
Exploring SysML v2 for Model-Based Engineering
of Safety-Critical Avionics Systems

Alexander Ahlbrecht
German Aerospace Center (DLR)

Institute of Flight Systems
Braunschweig, Germany

alexander.ahlbrecht@dlr.de

Bojan Lukić
German Aerospace Center (DLR)

Institute of Flight Systems
Braunschweig, Germany

bojan.lukic@dlr.de

Wanja Zaeske
German Aerospace Center (DLR)

Institute of Flight Systems
Braunschweig, Germany

wanja.zaeske@dlr.de

Umut Durak
German Aerospace Center (DLR)

Institute of Flight Systems
Braunschweig, Germany

umut.durak@dlr.de

Abstract—For complex and safety-critical avionics systems, dis-
tributed developments are unavoidable. To coordinate the frag-
mented development process, a seamless information exchange is
necessary. A promising paradigm to coordinate the development
activities is Model-Based Systems Engineering (MBSE). How-
ever, exchanging information with current MBSE practices still
presents interoperability challenges. The second version of the
Systems Modeling Language (SysML v2) introduces potential
solutions to these challenges. A key feature is the standard-
ized Application Programming Interface (API), presenting an
opportunity for server-based data exchanges. Since it is not
yet explored how the SysML v2 features can be utilized for
the development of avionics systems, this paper provides an
overview. Therefore, a SysML v2 avionics application concept
is outlined, exercised, and discussed. Overall, SysML v2 shows
potential to complement model-based avionics practices through
novel features and the standardized API. Still, domain-specific
adjustments are necessary to apply the general-purpose language
in the avionics context.

Index Terms—Avionics, MBSE, SysML v2, API, CI/CD

I. INTRODUCTION

The rapid advancement of avionics technology has led to
an exponential increase in system complexity with increasing
numbers of software-defined functions and interconnected
components. As a result, the traditional methods for designing,
testing, and certifying avionics systems are struggling to keep
pace [1]. Particularly, the fragmented development environ-
ments are leading to inefficiencies, errors, and inconsistencies
during the complex system developments [2].

A paradigm to address the issue of fragmented devel-
opments is Model-Based Systems Engineering (MBSE). It
promises to connect multiple development stages by applying a
model-based and therefore semi-formal format for storing and
exchanging information [3]. Such a model-based information
exchange is especially interesting for the development of
complex systems, where model-based approaches are applied
at every development level. In practice, however, a seamless
integration of model-based development activities is often not

achieved. Reasons are the different model-based representa-
tions at every development stage as well as the limited stan-
dardization, acceptance, and tool implementation of exchange
formats. As a result, the transition of novel methods from
academia to industry is challenging [4].

To tackle the aforementioned challenges, a standardized
and widely accepted way of storing and exchanging model
information is needed. In this context, the second version of
the Systems Modeling Language (SysML v2) has the potential
to contribute as a standardized, precise, expressive, and, most
importantly, interoperable modeling language. However, it
is not yet explored how SysML v2 can be applied in the
context of safety-critical avionics developments. Accordingly,
this paper contributes by:

• Highlighting key features of SysML v2
• Introducing a SysML v2 avionics application concept
• Demonstrating the concept with an example
• Discussing domain-specific areas of improvement
The paper is structured in the following manner. Initially,

some background information about the current avionics engi-
neering practices and the SysML v2 are provided in Section II.
Section III presents related work and current limitations.
Then, a concept is proposed outlining how SysML v2 can be
applied in the context of model-based avionics engineering in
Section IV. Afterwards, the proposed concept is demonstrated
in a small use case in Section V. Finally, the opportunities and
limitations of SysML v2 are discussed in Section VI and the
paper is concluded in Section VII.

II. BACKGROUND

A. Avionics Engineering

The development of avionics systems has to conform to
strict standards and guidelines. Following the standards and
guidelines helps to generate a suitable, safe, and certifiable
avionics system. Since the use case in this paper will cover the

ahlb_al
Typewriter
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

(a) Textual notation

(b) Graphical notation
(c) Server notation

Fig. 1: Different SysML v2 representations of the same system model

model-based configuration of an Integrated Modular Avionics
(IMA) system, the most important standards for the context
of this paper are the DO-297 (IMA Development Guidance
and Certification Considerations) [5], DO-330 (Software Tool
Qualification Considerations) [6], and the ARINC 653 (Avion-
ics Application Software Standard Interface) [7].

IMA is an in innovative architecture principle allowing a
modular integration of applications onto a shared computing
platform. In IMA systems, modularity is a key principle for
hardware and software [2]. This principle leads to improved
system integration, reliability, and maintenance properties [8].
A common way of implementing the software application
interface on an IMA platform are ARINC 653 partitioned
environments [9]. By adhering to ARINC 653, it is ensured
that different software modules, known as partitions, operate
independently and do not interfere with each other [10].

During the development of IMA systems, model-based
approaches are applied at multiple stages of the development.
First, a high-level model is established by describing require-
ments, structure, behavior, and parameters of the system. At
this stage, initial architecture decisions are made (e.g. using
trade-off analyses). For the implementation phase, the high-
level architecture models are iteratively refined. In parallel,
parameters and behavior are modeled and used for verification
and validation (e.g. simulation, model-checking). Ultimately,
a final representation of the systems is created, implemented,
and deployed on the avionics hardware [8].

For each development stage, dedicated modeling techniques
and domain-specific languages exist. Even though there are
many attempts to improve the connection and consistency
across the development stages, the lack of sufficient stan-
dardization complicates the interoperability. One reason is the
varying formal bases of the models, both at the syntactic and
semantic level. Furthermore, each tool vendor implements the
storing and access to model information in a different way,
reducing the interoperability even further.

B. SysML v2

SysML v2 is a general-purpose modeling language enabling
the specification, analysis, design, and verification of complex

systems [11]. The language supports to model requirements,
structure, behavior, and parameters of the system. Simultane-
ously, domain-specific extensions are enabled with the library
concept. In comparison to SysML v1, SysML v2 is imple-
mented in the newly developed Kernel Modeling Language
(KerML). By building on top of KerML, novel features such
as textual notation are enabled. The textual notation can be
used in parallel to the graphical notation as shown in Fig. 1.

Overall, SysML v2 addresses various limitations and chal-
lenges of SysML v1. Improvements aim at enhancing usability,
expressiveness, and integration capabilities [12], [13]. The us-
ability is improved with aspects such as refined language con-
structs and more consistent terminology. In terms of enhanced
expressiveness, the language now supports the modeling of
system variants, analysis cases, verification cases, and views.
Finally, for improved integration capabilities, a standardized
Application Programming Interface (API) was defined for the
SysML v2 [14]. The standardized API and related concept
of a central model server introduce new opportunities for the
application of the language.

A generic application concept for the language is presented
in Fig. 2a. In this concept, the model server and standardized
API are not only allowing to improve the exchange between
dedicated SysML v2 tools but also enable to connect do-
main tools or programming languages. Such a standardized
exchange also facilitates the development of tools that only
focus on a specific aspect of the system development process.
Thereby, opportunities are created for innovative tools by
small companies, universities, or open-source communities.
Simultaneously, the established industry vendors show interest
in supporting the SysML v2, due to the advanced capabilities
and interoperability ambitions of the language. To get started
with the SysML v2, material such as [15] as well as the
documentation at the SysML-v2-GitHub1 are recommended.

III. RELATED WORK

Since the goal of this paper is to highlight model-based
development and integration possibilities for avionics systems,
the related work will focus on similar and complementary

1SysML v2: https://github.com/Systems-Modeling/SysML-v2-Release

(a) Generic SysML v2 application concept (b) Avionics SysML v2 application concept

Fig. 2: Comparison of generic and avionics specific SysML v2 application concepts

approaches. For the model-based development of avionics
systems, Domain-Specific Languages (DSLs) are a promising
solution. A DSL in the avionics domain is the Open Avionics
Architecture Model (OAAM) [16]. OAAM can be used to cre-
ate, manage, and configure avionics models. Creating OAAM
models is supported by tools [17], a dedicated query language
[18], and tool qualification concepts [19].

In addition to DSLs, general-purpose modeling languages
can be used and extended to model avionics systems. One
example is the Architecture Analysis & Design Language
(AADL). For instance, [20] shows how the ARINC 653
software concepts can be modeled and validated using AADL.
Since the SysML v2 is also a general-purpose modeling
language, some similarities to the AADL exist and related
work highlights the integration and transformation opportuni-
ties between the languages [21], [22].

When the avionics system is represented in a model, the
model can be used to support domain-specific activities such
as the system and software configuration [10], [23], [24],
network optimization [25], [26], or simulation [27]. At the
same time, model-based approaches facilitate the overarching
system design process as outlined in [28] as well as the
AvioNET [29], [30] and eSAM approaches [31].

Considering the related work, it is apparent that multiple
domain-specific tools and languages exist for the model-
based development of avionics systems. It is also notewor-
thy that connecting the development activities is of interest
and concepts exist in the related work. However, current
solutions are often not standardized and require dedicated
connector applications to industry tools. These connectors
often implement only a subset of the DSLs, and are prone to
breakage on software updates. After all, they attempt to create
interoperability, where it was not an explicit design goal of
the DSLs in the first hand. The goal would be a standardized
exchange between all relevant industry and open-source tools.
For this goal, the API of SysML v2 could be very relevant.

IV. SYSML V2 AVIONICS APPLICATION CONCEPT

After showcasing related work in the previous section, this
section will cover how the SysML v2 could be applied in the
context of model-based avionics engineering. A SysML v2
driven avionics engineering concept is highlighted in Fig. 2b.
The four main components are the SysML v2 Avionics Library,
the SysML v2 Front-End Tools, the SysML v2 Server Backend,
and the Avionics Domain Tools. By establishing a SysML v2
Avionics Library, the domain-specific concepts are integrated
into the general-purpose language. As a result, the SysML v2
Front-Ends are able to model, visualize, and check all relevant
aspects of the avionics system. In parallel, the avionics model
is serialized and stored in the SysML v2 Server Backend.
Finally, the server model is accessed by Avionics Domain Tools
to assist in tasks of the avionics development. In the following,
a more detailed description of each component is provided.

A. SysML v2 Avionics Library

For the development of an avionics system various aspects
have to be designed, implemented, and configured. First,
requirements must be collected and used to design the system
architecture. Then, the system architecture has to be refined,
configured, and tested. On the higher architecture levels, func-
tionality is collected and allocated to different devices. At the
same time, the data exchange is defined and specific solution
technologies are selected. Then, avionics-specific properties
are configured for each device such as the runtime environment
(operating system, etc.), interfaces (software, hardware, etc.),
resources (memory, scheduling, etc.), and monitors (health,
safety, security, etc.).

Since the SysML v2 is a capable general-purpose lan-
guage, all of these aspects can be represented. However,
the application benefits from a domain-specific adjustment of
the language to systematically represent the relevant avionics
elements and properties. The SysML v2 supports the extension
with domain-specific libraries. For instance, a domain-specific

SysML v2 library for the OAAM [16] DSL could be created
as demonstrated for the OAAM HardwareLayer in Fig. 3.

Fig. 3: HardwareLayer of OAAM [16] as SysML v2 library

B. SysML v2 Front-End Tools

By using dedicated SysML v2 tools in combination with
a domain-specific library, a SysML v2 conform avionics
model can be created, visualized, and checked. Since typical
industry vendors of MBSE tools are looking to support the
SysML v2, their tools will fall under this category. Such
MBSE tools bring capabilities to create and visualize models,
execute design trade-offs, check the conformity of models, etc.
Since the SysML v2 language was extended in usability and
expressiveness as described in Section II-B, these advantages
will also be present in dedicated SysML v2 tools. During the
creation of the standard, a proof-of-concept implementation
was set up to enable to try out the language. In this paper,
this implementation was used to create the SysML v2 visual-
izations. An example can be seen in Fig. 3.

Moreover, in contrast to current solutions, the model cre-
ation and visualization should not be limited to one specific
tool. Instead, the idea is that multiple tools can contribute and
exchange models via a SysML v2 server. This could also help
to ease the distributed working that is common during complex
avionics developments. For the development of IMA systems,
this could help to respect the different roles defined in DO-
297 [5] where each involved company can use their preferred
tooling. Moreover, avionics-specific SysML v2 tools can be
developed and integrated with complex industry tools.

C. SysML v2 Server Backend

A central component to enable the distributed working
and tool interoperability are SysML v2 servers and their
standardized API. They are used to store all relevant model
information and keep the model updated across multiple tools.
Therefore, a git-like commit process can be utilized. Such
a server concept also enables other aspects that are very
relevant for avionics developments. Namely, the development

can branch out, where different features of the design are
developed in separate branches. Once ready, the branches can
be merged.

Another server concept is versioning. Versioning helps
to achieve systematic configuration management which is
demanded by typical aviation standards. Moreover, different
roles could be established for the different companies involved
in the avionics development to manage controlled read and
write access. In this regard, properties such as privacy of data
would also have to be considered and managed. For instance,
the server could store the data in an encrypted form and only
provide the data to the entitled development participants.

Another approach facilitated by a central server with git-like
commits is Continuous Integration (CI) and Continuous De-
ployment (CD). CI/CD can be used to automatically check and
merge changes (CI) and deploy the resulting/derived artifacts
(CD). In the context of avionics, CI/CD pipelines could be
set up to check architecture designs, generate configurations,
or automatically execute a deployment. An example pipeline
is shown in Fig. 4. After a model commit, the consistency
of the provided information is checked. When the consistency
check was successful, the architecture optimization is executed
and updates the model parameters where required. Then,
the configuration is generated. A final check confirms the
suitability of the configuration, deploys the configuration, and
generates a final report. The CI/CD approach also supports
the collection of statistics for commits, test cases, and other
aspects. Upon failure in one of the pipeline steps, detailed
feedback can be provided immediately.

D. Avionics Domain Tools

Since the main goal of this paper is to tackle the fragmented
avionics developments, the integration of avionics domain
tools is a key component of the SysML v2 avionics concept.
In the related work described in Section III, some avionics-
specific tools were introduced for activities such as network
optimization [25], system and software configuration [23],
[24], or analysis via simulation [27].

In the proposed concept, domain-specific tools are con-
nected via the standardized API. Required model information
is queried and resulting updates in the models are committed
to the server. Because the standardized API can be accessed
easily with e.g. REST/HTTP requests, the domain-specific
tools can be implemented with any programming language
of choice. Overall, the process of connecting domain-specific
tools to a central SysML v2 server enables to keep the specific
advantage of each domain-specific tool while establishing an
overarching and consistent system view.

V. SYSML V2 AVIONICS CONCEPT DEMONSTRATION

Since the demonstration of all aspects of the concept for
the whole avionics development is not feasible in one paper,
this paper focuses on demonstrating the concept with a part
of the avionics development. Concretely, the focus is on the
configuration of software partitions according to the ARINC
653 standard. For demonstration purposes, an open-source

Fig. 4: CI/CD pipeline example for configuration generation

ARINC 653 Linux hypervisor2 will be used. The goal in this
demonstration is to model and configure the server-client ping
example of the ARINC 653 Linux hypervisor.

A. ARINC 653 Hypervisor Library

To be able to model the specific aspects of the Linux
hypervisor, a corresponding SysML v2 library was created.
The library is displayed in the textual notation of SysML v2
in Fig. 5. Initially, the import keyword is applied to define the
String and Integer types for the attributes. Then, the main
components (parts) are defined which are Hypervisor and
Partition. Each hypervisor can have multiple partitions while
both have timing attributes. In addition, ports are also defined.
The two specializations (:>) of the PartitionPort type are the
QueuingPort and SamplingPort. Both port types inherit the
msg size attribute.

Fig. 5: SysML v2 Linux hypervisor library

B. SysML v2 Front-Ends

After creating a SysML v2 library, the corresponding types
can be used to model the server-client example. For the
demonstration, the proof-of-concept implementation was used
to instantiate the hypervisor model as shown in Fig. 6. In
the example, a LinuxHypervisor is modeled that has partitions
for the server and client. Each partition property is redefined
(:>>) with a specific value. For instance, the period of the
partition ping server is set to be 700ms and therefore fits to
the major frame of LinuxHypervisor. Each partition also has
a request and response port. These ports connect the partitions
to each other as displayed in Fig. 6.

2ARINC 653 Linux Hypervisor: https://github.com/DLR-FT/a653rs-linux

Fig. 6: SysML v2 model of LinuxHypervisor

Fig. 7: Commit of LinuxHypervisor model to server

After all necessary information is added, the model can be
uploaded to the server. This functionality is also included in
the proof-of-concept implementation and used to publish the
model in the form of a commit as shown in Fig. 7. Due to
the git-like server behavior, dedicated identifiers are created
for the commit and the project.

The model that was uploaded on the server can then also
be accessed using arbitrary tools. For instance, we can take a
look at the uploaded projects and elements on the server with

Fig. 8: SysML v2 server elements

the open-source SysML v2 adaptation of the nu-shell3. The
server projects are shown in Fig. 9 and include the previously
committed project with the id “aebc5d1a-[...]”. In addition, an
extract of the project elements is shown in Fig. 8.

Fig. 9: SysML v2 server projects

C. SysML v2 Server Backend

As demonstrated in the previous section, the SysML v2
models are uploaded and managed by a server backend. With
the nu-shell SysML v2 front-end, some of the server properties
are also shown. Each component of the SysML v2 model
results in an identifiable server element as shown in Fig. 8.
This confirms the server notation view of Fig. 1c. At the same
time, the server stores multiple projects in a git-like format and
with distinct identifiers as shown in Fig. 9.

The key component for creating, updating, or deleting in-
formation is the standardized API. By using a commit process,
the integration with CI/CD concepts is enabled. Because, the
goal of this example is to generate an executable configuration
for the ARINC 653 Linux hypervisor, a CI/CD pipeline similar
to Fig. 4 can be created.

D. Avionics Domain Tools

For the configuration process, a domain-specific implemen-
tation was used. The corresponding pseudo-code is shown in
Alg. 1. This implementation uses the model information as
input and converts it into a configuration that is compliant
with the ARINC 653 Linux hypervisor. To get the information
from the SysML v2 server, the HTTP/REST API is utilized. As
a result, an executable configuration is generated as shown in
Fig. 10. In this example, a programming language was used to
connect to the model server. However, domain-specific tools
can also be connected as long as an interface to the model
server is implemented.

3SysML v2 nu-shell: https://github.com/DLR-FT/sysml-v2-nu

Algorithm 1: Data access and config. generation

Input: project id
Output: yaml config
// SysML v2 server http request
E = getElements(project id)
// Sort elements
forall e in E do

if e isinstance(partition) then
P = P ∪ e

else if e isinstance(attribute) then
A = A ∪ e

else if e isinstance(interface) then
I = I ∪ e

// Generate yaml configuration
yaml config = generateConfig(P,A,I)

VI. OPPORTUNITIES AND LIMITATIONS

Considering the characteristics of SysMLv2, the language
comes with a lot of opportunities. One example is the im-
proved information exchange between various model-based
tool environments because of the standardized SysML v2 API.
The improved interoperability also facilitates the tool devel-
opment for open-source communities, universities, and small
companies. This ability could also greatly benefit the available
tool landscape. For instance, specific avionics development
environments can be built using the SysML v2. At the same
time, domain-specific libraries for SysML v2 can be created
and published on open-source platforms. Finally, the language
comes with enhanced capabilities and will likely be stable,
maintained, and widely applied like its predecessor.

Even though the SysML v2 is promising, there are still a
lot of areas that will need to improve over time. Due to the
novelty of the language, the industry and open-source tool
support is just getting started. Potentially challenging aspects
for these tools are the following. To make the interoperability
a reality, the data needs to be maintained in the same state
at every tool. If this works over a server, data needs to be

Fig. 10: Generated hypervisor configuration

committed frequently and clearly identifiable for each tool.
When server commits and requests are happening frequently,
the performance of the server needs to meet the corresponding
requirements. Similarly, the API and query language need to
be expressive and allow a precise selection of model elements.

In addition to the general discussion topics, the safety-
critical avionics perspective adds another layer of complexity.
One important topic is the possibility for tool qualification
according to DO-330 [6]. In this regard, using a central model
server might add multiple challenges because the qualification
of such a server is unlikely. If the server data is used to create
critical artifacts, a workaround is needed. One way could be
to request and store the necessary server data locally. The
local data could be inspected before executing a lightweight
and qualified tool. Another aspect that needs to be considered
for a central server are distributed developments with multiple
companies. Here, a clearly defined workflow, data storing,
versioning, and configuration management are necessary.

Another interesting concept for qualification could be the
management of the textual notation of SysML v2 in a git-
environment. Reason being that the management of textual
artifacts is a scalable and well understood concept in the
software community. The ability to read and visualize the
textual notation could also prevent tool qualification problems.
Unfortunately, the current version of the textual notation only
incorporates a subset of the server data as visible in Fig. 1
and misses essential information such as the unique identifiers.
Moreover, the standardized exchange is defined over the API
and not the textual notation.

To bridge the gap between the general-purpose language of

SysML v2 and the domain-specific tools, interfaces need to be
defined and implemented. One way to bridge this gap could
be the definition of a domain-specific library by borrowing
concepts from DSLs like OAAM. The integration of SysML
v2 with DSLs should be further evaluated in future work.

VII. CONCLUSION

The presented paper explores the application of SysML v2
in avionics engineering to address fragmented developments
and enhance model-based engineering practices. By connect-
ing domain-specific tools through a standardized API, the con-
cept allows for flexible integration in the current engineering
landscape while maintaining the unique advantages of each
tool. The concept was demonstrated with the configuration of
an open-source ARINC 653 Linux hypervisor, showcasing the
practical potential of SysML v2 for avionics developments.

While the development of SysML v2 is still ongoing, the
findings suggest that the modeling language offers a standard-
ized and interoperable solution for avionics engineering. It
facilitates collaboration between tools and encourages inno-
vation in the development of safety-critical avionics systems.
However, some domain-specific aspects such as tool qualifi-
cation, distributed development, and DSL integration have to
be refined in future work.

REFERENCES

[1] D. Cofer, “Taming the complexity beast,” ITEA Journal,
volume 36, pages 313–318, 2015.

[2] T. Gaska, C. Watkin, and Y. Chen, “Integrated Modular
Avionics - past, present, and future,” IEEE Aerospace
and Electronic Systems Magazine, volume 30, num-
ber 9, pages 12–23, 2015. DOI: 10.1109/MAES.2015.
150014.

[3] D. D. Walden, G. J. Roedler, K. J. Forsberg, R. D.
Hamelin, and T. M. Shortwell, SYSTEMS ENGINEER-
ING HANDBOOK, A GUIDE FOR SYSTEM LIFE
CYCLE PROCESSES AND ACTIVITIES. WILEY, 2015.

[4] B. Annighoefer, M. Halle, A. Schweiger, et al., “Chal-
lenges and ways forward for avionics platforms and
their development in 2019,” in 2019 IEEE/AIAA 38th
Digital Avionics Systems Conference (DASC), 2019,
pages 1–10. DOI: 10.1109/DASC43569.2019.9081794.

[5] RTCA, Integrated Modular Avionics (IMA) development
guidance and certification considerations, RTCA/DO-
297, Standard, 2005.

[6] RTCA, Software tool qualification considerations,
RTCA/DO-330, Standard, 2011.

[7] ARINC, Avionics application software standard inter-
face, part 0, overview of ARINC 653, Standard, 2021.

[8] B. Lukić, A. Ahlbrecht, S. Friedrich, and U. Durak,
“State-of-the-art technologies for integrated modular
avionics and the way ahead,” in 2023 IEEE/AIAA 42nd
Digital Avionics Systems Conference (DASC), 2023,
pages 1–10. DOI: 10.1109/DASC58513.2023.10311229.

[9] S. H. VanderLeest, “Arinc 653 hypervisor,” in 29th
Digital Avionics Systems Conference, 2010, 5.E.2-1-
5.E.2–20. DOI: 10.1109/DASC.2010.5655298.

[10] B. Lukić, S. Friedrich, T. Schubert, and U. Durak, “Au-
tomated configuration of arinc 653-compliant avionics
architectures,” in AIAA SCITECH 2024 Forum. DOI:
10.2514/6.2024-1856.

[11] M. Bajaj, S. Friedenthal, and E. Seidewitz, “Systems
modeling language (SysML v2) support for digital engi-
neering,” INSIGHT, volume 25, number 1, pages 19–24,
2022. DOI: https://doi.org/10.1002/inst.12367.

[12] Object Management Group, Systems Modeling Lan-
guage (SysML©) v2 Request For Proposal (RFP), 2017.

[13] S. Friedenthal, “Requirements for the next generation
systems modeling language (SysML©v2),” INSIGHT,
volume 21, number 1, pages 21–25, 2018. DOI: https:
//doi.org/10.1002/inst.12186.

[14] Object Management Group, Systems Modeling Lan-
guage (SysML©) v2 API and Services Request For
Proposal (RFP), 2018.

[15] T. Weilkiens and C. Muggeo, THE ABSOLUTE BEGIN-
NER’S GUIDE to SysML v2. INCOSE UK, 2023.

[16] B. Annighoefer, An open source domain-specific avion-
ics system architecture model for the design phase and
self-organizing avionics, 2019. DOI: https://doi.org/10.
4271/2019-01-1383.

[17] B. Annighoefer and M. Brunner, “Open source domain-
specific model interface and tool frameworks for a
digital avionics systems development process,” in 2021
IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC), 2021, pages 1–10. DOI: 10.1109/DASC52595.
2021.9594380.

[18] B. Annighoefer, M. Brunner, J. Schoepf, B. Luettig,
M. Merckling, and P. Mueller, “Holistic IMA platform
configuration using web-technologies and a domain-
specific model query language,” in 2020 AIAA/IEEE
39th Digital Avionics Systems Conference (DASC),
2020, pages 1–10. DOI: 10 . 1109 / DASC50938 . 2020 .
9256726.

[19] V. Tietz, J. Schoepf, A. Waldvogel, and B. Annighoefer,
“A concept for a qualifiable (meta)-modeling frame-
work deployable in systems and tools of safety-critical
and cyber-physical environments,” in 2021 ACM 24th
International Conference on Model Driven Engineering
Languages and Systems (MODELS), 2021, pages 163–
169. DOI: 10.1109/MODELS50736.2021.00025.

[20] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F.
Singhoff, and F. Kordon, “Validate, simulate, and im-
plement ARINC653 systems using the AADL,” in Pro-
ceedings of the ACM SIGAda Annual International
Conference on Ada and Related Technologies, se-
ries SIGAda ’09, Saint Petersburg, Florida, USA: Asso-
ciation for Computing Machinery, 2009, pages 31–44.
DOI: 10.1145/1647420.1647435.

[21] K. Litwin, I. Amundson, D. Verma, and T. McDermott,
Transforming AADL models into SysML 2.0: Insights

and recommendations, 2024. DOI: https://doi.org/10.
4271/2024-01-1947.

[22] J. Hugues, “AADLv2 library for SysMLv2,” Carnegie
Mellon University, Pittsburgh, PA, USA, Technical Re-
port CMU/SEI-2023-TN-001, Apr. 2023.

[23] M. Halle and F. Thielecke, “Model-based transition
of IMA architecture into configuration data,” in 2016
IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC), 2016, pages 1–10. DOI: 10.1109/DASC.2016.
7777950.

[24] F. Schade, T. Dörr, A. Ahlbrecht, V. Janson, U. Durak,
and J. Becker, “Automatic deployment of embedded
real-time software systems to hypervisor-managed plat-
forms,” in 2023 26th Euromicro Conference on Digital
System Design (DSD), 2023, pages 436–443. DOI: 10.
1109/DSD60849.2023.00067.

[25] M. Halle and F. Thielecke, “Bus network architecture-
and technology optimisation for avionic systems,” in
2020 AIAA/IEEE 39th Digital Avionics Systems Con-
ference (DASC), 2020, pages 1–8. DOI: 10 . 1109 /
DASC50938.2020.9256482.

[26] C. B. Watkins, J. Varghese, M. Knight, J. Ross, J. Kahn,
and B. Petteys, “Data-message modeling for multi-
lane architectures on an ima platform using the eSAM
method,” in 2022 IEEE/AIAA 41st Digital Avionics
Systems Conference (DASC), 2022, pages 1–10. DOI:
10.1109/DASC55683.2022.9925816.

[27] T. Dörr, F. Schade, A. Ahlbrecht, et al., “A behavior
specification and simulation methodology for embedded
real-time software,” in 2022 IEEE/ACM 26th Interna-
tional Symposium on Distributed Simulation and Real
Time Applications (DS-RT), 2022, pages 151–159. DOI:
10.1109/DS-RT55542.2022.9932069.

[28] Y. Uludağ, Ö. Bayoğlu, B. Candan, and H. Yılmaz,
“Model-based IMA platform development and certifi-
cation ecosystem,” in 2023 IEEE/AIAA 42nd Digital
Avionics Systems Conference (DASC), 2023, pages 1–
11. DOI: 10.1109/DASC58513.2023.10311115.

[29] M. Halle and F. Thielecke, “Avionics next-gen en-
gineering tools (AvioNET): Experiences with highly
automised and digital processes for avionics platform
development,” in 2021 IEEE/AIAA 40th Digital Avionics
Systems Conference (DASC), 2021, pages 1–8. DOI: 10.
1109/DASC52595.2021.9594509.

[30] K. Abdo, J. Broehan, and F. Thielecke, “A model-
based approach for early and continuous validation of
avionics platforms up to virtual products and hybrid
platforms,” in 2022 IEEE/AIAA 41st Digital Avionics
Systems Conference (DASC), 2022, pages 1–10. DOI:
10.1109/DASC55683.2022.9925797.

[31] C. B. Watkins, J. Varghese, M. Knight, J. Ross, J.
Kahn, and B. Petteys, “Auto-derivation of functional
flow block diagrams from system architecture using
the eSAM method,” in 2023 IEEE/AIAA 42nd Digital
Avionics Systems Conference (DASC), 2023, pages 1–
10. DOI: 10.1109/DASC58513.2023.10311180.

