ESA Water Vapour Climate Change Initiative - 2nd User workshop, FZ Jülich, Germany, 14-16 October 2024

Trends in the upper tropospheric humidity and ice saturation from HIRS satellite measurements in the period 1979-2020

Charis Benetatos¹ , Kostas Eleftheratos1,2, Klaus Gierens³

¹Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Greece ²Biomedical Research Foundation of the Academy of Athens, Greece 3 Institute of Atmospheric Physics, DLR, Oberphaffenhofen, Germany

Major objectives:

- Creation of a long-term UTHi dataset based on satellite data to use them in climate studies.
- Analysis of Upper Tropospheric Humidity trends with respect to ice (UTHi), focusing in the mean values as well as in the upper tail of the data.

Data used:

- **■** Brightness temperatures in multiple channels (Channels 6 and 12; T_6 and T_{12}) from the High-Resolution Infrared Radiation Sounder instrument (HIRS) onboard the NOAA and METOP satellites (NOAA $_{6,7,8,9,10,11,12,14,15,16,17}$ and METOP $_{02,01}$).
- Data are provided as points which are then gridded with a resolution of 2.5x2.5° between 60° S-60°N.

Approach used:

The retrieval of the UTHi is performed using a second-order equation developed by Gierens and Eleftheratos, 2019.

$$
UTHi\% = \frac{\exp(a + b \times T_{12} + c \times T_{12}^2)}{a' + b' \times T_6}
$$

where T_6 : Brightness temperature in channel 6 T_{12} : Brightness temperature in channel 12 a, b, c, a', b': Fit coefficients

Data/bias corrections:

◆ T_{6:} Channel 6 is in the CO₂ absorption band, therefore T₆ data contains biases due to the increase of the [CO₂] according to Shi et al., 2016. Therefore, T₆ values contain a negative trend that needs to be adjusted proportionally to the increase of the $[CO₂]$.

- \clubsuit T_{12:} The HIRS instrument was updated in 1999 (transition from version HIRS₂ to HIRS₃ accompanied by a wavelength change. Thus the instrument is sensing a different layer which created inconsistencies (bias of about 7 K) in the T_{12} dataset.
	- This bias is mainly corrected with the second-order retrieval algorithm.
	- Complete homogeneity is achieved with a further bias reduction applied in the numerator of the UTHi derivation algorithm.

After the application of the previous corrections UTHi is calculated in a 2.5° \times 2.5° data grid for 60°S-60°N on a daily, monthly, and decadal temporal scale.

180°

 $\tilde{\mathcal{N}}^{\circ}$

ထိ

 \mathcal{S}

ၜၟၖိ

180°

ထိ

 $\tilde{\mathcal{P}}$

 \mathcal{S}

 $\sqrt{6}$

Ξ

Trend analysis results on mean UTHi anomalies values:

- Small negative trend in the tropics $(30 \degree N 30 \degree S)$.
- Positive trends in the mid latitudes.
- Trends increasing with latitude.

Trend analysis applied on the monthly mean UTHi anomalies. Trends are calculated for the period between 1979-2020.

Trend analysis results on UTHi threshold exceedances anomalies values:

- Small positive or no trends in the tropics.
- Positive trends in the mid latitudes.
- Trends increasing with latitude.

Trend analysis applied on the monthly mean fraction exceedances anomalies of UTHi above 70%, 80%, 90% and 100%. Trends are calculated for the period between 1979-2020.

Mean UTHi anomalies Exceedances anomalies

Probability density functions of UTHi

Trends in the upper tropospheric humidity and ice saturation from HIRS

satellite measurements in the period 1979-2020

Comparison of our results with other similar studies:

Wright, Sobel and Galewsky, 2010

In this study the authors compare the zonal mean relative humidity response between two model simulations. One with 1979 concentrations of greenhouses gases and one with doubled CO₂.

They report:

- A distinctive pattern dependent on latitude, where the relative humidity of upper troposphere is decreased in tropics by 1-2%.
- A reversal of the trend in the middle latitudes
- Increase of relative humidity in high latitudes by about 6-7%. They also note that the negative trends in the tropics are slightly larger in the Southern hemisphere.

Irvine and Shine, 2015

In this study the authors compare the change in the frequency of Ice Supersaturated Regions (ISSRs) from the 1979-2005 (historical) period to mid-21 st century and until the end of it with the help of global climate models.

They report:

✓

 $\sqrt{}$

✓

- Change of such regions is regional rather than globally uniform.
- In the tropics, they report a strong decrease in the CISS frequency of 3.3 percentage points by the mid-century and of 8.8 points by the end of the century.
- In the northern hemisphere midlatitudes there is a small increase in the frequency of the CISS regions of around 0.7 and 0.9 percentage points until the mid-21 st century and the end of it respectively.
- In the northern polar region, they report an increase in the CISS frequency of 1.7 percentage points by mid-century and 4.9 by the end of the century.

✓

✓

Mean frequency of UTHi exceedances for 1979-2020

Benetatos et al., In preparation, 2024

To sum up:

- \triangleright We have produced an homogeneous time series of UTH from HIRS satellite measurements. This is the result of the 2nd-order retrieval (Gierens and Eleftheratos, 2019), which was necessary to make the HIRS_{2/3-4} data consistent not only in the bulk, but also in the upper tail of the distribution, together with the T₆ correction and a final bias correction following the breakpoint analysis to correct apparent jumps around the year 2000.
- \triangleright Our homogeneous time series shows that UTH increased in the past 40 years in the midlatitudes but not in the tropics.
	- o Estimated trends are about 0.4 to 0.5% per decade in the northern midlatitudes, between 0.1 and 0.5% per decade in the southern midlatitudes, and no or negative trends in the tropics. For the globe, we estimate a near-global trend of about 0.15% per decade which means an overall increase from 1980 to 2020 of about 0.6%.

References

Gierens, K. and Eleftheratos, K. (2019) 'On the interpretation of upper-tropospheric humidity based on a second-order retrieval from infrared radiances', *Atmospheric Chemistry and Physics*, 19(6), pp. 3733–3746. Available at: [https://doi.org/10.5194/acp-19-3733-2019.](https://doi.org/10.5194/acp-19-3733-2019)

Irvine, E.A. and Shine, K.P. (2015) 'Ice supersaturation and the potential for contrail formation in a changing climate', *Earth System Dynamics*, 6(2), pp. 555–568. Available at: [https://doi.org/10.5194/esd-6-555-2015.](https://doi.org/10.5194/esd-6-555-2015)

Lindau, R. and Venema, V. (2013) '*On the multiple breakpoint problem and the number of significant breaks in homogenization of climate records'*, *Quarterly Journal of the Hungarian Meteorological Service*. Bonn.

Shi, L. *et al.* (2016) 'Algorithm development of temperature and humidity profile retrievals for long-term HIRS observations', *Remote Sensing*, 8(4). Available at: <https://doi.org/10.3390/rs8040280>.

Wright, J.S., Sobel, A. and Galewsky, J. (2010) 'Diagnosis of zonal mean relative humidity changes in a warmer climate', *Journal of Climate*, 23(17), pp. 4556–4569. Available at: [https://doi.org/10.1175/2010JCLI3488.1.](https://doi.org/10.1175/2010JCLI3488.1)

Thank you!!

Data corrections:

a) Challenge:

Channel 6 is in the CO₂ absorption band, therefore T₆ data contains biases due to the increase of the [CO₂] according to Shi et al., 2016. Therefore, T₆ values contain a negative trend that needs to be adjusted proportionally to the increase of the [CO₂].

Solution:

A simple algorithm is applied using a reference value of $[CO₂]$ of 370 ppmv:

$$
\frac{d[T_6]}{d[CO2]} = \frac{-1.98}{410 - 330} = -0.02475 \frac{K}{ppmv}
$$

$$
T_6'(m) = T_6(m) + |-0.02475| * ([CO_2(m) - 370])
$$

Where:

m: month

 ${\tt T_6}$ temporal distribution on a monthly scale over 1979-2020 before (left) and after (right) the bias correction due to the CO₂ increase for the tropics (a) and the midlatitudes (b). Trends per decade ± the standard error are included.

b) **Challenge:**

Identifying the bias:

- We use a multiple-break point approach (Lindau and Venema, 2013) to find breaks in the numerator of the UTHi retrieval equation,
- Maximum external variance between the segment averages is used as a decision criterion,
- Breaks identified around 2000 in all latitudes.

Solution:

Calculating the bias between HIRS² and HIRS3 numerator values by subtracting the values of HIRS³ from HIRS2.

2500 -Uncorrected ±o Corrected ±o 2000 External variance 1500 1000 500 1980 1985 1990 1995 2000 2005 2010 2015 2020

Mean UTHi anomalies

Mean external variance of UTHi anomalies across all latitudes (60°N-60°S) ± the respective standard deviation (shade) before (black) and after (blue) the bias correction. The external variance time series is calculated first for each 10° of latitude and then averaged over all latitudes.

Interpretation: In the uncorrected data the maximum variance is around the year 2000, which means that there is a break in the numerator. In the corrected data (blue line) there is no break in the timeseries around the year 2000.

Exceedances anomalies above 70% Exceedances anomalies above 80%

Exceedances anomalies above 90% Exceedances anomalies above 100%

Mean external variance of the fraction of UTHi exceedances anomalies above 70% (a), 80% (c), 90% (e), 100% (g) and the respective standard deviation before (black) and after (blue) the bias correction between 60°N and 60°S. The external variance is calculated first for each 10° of latitude and then averaged over latitudes.