Suitability of multispectral satellites for deriving water constituents in high-altitude lakes: A case study from Peru

I. Somlai-Schweiger*¹, S. Plattner¹, S. Schmid¹, P. Klotz², P. Gege¹

¹German Aerospace Center (DLR), Earth Observation Center, Remote Sensing Technology Institute, Experimental Methods Department

²German Aerospace Center (DLR), Earth Observation Center, Remote Sensing Data Center, Land Surface Dynamics Department *ian.somlai@dlr.de

Junín - 4085 m.a.s.l., mesotrophic

Huacracocha - 4460 m.a.s.l., eutrophic Landsat-8, 21.06.2023

was used to derive concentrations of Chl-a, TSM and CDOM from both satellite and in-situ spectral data in deep water areas.

This study examined the feasibility to derive water constituents using multispectral data from Sentinel-2, Landsat-8/9 and

PlanetScope SuperDoves of three high-altitude lakes in the Peruvian Andes. Field spectrometer measurements and water

sample analysis for chlorophyll-a were carried out for validation. Atmospheric correction was performed with ACOLITE. WASI

Lasuntay - 4650 m.a.s.l., oligotrophic Sentinel-2A, 19.06.2023

Reflectance spectra in deep water areas (not corrected for sun and sky glint)

Lake-specific observations:

- Influence of heterogeneous underground in shallow areas yields unreliable results.
- Need to consider water depth: reliable results in areas deeper than 2 m (82% of main lake).
- Sensor artifacts increase result uncertainty.

es		Landsat-8 21.06.23	Sentinel-2A 19.06.23	Field spectrometer	Water samples
	Chl-a [μg/l]	5 ± 4.7	55.7 ± 20.1	16.2 ± 1.3	10 ± 1.3
	TSM [mg/l] CDOM [1/m]	1.6 ± 0.1	3.5 ± 0.6	4.5 ± 0.6	
Me	CDOM [1/m]	1.1 ± 0.1	4.5 ± 5.2	1.2 ± 0.1	

Lake-specific observations:

- Turbid and dark lake, high contrast with surrounding area challenging for the AC.
- Landsat-8/9 yield plausible results in spite of having fewer red and NIR bands than Sentinel-2, which largely overestimates the Chl-a concentration.

	spectrometer	water samples
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8 ± 0.6	0.8 ± 0.1
TSM [mg/l] 1.8 ± 0.1 2.3 ± 0.5 CDOM [1/m] 0.02 ± 0.01 0.002	1.4 ± 0.4	
$\stackrel{\circ}{\geq}$ CDOM [1/m] 0.02 ± 0.01 0.002	0.06 ± 0.03	

Lake-specific observations:

- CDOM very low from both field and satellite data.
- Landsat-8/9 show similar results, with slightly higher TSM concentrations than Sentinel-2.
- Small lake in complex topography: profit from higher Sentinel-2 spatial resolution (10 m against 30 m).

PlanetScope SuperDoves: comparison against field spectrometer data at Lake Junín

- Regression lines excluding NIR-band 8.
- Large differences for bands 1 to 7.
- between sensors from the same
- comparison with all Sentinel-2B bands.

Both Sentinel-2 and Landsat-8/9 are suitable to derive water constituents from the studied lakes. CDOM results show the best agreement between satellite and field data, followed by TSM. Chl-a can be obtained reliably for low/middle concentrations (Lasuntay/Junín, respectively), with sensor artifacts increasing result uncertainty. Dark waters (e.g. Huacracocha) remain challenging, specially to retrieve valid Chl-a concentration values. PlanetScope data not suitable for the presented application.

Acknowledgments

This work was supported by the German Development Cooperation (Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH), within the framework of the project ProGIRH, contract number 81280682.

