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Abstract 

Various processes, methods and tools are needed to support the development of new aeronautical systems. 

Those should cover the whole life-cycle, from the definition of stakeholders to system design and optimization, 

manufacturing and, eventually, end of life. Since years, the Digital Development Process group at the German 

Aerospace Center (DLR) is doing research on processes, methods and tools supporting and enhancing the 

development of new systems. Some of them are taken from the literature, others are developed by the research 

group. This paper presents an overview of these processes, methods and tools, highlighting how they can 

support and improve the main activities of a system development process.   
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1. Introduction 
The development of a new aeronautical system – an aircraft or a part of it e.g. a subsystem or a 

component – is becoming increasingly challenging, with impact on the development time, quality and 

cost. Three major challenges can be identified. The first challenge concerns the increased 

complexity of the system development process. This complexity is reflected in the higher quantity of 

generated and shared data and information, which may be often uncertain or largely unknown. This 

trend follows the introduction of new aeronautical technologies, for example new and more efficient 

propulsion systems compliant with more stringent environmental constraints, e.g. reduction of CO2 

and non-CO2 emissions in flight. Novel technologies never installed before on operative aircraft 

increase the uncertainty of their behavior and impact at aircraft-level. The second challenge refers 

to the fact that nowadays new systems are not designed and built by single organizations, but they 

are fruit of the collaboration among the different entities belonging to the whole aeronautical supply 

chain. This means that heterogeneous knowledge and expertise is distributed among multiple 

organizations, which have to exchange design data and information. Lastly, the life cycle of an 

aeronautical system spans decades from conceptual design to retirement, going through multiple 

stages, such as development, production, operation and support. During its life cycle, the 

aeronautical system under design interacts with many other systems – defined as “enabling systems” 

– which facilitate the life cycle activities of the system under design but are not a direct element of 

the operational environment (adapted from [1]). Therefore, in the design phase, multiple constraints 

and aspects belonging to the whole life cycle of the system under design have to be considered, and 

often traded among each other.  

In order to tackle all those challenges, methodologies supporting the development of new and 

innovative systems are required. A methodology is composed by processes, methods and tools [2]. 

A process is defined as a logical sequence of tasks performed to achieve a particular objective [2]. 

For example, a System Life Cycle Technical Process like the one standardized by the ISO 15288 [3] 

can be adopted to develop a new system by performing tasks as definition of stakeholders and 

collection of their needs, transformation of needs into technical requirements, generation of multiple 

system concepts (also called architectures) compliant with the requirements, and verification and 

validation activities. The Product Development process like the one standardized by the ISO 15288 

can be adopted in a Systems Engineering approach, whose ultimate goal is the generation, design 
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and optimization of system architectures compliant with different stakeholder needs and 

requirements.  A method, instead, specifies which techniques can be adopted to perform the tasks 

of a process (adapted from [2]). During the various activities of a Systems Engineering Technical 

Process [1], which guides the development of a new system, a lot of information is produced. This 

information can be collected in multiple documents, but this hampers the system development due 

to several limitations. For example, the collaboration among multiple experts is negatively impacted, 

since the information they produce and share is spread in different texts, tables, drawings. Also, the 

relations between all the pieces of design information are not clear, and therefore the traceability is 

hindered. A model-based method instead can improve all the activities of a Systems Engineering 

process. Models can facilitate the collection and sharing of information, improve the traceability, and 

increase the opportunities for automation (e.g. for checking consistency among the entire design 

data) and reuse of data, hence accelerating the whole development process. This is why new 

methods belonging to Model-Based Systems Engineering (MBSE) approaches are becoming even 

more popular since the last decades among multiple practitioners [4]. MBSE is defined as the 

formalized application of modeling to support system requirements, design, analysis, verification 

and validation activities throughout development and later life cycle phases [5]. Methods used in 

MBSE approaches support activities regarding the identification of stakeholders, collection of their 

needs, transformation of needs into requirements and generation of system architectures. Other 

methods instead support the system design and optimization activities. Methods for Multidisciplinary 

Design Analysis and Optimization (MDAO) are in fact conceived and adopted to accelerate and 

enhance the collaboration among the different disciplinary experts who provide their disciplinary 

analyses (e.g. aerodynamics, structures) necessary to design and optimize a new system. Finally, a 

tool is defined as a means implementing the techniques to perform the tasks of a process (adapted 

from [2]). A tool can simply consist of pen and paper, or, nowadays more commonly, software and 

codes, implementing model-based methods.  

Several methodologies that leverage an MBSE approach and support the development of systems 

are available in literature. A survey of some among the most notable MBSE methodologies is 

provided in [2]. Many of these methodologies include methods prescribing how to model and 

represent the information produced during the development process (e.g. ARCADIA and its 

implementation into Capella [6], or architectural frameworks as Zachman’s Framework [7], DoDAF 

[8], MODAF [9], NAF [10] and TOGAF [11]). Others methods are proprietary and no information is 

publicly available (e.g. Airbus’ MOFLT method [12] and its implementation into the software CAMEO 

System Modeler). In general, all these MBSE methodologies are effective, although some activities 

addressed by them (e.g. requirements engineering, system architecting) might be improved by 

integrating and extending other methods available in literature.  

Since several years, the Institute of System Architectures in Aeronautics of the German Aerospace 

Center (DLR) is performing research addressing the investigation and developments of new 

processes, methods and tools, by making use and extending the best approaches available in 

literature while overcoming the current limitations. The processes, methods and tools investigated 

or developed by DLR are briefly described in the paper, while more detailed information is provided 

in the references. After an introduction in section 2 of the development process set up at DLR, section 

3 presents processes, methods and tools supporting the definition of stakeholders, needs and 

requirements. Section 4 instead focuses on system architecting activities. Processes, methods and 

tools supporting design and optimization activities are described in section 5, while section 6 

addresses trade-off and decision-making activities. Finally, impacts and benefits of the proposed 

processes, methods and tools, but also limitations and future research activities, are listed in the 

conclusive section 7. 

2. Process for the definition, architecting, design and optimization of systems 
The processes, methods and tools tackled at DLR support the main system development activities 
included in the overall development process schematized in Figure 1. These activities are grouped 
in three phases: 
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1. System Definition phase, which includes the main initial activities of a typical (document or 

model-based) Systems Engineering Product Development process: identification of system 

stakeholders, collection of their needs about the system, and translation of these needs into 

technical requirements. This phase covers the blocks “System Identification” and “System 

Specification” of Figure 1, and it is addressed in section 3; 

2. System Architecting phase, which includes other main activities of a typical Systems 

Engineering Product Development process addressing the generation of the various and 

alternative architectures (different configurations) of a system. This phase covers the blocks 

“System Architecting” and “System Synthesis” of Figure 1, and it is addressed in section 4; 

3. Design and Optimization phase, which aims at identifying and selecting disciplinary 

competence (e.g. aerodynamics), formulating and executing MDAO processes and exploring 

and assessing the solutions space. This phase covers the block “System Exploration” of Figure 

1, and it is addressed in section 5. 

Additionally, this process includes a fourth phase, which connects system definition activities with 
design and optimization: the trade-off and decision-making phase. The goal here is to explore 
various solutions – characterized by different architectures and specifications – and evaluate them on 
the basis of the different stakeholder needs. Trade-off and decision-making activities are done in this 
phase, as described in section 6. 

 

Figure 1 – Schema representing the proposed Systems Engineering development process 
(adapted from [13]). 

The processes, methods and tools that are addressed in this work are conceived to support the 
development of conventional systems (e.g. those that are characterized by traditional configurations 
and technologies), but also innovative ones (Challenge #1). Indeed, the determination of a specific 
solution, either conventional or innovative, happens in the “System Architecting” block of Figure 1. 
Before the determination of a specific solution, the development activities target the definition of the 
system in terms of its expected functionalities and behavior, independently of the technologies 
adopted. This means that the proposed process is built in a way to let the designers identify and 
consider multiple (innovative) solutions, without being biased since the beginning by a specific 
solution characterized by specific technologies. Additionally, the methods that support the 
development process are developed with the aim of enhancing the collaboration among the multiple 
experts involved during the development activities (Challenge #2). In this regard, the transition from 
document-based to model-based methods aims at improving the sharing of data and information 
among the different designers. Finally, it needs to be clarified what the “system” developed through 
the processes, methods and tools can be. It can be an aircraft or part of it (e.g. a subsystem or a 
component). However, the developed “system” can be an enabling system that supports the aircraft 
during its life-cycle. For example, a manufacturing system composed by different manufacturing 
machines and tools have to be developed and built to support the aircraft during its production stage. 
Similarly, a maintenance system can be assembled and operated during the aircraft’s operation 
stage. Hence, the proposed processes, methods and tools should support the simultaneous 
development of more systems interacting with the aircraft during its whole life-cycle (Challenge #3).   
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3. Processes, methods and tools for the System Definition phase 
The System Definition phase aims at defining system technical requirements translating the various 
stakeholder needs. This phase of the development process starts with the identification of the system 
stakeholders. A stakeholder is an “individual or organization having a right, share, claim, or 
interest in a system or in its possession of characteristics that meet their needs and 
expectations” [3]. When considering an aircraft as a system, examples of stakeholders might 
include: airlines, passengers, cabin and ground crews and maintainers. The multiple stakeholders 
express different needs, which are “informal expressions of something that has to be provided, 
ensured or avoided by a system or the development project of this system” [14]. For example, 
airlines might want to maximize profit, while passengers would demand a safe and comfortable flight. 
Since needs are generally unstructured and expressed in fuzzy, general, or ambiguous terms, they 
must be used to originate requirements, which are characterized as unambiguous, complete, 
feasible, verifiable and correct. A requirement is defined as “a statement which translates or 
expresses a need and its associated constraints and conditions” [14]. Different types of 
requirements can be identified, but more generically requirements can be divided between functional 
or non-functional requirements. Functional requirements express the functions that the system 
should perform [15]. A function is what a system does [16]. Non-functional requirements, instead, 
specify parameters that can constrain the designed solution. Among all the non-functional 
requirements, the performance ones define at what level the system has to perform the requested 
functions [15]. Other types of non-functional requirements can be found in [17].  

Properly understanding what the stakeholders want from a system, and correctly translating these 
needs into requirements, have an important role in the design of a system. For this reason, a 
structured approach guiding the complete and clear collection of stakeholder needs and their 
transformation into requirements is recommended by the authors (more information can be found in 
[17]), other than by multiple organizations. The International Standard ISO/IEC/IEEE 29148 [14] 
provides standard guidelines addressing requirements engineering processes. This is also endorsed 
by the International Council on Systems Engineering (INCOSE), which established a Requirements 
Working Group that in 2017 published a guide addressing recommendations and rules for writing 
good requirements [18], so requirements can be correct, complete, unambiguous and verifiable. The 
requirement type mentioned before prescribes how the requirements text has to be written. In fact, 
in order to be complete, requirements should follow a predetermined structure - called pattern – that 
prescribes both mandatory and optional text elements (the latter included in square brackets), as 
shown in Figure 2. Additionally, the text of the requirements should comply to several grammatical 
and syntactical rules, which are collected in [18].  

Figure 2 – Requirement patterns depending on requirement types (adapted from [17]) 

Additionally, a series of attributes characterizes each requirement. Attributes are additional elements 
used to support the management of the requirements. Example of requirements are: identification 
number (ID), parent source (the origin of a requirement), Means of Compliance (means used to verify 
that the designed system is compliant with a specific requirement) and the requirement version. A 
long list of attributes is recommended by INCOSE [18]. 

All the information relative to the stakeholders and needs, and regarding the requirements, 
expressed both through the requirements text and the attributes, can be collected either in 
documents (traditional approach) or in models (as part of an innovative MBSE approach). The 
development methodology proposes the SysML modeling language [19] to represent the models of 
stakeholders, needs and requirements. Although SysML is recommended by INCOSE for MBSE 
activities [1], it is recognized by the authors that the standard SysML profile is not effective to model 

Functional requirements: 
Pattern: The SYSTEM shall [exhibit] FUNCTION [while in CONDITION]  
Example: “The aircraft shall provide propulsive power [during the entire mission]” 

Performance requirements:  
Pattern: The SYSTEM shall FUNCTION with PERFORMANCE [and TIMING upon EVENT TRIGGER] 
while in CONDITION 
Example: “The aircraft shall fly at min Mach 0.8 during cruise”  
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requirements including many of the attributes recommended by INCOSE. Therefore, an extension 
of the profile is proposed and described in [17].  As an example, the SysML diagram of Figure 3 can 
be used as a template to model the text of a performance requirement, which is characterized by 
mandatory and optional elements as system, function, performance.  

 

Figure 3 – SysML Requirement Diagram representing the template prescribed in [17] to model 
performance requirement    

An example of application of requirement model built by following the DLR’s structured approach is 
shown in Figure 4. The example of performance requirement of Figure 2 is modelled according to its 
relative patterns. Therefore, its text “The aircraft shall fly at min Mach 0.8 during cruise” is 
represented by the different elements “system” (i.e. the aircraft), “function” (i.e. to fly), “performance” 
(i.e. Mach) and “condition” (i.e. cruise) 

 

Figure 4 – SysML Requirement Diagram representing the template prescribed in [17] to model 
performance requirement    

Several tools supporting the definition, modeling and management of stakeholders, needs and 
requirements are available in literature, both commercially and with free access. One of the most 
commonly used tools for requirements management is IBM Doors. Although this tool is quite 



PROCESSES, METHODS AND TOOLS SUPPORTING THE DEVELOPMENT OF AERONAUTICAL SYSTEMS 

 

6 

 

 

extensively adopted in industrial contexts, it is still document-based, and it doesn’t support the 
designers with patterns and rules compliancy. Other tools instead implement a model-based 
approach, e.g. Papyrus, IBM Rhapsody, CAMEO System Modeler. These tools allow the traceability 
with other system elements (e.g. functions and components), but the modeling of requirements by 
following a structures approach is still an almost full manual task performed by the users.  To 
overcome these limitations, a new tool named ARMADE [20], is being developed by DLR. It is web-
based to allow the collaborative definition and management of stakeholders, needs and 
requirements, and it supports the modeling of requirements according to the method described in 
this paper. ARMADE implements the patterns described in [17], but it allows also the modeling of 
requirements according to any structure decided by the users. This gives even more flexibility to this 
part of the development process, making possible to adopt the tool in different programs involving 
different organizations using their own structure.   

4. Processes, methods and tools for the System Architecting phase 

The next phase of the proposed development process aims at defining and modeling functional, 
logical and physical system architectures. Functions are extracted from functional requirements and 
used to generate functional architectures, which represent all the functions that the system should 
fulfil, regardless of its implementation, i.e. independently from what components of the system will 
fulfil that function. Indeed, it is aim of the logical architecting phase of the methodology to identify 
solution-neutral components (called logical components) that can fulfil the functions. Logical 
architectures are finally transformed into physical ones, by identifying instances of the previously 
determined logical components. 

A novel process for the generation of system architectures is accurately described in [21] and [22]. 
This process is divided in three parts: functional, logical and physical architecting. The functional 
system architecting process aims at identifying all the functions that the system should perform. 
These functions are called boundary functions and derive from the previously determined functional 
requirements. These functions focus on a single level of elaboration of the system under 
development, e.g. aircraft or propulsion system levels. For example, if the focus is on an aircraft 
level, boundary functions might encompass: to transport payload, to generate lift and to provide 
thrust. Alternatively, the focus might be on a fuel system, and the examples of boundary function 
might be to store fuel and to transport fuel. Once boundary functions have been determined, they 
have to be allocated to logical components. For example, the aircraft-level function provide thrust 
can be allocated to the logical component engine. This part of the architecting process is called 
logical architecting. Additional functions can be identified even during this part of the process, as 
components might induce other functions (called induced functions) that, in turn, are fulfilled by other 
components. For example, an engine would induce the function provide fuel, which would be 
allocated to a fuel system. Finally, the physical architecting part of the system architecting process 
identifies suitable physical components compliant with the non-functional requirements. A physical 
component instantiates a logical one by specifying characteristics as performance, dimension, 
material attributes. For example, the CFM56 is a physical component characterized by certain mass, 
thrust, fuel consumption, which instantiates the logical component engine. 

Several methods are proposed in literature to support a system architecting process. Some methods 
focus on the definition of functions from functional requirements, e.g. FAR (Functional Architecture 
by use case Realizations) [23]. Other methods address the functional architecting process, like the 
FAS (Functional Architectures for Systems) [24]. Other methods can be adopted to support the whole 
process, e.g. SYSMOD [25].  All these methods support the development of single architectures. 
The methods created by the DLR research group to which the authors belong instead supports the 
modeling of the Architectural Design Space [26]. This design space defines all the possible 
components that can be part of an architecture given a list of boundary functions. This means that 
more than one alternative component can be allocated to a given function. For example, the function 
generate thrust can be allocated to a turbojet engine or a turbofan engine. Therefore, an Architectural 
Design Space represents multiple system architectures, which can be both conventional and 
innovative. The main advantage of this approach lies in the fact the system architect is not biased by 
specific (often conventional) solutions, but many more unconventional but promising solutions can 
be conceived as well, perhaps resulting in the end better than the other ones. 
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The proposed method employs the modeling language called Architectural Design Space Graph 
(ADSG) for the representation of the various alternative architectures. An example of an ADSG 
representing various hybrid-electric propulsion system architectures is depicted in Figure 5 [27]. The 
graph includes several modeling elements, which are described in [28]. Among all of them, the 
elements FUN represent both boundary and induced functions, while the elements COMP represent 
system components, which are connected to the functions through two different types of connections. 
The connection fulfilled by represents the allocation of a function to a component. The connection 
needs represents the induction of a function. In the specific example, the hybrid-electric propulsion 
system under development has to fulfil the function “Provide Propulsion”, which can be done by a 
“Propeller” component that needs the induced function “Gen(erate) Power”. This function can be 
fulfilled by an electric motor (“Motor” component), or by a turboshaft (“Mech Turboshaft” component), 
or by both. During the generation of single architectures, the selection of one of these components 
entails the need of additional components fulfilling induced functions. For example, if the electric 
motor is selected, all the components relative to the electric drive (e.g. DC Bus, Inverter, Batteries) 
are required. Analogously, when the turboshaft is chosen to be part of the architecture, a fuel system 
shall be included as well.  

 

Figure 5 – ADSG representing various architectures of a hybrid-electric propulsion system [27] 

Eventually, the proposed system architecting method aims at generating single instances of system 
architectures. This can be done by taking architectural decisions, i.e. by deciding which components 
among all the possible alternatives can fulfil the system functions. Generating architectures can be 
a manual task, when the system architect manually selects the components being part of the 
architecture, or an automated one, when architectural decisions are taken by an algorithm. The latter 
case can belong to a System Architecture Optimization (SAO) problem, in which the alternative 
architectures are part of the optimization problem together with other design variables. This method 
entails the integration of system architecting into an MDAO approach (which is addressed in section 
5), which accelerates the assessment of multiple alternative solutions. More details about SAO can 
be found in [29] and [22], whereas research about optimization algorithms for system architectures 
is published in [30], and [31]. 

Many tools are being developed by commercial parties and by the research community to support 
system architecting activities. The majority of these tools (e.g. CAPELLA, IBM Rhapsody, CAMEO 
system modeler) can be used to model single architectures in a standard modeling language (e.g. 
SysML). A web-based tool developed by DLR is named ADORE [29], which supports the system 
architect in modeling the Architectural Design Space and (automatically) generating system 
architectures by taking architectural decisions. ADORE can be included within an MDAO toolchain 
to enable architectures optimization, as described in the following section. To the authors knowledge, 
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there are no other tools in literature supporting the modeling of the Architectural Design Space, the 
automatic generation of architectures, and the inclusion of system architecting into an MDAO 
process. 

5. Processes, methods and tools for the Design and Optimization phase 

The transition from logical to physical architectures, i.e. the instantiation of components through their 
characterization in terms of specifications as mass, performance and dimensions, can be done by 
exploiting an MDAO approach. The Design and Optimization phase of the proposed development 
methodology aims at supporting the formulation and execution of MDAO workflows for the design 
and optimization of all the previously generated architectures, ensuring that they comply with the 
non-functional requirements. Therefore, this phase of the development methodology entails a 
change of perspective. In the previous phase, the perspective was architectural, since the focus of 
the development methodology was on the characterization of system’s components, e.g. fuselage, 
wing, engine. In this phase, the perspective becomes disciplinary, since the focus moves from the 
architectural components to all the engineering disciplines (e.g. aerodynamics, structures, flight 
mechanics) needed to design and optimize the generated system architectures. It is therefore aim 
of this second phase to formulate multidisciplinary workflows (e.g. identify the required disciplines) 
and execute them (i.e. to execute toolchains consisting of tools implementing the various disciplines). 

Several methodologies are being developed since years to support the formulation and execution of 
MDAO workflows. Ciampa et al. [32] have seen an evolution of these methodologies in time, and 
they have identified three generations of MDAO, characterized by increasing level of distribution of 
tools and collaboration between disciplinary experts. The interest of the authors lies in the 
methodologies belonging to the last generation, which support and enhance the collaboration 
between all the disciplinary experts involved in the MDAO, by overcoming several non-technical 
barriers identified in [33]. In general, disciplinary experts tend to focus on their individual disciplines, 
with the risk of missing the overview of the complete MDAO problem and the interactions with all the 
other disciplines. A process and methodology for the acceleration of MDAO formulation and 
execution was developed by DLR in the past and is called the AGILE paradigm [34]. This process 
and methodology are still in use and under further development by the research group to which the 
authors belong [35], [36]. An example of current development regards the dynamic formulation of 
MDAO workflows, which are automatically adapted to the specific system architecture proposed by 
the optimizer at each iteration of a SAO problem. More details can be found in [37]. 

The methodology proposed by the research group can be divided into two parts. The first aims at 
formulating and modeling an MDAO problem in the form of an XDSM (eXtended Design Structure 
Matrix). This formulation was introduced by [38], and it consists of a graphical representation of the 
MDAO problem in terms of the involved disciplines, the connections (in term of exchanged inputs - 
outputs) between disciplines, and the resolution strategies, e.g. converged analysis, optimization, 
Design of Experiment (DOE). An example of XDSM representing an optimization problem of a 
hybrid-electric powered aircraft is depicted in Figure 6 [35]. The process for the MDAO formulation 
and its modeling through an XDSM starts with the identification and collection of disciplines required 
to solve a particular MDAO problem, in this case “Performance”, “Engine”, “Hybrid System”, 
“Mission” and “Masses”. Every discipline is characterized by several inputs and outputs. Knowing 
these input and outputs allows to establish the connections between the different disciplines. For 
example, the “Engine” discipline estimates the Specific Fuel Consumption (SFC), which is updated 
by the “Hybrid System” discipline, before being used by “Mission” to compute the mission fuel mass. 
These connections can be easily realized when the various disciplines adhere to a common data 
schema, e.g. a standard structure of all the variables (e.g. masses, geometries, dimensions) relative 
to the system being designed. The CPACS standard is one example of a common data schema [39]; 
CPACS was developed by the DLR and it is used by several organizations (e.g. [40]). A first version 
of an XDSM can be built represent all the required disciplines and their connections. Further activities 
are then performed, resulting in an update of the XDSM. These activities include: 

- Order the disciplines: several strategies can be adopted to order the disciplines and contribute 
to accelerate the execution of design and optimization. For example, one strategy would be the 
minimization of feedback loops, which happen when a variable needed by a discipline is 
computed by another discipline executed later during the MDAO problem. 
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- Inspect the connections and resolve collisions, which happen, for example, when multiple 
disciplines update the same variable. 

- Architect the MDAO problem, defining convergence loops according to different strategies (e.g. 
Gauss-Seidel and Jacobi), formulating optimizations by determining design variables, constraints 
and optimization objectives, and defining the various design experiments of a DOE.  

 

Figure 6 – XDSM representing an MDAO problem for the optimization of a hybrid-electric powered 
aircraft [35] 

The MDAO problem previously formulated and represented in an XDSM format consists of a 
blueprint of the MDAO workflow that has to be implemented and then executed. The second part of 
the proposed MDAO method focuses the execution of the MDAO problem. This means implementing 
all the disciplines with executable disciplinary tools. These tools might be owned by different 
departments or organizations, and be implemented through different coding languages. Therefore, 
all the tools belonging to a common MDAO workflow have to adhere to the common data model, and 
should be executed without any user interaction, in order to maximize the level of automation. In 
addition, the different disciplinary tools belonging to the different organizations might be located in 
different places, for intellectual property reasons. Methods and tools are required to support the 
execution of MDAO workflows with disciplinary tools spread in multiple locations, as described in 
[41].  

Many modifications might affect the formulation and execution of an MDAO problem, e.g. the addition 
or removal of a discipline. Therefore, the methodology should allow the flexibility needed to quickly 
account for any change. In addition, several activities might require user intervention, but they might 
be accelerated in case automation would be leveraged. Finally, continuous verification of the MDAO 
problem (e.g. check that variables are correctly exchanged between disciplinary tools) and 
documentation are needed to ensure the correct formulation and execution of the design and 
optimization process. Therefore, several commercial and research tools are being developed to 
support, accelerate and improve MDAO activities. For example, among the tools developed by 
academic and research organizations it is worth mentioning TU Delft’s KADMOS [42], NASA’s 
OpenMDAO [43], ONERA’s WhatsOpt [44] and IRT’s GEMSEO [45]. Two MDAO tools are also 
developed by DLR: one – named MDAx [35] - supporting the formulation of collaborative MDAO 
workflows, and one – named RCE [46] – supporting the execution of MDAO workflows. The 
collaboration in the MDAO processes between various disciplinary experts is enabled by MDAx by 
supporting the formulation of workflows based on CPACS or other standard schemas for the 
collaborative exchange of aircraft design data. Another main feature of MDAx is the automatic 
generation of ready-to-be-executed workflows, which can be imported in OpenMDAO, RCE, or into 
other MDAO tools. Additionally, a continuous verification of the XDSM model built through the 
interactive Graphical User Interface (GUI) of MDAx reduces the risk of making design errors, hence 
reducing the time required to formulate and execute an MDAO workflow.  
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6. Value-Driven trade-off and decision-making 

All the processes, methods and tools previously described can be leveraged for the conceptual 
design of a new aircraft (or part of it), mainly with focus on the operation stage of its life-cycle. For 
example, the aircraft might be developed in order to maximize its flight performance, e.g. minimizing 
the fuel consumption. However, additional life-cycle stages have to be considered, such as 
production and support (e.g. maintenance). During these stages, other systems (i.e. the enabling 
systems introduced in section 1) interact with the new aircraft. The methodology addressed in this 
paper can be adopted to develop enabling systems, too. In other words, the same processes, 
methods and tools can be used to define stakeholders, needs, requirements, functions, components 
and specifications of the enabling systems. An example of enabling system is an aeronautical supply 
chain, which is defined as a combination of multiple organization spread in different locations and 
with the various competencies required to produce an aircraft, its subsystems and its components.  

In most cases, the aircraft is developed first, and after all its enabling systems. This for example can 
happen with the development of the supply chain and manufacturing systems (i.e. consisting of 
different manufacturing machines and tools). In fact, architectural and design decision addressing 
these enabling systems are taken only once the aircraft architecture has been frozen [47]. Although 
this approach might entail an optimal aircraft solution from its operational perspective, this solution 
might not be compatible with production constraints (in term of feasibility of realizing the aircraft). As 
a consequence, the aircraft would have to be redesigned, hence entailing an increase of 
development costs [48].   

Therefore, a different approach is investigated by the authors (described in details in [49] and [50]), 
in which the development process addresses simultaneously multiple systems (i.e. the aircraft and 
the enabling systems) and constraints belonging to multiple life-cycle stages. This means that all the 
life-cycle stages (not exclusively the operational one) are accounted during the development of the 
aircraft, and other enabling systems are developed since the beginning of the whole process. 
Although this approach entails the advantage of determining the “best” solution, which is the one not 
focusing on a single system (e.g. the aircraft) and addressing only operational constraints, a new 
challenge arises. This challenge lies in the formalization and modeling of the existing complex 
interconnections between the various systems already at the beginning of the aircraft life-cycle 
(particularly at the conceptual design stage), before the production of the aircraft starts. 

In order to simultaneously develop multiple systems, accounting in the design for the various 
constraints belonging to the different life-cycle stages, the proposed methodology is based on the 
value-model theory. In the specific, this theory is leveraged to weight and combine together (into a 
parameter called value) various constraints belonging to different systems and different life-cycle 
stages, constraints that are derived from different stakeholder needs. The equation (1) is taken from 
the Multi-Attribute Utility (MAU) value model [51] and is used to compute the value, a number ranging 
between its 0 and 1, where 1 identifies the “best” solution accounting for the different systems and 
constraints. Since various architectural and design decisions can be taken for each system 
addressed in the development, and different weights can be assigned to the various constraints, 
multiple solutions can be generated and evaluated, each one characterized but its own value. A 
trade-space with various solutions and different values can therefore be explored and assessed, 
supporting the decision-makers in taking decisions to eventually select the “best” solution. 

 

 
𝑣𝑎𝑙𝑢𝑒 =∑𝜆𝑖𝑈(𝑋𝑖)

𝑁

𝑖=1

 (1) 

 

where: 

- 𝑁 is the number of constraints belonging to various systems and life-cycle stages, and derived 
from different stakeholder needs; 

- 𝑋𝑖 is a specific constraint, e.g. fuel consumption (constraint belonging to the operational life-cycle 
stage of an aircraft) or production quantity (constraint belonging the production life-cycle phase of 
an aircraft and impacting on manufacturing system and supply chain);  
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- 𝑈(𝑋𝑖) is the single-attribute utility function, which is used to quantify decision-makers’ 
expectations with respect to each constraint. Each of these functions represents the way decision-
makers would select a solution by only considering the specific constraints. These functions are 
used to translate the qualitative decision-makers’ preferences into analytical curves, like the one 
of Figure 7. The example in the figure shows how much the decision-makers are “satisfied” (this 
is measured with the dimensionless parameter utility of the y-axis) by the time (represented in the 
x-axis, normalized) that the production stage might require. Higher is the production time, lower 
is the satisfaction of the decision-makers, and therefore lower is the resulting utility parameter. 

- 𝜆𝑖 is the weight associated to each constraint 𝑋𝑖. The weights represent the relative importance 
of each constraint, since the decision-makers might want to give more emphasis on e.g. the 
aircraft performance, or the production cost, or the production quality. 

 
Figure 7 – Example of a single-attribute utility function quantifying the decision-makers’ expectation 

with respects of the production time parameter [49] 

After having architected and designed different alternatives of systems (aircraft and enabling 
systems), and for each solution having determined its value, a trade-space exploration can be 
performed. Figure 8 shows an example of trade-space. The graph on the center-right side represents 
19 possible solutions, all of them representing a single designed aircraft, but manufactured by 
different manufacturing systems and supply chains. Every solution is assessed in terms of production 
cost (which is represented by the normalized parameter of the x-axis) and of value (which is compute 
with equation (1), built with the single-attribute utility functions represented on the left side of Figure 
8, and reported on the y-axis). The resulting trade-space can be analyzed by the decision-makers 
when selecting the “best” solution. In this specific case, solution #1 is the one characterized by the 
highest value, although the decision-makers may opt for other solutions (e.g. solution #19), with 
slightly lower value but significant lower production costs.  

 
Figure 8 – Example of a value-driven trade-space representing multiple design solutions with different 

production cost and value [49] 

This methodology allows decision-makers in analyzing multiple scenarios, where single-attribute utility 
functions and weights can be changed. To the authors knowledge, there are not tools in literature 
implementing the described process and method for value-driven trade-off and decision-making. 
Therefore, the authors have developed the in-house tool VALORISE [49], which interactively supports 
the decision-makers in identifying constraints, building the different utility functions, and visualize the 
trade-spaces by changing weights.  
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7. Conclusions 

A new methodology supporting the development of aeronautical systems addressing their entire life-
cycle has been presented in this paper. The paper aimed at providing an overview of the processes, 
methods and tools addressed by the research group where the authors belong to. More details are 
described in the references reported in the different sections. Multiple are the advantages of this 
methodology. These advantages – which will be quantitatively assessed in future – include: 

- Increased traceability between design/architectural data and decisions, since they are part 
of models (e.g. requirements model, architectures model) that are connected together (e.g. 
requirements derive functions, which are allocated to components of an architecture).  

- Complete collection of all stakeholder needs and derived requirements, since a Systems 
Engineering approach gives particular emphasis on this part of the system development process. 

- Automatic verification of the models, identifying soon potential errors that might happen during 
the development process, hence minimizing the risk of time-consuming redesigns. 

- Increased exploration of the design space, which can include many more innovative 
architectures that can be designed and optimized. 

- Acceleration and improvement of the development process (e.g. the formulation of an 
executable MDAO workflow), mainly by automating (repetitive) activities. 

- Enhanced collaboration between multiple experts, since they produce/collect information 
from/into models rather than documents. 

- Re-use of models in other projects or programs, hence reducing the development time. 

- Simultaneous modelling of multiple systems, hence allowing the tradeoff of different solutions 
that include constraints belonging to the whole life-cycle. 

- Reduce the entry barrier for “non-MBSE experts” thanks to the developed tools, barrier that 
is caused by the introduction of a new approach (i.e. a model-based one) and new modeling 
languages (e.g. SysML). 

- Inclusion of the experts into the design/architecting loops, since automation can provide 
support, but the ultimate design and architecting decisions are taken by the experts, who are 
informed by the models. 

The research group at DLR is still working on improving, developing and testing processes, methods 
and tool. In particular, future activities will address the inclusion of new methods (e.g. based on the 
support given by Artificial Intelligence) and new modeling languages (i.e. SysML v2). More application 
cases will be addressed, tackling the development of systems bellowing not only to the aeronautical 
domain, but also to other domains, space, transport and energy. These application cases will be talked 
to test the methodology, to quantify its benefits, and to identify limitations that will require further 
research. 
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