2024 (cf. fig. 6). Accordingly, the data set contains information 

of this time period, resembling one typical crop cycle. 

Figure 6: Pictures from different points in the growing period. They show the planted tomatoes in the first weeks 
(left) up to the harvested mature fruits in the right picture. 
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Figure 7: Study area and location of the greenhouse. 

3.1.2 Greenhouse construction  

The greenhouse is owned by Fundación Finca experimental UAL-Anecoop, with a total 

area of 1775m². The experiment was carried out in the facilities of the UAL-ANECOOP 

foundation while the foundation performed the greenhouse operation and 

maintenance. Raspa y amagado greenhouses are the most common greenhouse type 

in the region (Valera et al., 2016). The plastic cover is a multilayered polyethylene with 
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200μm thickness and 89% 

light transmission between 

400–700nm. To achieve a 

shading effect of PV 

modules, black and 

opaque plastic panels (100 

x 170 cm) are attached to 

the greenhouse roof. The 

panels are arranged in a 

checkerboard pattern to 

increase light homogeneity 

on an annual average. The 

greenhouse is divided in 

three zones with different 

artificial shading levels or 

cover ratio: 0% (control zone), 30% and 50% (fig. 8 and 9). The position of the test 

zones was determined by Kujawa et al. (2023) in order to exclude boundary effects 

and overlaps with shadow throughout the year. The 30% and 50% zones are 

distributed diagonally, the control zone is located in the southwestern quarter. This 

enables a direct comparison between the zones so that the differences between the 

shaded zones and the usual unshaded control zone can be analyzed. There is no 

physical separation of the zones in the experimental greenhouse. 

3.1.3 Microclimatic 

measuring and 

monitoring devices and 

data processing 

In the three test zones, 

global horizontal irradiance 

(GHI), temperature and 

relative humidity are 

measured continuously at a 

height of 2.8 meters, which 

is the maximum canopy 

height of the tomato plants 

during the cultivation, with a 

time resolution of one 

Figure 8: Virtual copy of the experimental greenhouse with three different 
zones and a remaining area that is not observed. The virtual copy was 
generated by (Kujawa et al., 2023).  

Figure 9: Pictures from inside the greenhouse. a. shows zone 0 as control zone, b. shows zone 30 and c. shows 
zone 50 with 50 % coverage or shading. 

Figure 10: Locations of the monitoring devices. 
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minute. Each zone is equipped with four pyranometers for irradiation measurements 

and two sensors for temperature and humidity measurements. The sensors were 

positioned in such a way to ensure uniform shading that is independent of variations 

in the solar zenith and the associated shadow shifts. Two of the different pyranometer 

types (CMP10 and SP-110) were installed in the center of each zone and one 

pyranometer (SP Lite2) was placed closer to the edge of the zones to monitor the 

boundary conditions caused by incoming radiation from the side walls. The 

pyranometers were calibrated in advance for the experiment (Kujawa et al., 2023).  The 

SP-110 is manufactured by Apogee Instruments and measures solar radiation (GHI) 

incident on a horizontal surface. The sensor contains a silicon-cell-photodiode and 

measures in the spectral range between 360 and 1120 nm with a relative error of less 

than 3% when measuring irradiance at 1000 W/m-² (Apogee Instruments, 2022). The 

CMP10 Class A pyranometer from Kipp & Zonen has a spectral range from 285 to 

2800 nm. The incoming solar radiation produces a continuous millivolt output that is 

converted to irradiance in W/m² in a data logger using the calibrated sensitivity. The 

relative error for the CMP10 pyranometer due to temperature sensitivity is less than 

1% (OTT HydroMet B.V., 2023). The SP Lite2, also developed by Kipp & Zonen, 

measures in a spectral range from 400 to 1100 nm. The sensor measures the solar 

Figure 11: Microclimatic measuring and Monitoring devices. a. shows SP-110, b. shows CMP10, c. shows SP Lite2, 
d. shows Elitech RC-51. 

Figure 12: Overview of all CMP10 GHI measurements in minutely time resolution for 07.01.2024 as an example. It 
also shows the radiation differences between the three shading zones. 
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energy received from the entire hemisphere and uses a photodiode detector that 

generates a voltage proportional to the incident radiation. The relative error for the SP 

Lite2 pyranometer due to temperature response is less than 0.15% per °C (OTT 

HydroMet B.V., 2016). All three Pyranometers per zone are connected to a CR1000x 

data logger, which receives the mV signals. To measure temperature and relative 

humidity (RH), two Elitech RC-51 devices were used per zone, which were placed 

adjacent to the CMP10 pyranometer and the Northern Apogee pyranometer (as 

indicated in figure 10). The device can measure precisely (uncertainty of ± 0.5 at -

20°C/+40°C; ± 1.0 at other range or ±3% RH at 25 °C, 20% ~ 90% RH; ±5% RH at 

other range) and in different time resolutions depending on the setting. Data acquisition 

is performed manually by connecting the sensor to a computer (Elitech Technology, 

n.d.). All these measuring and monitoring devices guarantee continuous data 

monitoring of the microclimate in the greenhouse with a minutely time resolution. An 

example of the minute-by-minute GHI recording from the CMP10 in the respective 

zones can be seen in Figure 12. 

In order to be able to use the data 

for the reduced TOMGRO model 

(see 3.2), the data must first be 

prepared accordingly. First of all, 

TOMGRO requires hourly PPFD 

values as irradiance input data. 

PPFD describes the perceived 

irradiance in the photosynthetic 

active radiation (PAR) spectrum. 

The PAR spectrum includes 

wavelengths from 400nm to 700nm, as depicted in Figure 13. Therefore, measured 

GHI [𝑊∕𝑚²] data is converted into PPFD [𝜇𝑚𝑜𝑙∕𝑚² s] using the linear regression model 

Figure 13: Action spectrum for photosynthesis (Hamblin et al., 
2019). 

Figure 14: Comparison between hourly mean GHI and hourly mean PPFD or PAR for the selected day 07.01.2024 
as an example. 
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according to Vindel et al. (2018). In the study, PPFD is estimated from GHI 

measurements using linear regression models based on strong correlations between 

these two variables and developed for specific regions of Spain. Figure 14 shows the 

GHI-to-PAR conversion for an example day. In addition, another important step is 

necessary. The model requires hourly temperature and PPFD values as input, so the 

minutely values were first averaged to hourly values. The average value from all 

sensors was then calculated for each zone in order to obtain one value per hour and 

per zone. 

With the help of GHI-to-PAR conversion and averaging to hourly values, the inputs 

required for reduced TOMGRO were correctly prepared for all three shading zones. 

3.1.4 Greenhouse conditions 

In order to better interpret and understand the results with regard to the research 

questions of tomato yield and also the results of the modeling, it is important to know 

which microclimatic conditions actually existed in the greenhouse during the growing 

season. The radiation is shown firstly (fig. 15). The difference between the various 

zones can be clearly seen. There is always a higher PPFD in zone 0 than in the zones 

with shading, which show varying deviations. In zone 30 the difference is up to -60 

µmol/m²/s and in zone 50 even up to -140 µmol/m²/s. In relative terms, there is a 

reduction of up to 25 % in zone 30 and up to 50 % in zone 50. 

The differences in temperature are not quite as clear as in radiation (fig. 16). Zone 30 

and Zone 0 are very similar this time and in some cases, there are also higher 

temperatures in Zone 30 than in the control zone. It is noticeable that zone 50 is always 

Figure 15: Existing PPFD measured values for each shading zone and their deviations from the control zone in the 
greenhouse during the entire growing season. 
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cooler compared to the other two zones. Compared to the control zone, temperatures 

there are up to just under 2 °C or up to almost 0.5 % (in Kelvin) cooler in relative terms. 

Figure 16: Existing temperature measured values for each shading zone and their deviations from the control zone 
in the greenhouse during the entire growing season. To calculate the relative deviation, it was previously converted 
to Kelvin. 

Figure 17: Existing relative humidity measured values for each shading zone and their deviations from the control 
zone in the greenhouse during the entire growing season. 
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At RH (fig. 17), zone 50 always has the highest humidity with up to over 90%, followed 

by the control zone. Zone 30 has the lowest. Zone 50 therefore has a higher RH and 

zone 30 a lower RH than the control zone. It is assumed that the unexpected 

temperature and humidity values in zone 30 are due to the orientation of the 

greenhouse (cf. 3.1.2). 

3.1.5 Tomato Plants: Information, treatment and measurements 

The plants have been provided and planted by 

the company ANECOOP S.COOP on 16.09.24. 

Two tomato plants were planted per square 

meter. The tomato plants had two main stems. 

It concerns the novel tomato variety 'Lygalan', 

which was developed in a project by ANECOOP 

S.COOP with a flavor-enhancing taste (Rubio, 

2022). Similar to the Canary tomato, it is a 

versatile tomato variety with a sweet and juicy 

flavor that is mainly grown in the Canary Islands 

and in the south of the Iberian Peninsula, where 

the subtropical climate favors its development. They are grown outdoors or in 

greenhouses and are harvested all year round, with the main season running from 

spring to fall. Canary tomatoes are usually medium to large in size and have a round 

or oval shape (ANECOOP S.COOP, 2024). They have a thin, shiny skin and their color 

can vary from yellow-orange to deep red when ripe (fig. 18).   

Figure 16: Harvest of fresh ripe Lygalan 

tomatoes 

Date Fertilizer Quantity (Kg)

20.09.2023 Calcium nitrate 12.5

20.09.2023 Mono-potassium phosphate 12.5

20.09.2023 Potassium nitrate 12.5

20.09.2023 Potassium sulfate 12.5

20.09.2023 Magnesium sulfate 12.5

31.10.2023 Calcium nitrate 29

31.10.2023 Potassium sulfate 7.34

30.11.2023 Calcium nitrate 10.78

30.11.2023 Magnesium sulfate 16.17

30.11.2023 Potassium sulfate 10.78

31.12.2023 Mono-potassium phosphate 14.21

31.12.2023 Calcium nitrate 21.32

31.12.2023 Potassium nitrate 14.21

31.12.2023 Magnesium sulfate 14.21

31.12.2023 Potassium sulfate 28.42

31.01.2024 Mono-potassium phosphate 13.45

31.01.2024 Calcium nitrate 12.35

31.01.2024 Potassium nitrate 31.22

31.01.2024 Magnesium sulfate 16.87

31.01.2024 Potassium sulfate 32.22

29.02.2024 Mono-potassium phosphate 9.41

29.02.2024 Calcium nitrate 10.22

29.02.2024 Potassium nitrate 33.45

29.02.2024 Magnesium sulfate 15.22

29.02.2024 Potassium sulfate 29.15

Treatment Date Product Pest

1 Affirm Lepidoptera

Movento Mites

2 Altacor Caterpillar

Costar Caterpillar

3 16.01.2024 Prestop Botrytis

4 Xanilo 45 Mildew

Costar Caterpillar

Copper Botrytis

5 Azufega 80 Botrytis

Costar Caterpillar

Altacor Caterpillar

Fliper Thrips

6 Switch One Botrytis

Spintor Caterpillar

Cordial Thrips

7 Spintor Caterpillar

Altacor Caterpillar

Costar Caterpillar

Zenith Tuta

8 Movento Mites

Spintor Caterpillar

Azufega 80 Botrytis

20.02.2024

01.03.2024

28.09.2023

10.11.2023

25.01.2024

30.01.2024

13.02.2024

Table 2: Amount of fertilizer used and date of 
addition. 

Table 1: Plant protection products supplied and 
associated pests found. 
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The treatments and measurements were also carried out by ANECOOP S.COOP. 

Tables 1 and 2 show the treatments with fertilizers and plant protection products. All 

zones were treated homogeneously. 

Another important physiological measure that was taken was the cutting off of the 

tomato heads on 09.01.2024. This step is common practice among tomato growers 

and is done so that the plants no longer grow in height and the tomatoes that already 

exist on the plant grow larger and ripen faster in order to end the growing period more 

efficiently and on time. In this case, the growing period for the company was scheduled 

until mid-March. Once the tomatoes had reached the ripening stage and were ready 

for harvesting, the fresh and dry weights were measured. The first tomatoes developed 

in December 2023, so that the first weight (fresh and dry) 

measurements of the ripe fruit could be carried out in mid-January. 

Thereafter, the weight per zone was measured at approximately 

weekly intervals for six representative and centrally located plants until 

the tomato cycle was completed. The last measurement was taken on 

04.03.2024. Table 3 shows the exact days of the measurements. In 

order to measure the dry weight, the tomatoes were dried in an oven. 

The Memmert Universal drying oven (Memmert GmbH + Co.KG, n.d.) 

was programmed at 70 ºC for 5-6 days.  

3.2 Use and development of a model to simulate tomato yield in a ‘Raspa 

y amagado’ greenhouse in Southern Spain  

 

Dates of weight 

measurements

18.01.2024

30.01.2024

07.02.2024

20.02.2024

26.02.2024

04.03.2024

Table 1: Dates of 
weight 

measurements. 

Figure 17: Framework for the calibration process of the reduced TOMGRO model. 
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This subsection explains the methodology of the entire model calibration in order to 

adapt the TOMGRO parameters to crop and site dependent microclimatic conditions 

(fig. 19). First, the model used is described and explained (3.2.1). Then the sensitivity 

method is described, which uses the default parameters of the model to identify the 

sensitive parameters (3.2.2). This is followed by an explanation of the actual calibration 

process, which was carried out exclusively with the sensitive or uncertain parameters 

(3.2.3). Once the sensitive model parameters have been successfully calibrated, the 

model can be restarted with the calibrated parameters and the model quality can be 

assessed using various quality criteria.  

3.2.1 The reduced state-variable Tomato Growth Model (reduced TOMGRO) 

The 'Reduced State-Variable Tomato Growth Model' (reduced TOMGRO) was 

developed by Jones et al. (1999) and focuses on the investigation of the relationship 

between plant growth and environmental factors in the greenhouse such as solar 

radiation and temperature. It corresponds to a biophysical model-based approach, 

which is better suited for this work than, for example, a machine learning method in 

view of the non-existent historical period or data and the better interpretability. Such a 

so-called 'Functional Structural Plant Model' (FSPM) estimates the entire plant 

behavior and yield under dynamic conditions (Vos et al., 2010). It uses a source-sink 

approach for carbohydrate partitioning among plant organs (Jones et al., 1999). 

TOMGRO was originally developed by Jones et al. (1991) as a comprehensive model 

that takes into account hundreds of state variables that influence tomato growth. 

Therefore, it was not suitable in its applicability or too complex to figure out how to 

optimally control the greenhouse environment to maximize profit over time (Jones et 

al., 1991). For this reason, the reduced TOMGRO was developed. It aims to reduce 

the complexity of the original model without neglecting key aspects of tomato growth. 
Table 2: Definition of the five state variables and their differential equations of the reduced TOMGRO model (Jones 

et al., 1999; Vazquez-Cruz et al., 2014). 
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This was achieved by identifying and eliminating fewer important state variables and 

processes. Ultimately, the model was reduced from the original 574 state variables 

(TOMGRO ver. 3.0) to five main state variables (table 4). The state variables are based 

on a set of time-dependent differential equations (table 4) related to photosynthesis, 

transpiration, nutrient transport and other physiological processes to quantify changes 

in stems, leaves and fruits, and generally the growth of the whole plant. The differential 

equations require numerous parameters that are included in the calculation of the state 

variables (table 5; Jones et al., 1999). 

 

Table 3: The reduced TOMGRO parameter (Jones et al., 1999). 

The reduced TOMGRO provides a comprehensive insight into the complex growth 

behavior of tomato plants and it is the most representative model in the current 

greenhouse tomato growth simulation research (Bertin and Gary, 1993; Dayan et al., 

1993). Compared to other models, it is convincing in its simplicity, efficiency and 

applicability for reliable and accurate predictions, which have already been validated 

at different locations and growth conditions. The parameters for vegetative growth 

were consistent, but the parameters for fruit development varied according to location 

and variety, so that these from Table 5 must be adapted or calibrated to local conditions 

(Jones et al., 1999). The model can also be adapted to simulate other greenhouse 

crops, such as pepper (Hernández-Hernández et al., 2011). Further information on the 

state variables, model evaluation and parameter development can be found in Jones 

et al. (1999).  

In order to use the model for this work and to simulate the tomato yield in different 

shading zones in a 'raspa y amagado' greenhouse, the differential equations were 

implemented in a Python code with the data from the greenhouse, similar to Yonryu 

(2020). Figure 20 shows the model framework of the yield simulation used in this work. 
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It is important to note that the node and LAI dynamics are temperature dependent and 

the dry matter production and distribution, which is influenced by photosynthesis and 

transpiration, is dependent on the PAR-radiation present in the greenhouse. This 

results in the two inputs required by reduced TOMGRO: temperature and PPFD. The 

measured hourly mean values of the respective zone are transferred to the model and 

the five daily outputs or state variables for each zone are simulated using the 

differential equation system. The CO2 concentration is assumed to be constant in the 

model. Based on a single test measurement, it was quantified as 500 µmol mol-1 for 

this study. In order to adapt the model to the conditions in the greenhouse, it must be 

calibrated using actual measured values from the greenhouse. As the tomato cycle 

had already started in September and it was only decided in mid-November to carry 

out precise crop modeling as with TOMGRO in the entire agrivoltaic project of the 

German Aerospace Center (DLR) - Institute of Solar Research in collaboration with the 

cooperation company ANECOOP S.COOP, not all the data required for the reduced 

TOMGRO could be measured from the outset. Therefore, the calibration of the model 

focuses exclusively on the dry weight of the ripe tomato fruits (WM), while the other 

four state variables are not considered in this work, as no actual measured values from 

the greenhouse exist for them. 

3.2.2 Sensitivity analysis using the Extended Fourier Amplitude Sensitivity Test 

(eFAST) method 

In order to be able to calibrate the model, it is first of all crucial to find the parameters 

from Table 5 that have a major influence on the model output. In this way, the 

parameters that should be optimized can be identified. The main principle of finding 

the parameters to be calibrate is to obtain the sensitivity of a parameter by changing 

the input parameter (Lin et al., 2019). It is the study of how uncertainty in the output of 

a model (numerical or otherwise) can be apportioned to different sources of uncertainty 

in the model input (Saltelli et al., 2004). The analysis and quantification of the influence 

and uncertainty of individual model parameters on the model result and thus the 

identification of the parameters to be calibrated therefore generally depends on the 

sensitivity analysis. A distinction is made in sensitivity analysis between two 

categories: local sensitivity analysis and global sensitivity analysis. A local analysis is 

particularly suitable if the model parameters do not influence each other. If the 

Figure 18: Model framework for tomato yield simulation. 
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parameters are interrelated, a global sensitivity analysis is advantageous (Lamboni et 

al., 2009; Saltelli, 2008). Since previous studies such as López-Cruz et al. (2012); 

Vazquez-Cruz et al. (2014) showed that a global analysis is more suitable for crop 

models and that most parameters in the Reduced TOMGRO Model interact with each 

other, a global sensitivity analysis was carried out.  

There are various methods within global sensitivity analysis that can be looked up in 

the related literature (Cukier et al., 1978; Morris, 1991; Saltelli et al., 2012; Sobol, 

2001). One methodology is the 'Extended Fourier Amplitude Sensitivity Test' (eFAST) 

method. It analyzes the variations of the model response to periodic changes in the 

input parameters using the Fourier amplitudes to calculate the sensitivity indices of the 

individual parameters. It extends the FAST method by additionally taking into account 

the interactions of the individual parameters and calculating higher-order sensitivity 

indices, thus enabling greater stability and higher precision compared to the other 

methods (Mulla, 2003; Saltelli, 1999). Studies specializing in the sensitivity analysis of 

the reduced state-variable TOMGRO model for Central Mexico and China also carried 

out a global sensitivity analysis using the EFAST methodology (Lin et al., 2019; 

Vazquez-Cruz et al., 2014). For this reason, the eFAST method was also used in this 

study. The EFAST method can therefore be used to calculate not only the first order 

sensitivity index (Si), which only considers the direct influence of a parameter without 

interaction, but also the total effect index (STi), which includes both the direct influence 

of the individual parameter and the influence of the parameter through interactions with 

other parameters (López-Cruz et al., 2012).  Equation 1 and 2 show the calculation of 

the indices, where Si is the main effect sensitivity index and STi is the total effect index 

of the 𝑖-th input variable, 𝑉𝑖 is the variance of the 𝑖-th input variable of the model 

response and 𝑉∼𝑖 is the variance of the model response attributable to all other 

variables except the 𝑖-th. 𝑉 is the total sum of the variance of the model response. 

These metrics are dimensionless and represent the proportions of the variance of the 

model result (Saltelli et al., 2012). The open source Python implementation 'Sensitivity 

Analysis Library’ (SALib) by Herman and Usher (2017) and Iwanaga et al. (2022) was 

used for this purpose. 

To apply the eFAST method, the value ranges of the parameters in which they can 

take on values must be defined. These were selected or considered from numerous 

literature references, as some of these used different default values and value ranges 

and the reasons for this were often not clear (Bacci et al., 2012; Gong et al., 2021; 

Hernández-Hernández et al., 2011; Lin et al., 2019; Ramírez et al., 2004; Vazquez-

Cruz et al., 2014). A range of values was summarized for each parameter from all 

available literature data to ensure that all possible values were covered. If available, 

𝑆𝑖 =
𝑉𝑖

𝑉
 

(1) 

 

𝑆𝑇𝑖 = 1 −  
𝑉∼𝑖

𝑉
 

(2) 
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the value range of the study by (Ramírez et al. (2004) from Southern Spain was 

prioritized. However, if other studies gave values outside this range, the range of 

values was extended accordingly. If only the original value was available and thus no 

value range, a probability density function (PDF) was selected. As in Vazquez-Cruz et 

al. (2014), the PDF was set with a 10% deviation around its original value. Table 6 

shows the value ranges used for the respective parameters with the respective 

sources. Within these value ranges, the parameter values are changed using the 

eFAST method from the SALib library with 3000 samples and the reduced TOMGRO 

model is run in each case. With 5000 resamples and a confidence interval of 0.95, the 

sensitivity indices Si and STi of the parameters were then calculated with regard to the 

model output. Then, according to Varella et al. (2010), only those parameters that 

yielded more than 10% of the total effects were classified as sensitive. 

 

Table 4: Value ranges of the reduced TOMGRO parameters. The value ranges were summarized from various 

studies described below. 
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3.2.3 Calibration of the model  

The sensitive parameters or the parameters with the greatest influence have been 

identified and are now being calibrated. This chapter explains the methodology for this. 

Firstly, the algorithm used is presented and its functionality explained (3.2.3.1). Before 

the application of the algorithm to the reduced TOMGRO model (3.2.3.3) is presented, 

an additional step is explained in order to fill the data gaps in the actual measured data 

from the greenhouse (3.2.3.2). Finally, the individual quality criteria used to evaluate 

the model performance are presented (3.2.3.4).  

3.2.3.1 The Particle Swarm Optimization (PSO) 

The calibration was carried out using the 'Particle swarm optimization algorithm' (PSO). 

In addition to the PSO algorithm, there are other evolutionary algorithms, such as the 

genetic algorithm (García-Martínez et al., 2019) and the differential evolutionary 

algorithm (Suganthan, 2012). The genetic algorithm was used, for example, by 

Vazquez-Cruz et al. (2014) for the calibration of TOMGRO. However, since it has not 

yet been investigated how other optimization algorithms can be used to calibrate the 

reduced Tomgro model, Gong et al. (2021) evaluated different evolutionary algorithms 

regarding the performance of the reduced TOMGRO for a real-scale greenhouse 

tomato yield simulation based on three datasets obtained from a real tomato grower. 

The model calibrated by the PSO algorithm achieved the best performance for 

modeling the WM, with the smallest Root Mean Squared Errors (RMSE), relative 

RMSEs (r-RMSE) and Mean Absolute Errors (MAE) for all three datasets. For this 

reason, the PSO algorithm was also used for this work. 

The PSO algorithm is a stochastic population-based optimization method proposed by 

Kennedy and Eberhart (1995). The optimization here refers to the investigation of the 

minimization of an objective function by searching for the best values for the 

parameters within the permissible range of values (Elbes et al., 2019). The ideas for 

this algorithm come from artificial intelligence, social psychology and swarm theory 

(Kennedy and Eberhart, 1995). Swarm intelligence is a type of artificial intelligence and 

Figure 19: Illustration of the PSO algorithm. Each point represents one possible set of parameter 
values within the parameter space or within their parameter ranges. The star represents the 

optimal solution (pagmo development team, 2021). 
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is based on intelligent the collective behavior of decentralized or self-organized 

systems such as flocks of birds or schools of fish (Elbes et al., 2019).  

In specific, initially N solution candidates or also called particles [𝑋1
0, …, 𝑋𝑁

0] and their 

associated velocities [𝑉1
0, …, 𝑉 𝑁

0] are generated. Each particle represents one 

possible set of parameter values and a potential solution position within the parameter 

space (cf. fig. 21). All candidates have a fitness value, which can be calculated using 

a fitness function associated with a particular optimization problem. The values of the 

particles or their positions, which are based on the successful or best solutions of the 

individual particle (local optimum), but also of the whole swarm (global optimum), found 

during the optimization process after each iteration until the optimal solution is found 

using equations 3 and 4: 

𝑣𝑖(𝑡 + 1) =  𝑤𝑣𝑖(𝑡) +  𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡)) (3) 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (4) 

where 𝑣𝑖(𝑡) is the velocity of particle 𝑖 at time 𝑡, 𝑥𝑖(𝑡) is the position of particle 𝑖 at time 

𝑡, 𝜔 is the inertia coefficient, 𝑐1 (cognitive component) and 𝑐2 (social component) are 

the acceleration coefficients, 𝑟1 and 𝑟2 are random values between 0 and 1, 𝑝i 

represents the best position found so far by particle 𝑖 (personal best), 𝑔 represents the 

best position (global best) found by the entire swarm (Kennedy and Eberhart, 1995).  

3.2.3.2 Gap filling for the actual data with regression substitution  

As only approximately weekly measurements of the dry weight of the ripe fruit are 

available in the greenhouse (cf. table 3), various methods were tried out to apply the 

PSO algorithm to reduced TOMGRO using the actual values. One possibility, for 

example, is to only compare the simulation with the actual values on the days on which 

a measurement is available. In this way, comparisons and evaluations are really only 

made on the exact measurement days. However, comparisons between the individual 

measurement days are then missing and lead to poorer model performance. In order 

to close these gaps and create completeness and robustness with a higher data 

density, a regression substitution was applied to the actual data sets in advance so 

that a value for the actual dry weight of the ripe fruit is also available for every single 

day. The existing measured values served as the basis for the creation of the 

regression model. Since this is an accumulative, steadily increasing data set, a linear 

regression Analysis, as described with equation 5, was performed to effectively and 

easily fill or estimate the gaps in the data series (Gelman and Hill, 2021; Little and 

Rubin, 2020; Schafer, 1997). This contains the calculation of the slope ß1 and the 

intercept ß0 of the best fit line, which describes the relationship between the data 

points. For each missing value, the corresponding location in the data series 𝑥 was 

substituted into the equation to estimate the value 𝑦 (Montgomery et al., 2021). The 

𝑦 =  ß0 + ß1𝑥 (5) 
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values of the regression lines were used then for further calibration as the actual values 

from the greenhouse. 

3.2.3.3 Application of PSO to the reduced TOMGRO model 

To implement the PSO algorithm in the reduced TOMGRO model, the Python library 

'Pyswarms' by Miranda et al. (2017) was used. Table 7 shows the initialization and 

configuration of hyperparameters and properties with which the algorithm worked best. 

Figure 22 shows the calibration process method of the reduced TOMGRO model using 

the PSO algorithm, which takes all three zones into account. To achieve the overall 

best results, each parameter set, consisting of the sensitive reduced TOMGRO 

parameters, was passed to reduced TOMGRO from the respective iteration within the 

permissible range of each parameter from Table 6 and the model was run individually 

for each zone. The RMSE between the model predictions of WM and observed or 

actual tomato dry weight from the greenhouse represents the fitness function. The 

RMSE was calculated for each zone individually using equation 6 and then the mean 

RMSE was calculated from all three zones. Where 𝑁 is the number of observations, 

𝑦𝑖
𝑟𝑒𝑎𝑙 is the actual values, and 𝑦𝑖

𝑚𝑜𝑑𝑒𝑙 is the predicted values (Chai and Draxler, 2014; 

Gong et al., 2021). This means that all squared error values are considered and the 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑖

𝑟𝑒𝑎𝑙 −  𝑦𝑖
𝑚𝑜𝑑𝑒𝑙)²

𝑁

𝑖=1

 

(6) 

Table 5: Selected hyperparameters and settings. Other values for hyperparameter as well as several iterations 

and particles were tried, but these had no positive influence on the performance of reduced TOMGRO. 

Figure 20: Procedure of the PSO algorithm to identify the optimal parameter values for minimizing the RMSE 
between simulated and actual values for all three zones. The star in the parameter space that is searched for 
represents the minimum mean RMSE from all three zones. 
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average squared difference between the observed and predicted values is shown 

(Tibshirani et al., 2021). This involves a joint and continuous search in the parameter 

space for the minimum mean RMSE from all three zones in order to find the optimal 

parameter values that bring the simulated WM as close as possible to the dry weight 

from the greenhouse. In order to be able to apply the algorithm to this case study in 

the best possible way and to achieve the best and most robust results, various 

application methods were tried out in advance. In addition to including all three zones, 

firstly, the calibration was performed for each zone individually, without considering the 

other zones. Secondly, only the control zone was calibrated and then the other two 

zones were simulated using the calibrated parameter values of the control zone. 

3.2.3.4 Measuring of goodness-of-fit  

To evaluate the performance of the calibrated model, in addition to the RMSE (equation 

6), which also served as a fitness function, other indicators of variance were used to 

balance the advantages and disadvantages of individual measures of simulation 

accuracy.  Similar to Gong et al. (2021), Lin et al. (2019) and Vazquez-Cruz et al. 

(2014), a statistical study with a set of metrics calculation between calibrated simulated 

WM and actual WM from the greenhouse (including mean absolute error (MAE), 

relative-RMSE (r-RMSE), percent standard error of the prediction (%SEP), average 

relative variance (ARV), coefficient of determination (R²)) is therefore suitable for 

making more robust statements about how well reduced TOMGRO can explain the 

variations in the data. Equations 7 - 11 each describe the quality criteria used (Chai 

and Draxler, 2014; Horton and Doxas, 1998; Næs et al., 2017; Ozer, 1985; Willmott 

and Matsuura, 2005). Where, 𝑁 is the number of data points, 𝑦𝑖
𝑟𝑒𝑎𝑙 the actual values, 

𝑦𝑖
𝑚𝑜𝑑𝑒𝑙 the predicted values und 𝑦𝑟𝑒𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 the average of the actual values. 

 

The MAE calculates the average of the absolute errors between the actual and 

predicted values. It is less susceptible to outliers, which is why it is suitable for 

evaluating the average accuracy of the model. The r-RMSE calculates the RMSE 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑖

𝑟𝑒𝑎𝑙 −  𝑦𝑖
𝑚𝑜𝑑𝑒𝑙|

𝑁

𝑖=1

 

(7) 

𝑟 − 𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦𝑟𝑒𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
 

(8) 

%𝑆𝐸𝑃 =  
𝑅𝑀𝑆𝐸

𝑦𝑟𝑒𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
× 100 

(9) 

𝐴𝑅𝑉 =  
1

𝑁
∑(

𝑦𝑖
𝑟𝑒𝑎𝑙 − 𝑦𝑖

𝑚𝑜𝑑𝑒𝑙

𝑦𝑖
𝑟𝑒𝑎𝑙 )²

𝑁

𝑖=1

 

(10) 

𝑅2 =  1 −
∑ (𝑦𝑖

𝑟𝑒𝑎𝑙 −  𝑦𝑖
𝑚𝑜𝑑𝑒𝑙)²𝑁

𝑖=1

∑ (𝑦𝑖
𝑟𝑒𝑎𝑙𝑁

𝑖=1 − 𝑦𝑟𝑒𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)²
 

(11) 
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relative to the average of the actual values. The %SEP calculates the standard error 

of the prediction relative to the average of the actual values and also expresses it as a 

percentage compared to r-RMSE. It provides a clear interpretation of the model error 

relative to the average prediction, which increases comparability. The ARV compares 

the variance of the errors with the variance of the actual values. This makes it possible 

to assess how well the model explains the variance of the data. R² shows how well the 

model can explain the actual values. It calculates the share of variance in the actual 

values that is explained by the model predictions. Further information, advantages and 

disadvantages as well as application examples can be found in the relevant literature 

(Brogden, 1946; Chai and Draxler, 2014; Horton and Doxas, 1998; Næs et al., 2017; 

Ozer, 1985; Willmott and Matsuura, 2005). For a perfect match, R² should be close to 

1.0 and the values of %SEP, MAE, RMSE ARV and r-RMSE close to 0. 

4 Results  
The results are now presented in this chapter. First, the crop yield measurements are 

presented (4.1). Then the results of the model development are presented. Starting 

with the results of the sensitivity analysis (4.2), followed by the calibration and 

simulation results (4.3). 

4.1 Actual measurements  

Figure 23 shows the fresh weight of the individual zones. At the top left of the 

accumulated weight, the difference between the individual zones can be seen. Starting 

from the first measurement (18.01.2024), the control zone has the highest yield with 

over 950 g/m². The yields of the zones vary on the individual measurement days. The 

decisive factor, however, is that at the end of the entire growing season, the control 

Figure 21:Analysis of the measured mature tomato fresh weight in different shading zones of the greenhouse. Top 
left shows the accumulation of fresh weight over time. Top right shows the fresh weight of the individual 
measurements. Bottom left shows the absolute deviation of the accumulated fresh weight of the two shading zones 
compared to the control zone. The bottom right shows the relative deviation.  
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zone again has the most fresh weight with 3298 g/m², followed by zone 30 with just 

2791 g/m² and zone 50 with just 2446 g/m². For zone 30 an overall reduction of 507 

g/m² (bottom left) or 15%/m² (bottom right) is observed at the end of the crop cycle 

compared to the control zone. Zone 50 shows a reduction in fresh yield of 851 g/m² or 

26%/m² compared to the control zone. In addition, a yield delay of around 10 days for 

zone 30 and 14 days for zone 50 zone can be seen compared to the control.  

Figure 24 presents the dry weight of the individual zones. At the top left of the 

accumulated weight, you can again clearly see the difference between the individual 

zones. Towards the end of the crop cycle, the deviation between zone 50 and zone 30 

is not as dominant as for the fresh weight. On the first day of measurement, the control 

zone had the highest yield with just over 80 g/m² dry weight. Here too, the placement 

of the zones varies on individual measurement days, although the difference in dry 

weight between zone 50 and the other two zones is sometimes higher or the same 

over time. Here, too, the decisive factor is that at the end of the entire growing season, 

the control zone again has the highest dry weight with 330 g/m², followed by zone 30 

with 282 g/m² and zone 50 with 267 g/m². Zone 30 therefore has an overall reduction 

in dry yield at the end of the growing season of approx. 46 g/m² (bottom left) or 14%/m² 

(bottom right) compared to the control zone. Zone 50 shows a reduction in dry yield of 

approx. 61 g/m² or 19%/m² compared to the control zone.  

Figure 22: Analysis of the measured mature tomato dry weight in different shading zones of the greenhouse. Top 
left shows the accumulation of dry weight over time. Top right shows the dry weight of the individual measurements. 
Bottom left shows the absolute deviation of the accumulated dry weight of the two shading zones compared to the 
control zone. The bottom right shows the relative deviation. 
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4.2 Sensitivity analysis 

Figure 23: Sensitivity of all parameters with the Sobol indices Si (direct) and STi (interactive). Calculated using 
eFAST sensitivity method. 

 

Figure 24: Heatmap of the parameters with the sensitivity indices Si and STi. 
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Figure 25 and 26 show the results of the sensitivity analysis. The parameters with more 

than 10% influence on the total model uncertainty and thus classified as sensitive are 

Nm (0.398), D (0.292), Qe (0.279), T_CRIT (0.216), alpha_F (0.212), fF_ (0.304). The 

exact description of the individual parameters can be looked up again in Table 6. Of a 

total of 21 parameters, 6 are sensitive. These are now included or considered in the 

calibration. 

4.3 Calibration of reduced TOMGRO and simulation approach  

4.3.1 Gap filling for the actual data with regression substitution 

Figure 27 shows the regression lines with their original measured points from the 

greenhouse. For the calibration the values of the regression line were used. 

4.3.2 Comparison of algorithm application methods 

This chapter shows the calibration results of the various methods for applying the PSO 

algorithm. Figure 28 shows the comparison of the simulation curves of the three 

different applications of the PSO algorithm for the calibration of the reduced TOMGRO 

model compared to the actual measured values. If each zone is calibrated individually 

(a.), RMSE values of 8.30 g/m² (Z0), 6.94 g/m² (Z30) and 8.54 g/m² (Z50) are achieved 

(cf. table 8). However, this method leads to an individual parameter adjustment for 

each zone, so that there are no uniform parameter values for the entire greenhouse 

(cf. table 9). When the calibrated parameter values of the control zone (Z0 a. and b.) 

are transferred to the two shading zones (b.), an RMSE of 24.57 g/m² is achieved for 

zone 30 and an RMSE of 60.55 g/m² for zone 50. In the last method, in which the 

minimum mean RMSE from all three zones was searched for (c.), an RMSE of 9.84 

Figure 25: Regression lines that are used for further calculation as the actual values from the greenhouse. They 
were calculated to fill the gaps between the existing measurement days (dots). All negative values of the regression 

lines resulting from drawing the line were set to 0, as there is no negative growth of the ripe fruit. 
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g/m² was achieved for the control zone, a value of 9.15 g/m² for zone 30 and a value 

of 9.67 g/m² for zone 50. Compared to the other two methods, the last method was 

therefore able to achieve uniform parameter values for the entire greenhouse and at 

the same time good RMSE values for all three zones and is therefore best suited for 

this research. 

 

 

4.3.3 Simulation results and measurement of the goodness-of-fit of the best reduced 

TOMGRO simulation approach 

In the following, the cost history of the fitness function is first shown before the 

simulation results and the model quality of the reduced TOMGRO before and after 

calibration with the most suitable method from 4.3.2 (c.) are presented in detail. 

4.3.3.1 Cost history of PSO algorithm application 

Figure 29 shows the evolution or the cost history of the mean RMSE of all three zones 

fitness function values with respect to the iteration number for the PSO algorithm 

applied on the basis of all three data sets or zones. It can be seen that as the number 

Figure 26: Comparison of the simulation curves of the three different applications of the PSO algorithm for the 
calibration of the reduced TOMGRO model compared to the actual measured values (dots). a. shows the curves in 
which the zones were calibrated individually and the minimum RMSE was searched for individually for each zone. 
In b. the calibrated parameters of the control zone were transferred to Z30 and Z50 and reduced TOMGRO was 
started with these parameter values. c. shows the curves with the uniform parameter values for all zones after the 

minimum mean RMSE was searched for from all three zones. 

Table 6: RMSE values of the application methods. 

Table 7: Calibrated parameter values after application of the various methods. 
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of iterations increases, the minimum fitness 

value of the candidate solutions (represented 

by the black line in the figure) or the minimum 

mean RMSE of all three zones (cost) 

decreases and converges to the minimum 

value (9.45). This indicates that solutions for 

model parameter values that minimize the 

fitness function and the best cost can be 

found successfully after a certain number of 

iterations. 

 

 

4.3.3.2 Simulation before calibration 

When looking at the simulation results with the uncalibrated parameter values of the 

sensitive parameters (table 11), a clear deviation between the simulated WM values 

and the actual measured values can be seen in all three zones (fig. 30). A comparison 

of the zones with each other (fig. 31) shows that the highest yield is simulated for the 

Figure 27: Cost history for the fitness function. The 
black line represents the minimum mean RMSE of 
all three zones with respect to the iteration number. 

Figure 30: Comparison for all three zones between the actual measured WM from the greenhouse and the simulated 
WM before calibration of the model or with the default values (Table 10) for the sensitive parameters. 

Figure 31: Comparison of the simulated WM between the individual zones before calibration. Left shows the 
comparison between simulated and actual again, but this time all three zones are compared in one figure. Center 
shows the absolute deviation of the simulated WM of the shading zones from the control zone. Right shows the 

relative deviation. 
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control zone and that this decreases with increasing shading. At the end of the growing 

season, a dry yield of 45 g/m² is modeled for the control zone, with zone 30 having just  

under 15 g/m² and zone 50 approx. 27 g/m². The values of the 

quality criteria (table 10) quantify the high deviation between the 

simulated and actual WM values. The simulation without 

calibration has an RMSE above 80 in all zones and the remaining 

quality measures also indicate a high divergence between the uncalibrated simulation 

and the actual values. Overall, the uncalibrated results show that calibration is 

necessary to adapt the model to climatic and site-specific conditions when working with 

an FSPM. 

Figure 32, which shows the values for the individual measurement days and thus the 

non-accumulated values, also illustrates the discrepancy between the simulation and 

reality. 

 

Parameter Value

Nm 0.5

D 2.593

Qe 0.0645

T_CRIT 24.4

alpha_F 0.95

fF_ 0.5

Table 9: Default 
parameter values for 
reduced TOMGRO 

(Jones et al., 1999). 

Table 8: Measuring of the simulation’s goodness-of-fit without calibration 

Figure 28: Comparison of the zones between non-accumulated simulated and actual WM before calibration on the 
individual measurement days from Table 3. 
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4.3.3.3 Simulation after calibration 

After calibration with the PSO algorithm, a change in the 

parameter values compared to their default values (table 11) is 

now noticeable. Nm, D, T_crit and alpha_F were reduced and Qe 

and fF_ were increased. This value adjustment led to a significant 

improvement in the model simulation. The simulation curves 

approach the actual values for all three zones and reproduce the 

WM almost perfectly (fig. 33). For the control zone and for zone 

50, WM is slightly underestimated at the end of the growing 

season and an almost identical value is achieved for zone 30. 

Figure 35 illustrates this once more. It summarizes the complete simulated WM yield 

or the total yield of tomato production per zone and compares it with the total yield 

actually measured in each case. A comparison of the simulated yield between the 

zones shows that the control zone with an accumulation of approx. 309 g/m² simulates 

the highest yield, followed by zone 30 with approx. 282 g/m² and zone 50 with 267 g/m² 

(fig.33 and fig. 35). Zone 30 thus experiences a negative deviation of 27 g/m² or 8.7 

%/m² and 42 g/m² or 13.6 %/m² less WM is simulated for zone 50 (fig. 34). The 

quantitative measurement of the model quality also shows an improvement in the 

individual quality criteria (table 13). The RMSE for the control zone has improved from 

Figure 33: Comparison for all three zones between the actual measured WM from the greenhouse and the simulated 
WM after PSO calibration of the model. 

Figure 34: Comparison of the simulated WM between the individual zones after calibration. Left shows the 
comparison between simulated and actual again, but this time all three zones are compared in one figure. Center 
shows the absolute deviation of the simulated WM of the shading zones from the control zone. Right shows the 
relative deviation. 

Parameter Value

Nm 0.385999

D 1.870764

Qe 0.474279

T_CRIT 19.62227

alpha_F 0.892947

fF_ 0.943268

Table 10: Values of 
sensitive parameters after 
PSO calibration 
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97.6 to approx. 9.8. The RMSE also improved in the 

two shading zones from 84.3 to 9.1 for zone 30 and 

from 80.4 to 9.7 for zone 50. All other quality criteria 

also show a strong improvement. The MAE fell from 

a maximum of 51.7 (Z0) to a minimum of 5.0 (Z50). 

The r-RMSE and the ARV are now very close to 0, 

the %SEP multiplied by 100 was minimized from 

values up to over 2000 (Z50) to at least 21 and the 

R² is almost 1 in all three zones. Overall, the model 

performance of the reduced TOMGRO model for all 

three zones thus shows a strong improvement after 

applying the PSO algorithm with the most suitable 

method from 4.3.2 and allows the modeling of the 

WM with lower model uncertainty. Looking at all 

metrics together, Z0 has the best performance, 

closely followed by Z30 and Z50. Accordingly, the 

uncertainty is highest for Z50, which is primarily reflected in the higher ARV, r-RMSE 

and %SEP values. Z0 and Z30 have a similar and slightly lower uncertainty. 

 

Table 11: Measuring of the calibrated simulation’s goodness-of-fit after finding the minimum fitness 
value or minimum mean RMSE of all three zones with PSO algorithm. 

Figure 29: Simulated total yield of tomato 
production compared to the actual 

measured total yield. 

Figure 30: Comparison of the zones between non-accumulated simulated and actual WM after 
calibration on the individual measurement days from Table 3. 
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Figure 36 shows the values for the individual measurement days and thus the non-

accumulated values. The improvement from simulated to actual values can be seen 

here again in comparison to Figure 32. Although the accumulated values between 

simulated and actual WM or total yield converge by the end of the growing season, the 

yields of the individual measurement days are not completely accurately mapped. In 

some cases, higher WM is simulated, especially for 20.02.24 (day 157 since 

transplantation), but often too little. 

5 Discussion 
In this chapter, the methods and results are discussed and interpreted. The 

measurements from the greenhouse are discussed first (5.1). Before the calibration 

methodology and its various applications and results (5.3) are discussed, the sensitivity 

analysis (5.2) is examined. 

5.1 Actual measurements   

First of all, it is important to mention that when measuring crop yields, using dry weight 

instead of fresh weight is often preferred, as uncertainty factors can be minimized. 

Measuring dry weight, for example, eliminates variability in the measurement data 

caused by the highly variable water content over time and environmental conditions. 

Although dry weight is directly less relevant for the economic yield aspect, it allows for 

more detailed analyses to assess the effectiveness of treatments and management 

practices, as the actual growth of the plant or tomato material can be analyzed without 

water content (Hort Americas, 2021; Huang et al., 2019). The uncertainty of the fresh 

weight should therefore be taken into account when considering the results. However, 

these results can serve as an estimate for the economic sales evaluation. 

Nevertheless, the results of the dry weight measurements should be given priority for 

all future plant physiological analyses and comparisons.  

In addition to the general measurement uncertainties, it should also be noted that 20 

plants were included per zone for the fresh weight for a representative yield 

measurement, while for logistical reasons only 6 out of 20 plants from a representative 

area were included for the dry weight. However, as only one oven would not have been 

sufficient for the yield of 60 plants (20 per zone), this compromise had to be made. 

Nevertheless, the results show a good correlation between fresh and dry weight.  

Furthermore, it is assumed that the differences in radiation and temperature in the 

different zones influence the water content of the fruit and therefore the relative ratio 

between the zones are different for dry weight than for fresh weight (Heuvelink, 2018). 

The noticeable temperature difference in zone 50 (fig. 17) could also be the reason 

why the negative deviation compared to the control zone for fresh weight fell from 26% 

to only 18% for dry weight.  

In addition, a temporal offset of the shading zones can be seen in the yield results. 

This was actually already apparent during the growth phase, as the plant grew more 

in height and leaf size, especially in zone 50. This means that less energy was invested 
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in the transition to the fruit development stage and more in plant growth. The greater 

the shade, the taller the tomato plants were. It could therefore be observed that the 

distances between the tomato branches were greater than in the control zone and 

therefore a lower fruit production was expected relatively early for zone 50. Tomato 

production is thus not only negatively influenced directly, but also indirectly, as the 

larger and more densely overgrown leaves can provide a larger attack surface for pests 

(Heuvelink, 2018).  

Overall, the results of the actual measurements with the differences in the individual 

zones were to be expected. When extrapolating from g/m² to the total area of 440m² 

(20m x 22m) of the zones, the difference is of course more significant (cf. fig. 37). 

Nevertheless, it should be considered that the negative economic impact on tomato 

production due to shading by PV modules could be offset by a simultaneous positive 

economic impact due to electricity production. 

 

5.2 Sensitivity analysis  

The results of the sensitivity analysis correspond with the previous results from earlier 

studies on the sensitivity of the reduced TOMGRO parameters (Lin et al., 2019; 

Vazquez-Cruz et al., 2014). However, so far there have not been many studies that 

have applied a sensitivity analysis to the reduced TOMGRO model. A sensitivity 

analysis can be used to identify the parameters with the greatest influence on model 

uncertainty and to improve the model quality by adjusting the parameter values. The 

risk of overfitting the model is thus also reduced (Saltelli et al., 2004). It can therefore 

have advantages to carry out a sensitivity analysis that was omitted in other studies 

and thus possibly miss out on better results. For example, in the study by Gong et al. 

(2021), only all available parameters were used for calibration and no distinction was 

made between sensitive parameters. To be on the safe side and to clarify the extent 

to which a sensitivity analysis is useful or necessary at all, a calibration with all 

Figure 31: Total production of the respective zone. 
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parameters was also tried out. This means that not only the sensitive parameters were 

implemented in the calibration, but all 21 parameters. However, the results did not lead 

to further improvements in the model performance. 

A different selection of methods, as mentioned in 3.2.2, could also have been 

considered for the sensitivity analysis. However, as the advantages of the eFAST 

method described in 3.2.2 outweigh those of other methods and the previous studies 

were also able to achieve relatively good results, no other method was tried. In 

addition, the existing studies could also serve as orientation in order to improve and 

expand their approach.  

This aspect leads to another point of discussion: the definition of the value ranges of 

the individual parameters. As predefined value ranges are not available for all 

parameters and the literature sometimes even uses different value ranges for 

sensitivity analysis and calibration, a detailed literature search was carried out in order 

to cover all possible acceptable and potentially optimal values. Thus, values were also 

covered that were identified in other studies as the optimal value after calibration, but 

which may be unrealistic from a plant physiological point of view. As the results of the 

sensitivity analysis were consistent with the results of previous studies and the 

calibration also worked satisfactorily, the value ranges of the parameters have not been 

further changed.  

Overall, the entire methodology could be expanded with the help of a sensitivity 

analysis compared to other studies. In this study, a sensitivity analysis using the eFAST 

method proved to be useful. 

5.3 Calibration of reduced TOMGRO and simulation approach  

5.3.1 PSO algorithm as a suitable method for calibrating the reduced TOMGRO 

model? 

Calibrating the sensitive parameters of the reduced TOMGRO model is an optimization 

problem. This means that the parameters are optimized in such a way that the 

simulation values of WM of the reduced TOMGRO model come as close as possible 

to the actual values. There are several reasons for selecting an optimization algorithm 

and for selecting the PSO algorithm: The existing data basis without historical data is 

more suitable for an optimization algorithm than some other calibration methods, such 

as a machine learning method, which would require a broader set of historical training 

data sets. The PSO algorithm is also very easy to implement with its comparatively low 

computation time and required fewer hyperparameter adjustments than genetic 

algorithms. In addition, the study by Gong et al. (2021) showed that the PSO algorithm 

achieves better results than other optimization algorithms such as the genetic 

algorithm and the differential evolution algorithm. These aspects spoke in favor of 

selecting and implementing the PSO algorithm. However, even though the algorithm 

has a low susceptibility to premature convergence compared to other algorithms, it was 

observed that the algorithm can still get stuck in local minima and therefore did not find 

the expected global minimum in all experimental runs (Eberhart and Shi, 1998; Eslami 
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et al., 2012; Gad, 2022; Jain et al., 2022). However, this was not a major problem when 

multiple trials were started, as in most cases the algorithm was able to define the global 

minimum. 

5.3.2 Gap filling to improve calibration? 

Another point of discussion is the use of regression substitution for gap filling in the 

actual WM data. With regression substitution, the actual measured values are replaced 

by a regression model and then no longer correspond 100% to the actual measured 

values and therefore no longer correspond to reality. However, as the available data 

basis or the period of the growing season for a calibration is not particularly large 

anyway, the advantages of a larger and better data basis outweigh the disadvantages 

here. When trying out the calibration with only the individual measurement days as the 

basis for the actual measured values, reduced TOMGRO achieved acceptable but 

weaker results than with actual values on a daily basis. This allows the optimization 

algorithm to include values between the individual actual measurement days and thus 

better adjust the parameters that are of greater importance for the simulation between 

the individual days from a plant physiological point of view, so that reduced TOMGRO 

can perform a more complete and robust simulation with better timing. 

5.3.3 Mean RMSE from all three zones as the best method for implementing the PSO 

algorithm? 

As mentioned in 3.2.3.3, various methods for the application or implementation of the 

PSO algorithm in the reduced TOMGRO calibration were tried out. It is now necessary 

to discuss which method appears to be the most appropriate for this work. The method 

in which the model is calibrated individually for each zone produces the best results 

(cf. 4.3.2). However, since the aim of this work is to develop a uniform model for a 

greenhouse system that can also handle different shading or radiation (PPFD) and 

temperature depending on the input, this method is not expedient. The individual 

calibration results in different parameter values for each zone (cf. table 9), so that this 

does not result in a uniform model with a uniform parameter configuration for a 

greenhouse system. This also shows the importance of a validation period, which does 

not exist in this work due to the novel project and the first available growing season. In 

other words, a validation with an independent data set in order to check the accuracy 

and reliability of the model is normally needed. The problem becomes apparent when 

method b. is applied and the reduced TOMGRO model is started with the calibrated 

parameters of the control zone for the simulation of WM of the two shading zones, i.e. 

for an independent data set. For the control zone, the simulation represents the 

experimental data completely with a very low RMSE (8.30 g/m²), but for the two 

shading zones the simulation curve deviates significantly from the observed values. 

With this or these two methods, the problem of overfitting occurs. The model is then 

too strongly adapted to a calibration data set and can therefore be poorly generalized 

to a new data set (Murphy, 2012). Although there is no validation period for this work, 

this problem could be counteracted with the last method (c.) by including all three 

zones, and thus three different and independent data sets, in the calibration of a 
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uniform model for a greenhouse system. The same parameter values of the reduced 

TOMGRO model could now represent simulation curves that match the actual 

measured values from the greenhouse for all three zones, thus ensuring a more robust 

and universal model prediction. 

5.3.4 Parameter values 

Through calibration using the PSO algorithm with the mean RMSE from all three zones 

as a fitness function, the sensitive parameters were adjusted or optimized so that the 

simulation of the reduced TOMGRO model has the minimum error between the actual 

measured WM and the simulated WM (cf. table 11 and 12).  

Nm, the maximum rate of node appearance, has changed from its default value of 0.5 

to 0.386. If the parameter is considered individually, this means that the node 

appearance was slowed down and plant development is thus delayed. The model 

could thus reduce the overall yield and delay the time to fruit maturity or the timing of 

fruit production. However, a comparison of the simulation results before and after 

calibration shows that the total yield was lower in all zones before calibration and that 

ripening also started later than after calibration. This again shows the effect of the 

interaction between the individual parameters and underlines the importance of 

considering all parameters.  

This is because the value for D, the coefficient to convert Pg from CO2 to CH2O also 

fell from the default value of 2.539 to 1.871 after calibration.  

6CO2 + 6H2O + light → C6H12O6 + 6O2 (12) 

Equation 12 shows the chemical reaction equation of photosynthesis. This shows that 

for every molecule of carbon dioxide and water, one molecule of CH2O is produced, 

which describes the resulting biomass together with one molecule of oxygen 

(Encyclopedia Britannica, 2024). The reduction in value of D means that the model 

adapted or calibrated specifically to the 'raspa y amagado' greenhouse now has a 

lower efficiency in the conversion of photosynthesis products, such as glucose, into 

biomass (to CH2O), which actually also leads to lower growth rates and a reduced 

tomato yield. However, the calibration resulted in a significant increase in the 

parameter Qe, i.e. leaf quantum eficiency. This rose from 0.065 to 0.474. This value 

now indicates that the tomato plants very efficiently and effectively convert photons 

absorbed by the leaves of the tomato plant into the production of photosynthesis 

products. The rate of photosynthesis has therefore been increased, which increases 

the growth and yield of the tomato plant. To summarize, the step of converting light 

energy into chemical energy (Qe), which must occur before the conversion into 

biomass (D), now has a significantly higher efficiency, while the conversion into 

biomass has a lower efficiency than before the calibration.  

With T_crit, it is first of all helpful to take a closer look at the formula for g(Td) in order 

to recognize what the value of T_crit actually means and which optimal daytime 

temperature range results from it. g(Td) modifies partitioning to fruit and reduction of 
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growth under hot daytime conditions and thus shows at which daytime temperature 

(Td) the fruit abortion starts (Jones et al., 1999). If the formula for g(Td) is now used 

(equation 13) and there is no partitioning of growth to the fruit, g(Td) is equal to 0. The 

0.154 slope was based on the experiments of (Vallejos et al., 1997). If the formula is 

solved for Td, this gives the temperature from which the equation becomes 0 and thus 

from which fruit abortion starts, i.e. T_crit added with 6.5 °C. According to Jones et al. 

(1999), the equation has the condition that Td must be greater than T_crit. This means 

that if Td is smaller than T_crit, there is no partitioning over the fruit. This results in a 

partitioning of growth on the fruit if Td is greater than T_crit but less than T_crit added 

with 6.5. 

g(Td) < 1 - 0.154 · (Td – T_crit) 

0 < 1 - 0.154 · (Td – T_crit) 

-1 < 0.154 · (Td - T_crit) 

1 > 0.154 · (Td - T_crit) 

1

0.154
 > Td - T_crit 

6.5°C > Td - T_crit 

Td < T_crit + 6.5°C 

(13) 

Thus, with a value of 24.4 for T_crit, the optimal temperature range of Td for splitting 

growth to fruit was 24.4 °C to 30.9 °C before calibration and 19.6 °C to 26.1 °C after 

calibration with a value of 19.6 for T_crit. This means that the tomato plants are more 

sensitive to high temperatures and the model tends towards earlier fruit abortion and 

reduced yield in warmer conditions, but the plants are less sensitive at medium 

temperatures. The fact that T_crit has such a low value is mainly due to the adaptation 

to zone 50, where the cooler temperatures are present. In this work, Td was calculated 

from the average of the hourly temperatures between 8 a.m. and 5 p.m., as this allowed 

a T_crit value to be found with which all zones could be better simulated. This could 

be mainly due to the fact that temperature effects due to the greenhouse orientation 

could be compensated with a longer time period. If fewer daytime hours were included 

(e.g. 12 to 4 p.m.), the algorithm was unable to find an ideal value for T_crit at which 

zone 50 could be simulated well in addition to zones 0 and 30.  

In addition, the algorithm identified a high value of 0.943 for fF_, i.e. the modification 

of the fruit partitioning based on temperature. This means that the reduced TOMGRO 

model adapts the partitioning more strongly to the temperature change or the 

temperature change is given a higher weight for the partitioning of growth to the fruit, 

which is indirectly transferred to T_crit and thus increases the influence on the model 

performance. At the same time, the value for alpha_F was slightly reduced compared 

to the default value. As a result, more biomass is potentially allocated to vegetative 

growth instead of the fruits than before the calibration. However, the value is still high, 

so that the proportion of biomass allocated to the fruit still results in a high yield. 
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Overall, the adjustment of the parameters Nm, D and alpha_F has more of an effect 

on reducing the yield compared to the simulation without calibration, at least when 

viewed individually. However, if the interaction of all parameters is considered, a clear 

increase in yield can be seen after calibration. This is due to the fact that the changes 

in the parameters Nm, D and alpha_F were rather slight in relation to the range of 

values, while the adjustments were stronger for the parameters Qe, T_crit and fF_. 

Nevertheless, the opposite adjustments to Nm, D and alpha_F should not be 

misunderstood. These changes are probably necessary in order to adjust the timing of 

fruit ripening and fruit production to the values actually measured in the greenhouse. 

5.3.5 Model performance 

The results of the calibration have shown that the application of the PSO algorithm to 

the reduced TOMGRO model has led to a significant improvement in model simulation 

and represents an efficient and effective method for calibrating complex models such 

as the reduced Tomgro model.  

All error measures were significantly reduced or improved by the calibration. The 

differences or contradictions between the individual quality criteria and the individual 

zones are also interesting. For the RMSE and MAE, which are both a measure of the 

average error, but once with squaring and once without (cf. 3.2.3.4), the control zone 

has the highest value for RMSE. This indicates that the absolute errors or differences 

between observed and simulated values are greatest in this zone, which result from 

the conditions without shading. However, the control zone shows the best values for 

the relative error measures (r-RMSE, %SEP, ARV). This means that the model works 

best in the zone without shading or with the highest PPFD values when the errors are 

relativized. This means that if the errors are considered in relation to the size of the 

observed values, the shaded zones perform worse. This is because the r-RMSE and 

%SEP normalize the errors based on the observed values. Since the observed values 

of WM or the yield are highest in the control zone due to the apparently better growing 

conditions, the errors are smaller in relative terms, although the absolute difference is 

highest compared to the other zones. The variance (ARV) is also measured in relative 

terms. This means that the errors in the control zone are relatively more evenly 

distributed than in zones 30 and 50. The same applies to R², which looks at the 

proportion of the variance explained by the model in the total variance. This proves 

that the reduced TOMGRO model can explain the data in the control zone well with a 

slight advantage over the other zones despite the higher absolute errors.  

Overall, the qualitative and quantitative results of the model performance for all three 

zones can be assessed as very good. The dry yield could be simulated well with the 

PSO calibrated reduced TOMGRO model for all shading levels. The slightly better 

model performance in the control zone despite higher absolute errors compared to the 

shaded zones can be explained by the higher yield values, as the error values between 

the actual measured and modelled WM decrease in relative terms due to the 

normalization and relativization of the errors. This shows how important it is to consider 
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several error measures in order to be able to comprehensively evaluate the model 

performance. At the same time, the values of the quality criteria show that there is still 

room for improvement. Further adjustments, additional calibration steps, or a further or 

longer growing season for a better data basis could be helpful for future work in order 

to further improve model accuracy. 

5.4 Overall limitations  

Although the results have shown that the biophysical model-based approach with the 

reduced TOMGRO model and its calibration with the PSO algorithm is very well suited 

as a tool for the simulation of tomato yield with different shading and an useful analysis 

of the tomato yield from different shaded zones could be carried out, this chapter 

should show and discuss the overall limitations and uncertainties of this work.  

First of all, there are limitations in this work with regard to the data basis, which could 

not be avoided due to the novel and challenging design of the experiment. Although 

an initial project partner, such as the UAL-ANECOOP Foundation, was found to take 

on the role of a 'tomato grower' and allowed shading on their tomatoes, thereby risking 

a potential reduction in yield, it was not initially assumed that greenhouse crop 

modeling would be conducted during this growing season. Only the actual yields and 

changes in the tomato plants and the microclimate between the individual zones were 

to be analyzed. Before it was decided that modeling could also be carried out for this 

work, the growing season had already started and the tomato plants had been planted 

for six weeks. For this reason, although microclimatic measurements such as radiation, 

temperature and humidity had been taken since the beginning, numerous other 

(physiological) measurements that would be helpful for a complete model simulation 

with the reduced TOMGRO were not taken. In addition to the WM, the reduced 

TOMGRO model can also simulate four other state variables (cf. fig. 20), for which 

corresponding measurements such as LAI measurements, node counts, etc. should 

have been carried out from the outset. As a result, it was no longer possible to perform 

a complete calibration of all five state variables of the reduced TOMGRO for this 

growing season. Not only would the calibration have been much more complex, it 

would also have required significantly more capacity, which was not available within 

the context of this work and the cooperation project. At the same time, however, the 

simulation should then also achieve more representative, holistic and robust results, 

as it would then be based on a more comprehensive database and be able to make 

better predictions about various aspects of plant growth by considering several plant 

physiological measurements such as the LAI values and number of nodes. This would 

not only lead to an extended applicability for different scenarios with different aspects 

of plant growth, but also to an extended validation capability, as all calibrated state 

variables could be validated and the exact areas where the model quality needs to be 

improved could be identified. However, from an economic point of view and with regard 

to a future integrated agrivoltaic yield model that takes into account both crop and 

electricity production to determine the most lucrative combination of both yields, the 

focus on dry yield in crop modeling is sufficient in the context of this work. 
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In addition to the data basis, there are other uncertainties or several factors that cannot 

be considered that influence the growth process of the tomato plant and can therefore 

affect the accuracy of the simulation with reduced TOMGRO. These include 

information on soil, irrigation and even diseases or pests that are not directly included 

in reduced TOMGRO, as well as the assumption of a constant C02 content. Although 

this simplifies the modeling, the soil properties, the way in which the tomato plants are 

irrigated and the fluctuations in the CO2 concentration in the greenhouse play a 

significant role in how the plant develops. The consequence of such simplifications is 

that the parameters in the calibration may incorrectly take on different values in order 

to achieve the best possible results, as additional parameters are missing and 

therefore certain stress factors or growth conditions may not be correctly mapped in a 

simulation with an independent data set. 

The measurements of the sensors represent a further uncertainty. Technical limitations 

and defects, environmental influences and soiling always have a risk of inaccuracies 

that affect the database and thus impair the precision of the model. The sensors were 

therefore carefully calibrated in advance (Kujawa et al., 2023) and the data was also 

constantly checked and the sensors cleaned during the measurements in order to 

minimize uncertainties. Nevertheless, a residual risk remains, which should always be 

taken into account when evaluating the data. 

In addition, the PAR was estimated by GHI using linear regression, as no PAR 

spectrometer was available for this work. Although this method has been shown to be 

suitable in past studies and the deviations are minimal, it should be kept in mind that it 

may introduce additional, albeit small, uncertainties, as the relationship between GHI 

and PAR is not always linear and can be influenced by environmental conditions 

(Vindel et al., 2018). However, the fact that the GHI was measured in this work is also 

relevant with regard to future PV modeling. 

Another limitation of this work is the consideration of the shading zones in a 

greenhouse or that all three zones are located within the same greenhouse. Even if 

clear differences in the microclimatic conditions are recognizable in this work, there are 

temperature and other microclimatic mixtures between the zones within the 

greenhouse, which easily distort the individual conditions and thus make it difficult to 

evaluate their actual influence on the plant growth process. In addition, the greenhouse 

had an irrigation system that watered all plants equally, so that irrigation management 

would not be affected if one zone needed less or more water. Ideally, a separate 

greenhouse would be needed for each shading zone to ensure that the specific 

conditions of each zone could be studied in isolation and without interference from 

neighboring zones. It is possible that the differences in microclimatic conditions 

between the various shading levels would be even more pronounced and the effects 

on different yields of the zones would be greater. However, this can hardly be realized 

in practice due to limited capacities of any kind. Nevertheless, a good initial yield 

analysis and diagnostic model calibration of the actual state of the greenhouse system 
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used in this work could be carried out, which could also be used in reality with this 

design.   

6 Conclusion and outlook 
To address the issue of the incomplete understanding of the shading influence on 

tomato plants, this work demonstrates how the decreased irradiance intensity from 

installed PV dummies on the roof of a 'raspa y amagado' greenhouse affects tomato 

yield. Yield measurements from the greenhouse per square meter showed 

approximately 14% less dry yield and about 15% less fresh yield in the zone with 30% 

shading compared to the control zone, while in the 50% shading zone, there was a 

19% reduction in dry yield and a 26% reduction in fresh weight compared to the control 

zone. Additionally, a delay in ripening and yield of about 10 days was observed 

compared to the control zone. 

In relation to the modeling of an integrated photovoltaic yield model, which aims to 

identify the most lucrative method of combining cultivation and electricity production, 

this work focused exclusively on the plant growth component. It was found that the 

biophysical modeling approach, with the PSO calibrated reduced TOMGRO model and 

a sensitivity analysis using the eFAST method, is excellently suited for simulating 

tomato yield in a typical 'raspa y amagado' greenhouse in southern Spain, considering 

various shading conditions and effects. The results show good agreement and 

accurate performance between yield simulation with reduced TOMGRO and actual 

measured dry weight in all zones, with RMSE ranging from 9.15 to 9.84. Additionally, 

all other goodness-of-fit criteria show minimal deviations in model performance. 

Therefore, the use and adaptation of precise crop models to simulate and predict the 

yield of greenhouse tomatoes appears to be very advantageous and worthwhile based 

on the results. However, the different calibration methods with the PSO algorithm also 

indicate that a validation period with an independent growing season is advisable to 

ensure the reliability and transferability of the diagnostic model results. This should be 

considered for the next winter cycle for tomatoes. 

In future work, the crop model developed in this study should be implemented into the 

overall integrated agrivoltaic greenhouse model. With various radiation values due to 

shading as input data for the model, tomato yield and simultaneous electricity 

production for each possible coverage combination could be calculated, determining 

the most lucrative method between electricity and crop production. In this context, an 

economic profitability analysis could also be conducted, including an analysis of costs 

such as operational, investment, and maintenance costs of both production systems, 

and revenues from the sale of tomatoes and generated electricity. 

Furthermore, future work could also explore the estimation of other state variables 

besides modeling the WM yield, such as leaf area index, above-ground biomass, or 

number of nodes, while more parameters would need to be measured in the 
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greenhouse. This would create a more holistic and comprehensive modeling approach 

and could lead to the identification of additional plant physiological aspects. 

Additionally, the methodology used in this work could be applied to various other 

greenhouse crops. Yield predictions could be made for, for example, potatoes or 

strawberries, etc.  

Moreover, as in the study by Gong et al. (2023), the reduced TOMGRO as a 

biophysical model approach could be tested in model fusions with various 

combinations of more advanced machine learning models with a larger or growing data 

base to achieve even more accurate yield predictions.  
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