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Abstract
The ‘In-Air Capturing’ method is a novel approach for the recovery of space launch
vehicles, where an airplane catches a winged rocket stage in mid-air and tows it back to
the launch site. Since no descent propulsion system is required, the Reusable Launch
Vehicle is less expensive than traditional techniques. During the In-Air Capturing
maneuver, a capturing device attached to a rope is released from the towing aircraft.
While the two vehicles are in close proximity to one another, this device autonomously
connects the rocket to the airplane. For a successful capture, this device must move
with agility and accuracy, despite the vibrations from the long rope (up to 300 m)
and external disturbances. Therefore, modeling the flexible dynamics of the rope is
essential to have a realistic understanding of the device’s maneuverability and the
viability of the concept.

Such highly flexible systems with significant deformation are difficult to model
and manage and require intense computation. Driven by these requirements, we
propose and examine a new multibody approach that provides a balance between
accuracy and computation time. The rope can be modelled as a discretized chain
of rigid bodies connected at the joints. The model also includes forces originating
from the capturing device, the drag of the rope and the effect of the aircraft wake.
To deal with rope features such as the bending stiffness and elongation, we adopt
simplifying assumptions, with the goal to reduce the overall computational effort.
Such assumptions are expected to hold, in the scenario of interest. To select rope
fitting properties like material, diameter and length, we use the requirements imposed
by the In-Air-Capturing application.

Results show that the model provides a valid description of the underlying physics.
Simulations of the In-Air-Capturing procedure demonstrate the capacity of the rope
to sustain the loads associated with towing the rocket, while also allowing for large
maneuverability for the capturing device.

Overall, this thesis presents an accurate yet computationally efficient modelling
approach for rope dynamics, with a special focus on the implications on the In-Air
Capturing maneuver. This framework is also applicable to a wide range of dynamic
simulations involving long, slender, flexible structures (such as air-to-air refueling).

Keywords Reusable Launch Vehicles, Multibody Simulation, Numerical Integration
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Symbols and abbreviations

Symbol Description Unit Measure

𝐿𝑡𝑜𝑡 Total length of the rope m
𝑚𝑡𝑜𝑡 Total mass of the rope kg
𝑛 Number of rope segments -
𝐿 Length of a single rope segment m
𝑚 Mass of a single rope segment kg
𝜙𝑖 Azimuth angle for rope element rad
𝜓𝑖 Side-slip angle for rope element rad
𝜙𝑖̇ , 𝜓𝑖̇ Angular velocities of the rope element rad s−1

𝒓𝑝 Cartesian position of a point m
𝑥, 𝑦, 𝑧 Cartesian position components of a point m
𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 Cartesian velocity coordinates of a point m s−1

𝑎𝑥 , 𝑎𝑦, 𝑎𝑧 Cartesian coordinates of point acceleration m s−2

L Lagrangian of the system J
𝑇 Kinetic energy of the system J
𝑉 Potential energy of the system J
𝐼 Moment of inertia of the rope element kg m2

𝑔 Gravitational acceleration constant m s−2

𝑞 Generalized coordinate for the system -
𝑄 Generalized force for the system -
𝑭 Force expressed in Cartesian coordinates N
𝐾𝑡 Rope bending stiffness coefficient N m2

𝛾 Generic curve as a parametric function m
𝑅 Radius of curvature m
𝜃𝑖 Relative rotation generalized coordinate rad
𝑀 Bending moment N m
𝛿𝑊 𝑗 Virtual work associated with force 𝑗 J
𝑐 Angular damping coefficient N m s kg−1

𝑻 Coordinate transformation matrix -
𝐹𝐷 , 𝐶𝐷 Drag force and relative coefficient -
𝐹𝐿 , 𝐶𝐿 Lift force and relative coefficient -
𝜌 Fluid mass density m3 kg−1

𝑑 Rope diameter m
𝐴 Body reference area m2

𝛼𝑡𝑜𝑡 Total angle of attack rad
𝑠 Rope elongation variable m
𝑘𝑎 Axial spring elastic coefficient N m
𝑐𝑘 Axial spring damper coefficient N s (m kg)−1

𝐸 Young’s modulus GPa
𝑇𝑚𝑎𝑥 Rope breaking strength N
𝑈 Mechanical energy of the system J
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𝑴 System’s mass matrix -
𝒇 System’s right-hand side -
𝑘 Total number of variables of the system -
𝑴̂ Mass matrix (first-order system) -
𝒇 Right-hand side (first-order system) -
𝑿 System state variables (first-order) -
ℎ Integration time step s

Operators
d
d𝑡

derivative with respect to variable 𝑡

𝜕

𝜕𝑡
partial derivative with respect to variable 𝑡∑︁

𝑖 sum over index 𝑖∫
𝐴

integral over domain A

A · B dot product of vectors A and B

Abbreviations

ACCD Aerodynamically Controlled Capturing Device
DLR German Aerospace Center
IAC In-Air Capturing
MBS Multibody System
ODE Ordinary Differential Equation
RLV Reusable Launch Vehicles
TA Towing Aircraft

8



1 Introduction

1.1 The ‘In-Air Capturing’ Maneuver
In the recent years, the evolution of Reusable Launch Vehicles (RLV) has made it
possible to achieve higher launch frequencies while managing the costs [1][2]. The
solutions that have been proposed and developed can be divided in two main categories,
based on how the launch vehicle achieves landing:

• Vertical Take-off Horizontal Landing. This was the first implemented approach,
with the Space Shuttle [3] being the first ever partially reusable spacecraft
system.

• Vertical Take-off Vertical Landing. This procedure is used in the Falcon 9
launch vehicle, manufactured by SpaceX, which has become the de facto state
of the art in space launching systems. The under development Ariane Next,
from the European Space Agency and manufactured by ArianeGroup, aims at
using a similar approach [4].

Both approaches have proven to be successful, with vertical landing being prevalent
nowadays. However, they show room for cost reduction. Vertically landing vehicles
require a significant amount of fuel to successfully land stages in appropriate sites.
On the contrary, in horizontal landing configurations, the adoption of winged stages
requires an extra propulsion system to land horizontally. In both cases the stage mass
is increased, reducing the room for payload.

A new and innovative recovery method is the In-Air Capturing (IAC) maneuver, a
patented approach by German Aerospace Center (DLR) [5]. This concept involves
winged rocket stages being captured while mid-air and towed back to the launch site
using an external aircraft. It shows potential for considerable cost reduction as it allows
the vehicle to land without using an additional propulsion system during descent.

Figure 1.1: Scheme of the IAC mission cycle (Source: [2]).
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Figure 1.1 depicts the complete and standard operational sequence of the IAC [2] [6].
The mission begins with a vertical lift-off from the launch pad. Following Main Engine
Cut Off, the winged initial stage disconnects from the launch vehicle, while the second
stage progresses into orbit. The first stage then proceeds with a ballistic re-entry,
making use of atmospheric resistance to decrease its velocity to subsonic levels.
Meanwhile, a Towing Aircraft (TA) remains stationed at an altitude of approximately
10 km until the RLV approaches. Subsequently, within the altitude range of 2 km to 8
km, the TA maneuvers to meet the RLV, establishing a synchronized gliding formation.
During this intricate procedure, an Aerodynamically Controlled Capturing Device
(ACCD) attached to a rope is released from the TA. This mechanism autonomously
navigates towards the RLV, ensuring a secure connection between the two entities.
Ultimately, the RLV is guided back to an airstrip, to perform a horizontal landing.

The IAC maneuver is a highly complex engineering mission, which requires extreme
precision and coordination. It is crucial to validate this approach and demonstrate its
feasibility, in all the phases of the mission. This research focuses on the capturing
maneuver, most specifically in the simulation of the dynamics of the flexible rope
found in the capturing system, with the ACCD attached to its end.

To better understand the challenges arising from the capturing task, we can divide
it into sub-phases, as shown in Figure 1.2:

(a) Formation Flight (b) Capture Phase (c) Pull-up Manoeuvre

Figure 1.2: Sub-phases of the capturing process (Source: [7]).

• Phase 1: Formation Flight
The first phase consists in the TA approaching the RLV to begin the capturing
process. With its engines off, the aircraft glides from the cruise condition,
and joins the RLV in a parallel descending configuration. The two vehicles
shall maintain comparable velocities and orientation, while being separated
by a safety distance (between 150m and 350m). The formation configuration
must kept for a sufficient amount of time, to ensure that the following phase is
successfully accomplished.

• Phase 2: Capture Phase
The capture phase is conducted when the two vehicles have achieved formation.
During this maneuver, the ACCD, attached to a rope, is released from the
TA. This device is provided with controllable flaps, so that it can guide its
way to the RLV and guarantee the connection between the two bodies. This
phase is especially critical, because a number of aspects must be considered to
secure a success mating. The aerodynamics of the ACCD and the rope must
be studied in detail, possibly checking the effect of the wake generated by the
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TA. Furthermore, the rope dynamics might have a major impact on the stability
of the system, so the sensitivity to its properties requires investigation. The
response of the system to generic control deflections to the ACCD flaps must
also be studied.

• Phase 3: Pull-up Manoeuvre
Once the two vehicles are connected through the capturing system, the aircraft
effectively acts like an external propulsion system to the RLV. Turning on the
the TA engines, it is possible to execute a pull-up manoeuvre to transition to an
ascending flight. In this phase the rope is under the most stress, because of the
aircraft thrust and forces coming from the RLV. After this, the mission proceeds
with the later steps, until the horizontal landing.

1.2 Problem Statement
An essential aspect of IAC simulations is the precise modelling of the capturing
system, comprising a long rope and a capturing device attached to its end. Establishing
a connection between the ACCD and the RLV is a highly complex task. The ACCD
shall be able to autonomously navigate its way to the RLV, successfuly mating the
two vehicles. To achieve this, the ACCD is equipped with control surfaces, notably
flaps situated at the bottom of the fins. Given that the capturing device is positioned
at the end of the flexible rope, its position and orientation are extremely sensitive
to vibrations, perturbations, and general rope displacements. The control strategies
are designed to guide the ACCD towards the RLV’s position, serving as the primary
objective of the capturing phase. Consequently, to meet the stringent requirements of
the application, the physical modelling of the rope must provide accurate outcomes.

Under steady-state conditions of the capturing system, the rope is likely to assume a
predominantly straight configuration due to the heavy loads involved in the application.
From a modelling standpoint, it may not be necessary to describe configurations with
large oscillations or flexed rope configurations. Therefore, past rope models have
utilized simple beam-like elements to simplify the representation. However, this work
endeavors to minimize such simplifying assumptions.

Modelling and control of such highly flexible systems, with large deformation
and displacement, is both challenging and computationally intensive. Conventional
simulation frameworks are ill-suited for this task, as it involves a highly nonlinear body
dynamics problem with ropes characterized by nearly infinite degrees of freedom.
However, considering the size and complexity of the general environment (including the
Towing Aircraft, Reusable Launch Vehicle, and atmosphere models), it is imperative
to keep the computational effort for rope modelling within reasonable limits. One
of the primary focus of this work is to explore a reasonable accuracy-computation
trade-off. In multibody dynamics simulation, this often deals with the choice of
formulation or modelling approach. As it will be later discussed, the modelling of rope
dynamics inevitably requires discretization of the rope into sub-elements, regardless
of the chosen formulation. Adjusting the discretization hyperparameter appropriately
becomes a straightforward method to reduce computational effort.
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The accuracy-computation trade-off can also be investigated in terms of the
integration of the Ordinary Differential Equation (ODE). The simulation aims to
utilize integration step-sizes as large as possible to minimize the frequency of calls
to the function computing the equations of motion. However, using a large step-size
may compromise accuracy and potentially lead to stability issues. The larger scale
simulation of the IAC maneuver operates with a time step of 10−2 s, due to the
implementation of control strategies. Consequently, the rope model must remain
stable for this step size. Additionally, mechanical systems often lead to a “stiff” set of
equations of motion, susceptible to instability unless the time step is very small. In
this context, identifying the right numerical algorithm that avoids instability issues
while optimizing computation time is crucial.

1.3 Model requirements
The problem statement translates into a set of requirements for the model.

• The model shall provide an accurate and realistic description of the rope
dynamics. The material properties of the rope must be incorporated into the
model, such as mass, length, Young modulus. In order to represent the rope’s
large displacement and deformation, a suitable modelling formulation must be
used.

• The modelling approach should be computationally efficient, allowing to run
the simulation in a reasonable time frame. The software implementation of the
model shall eventually adopt approaches to speed-up the computation such as
parallel processing computing.

• From an implementation perspective, the developed model shall be flexible
enough to incorporate all kinds of forces which have an impact on the system’s
dynamics. External forces and disturbances, such as the wake generated by the
aircraft and the rope lift and drag, must be easy to model and be included in
the system. Not only, the rope is also subject to inertia effects, generated by
accelerations in the TA motion. The two systems are constrained by a fixed
joint, so turbulence or variations in the motors’ thrust will have a direct impact
on the rope dynamics.

• The ODE solver of choice must maintain simulation stability with the predeter-
mined time step, while guaranteeing computational efficiency. This necessitates
an exploration of explicit and implicit methods, along with a thorough consider-
ation of their key properties and the effect of the order of integrator.

In the following chapter, the suitability of the possible modelling approaches will be
evaluated with respect to these requirements.
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1.4 Aim of the Research
The objective of the present work is to identify an appropriate approach for the
modelling of the rope dynamics in the context of the IAC maneuver. The formulation
aims at best solving the list of requirements coming from the field of application,
while also being flexible enough to be expanded in other contexts. Initially, various
approaches documented in the literature will be investigated and evaluated. The
most promising formulation is decided based on its potential to match the set of
requirements. Based on this, a new Multibody System (MBS) is proposed, aimed at
extending the existing model through the incorporation of new dynamic features.

The original contributions need experimental data to be fully validated. While this
is left for future research, this thesis aims to demonstrate the solidity of the chosen
approach and to highlight both its advantages and drawbacks. Subsequently, the
model is employed within the context of IAC simulations to identify appropriate rope
specifications that align with the mission’s requirements.

Based on this, a list of research questions is derived:

• Does the model provide a sufficiently accurate representation of the physics
governing the rope dynamics? Can it effectively describe the oscillations
commonly observed in slender bodies?

• What are the appropriate rope material and specifications for the IAC mission?

• Is the capturing system stable in the reference configuration? Does the wake of
the aircraft affect the maneuverability of the system?

• Does the final set of ODEs manifest numerical problems during the integration?
Is it sensitive to the type of ODE solver used and the choice of the integration
step size?

• Is it possible to achieve a reasonable trade-off between accuracy and computation
time?

Potential answers to these questions will be discussed in the ‘Conclusion’ section,
while supporting arguments will be shown in the ‘Results’ section.

1.5 Thesis Overview
The structure of this work follows a systematic workflow.

Chapter 2 presents an overview of existing models and techniques available in
the literature, along with a critical examination of their alignment with the specified
requirements. The most appropriate approach is then selected, and the rationale behind
its adoption is elaborated.

Chapter 3 provides a comprehensive examination of the proposed MBS, including
a detailed derivation of the equations of motion using the Lagrange approach. Methods
to incorporate the rope features, such as stiffness and elongation are presented. The
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final integration scheme is presented, accompanied by strategies to ensure efficient
implementation of the model in software.

Finally, Chapter 4 presents the simulation results. Issues concerning the validation
of the proposed model are discussed. A verification of the model is performed by
analyzing the energy balance in different test cases. Following, the results of the
larger scale IAC simulation are shown. A sensitivity analysis of the rope parameters is
presented, leading to the proposal of appropriate values for the rope specifications.
These results are thoroughly discussed in terms of their implications on the feasibility
of the IAC mission.

Based on these results, conclusions are drawn in Chapter 5. Limitation of the work
and drawbacks of the approach are presented. Moreover, the chapter offers valuable
recommendations to enhance the model and suggests directions for further research
and development.
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2 Literature Review

2.1 Mission Heritage
The dynamics of flexible ropes have been extensively researched due to their critical
role in various industries and domains. Accurate modelling of rope physics is crucial
for the development and optimization of many engineering systems. Hereafter the
most prominent and correlated fields of application are listed.

• Aerial Cabled-Towed Systems: Aerial cabled-towed systems employ flexible
ropes to provide mechanical support and guidance to airborne objects. Systems
typically consist of a towing aircraft that pulls the airborne object using a flexible
cable. The loads to be pulled can vary a lot depending on the application. They
range from simple parafoils to gliders or unmanned aerial vehicles (UAVs). This
kind of system is often implemented in defence applications. An example is the
ALE-50 towed decoy system, which finds use in many fighter jets such as the
U.S. Navy F Series. It is a countermeasure electronic device, which is deployed
and towed behind the aircraft, as a way to lure enemy missiles away from the
original target. Some other recent applications have seen much interest, like the
use of a swarm of UAVs to lift generic loads in transportation businesses [8].
The dynamics of the flexible rope play a crucial role in maintaining stability,
controlling the trajectory, and managing different stresses during the flight. A
number of investigations have been conducted to research the dynamics of such
systems, considering factors such as rope elasticity, tension control, aerodynamic
effects, and environmental conditions.

• Aerial Refueling: Aerial refueling operations involve the use of flexible hoses
to transfer fuel during flight from a tanker aircraft to a receiver (Figure 2.1) [9].
The dynamics of these ropes play a crucial role in maintaining stability, control,
and safety during the refueling process [10].
The system configuration is very similar to the IAC setup. Two subsystems,
separated at the beginning, are required to couple in mid-air to achieve the
primary goal of the mission, being refueling or towing. Therefore, it is reasonable
to consider the hose modelling approaches as a valid option, or at least as a
starting point. In fact, hoses are shorter and much stiffer than the ropes in
question, so the dynamics of the two systems can be completely different.
Moreover, the IAC procedure adds an extra layer of complexity, since the mating
is supposed to be fully autonomous. On the contrary, aerial refueling procedures
relies on the pilot’s maneuvering.
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Figure 2.1: Aerial Refueling system, tanker aircraft and receiver are in the coupled
configuration (Source: [11]).

• Space Tethers: Space tethers are long, flexible structures deployed in space to
facilitate various applications, including attitude control, propulsion, energy
generation, and orbital maneuvering [12]. A space tether typically consists of
a long, strong cable with one end attached to a spacecraft or a celestial body
while the other end is left to extend freely in space (Figure 2.2). A number
of studies have investigated the behavior and performance of space tethers,
providing insights into their stability, deployment dynamics, and overall system
design [13].

• Space Elevators: Space elevators are hypothetical structures that connect the
Earth’s surface to space, enabling the transportation of payloads along the
tether using a combination of gravity and centrifugal force [14]. The concept
involves a cable extending from the Earth’s surface to a counterweight in
space, with the gravitational force and centrifugal force maintaining tension
in the cable. Space elevators offer a potential future method for efficient
and cost-effective transportation to space. modelling the dynamics of space
elevators involves considering various aspects, including tether material strength,
elasticity, environmental effects, and orbital dynamics. Tether modelling plays a
major role in demonstrating the feasibility of the concept. Approaches in the
literature mainly make use of very simple models, given the enormous size
of such system [15]. Tether is usually described as a 1D line with a straight
configuration, and the estimate of the tension is obtained by integrating all
contributes over the tether length. These models appear to be too simplistic for
our application.
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Figure 2.2: Rendering of a Space tether used in satellites applications (Source:[12]).

• Cable Theory: Cable theory focuses on the mathematical modelling of slender
structures, taking into account their geometric and material properties. Theoret-
ical frameworks and computational models have been developed to analyze the
behaviour of cables subjected to various loading conditions, including static and
dynamic loads [16]. Cable theory has found applications in several domains,
including civil engineering, underwater systems, robotics, and bio-mechanics.
Cable simplification mostly consists in neglecting torsional effects, so it can be
used only in a limited number of scenarios. While cable-like elements are also
used in civil and structural applications, these fields are not useful to our scope.
In fact, approaches for structural cables don’t aim at describing large deflections,
but only the stresses coming from the static, reference configuration.

• Computer Graphics: modelling flexible ropes is a fundamental aspect of
computer graphics, enabling realistic simulations of cloth, hair, ropes, and other
deformable objects. Researchers have proposed various techniques to capture
the dynamics of flexible ropes in computer-generated environments [17]. The
most prominent approaches consists in mass-spring systems [18], position-based
dynamics [19], and splines-based dynamics [20]. These models consider factors
such as rope elasticity, collisions, self-interactions, and interactions with other
objects. The main contribution of computer graphics in the simulation of slender,
flexible bodies is the development of efficient algorithms. Visual realism and
interactive behavior of virtual environments require limited computation effort
in order to obtain real-time performances. Most of the times, this implies a
limited description of the underlying physics, and the adoption of heuristic
methods to accomplish a realistic simulation.
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2.2 Modelling Approaches
Various methods have been suggested for modelling such a nonlinear system. Although
the formulations can diverge significantly, the overarching strategy primarily revolves
around subdividing the system into numerous sub-elements. Hereafter, we delve into
the conventional techniques for simulating flexible bodies, aiming to identify the most
suitable one for our specific application.

2.2.1 Floating Reference Frame

The Floating Reference Frame formulation has been the most widely used method
in the simulation of flexible multibody systems. This formulation introduces a set of
coordinates that characterize the body’s deformation with respect to its coordinate
system. This is in addition to the standard set of multibody variables used to describe
the reference position and orientation of the chosen coordinate system. Therefore, a
minor additional deformation is effectively superimposed.

Figure 2.3: Description of the body kinematics, using the Floating Reference Frame.
(Source: [21])

The position vector of any arbitrary point on the flexible body in the global frame can
be expressed as follows [21]:

𝒓 = 𝑹 + 𝑨
(︁
𝒖0 + 𝒖 𝒇

)︁
(2.1)

Figure 2.3 visualizes vectors of Eq. 2.1: 𝒖0 refers to the undeformed position, while
𝒖 𝒇 is the deformation variable. 𝑨 is the transformation matrix, which defines the
orientation of the body coordinate system with respect to the global frame.

By utilizing these sets of coordinates, it becomes possible to establish a local
linear problem, thus enabling the application of modal reduction techniques [22].
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In fact, one of the significant benefits of adopting the Floating Frame formulation
is the availability of numerous modal order reduction alternatives, which allow a
simplification of the system’s representation. In some cases, this can even be achieved
without sacrificing accuracy, through the implementation of techniques such as Proper
Orthogonal Decomposition or other similar approaches. Additionally, the Floating
Reference Frame facilitates the elimination of high-frequency vibration modes that
have negligible influence on the solution.

On the other hand, the drawbacks associated with employing this formulation are
considerable, considering the requirements. The mass matrix is highly non-linear and
must be evaluated at every time-step. Furthermore, using the standard formulation,
one must account for the presence of centrifugal, Coriolis, and generalized gravity
forces in the equations of motion due to some variables being defined locally and
not globally. The required computation is prone to be substantial. Ultimately, and of
utmost importance, the floating frame of reference formulation has demonstrated to be
most suitable for large reference displacement and small deformation analysis. This
does not align well with the modelling of the rope dynamics, characterized by large
deflection and deformation.

2.2.2 Approaches for Cable-like Bodies

Certain modelling methodologies, developed within the domain of cable-like structures,
can be categorized as continuous models, as their primary emphasis lies in describing
the central axis of linear objects [23]. Cable theory discusses the modelling of
linear, slender entities, characterized by a significant disparity between the length
of the structure and its cross-sectional dimensions. If one neglects the cross-section
deformation, which is generated by torsional forces, then it might be reasonable to
adopt such methods and formulations.
Hereafter, the most notable modelling formulations are analyzed:

• Elastic rod model: This model originates from the principles of continuum
mechanics and conceptualizes flexible, elongated linear objects as elastic rods.
This framework is backed by the foundational Kirchhoff theory [24], which
describes bodies whose centerline is inextensible and whose cross sections
remain plane and normal to the centerline. A more refined version, the Cosserat
theory [25], was later proposed by the Cosserat brothers, enhancing the Kirchhoff
theory by incorporating considerations for both axial extensional and sectional
shear deformations. Although this approach has demonstrated its utility in
analyzing the dynamic behavior of slender constructs, it does exhibit certain
constraints. The elastic rod theory assumes modest deformations and strains,
implying that the rod’s geometry remains closely aligned with its original
form. This assumption is inadequate for our particular application, which deals
with large deformations and highly curved configurations. Furthermore, the
theory generally presupposes an ideal elastic response, neglecting to account
for damping or energy dissipation effects, which hold significant importance
within the context of such simulations.
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• Dynamic spline model: This method employs a spline curve to delineate the
center axis of a flexible, cable-like linear object, while at the same time investing
the spline curve with physical attributes like mass and deformation energy. This
strategy ensures that the response to external forces and constraints eventually
conforms to the principles of physics. A spline curve, characterized by its
segmented polynomial nature in parametric configuration, is utilized. A curve
composed of n control points (𝑝1, 𝑝2, ..., 𝑝𝑛) can be expressed as [23]:

𝑷(𝑢) =
𝑛∑︁
𝑖=1

𝑏𝑖 (𝑢) 𝒑𝑖

where 𝑏𝑖 (𝑢) is the 𝑖𝑡ℎ spline basis function, of the control point 𝑝𝑖 (as in Figure
2.4).

Figure 2.4: Spline curve for dynamic spline modelling.

The control points location are effectively the degrees of freedom of the spline,
and have a major contribution to the shape of the spline along with the choice
of the basis function. While this strategy might be efficient for 1D and 2D
situations, especially when demanding fast and precise rendering, it proves
to be less suitable for complex 3D multibody simulations. Moreover, spline
models may not inherently encompass the material characteristics and physical
responses of the actual bodies they represent.

2.2.3 ANCF Finite Element Formulation

The Absolute Nodal Coordinate Formulation (ANCF) is a recent finite element proce-
dure, which has proven to be much effective in the description of large deformations
and large rotations [26]. In this formulation, all nodal coordinates are defined in the
inertial frame. No infinitesimal or finite rotations are used; instead, absolute slopes and
displacements are used at the element nodal coordinate. These element coordinates
are used with a global shape function that is capable of describing a complete set of
rigid body modes. The globally referred position of a point can be thus written as:

𝒓 = 𝑺𝒆 (2.2)
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where 𝑺 is the global shape function and 𝒆 is the vector of nodal coordinates. Figure
2.5 shows a simple, beam element which has two nodes, A and B, situated at its
extremities.

Figure 2.5: Two-noded beam element.

The fundamental concept underlying the finite element method involves repre-
senting the variable of interest using an approximating function, relying solely on the
known variable values at the nodal points. In this approach, the overall location of a
generic point is established through cubic polynomials in the x direction and linear
polynomials in both the y and z directions. This enhancement is introduced specifically
to augment the modelling capabilities along the x-axis, in terms of expressive power.

𝒓 =

⎡⎢⎢⎢⎢⎣
𝑟1
𝑟2
𝑟3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4𝑥𝑦 + 𝑎5𝑥𝑧 + 𝑎6𝑥

2 + 𝑎7𝑥
3

𝑏0 + 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑧 + 𝑏4𝑥𝑦 + 𝑏5𝑥𝑧 + 𝑏6𝑥
2 + 𝑏7𝑥

3

𝑐0 + 𝑐1𝑥 + 𝑐2𝑦 + 𝑐3𝑧 + 𝑐4𝑥𝑦 + 𝑐5𝑥𝑧 + 𝑐6𝑥
2 + 𝑐7𝑥

3

⎤⎥⎥⎥⎥⎦ (2.3)

The polynomials have a total of 24 parameters. Consequently, the nodes of each
element must have a total of 24 variables to fully determine such expressions. Each
node is described by a column vector containing 12 coordinates, arranged as follows:

𝒆 𝑗 =
[︁
𝒓𝑇 𝒓𝑇,𝑥 𝒓𝑇,𝑦 𝒓𝑇,𝑧

]︁𝑇
𝑗
, 𝑗 = 𝐴, 𝐵, (2.4)

Here, 𝒓 represents the global position vector of the node, while 𝒓,𝛼 (𝛼 = 𝑥, 𝑦, 𝑧) is
the derivative of the position vector with respect to the 𝛼 direction. By replacing the
initial nodal coordinate values into the interpolating polynomial, the resultant shape
function 𝑺 of Eq. 2.2 can be derived. This shape function effectively establishes the
correlation between the local coordinates and the global position of the generic point:

𝑺 =
[︁
𝑆1𝑰 𝑆2𝑰 𝑆3𝑰 𝑆4𝑰 𝑆5𝑰 𝑆6𝑰 𝑆7𝑰 𝑆8𝑰

]︁
, (2.5)

where 𝑰 is the 3 × 3 identity matrix and:

𝑆1 = 1 − 3𝜉2 + 2𝜉3, 𝑆2 = 𝑙 (𝜉 − 2𝜉2 + 𝜉3), 𝑆3 = 𝑙 (𝜂 − 𝜉𝜂), 𝑆4 = 𝑙 (𝜁 − 𝜉𝜁)
𝑆5 = 3𝜉2 − 2𝜉3, 𝑆6 = 𝑙 (−𝜉2 + 𝜉3), 𝑆7 = 𝑙𝜉𝜂, 𝑆8 = 𝑙𝜉𝜁

The non-dimensional quantities 𝜉, 𝜂, 𝜁 are defined as:

𝜉 = 𝑥/𝑙, 𝜂 = 𝑦/𝑙, 𝜁 = 𝑧/𝑙,
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The variable 𝑙 is the length of the beam element in the undeformed configuration.
It can be demonstrated that the shape function of Eq. 2.5 can represent any rigid
body motion, including significant translations and rotations, as well as arbitrary
deformation modes.

Figure 2.6 shows with an example of a beam fixed at its end and free to deform
under its own weight. Structural properties of the beam, such as the Young Modulus,
have been set to small values to simulate the properties of a rope-like body.

Figure 2.6: Simple rope swing, using 10 ANCF beam elements.

As evident from the simulation outcomes, the rope displays oscillatory patterns
that align with the intuitive expectations. Nevertheless, even a basic test such as this,
with a time frame of one second, demanded a significant amount of computational
time.

Overall, this formulation offers a range of benefits for our application. Firstly,
it operates without imposing any assumptions on body displacements, rendering it
suitable for substantial deformations and strains. This is due to the formulation’s
capacity to offer a precise representation of multibody dynamics, as demonstrated in
the work [27]. Moreover, the formulation maintains a constant mass matrix that can
be solved analytically. This eliminates the need for recomputing the matrix at each
time step, presenting a significant advantage. Additionally, as all variables are in the
global reference frame, inertia forces can be directly calculated by multiplying the
mass matrix with the vector of nodal accelerations within the global inertial frame.
Furthermore, both centrifugal and Coriolis forces are nullified due to the use of a global,
absolute frame. This prevents any inertial interaction between the extensive movement
of the rigid body and the elastic deformation, differently to other formulations like the
Floating Reference Frame. Incorporating constraint equations, such as hinge joints,
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is straightforward; this involves sharing nodes between two bodies. More complex
constraints can be included by the means of the Lagrange multipliers.

Nevertheless, there are a number of drawbacks. Implementing this method for
simulation is intricate and time-consuming, necessitating expertise and comprehensive
knowledge in creating a finite element simulation environment. The key disadvantage
is that internal elastic forces exhibit high non-linearity, and the same expression is
used for both small strains and large deformations. Consequently, the computational
time remains consistent across small deflection and large deflection problems. The
analytic expression of such forces is highly complex, and requires numeric integration
procedures such as the Gaussian quadrature formulas [28]. Furthermore, modal order
reduction often doesn’t have a straightforward solution. While using fewer coordinates
to define a node is possible, it leads to compromised accuracy and descriptive
capabilities. For example, a common simplification involves using “cable elements”
instead of “beam elements”. This is done by reducing the node’s degree of freedom
for rotation around its own axis, failing to describe cross-sectional deformations. Such
elements, termed “gradient deficient”, employ only one gradient vector in the nodal
coordinate vector. In the context of the IAC simulation application, disregarding
torsional effects isn’t feasible. The proof of concept simulation aims to assess the
potential instability of the rope under torsional loads, primarily from the capturing
device. However, longer ropes exhibit limited torsional stiffness, and the capturing
device should ideally not undergo uncontrolled rotation around its axis. While the
cable-like assumption has its limitations, it considerably accelerates computation, but
the overall computational burden remains too heavy for our application.

In conclusion, this approach remains highly valid and necessitates further ex-
ploration, particularly in terms of developing a fast implementation strategy. Given
that each element can be independently processed and subsequently connected via
connectivity boolean matrices, parallel processing on separate computing cores can
be performed at each time step.

2.2.4 Lumped Masses Models

In many practical scenarios, such as aerial refueling and underwater cable towing, as
discussed earlier in the introductory section, the adoption of finite element method-
ologies becomes exceedingly computationally intensive and challenging to derive.
As a result, a range of heuristic methods have been suggested, with the prevalence
of approaches involving lumped masses and finite segments. Within this category
of methods, the flexible body is discretized into lumped masses connected by rigid
links. This approach offers the benefits of simplicity and efficiency in tackling the
kinematics and dynamics of flexible bodies.

Ro and Kamman [29] introduced a model for the hoses employed in aerial refueling.
They conceptualize it as a sequence of interconnected rigid links with ball-and-socket
joints, subjected to predefined motions of the refueling aircraft (Fig. 2.7).
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Figure 2.7: Overview of the modelling of the hose-drogue system (Source: [29]).

A similar configuration, involving a paradrogue positioned at the opposite end
similar to the ACCD in our context, is adopted. The system’s masses are concentrated
at these joints. A comprehensive investigation is conducted to analyze the effects of
aerodynamic loads, accounting for factors such as wake and turbulence. The equations
of motion were derived from Newton’s Laws, avoiding the need for a minimal set of
variables to describe each element. Furthermore, constraint equations were integrated
to ensure continuity among the elements. Given the problem’s nature, opting for a
recursive approach to describe element kinematics seems a logical choice. While they
show high potential in terms of ensuring a suitable accuracy-computation trade-off,
hose models lack important structural mechanics features. Generally, most of the
models do not encompass a description of the hose elongation, since it can be assumed
to be negligible in such applications. Moreover, a physics-based description of the
stiffness and damping is not present.

Fritzkowski et al. expanded on this concept in various iterations of their work
[30][31][32][33]. They introduced a chain-like model in which the rigid rope segments
are connected via revolute joints. In their latest iteration, non-ideal joints are integrated,
considering attributes like elasticity and dissipation. The approach presented by
Fritzkowski et al. has proven to be promising for our application, and it has been
used in past rope models employed by DLR. The modelling methodology appears to
provide an adequate description of the underlying physics, while also allowing for a
reasonably low computational load. However, the presented model is limited to the 2D
case and lacks extensibility in terms of computing the new equations of motion. An
essential requirement is for the model to encompass the 3D description. Consequently,
their work cannot be directly applied. Furthermore, outcomes reveal that lumped
masses models are susceptible to inducing chain-link oscillations within the hose
dynamics, which are inappropriate for flexible bodies. Addressing these non-physical
oscillations becomes necessary to achieve a realistic description of the dynamics of
the system.

These challenges will be addressed in Section 3 of the present work, where a novel
multibody approach, inspired by the work of Fritzkowski et al., will be proposed.
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3 Modelling Methodology
The following section presents the new modelling approach to describe the rope
dynamics. The primary objective is to derive closed-form expressions for the equations
of motion, enabling direct implementation in software for use in the simulation
environment. A MBS will be proposed, involving the discretization of the rope into
numerous rigid bodies constrained to be connected at their ends. The formulation
will employ a minimal set of state variables, leveraging the benefits of the recursive
formulation in multibody problems. A set of features will be added, to model rope
properties such as the bending stiffness and the elongation. Ways to incorporate
external actions will be examined, such as the handling of rheonomous constraints
and aerodynamic forces. The energy balance for the system is presented, and will be
used in the following section as a procedure to validate the correctness of the model.
Ultimately, a final expression for the equations of motion will be proposed, as a direct
function of the number of elements used in the rope discretization.

3.1 Environment Description
In the context of the IAC manoeuvre, the main goal is to simulate the dynamics of the
capturing system, composed of the rope and the ACCD attached to its end. The main
focus of this dissertation is to derive the equations of motion for the rope dynamics,
which can later be utilized in larger MBS. Consequently, the dynamics of the capturing
device will not be explicitly described. In the subsequent chapter, IAC simulations
will be performed, considering the ACCD as a lumped mass at the end of the rope and
incorporating it within the rope model itself.

The general configuration of the environment is illustrated in Figure 3.1. One end
of the rope is fixed to the towing aircraft, which undergoes a pre-defined motion. For
simplicity, the aircraft is assumed to begin in cruise condition, aligning its motion
with the horizontal relative airstream. As it will be discussed in subsection 4.1.3,
if the aircraft’s velocity remains constant, no inertia forces will be applied to the
rope. The ACCD is attached to the other end of the rope, and they are constrained
to share the same point. The underlying constraint equation ensures that they have
the same acceleration at that point. Through the simulation of the rope dynamics, the
acceleration of the rope’s bottom end can be estimated and imposed to the ACCD
motion. Consequently, the position and velocity of the ACCD at the connection point
become fixed. Thus, accurate modeling of the rope dynamics is crucial in tuning the
control strategy, enabling the ACCD to approach the RLV and successfully mate with
it. Subsequent stages following the connection with the RLV will be the subject of
future research.
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Figure 3.1: Schematic representation of the rope and ACCD capturing system,
attached to the towing aircraft.

3.2 Kinematic Description
The rope modelling starts with a description of the kinematic. It is reasonable to
establish the origin of the global reference frame as that of the aircraft, which effectively
enforces a fixed joint constraint. This approach enables the description of the rope’s
relative kinematics with respect to the aircraft. When the TA maintains a constant
velocity, the aircraft reference frame becomes inertial. In this simplified scenario,
there is no need to introduce inertia forces in the rope model. However, during the
IAC procedure, the aircraft will often decelerate and accelerate to align with the
RLV. Consequently, the rope model must be able to incorporate the inertia effects
of such changes in motion. As introduced in Section 2, the general idea for the rope

x

Figure 3.2: Discretization of the rope as a chain of rigid bodies.

modelling is inspired on the work of Fritzkowski et al. [30]. They present a 2D
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model, which cannot be directly applied to our specific application. This thesis work
aims at expanding their framework to encompass a complete 3D environment. Their
modelling approach is shown in Figure 3.2.

The rope is discretized into n segments of length L and mass m each, connected by
frictionless joints. Assuming that each element behaves like a rigid cylindrical rod,
the discrete model of the rope resembles a system of multiple physical pendulums.
Generalized angular coordinates are introduced, which represent the global angle
𝜙𝑖 that an element has with respect to the vertical axis. While this representation is
intuitive in a 2D setting, an additional angle, denoted as 𝜓, is required to describe the
bending of the rope in the third direction. This 𝜓 angle is incorporated in the element’s
description following a spherical scheme (Figure 3.3).

x

Figure 3.3: 3D description of a rope element using a spherical set of angles.

In this work, we will refer to 𝜙 angles as “polar” angles, and to 𝜓 angles as “azimut”
angles. In fact, polar angles are measured from the zenith (vertical direction), while
the azimuth ones describe the orientation in the reference horizontal plane (x-z in this
reference frame) [34].

The 3D Cartesian position of one point can be obtained as:⎧⎪⎪⎨⎪⎪⎩
𝑥1 = 𝐿 · cos𝜓1 · sin 𝜙1
𝑦1 = 𝐿 · cos𝜓1 · cos 𝜙1
𝑧1 = 𝐿 · sin𝜓1

Starting from the first element, all the others are attached in a chain like model.
Therefore, the Cartesian coordinates of the 𝑖𝑡ℎ element (most specifically, its centre of
mass) may be written as follows:

𝑥𝑖 (𝑡) = 𝑥0(𝑡) +
𝐿

2

𝑖−1∑︁
𝑗=1

cos𝜓 𝑗 · sin 𝜙 𝑗 +
𝐿

2
cos𝜓𝑖 · sin 𝜙𝑖

𝑦𝑖 (𝑡) = 𝑦0(𝑡) +
𝐿

2

𝑖−1∑︁
𝑗=1

cos𝜓 𝑗 · cos 𝜙 𝑗 +
𝐿

2
cos𝜓𝑖 · cos 𝜙𝑖

𝑧𝑖 (𝑡) = 𝑧0(𝑡) +
𝐿

2

𝑖−1∑︁
𝑗=1

sin𝜓 𝑗 +
𝐿

2
sin𝜓𝑖

(3.1)
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The components of the linear velocity and acceleration of the ith segment in the X, Y,
Z directions are computed by simply derivating Eq. 3.1 with respect to time:

𝑣𝑥𝑖 (𝑡) =
𝑑𝑥𝑖 (𝑡)
𝑑𝑡

, 𝑎𝑥𝑖 =
𝑑2𝑥𝑖 (𝑡)
𝑑𝑡2

𝑣𝑦𝑖 (𝑡) =
𝑑𝑦𝑖 (𝑡)
𝑑𝑡

, 𝑎𝑦𝑖 =
𝑑2𝑦𝑖 (𝑡)
𝑑𝑡2

𝑣𝑧𝑖 (𝑡) =
𝑑𝑧𝑖 (𝑡)
𝑑𝑡

, 𝑎𝑧𝑖 =
𝑑2𝑧𝑖 (𝑡)
𝑑𝑡2

(3.2)

These expressions can be written in terms of the generalized coordinates and their
derivatives. These formulas will also be used in the IAC simulation, since the
acceleration of the last node of the rope is shared with the ACCD. The acceleration of
the last node will be fed to the ACCD model to couple the two systems.

3.3 Dynamics Description
In order to derive the equations of motion, the Euler-Lagrangian approach is used.
This requires the definition of the lagrangian, a function of the kinetic and potential
energy of the system [35]:

L = 𝑇 −𝑉 (3.3)
where 𝑇 and 𝑉 are respectively the kinetic and potential energy.

The kinetic energy is defined as following, using König’s theorem:

𝑇 =
1
2
𝑚

𝑛∑︁
𝑖=1

𝑣2
𝑖 +

1
2
𝐼

𝑛∑︁
𝑖=1

𝜙𝑖̇ 2 + 1
2
𝐼

𝑛∑︁
𝑖=1

𝜓𝑖̇ 2 (3.4)

In Eq. 3.4, 𝑚 is the mass of the single rope element. 𝑣𝑖 is the linear velocity of the
center of mass of the 𝑖𝑡ℎ element. 𝐼 is the moment of inertia of the element, which is
assumed to be a cylindrical rod. 𝜙𝑖̇ and 𝜓𝑖̇ are the angular velocities, derivatives of the
polar and azimuth angles used as generalized coordinates.

The potential energy of the system 𝑉 is given by:

𝑉 = −𝑚𝑔
𝑛∑︁
𝑖=1

𝑦𝑖 (3.5)

In Eq. 3.5, 𝑔 is the gravitational acceleration, while 𝑦𝑖 is the y-position of the 𝑖𝑡ℎ
element center of mass. In this work 𝑔 will mostly assume a constant value, since we
assume to be in cruise flight, but it in the later stages of the IAC validation one must
modify its value according to the environmental conditions.

The Lagrange equations of motion can be written as:

𝑑

𝑑𝑡

(︃
𝜕L
𝜕𝑞𝑖̇

)︃
− 𝜕L
𝜕𝑞𝑖

= 𝑄𝑖, 𝑖 = 1, 2, ..., 𝑘 (3.6)

where 𝑄𝑖 are the generalized forces applied to the system, which will be described
more in detail in the following subsections. We will refer to them as the non-lagrangian
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components. The number of equations is equal to number of generalized coordinates
used in the description of the chain. A polar and an azimuth angle were used to
characterize each element, so the variables will be 2𝑛 in total.

The power of the Lagrange equations consists in allowing for a systematic compu-
tation of the equations of motion, without the necessity of going through a detailed
geometrical description of the problem setting. For systems such as the proposed
model, where there is a large number of simple bodies constrained to be together,
it allows to compute the minimal set of equations. In fact, the coupling between
generalized coordinates that appears in the constraint equations, is automatically
encoded in the final set of equations.

3.3.1 Bending Stiffness

Modelling the rope only as a simple multiple-physical pendulum leads to a disordered,
extremely chaotic system, as it is shown in the work from [30]. The single elements
are completely free to rotate around the connecting joints, thus the system is able to
describe the wave-like effects that are typical of the dynamics of whips. However, when
the energy transmission is too large or fast, elements are free to perform non-natural,
unrestricted rotations.
Therefore, it is necessary to introduce transverse elasticity features in the model. This
is done by introducing bending stiffness at the joints, by the means of the concept of
spiral springs [32]. Identical, mass-less springs with stiffness 𝐾𝑡 are placed in each of
the joints, as shown in figure 3.4. These elements will apply a torque opposite with
respect to the curvature of the elements.

x

Figure 3.4: Rope discrete model with bending stiffness at the joints.

The bending stiffness torque can be defined as a direct function of the body local
curvature. A closed-form expression for the curvature can be obtained as a function of
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the parametric representation of the curve 𝜸(𝑠) = 𝑓 (𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)) [36]:

𝑅 =
|𝜸′|3√︃

|𝜸′|2 |𝜸′′|2 − (𝜸′ · 𝜸′′)2
(3.7)

Equation 3.7 shows that the reference curve shall be twice differentiable. The goal is
to find an expression of the curve in the proposed discretized model. We first consider
a sequence of two elements of the rope in a simplified 2D setting, in a local coordinate
system xy (Figure 3.5). Polar angle 𝜙 is defined using the convention used in the
kinematics description.

Figure 3.5: Curvature of a generic discretized curve.

Equation 3.7, valid for a generic curve in space, assumes a simplified expression
in a 2D environment:

𝑅 =
|𝛾′|3

det(𝛾′, 𝛾′′) =

(︁
𝑥̇2 + 𝑦̇2)︁ 3

2

𝑥̇ 𝑦̈ − 𝑦̇𝑥̈ (3.8)

The computation of the derivatives must take into account the discretization in sub-
elements. Supposing one wants to estimate the curvature 𝑅 at point 𝑃1, we consider
the two adjacent rigid elements. To compute derivatives, we rely on a discretization of
the rope in multiple segments. In the presented coordinate system, the positions of the
points 𝑃0, 𝑃1, 𝑃2 can be specified as follows:

𝑥0 = 0, 𝑦0 = 0
𝑥1 = 𝐿 sin 𝜙1, 𝑦1 = 𝐿 cos 𝜙1

𝑥2 = 𝐿 (sin 𝜙1 + sin 𝜙2) , 𝑦2 = 𝐿 (cos 𝜙1 + cos 𝜙2)
(3.9)

The derivatives of x and y, with respect to the curvature coordinate, can be approximated
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by using the central difference schemes:

𝑥̇ =
𝑥2 − 𝑥0

2 𝐿
, 𝑦̇ =

𝑦2 − 𝑦0
2 𝐿

𝑥̈ =
𝑥2 − 2𝑥1 + 𝑥0

𝐿2 , 𝑦̈ =
𝑦2 − 2𝑦1 + 𝑦0

𝐿2

(3.10)

Substituting the formulas for the derivatives in Eq. 3.8, an expression for the radius of
curvature is obtained:

𝑅 = −𝐿
2

cos (𝜃/2) cot (𝜃/2) (3.11)

where 𝜃 = 𝜙2 − 𝜙1 is a generalized coordinate which describes the relative rotation.
The bending moment M is computed using the basic expression for the strength of

materials [37]:
𝑀 =

𝐾𝑡

𝑅
= −2𝐾𝑡

𝐿

tan(𝜃/2)
cos(𝜃/2) (3.12)

where 𝐾𝑡 is the flexural rigidity. A shape of the resulting nonlinear spring characteristic
is shown in figure 3.6:

Figure 3.6: Non-linear bending stiffness used in the model.

It must be noted that if two elements tend to have a relative rotation 𝜃 = 𝜋, the
elastic force 𝑀 will grow infinitely. Consequently, the curvature expression prevents
unnatural, full rotation at the joints.
To apply this concept to the proposed model, it is sufficient to implement Equation
3.12 in all 𝑖𝑡ℎ joints:

𝑀𝑖 =
𝐾𝑡

𝑅
= −2𝐾𝑡

𝐿

tan(𝜃𝑖/2)
cos(𝜃𝑖/2)

(3.13)

𝜃𝑖 is specified as following:

𝜃𝑖 =

{︃
𝜙𝑖 for 𝑖 = 1
𝜙𝑖 − 𝜙𝑖−1 for 𝑖 = 2, 3, ..., 𝑛
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The virtual work done by the spring moments at the joints can be expressed with
respect to the generalized coordinates 𝜃𝑖:

𝛿𝑊 = 𝑀1𝛿𝜃1 + 𝑀2𝛿𝜃2 + · · · + 𝑀𝑛𝛿𝜃𝑛 (3.14)

From Equation 3.14, it is straightforward to obtain an expression of the related
generalized forces associated with the polar angle 𝜙𝑖:

𝑄𝑀
𝑖 =

𝜕𝑊

𝜕𝑞𝑖
=

{︃
𝑀𝑖 − 𝑀𝑖+1, for 𝑖 = 1, 2, · · · , 𝑛 − 1
𝑀𝑖, for 𝑖 = 𝑛 (3.15)

The same reasoning can be applied to the azimuth angle 𝜓, which describes the
bending in the xz plane.

A model of the rope bending which separately handles the two angles is a
simplification. A stiffness model which starts from a 3D description of the curvature
of the system is more accurate from a physical perspective. In this work, a 2D model
was used, because of the simplicity of the analytic expression. However, it effectively
decouples the two angles, which are actually tightly correlated to each other in the
kinematic description of the system. A closed-form expression for the curvature in a
three dimension space exists, but it leads to a very complex equation. An analysis on
the impact of the adoption of this simplified approach is left for future work.

3.3.2 Viscous Damping

The addition of the transverse elasticity, compared with the multiple physical pen-
dulum, eliminates full rotations for the segments. However, as can be seen from
Fritzkowski’s work, the contribution of the rotational kinetic energy only increases
with the introduction of the stiffness [32]. As a consequence, the chaotic-looking
dynamics does not experience a reduction in strength, since the stabilizing activity of
the spring induces only further rotational oscillations.

It is crucial to replace simple springs with viscoe-lastic ones, to damp out the
transverse oscillations. Therefore, viscous dampers of a damping coefficient c are
added to the rope joints [33]. Similar to the bending stiffness description, the problem
is tackled by splitting the problem in two planes x-y and x-z (Figure 3.7). Therefore,
each set of angles is addressed individually.

Dissipative, generalized forces can be derived from the Rayleigh dissipation
function [35]:

𝑅 =
1
2
𝑐

𝑛∑︁
𝑖=1

𝜃𝑖̇
2 (3.16)

where 𝜃𝑖̇ represents the relative angular velocity:

𝜃𝑖̇ =

{︃
𝜙𝑖̇ for 𝑖 = 1
𝜙𝑖̇ − 𝜙̇𝑖−1 for 𝑖 = 2, 3, ..., 𝑛

The generalized forces with respect to the polar angles are given by:

𝑄𝐷
𝑖 = − 𝜕𝑅

𝜕𝜙̇𝑖
, 𝑖 = 1, 2, · · · , 𝑛 (3.17)
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Figure 3.7: Rope discrete model with viscous damping at the joints.

Which leads to the final expression:

𝑄𝐷
𝑖 =

{︃
𝑐
(︁
𝜃̇𝑖+1 − 𝜃𝑖̇

)︁
for 𝑖 = 1, 2, · · · , 𝑛 − 1

−𝑐 𝜃𝑖̇ for 𝑖 = 𝑛

As in the bending stiffness description, this approach is repeated in the x-z plane to
find an expression in terms of the azimuth angle.

It cannot be overstated the importance of the damping in allowing the simulation
to show realistic results and run in a reasonable timestep. The original work by
Fritzkowski et al. does not use damping in the modelling of the system, and it is
evident how the simulation becomes unstable after a single rope swing. A further
comparison of the model with and without the effect of damping will be performed in
Section 4.1.3.

The values for the damping coefficient of such a formulation cannot be found
directly in the rope material datasheets or other types of benchmarks. Experimental
data is necessary to find a proper estimate. This information was not available during
the work, and cannot be found in the literature. Therefore, a sensitivity analysis on the
value of this parameter was performed. In the simulations, we used coefficients which
showed to produce a rope behaviour which is intuitively reasonable. Nevertheless, it is
crucial to produce experimental results to find suitable values for this coefficient.
It was observed that with larger rope mass, the effect of damping would get negligible
if the same coefficient is used. For this reason, it is appropriate to employ the empirical
assumption of Rayleigh Damping, which is used in the context of Finite Element
Methods. It assumes that the damping coefficient is a linear combination of the
system’s mass and stiffness:

𝐶 = 𝛼𝑀 + 𝛽𝐾
where 𝛼 and 𝛽 are empirical coefficients. The estimation of such parameters is not
trivial. For slender flexible bodies, it can be assumed that the stiffness has a much
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smaller impact compared to the mass. In this work, the final damping coefficient
is de facto proportional only to the rope mass. In this way, the future experimental
validation will just tackle the estimation of a single coefficient. For the rest of the
present work, we will refer to 𝛼 as the generic 𝑐 damping coefficient.

While applying damping to relative velocity is key to keep the simulation stable, in
some cases it is not enough to completely damp out the motion of the system overtime.
In fact, the full dissipation of low frequency oscillations requires excessive time, which
might differ from experimental data. Therefore, this may suggest to apply another
source of damping directly to the absolute angular velocities. A dedicated analysis is
left for future work, since experimental data is first needed to validate the rope model.

3.3.3 External Forces

External forces are incorporated in the non-lagrangian component of Equation 3.6.
Forces will be input to the model, mostly expressed in Cartesian coordinates. Therefore,
they must be converted into generalized forces which refer to the angular coordinates
used in the presented model. The virtual work of the generic external force 𝑭, applied
in point 𝑃, is:

𝛿𝑊 = 𝑭 · 𝛿𝒓𝑝
where 𝒓 𝒑 is the position of point 𝑃 in Cartesian coordinates. Applying the partial
differentation chain rule, an expression for the generalized force 𝑸 is obtained.

𝛿𝑊 = 𝑭 · 𝛿𝒓𝑝 = 𝑭
𝜕𝒓𝑝

𝜕𝒒
𝜕𝒒

𝑸 = 𝑭 ·
𝜕𝒓𝑝

𝜕𝒒
(3.18)

𝑟𝑝 is the Cartesian position of point 𝑃, which it can be supposed to be found on the 𝑗𝑡ℎ
element. It follows that its position is only described by coordinates 𝜙𝑖 and 𝜓𝑖 with
index 𝑖 < 𝑗 . Generalizing from Equation 3.18, the force will only affect the element
where it is applied and the ones that can be found previously in the chain.
Equation 3.18 can be rewritten as follows:

𝑸 =

⎡⎢⎢⎢⎢⎣
𝑓𝑥
𝑓𝑦
𝑓𝑧

⎤⎥⎥⎥⎥⎦
𝑇

· T (3.19)

where 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧 are the Cartesian components of the force, while T is the matrix which
allows the transformation to the generalized coordinates of the system. In detail:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝒓𝑝𝑥
𝜕𝑞1

𝜕𝒓𝑝𝑥
𝜕𝑞2

. . .
𝜕𝒓𝑝𝑥
𝜕𝑞𝑘

𝜕𝒓𝑝𝑦
𝜕𝑞1

𝜕𝒓𝑝𝑦
𝜕𝑞2

. . .
𝜕𝒓𝑝𝑦
𝜕𝑞𝑘

𝜕𝒓𝑝𝑧
𝜕𝑞1

𝜕𝒓𝑝𝑧
𝜕𝑞2

. . .
𝜕𝒓𝑝𝑧
𝜕𝑞𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where 𝑘 is the toal number of generalized coordinates. As aforementioned, it is
sufficient to only compute the columns of the 𝑇 matrix until the 𝑗𝑡ℎ element, since
the force has no effect on the coordinates which describe elements following the
application point.

So far, only punctual forces have been considered. Distributed forces along the
rope length, such as gravity or aerodynamic effects, can be modelled by individually
applying their expression to the centers of mass of all elements. Thus, it is possible to
use the same reasoning used for lumped forces, by simply looping over all elements.
A different description must be considered for punctual forces applied at the top end.
The position of the rope first node is not described by any generalized coordinate, so
following the previous description such forces would have no impact on the system.
However, it must be mentioned that the rope has been modelled to have its top
node constrained in a specific point. Therefore, it is more reasonable to impose an
acceleration for this node, rather than an external force. This is the case of the IAC
mission, since the rope is constrained to the aircraft on its top end. A more detailed
discussion can be found in the following section.

3.3.4 Rheonomous Constraints

In the IAC mission, the rope is attached to the towing aircraft at its top end. The
reference frame of the rope body describes the relative position with respect to the
aircraft, and its origin is fixed in the connection point. As it can be observed from
Equation 3.1, the origin of the rope reference frame is constrained to have the same
motion of the aircraft. This acts like a rheonomous constraint for the system, because
the time variable appears explicitly in the equation [35]. Equation 3.1 is used in the
computation of the Lagrange equations, which involves partial derivatives with respect
to the coordinates velocities and the time variable. In the final set of equations, the
contribution of rheonomous constraints to the non-lagrangian of the system is:

𝒒 = −𝑚 𝒂0(𝑡)

where 𝒂0(𝑡) is the acceleration of the rope first node. It can be thought as an apparent
inertia force applied to all elements that acts in the opposite direction with respect to
the reference frame acceleration. The method used to apply this force to individual
rope segments is analogous to how distributed forces are applied to the rope. Generally,
only accelerations of the TA will appear in the equations, not position or velocity. This
is reasonable, as describing the relative position with respect to a fixed frame does not
require to consider apparent forces when the frame is inertial. In the IAC mission, the
aircraft reference frame cannot be considered as inertial, if the TA undergoes any kind
of acceleration. While this study focuses on cruise flight condition, it must also allow
the model to depict mission phases like the formation flight and pull-up maneuvers.
Consequently, the rope model needs to encompass the influence of inertia forces,
arising from changes in TA motion over time.
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3.3.5 Aerodynamic Effects

The context of the IAC mission requires the implementation of a drag model for the
rope body. Aerodynamic effects are analyzed by describing rope elements individually.
The analytical expressions for drag and lift forces are as follows [38]:

𝐹𝐷 =
1
2
𝐶𝐷 𝜌 𝐴 𝑢

2

𝐹𝐿 = −1
2
𝐶𝐿 𝜌 𝐴 𝑢

2
(3.20)

Lift force comes with a negative sign to match the reference frame of the model, which
points downwards. 𝐶𝐷 and 𝐶𝐿 are the drag and lift coefficients, which can be obtained
from the angle of attack of the body. 𝜌 is the mass density of the fluid, which will be
input from the atmosphere model. 𝐴 is the reference area of the body. In this case, the
rope cross-section will be used. Finally, 𝑢 is the velocity of the flow relative to the
object. The proposed model effectively computes the relative velocity of the rope with
respect to the aircraft, so this must be added to the TA reference velocity. Not only,
effect of wind and aircraft wake must be taken into account as well.
The drag and lift coefficients were estimated using J.H. Lee’s work (Figure 3.8), which
describes the dynamics of ropes in underwater structures [39].

Figure 3.8: Drag coefficient (𝐶𝐷) and lift coefficient (𝐶𝐿) as a function of the angle
of attack (Source: [39]).

Each element is considered to be cylinder-like, and the coefficients value is a
function of the angle of the rod angle of attack with respect to the airflow. However, the
proposed rope model describes the position in a 3D setting, so the angle of attack must
be chosen with care. In the generalized coordinates used in the model description, polar
angles 𝜙 describe the inclination of the rope element with respect to the horizontal line.
If the aircraft is in cruise-flight condition, this angle is a natural choice for the angle of
attack with respect to the airflow. However, it must be also considered the effect of the
azimuth 𝜓, which represents the sideslip with respect to the aircraft reference.

The element actual angle of attack can be visualized by analyzing the plane created
by the direction of the element and the x direction, which is supposed to be the one of
the airflow (Figure 3.9) [40].
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Figure 3.9: Derivation of a total angle of attack, to be used in the drag model.

𝛼𝑡𝑜𝑡 is the total angle of attack. Since the element orientation is described using
spherical coordinates, it is straightforward to compute the expression for such angle.

𝑢 = 𝑣inf · cos𝛼𝑡
𝑢 = 𝑣inf · cos𝛼 · cos 𝛽

→ 𝛼𝑡 = cos−1 (cos𝛼 · cos 𝛽) (3.21)

From the total angle of attack, it is possible to retrieve the drag and lift coefficients for
each rope element.

Finally, the aerodynamic forces, expressed in Cartesian components, will be
transformed to generalized forces following the reasoning described in Section 4.1.2.

Generally, in the final IAC simulation, it can be observed that the rope aerodynamics
is negligible compared to the other forces that are in play. The drag of the ACCD
attached to its end already shadows the contribution of the rope drag, which would
otherwise be more relevant if the rope was deployed by itself.

3.3.6 Modelling of Rope Elongation

Ropes are very flexible bodies capable of sustaining high loads, while exhibiting
relatively large axial deformation. A primary goal of the IAC simulation is to examine
whether the rope is capable of handling the loads during the maneuver. Therefore, the
model shall include a feature to estimate the rope tension and elongation. The rope
has been discretized into a chain of rigid bodies, rigidly connected at the joints. It is
not trivial to introduce the modelling of elongation in such a system.

A straightforward approach is presented in a further work of Pawel Fritzkowski,
the author who first proposed a multibody approach for ropes [31]. The simple 2D
model of the rope is expanded, by enabling the rigid segments to change their length.
This is done by introducing an extra degree of freedom 𝑠𝑖 (𝑡) to each element, which
describes its elongation at a given time instant. As it can be observed from Figure
3.10, the modelling is performed in a simple spring-damper conception. The rods
length 𝐿 becomes effectively the natural length of the spring, whose axial stiffness
and damping coefficients are expressed by 𝑘 and 𝑐𝑘 . The kinematics of the system
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Figure 3.10: Rope discrete model with linear visco-elastic elements connected to
each segment.

will be different from Equation 3.1. The position of the center of mass of the 𝑖th body
segment, in the Cartesian plane, can be written as:

𝑥𝑖 (𝑡) = 𝑥0(𝑡) +
𝑖−1∑︁
𝑗=1

(︃
𝐿

2
+ 𝑠 𝑗 (𝑡)

)︃
cos𝜓 𝑗 · sin 𝜙 𝑗 +

𝐿

2
cos𝜓𝑖 · sin 𝜙𝑖

𝑦𝑖 (𝑡) = 𝑦0(𝑡) +
𝑖−1∑︁
𝑗=1

(︃
𝐿

2
+ 𝑠 𝑗 (𝑡)

)︃
cos𝜓 𝑗 · cos 𝜙 𝑗 +

𝐿

2
cos𝜓𝑖 · cos 𝜙𝑖

𝑧𝑖 (𝑡) = 𝑧0(𝑡) +
𝑖−1∑︁
𝑗=1

(︃
𝐿

2
+ 𝑠 𝑗 (𝑡)

)︃
sin𝜓𝑖 +

𝐿

2
sin𝜓𝑖

(3.22)

The derivation of the equations of motion follows the same reasoning as before,
but adding the springs energy to the potential energy term. The equations of motion
presented in Fritzkowski’s work are already rather complex, only covering the 2D
case. Expanding the presented elastic model to a 3D environment leads to a very
convoluted set of equations. The model would add a third coordinate to all elements,
which is tightly correlated to the other two in the formulation of the kinematics. In
this context, it is challenging to find a closed-form expression as direct function of the
number of elements.

Not only, the adoption of an elongation term at every element leads to an extremely
chaotic system, prone to be unstable for larger timesteps in the integration. The
oscillating behaviour of a single spring affects the motion of all following elements.
For longer chains of elements, this effect adds up and leads to unstable configurations
or unrealistic oscillations. The addition of the damping element helps with stability of
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the system, but it is still challenging to maintain the simulation stable with a reasonable
timestep.

As a consequence, a simplified model will be proposed. The main idea consists
in introducing a single, linear visco-elastic element at the beginning of the chain, as
sketched in Figure 3.11.

x

Figure 3.11: Rope discrete model with linear visco-elastic element at the top node.

This component is assumed to model the elongation of the whole rope, by setting
its axial stiffness coefficient using the relation [37]:

𝑘𝑎 =
𝐸𝐴

𝐿𝑡𝑜𝑡

where 𝐸 is the Young modulus of the material. This is a substantial simplifying
assumption, but it can be reasonable under some perspectives. An estimate of the
elongation is needed in structural tests, when different loads are applied to the rope.
In the IAC mission, external actions are likely to make the rope assume a straight
configuration, because of heavy stresses like the RLV drag. In this scenario, a single
linear spring can approximately describe the rope total elongation, since the latter will
lie in a single direction. Further investigations regarding the possibility to implement
a spring at each element is left for future work.

3.4 Energy Balance
A correct modelling implies that the energy balance of the system shall be coherent.
As it will be argued in Section 4, analyzing at the energy balance is the premiere
way to verify the model, since experimental validation is problematic and requires
dedicated effort. Hereafter the methodology used in the simulations will be discussed.

The objective is to verify that the law of conservation of mechanical energy holds.
In other terms, the variation in the mechanical energy𝑈 of the system must be exactly
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equal to the work done by non-conservative actions. The mechanical energy of the
system can be written as:

𝑈 = 𝑇 +𝑉 (3.23)
T and V, respectively the kinetic and potential energy of the system, were defined in
Section 3.3.
The work done by non-conservative actions at each time step is equal to:

𝛿𝑊𝑒𝑥𝑡 =

𝑛∑︁
𝑖=1

𝑄𝑒𝑥𝑡𝑖 𝑑𝑞𝑖 +
𝑛∑︁
𝑖=1

𝑄𝐷𝑖
𝑑𝜃𝑖 +

𝑛∑︁
𝑖=1

𝑄𝑒𝑙𝑖 𝑑𝜃𝑖 (3.24)

where 𝑞𝑖 represents the generalized coordinate of the set [𝑠, 𝜙𝑖, ..., 𝜓𝑖, ...], while 𝜃𝑖
is the generalized coordinate introduced in Section 3.3.1. 𝑄𝑒𝑥𝑡𝑖 is the sum of all
generalized external forces for coordinate 𝑞𝑖, discussed in section 4.1.2. 𝑄𝐷𝑖

is the
damping generalized force associated with coordinate 𝑞𝑖. The last term represents the
work performed by the bending stiffness.

For implementation purposes, since the infinitesimal variation can be written as
𝑑𝑞 = 𝑞̇𝑑𝑡, we can rewrite the previous expression as follows:

𝛿𝑊𝑒𝑥𝑡 =

(︄
𝑛∑︁
𝑖=1

𝑄𝑒𝑥𝑡𝑖 𝑞𝑖̇ +
𝑛∑︁
𝑖=1

𝑄𝐷𝑖
𝜃𝑖̇ +

𝑛∑︁
𝑖=1

𝑄𝑒𝑙𝑖 𝜃𝑖̇

)︄
𝑑𝑡 (3.25)

All these quantities are computed in the calculation of the equations of motion, since 𝑑𝑡
is the integration time step and 𝑞𝑖̇, 𝜃𝑖̇ are the velocities of the generalized coordinates.

The final energy balance can be summarized as follows:

Δ𝑈 −
∫
𝑆

𝛿𝑊𝑒𝑥𝑡 = 0 (3.26)

In Section 4, this difference will be computed at each time step. While the theoretical
value would be zero, small deviations are likely to occur because of numerical error.
Therefore, the residual computed in Eq. 3.26 will be effectively considered as the error
cumulated in the integration step. If this assumption is true, then one might expect this
quantity to get smaller with the use of a lower timestep or a higher order integrator.
Additional discussions will be presented within the context of the simulation results.

3.5 ODE System
The final Lagrange equations (Eq. 3.6) assume a rather complex and convoluted
expression. However, it is still possible to write set of equations in the linear, explicit
form that is typical of mechanical systems:

𝑴 (𝒒) 𝒒̈ = 𝒇 (𝑡, 𝒒, 𝒒̇) (3.27)

where:

𝑴 (𝒒) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑚1,1 𝑚1,2 · · · 𝑚1,𝑘
𝑚2,1 𝑚2,2 · · · 𝑚2,𝑘
...

...
. . .

...

𝑚𝑘,1 𝑚𝑘,2 · · · 𝑚𝑘,𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝒇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑓1
𝑓2
...

𝑓𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.28)
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𝑴 (𝒒) and 𝒇 (𝑡, 𝒒, 𝒒̇) will be respectively referred to as mass matrix and right-hand
side of the system. 𝑘 represents the total number of generalized coordinates used in
the kinematics formulation. It is equal to 2𝑛+1: 𝑛 polar angles, 𝑛 azimuth angles and
the elongation variable. Both the entries of the mass matrix 𝑚𝑖, 𝑗 and the components
of the right-hand-side 𝑓𝑖 are not constant, so they must be evaluated at each time
step. The full description of the mass matrix and the right-hand side can be found in
Appendix A.

In order to integrate the equations of motion, the system must be transformed to
first-order. This is done by introducing variables for the derivatives of the generalized
coordinates: 𝒖 = 𝒒̇. The final first-order ODE for the model can be written as:

𝑴̂ (𝑿) 𝑿̇ = 𝒇̂ (𝑡, 𝑿), 𝑿 (0) = 𝑿0 (3.29)

Where:
𝑴̂ =

[︃
𝑰 0
0 𝑴

]︃
, 𝒇̂ =

[︃
𝒖
𝒇

]︃
, 𝑿 =

[︃
𝒒
𝒖

]︃
In order to obtain a value for 𝑋̇ , it is sufficient to solve the linear system associated with
Equation 3.29. The global mass matrix is symmetric: this property can be exploited to
solve the linear system faster at each iteration.

The recursive formulation has allowed to describe the multibody system without
the need for constraint equations. If future work will require the implementation of
constraint equations, an approach based on Lagrange multipliers can be used. While
this allows to easily add the constraint equations to the system’s ODE, this is likely to
transform the problem into a Differential Algebraic Equation, which requires dedicated
strategies.

Concerning the numerical properties of the ODE, it can be observed that the
generalized velocities 𝒖 vary with time much more rapidly than the coordinates 𝒒.
Angular velocities at the joints, especially at the last elements, tend to assume high
values due to the propagation of high frequency oscillations. Unless the integration
step size is taken to be exceedingly small, the coordinates of the system will drift away
fast from the reference solution curve. This numerical phenomenon is regarded as
“stiffness” [41]. Equations which show such characteristics must be handled carefully
during integration, to avoid significant drift or instabilities. This is true especially
when using small damping coefficients and using a large number of elements in
discretization. In fact, the high frequency modes are not eliminated and can lead to a
fast deterioration in accuracy, as it can observed from original work from Fritzkowski
[30]. The adoption of bending stiffness and damping limits the capability of the
elements to freely rotate at the joints, effectively improving the stability properties of
the system. Nevertheless, the adoption of excessive damping coefficients is prone to
make the simulation unstable when an acceptable timestep is used. Further discussion
will be provided in Section 4.1.5, where an analysis on the stability of the system is
performed.
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3.6 Software Implementation
The equations of motion for the model were computed with the aid of the software
Maple [42], which allows for powerful symbolic manipulation. Using a large number of
elements in the rope discretization leads to definition of many generalized coordinates
to describe the system. Nevertheless, the software is able to compute derivatives of
large expressions with many variables, while also providing meaningful simplifications
in the expressions. The multibody system is formulated via a set of identical elements,
using a recursive formulation with globally-referred angles. In this context, it was
possible to find a closed-form expression for the equations of motion, as a direct
function of the number of elements used in the rope discretization.

A Python implementation of the model was developed, because it allows to rapidly
obtain a working prototype. In fact, it was soon possible to test the model, due
to Python’s flexibility and its vast selection of libraries. After the model verifica-
tion, Python’s limits in the speed of computation became evident. The software
implementation of the model computes the equations of motion in the form:

𝒙′ = 𝒇 (𝒙, 𝑡)

It is reasonable to adopt a compiling based programming language like C/C++ to
solve speed issues. In fact, after compilation, the function is no longer interpreted but
executed directly in machine code. However, the implementation and verification of
the model in such languages would have taken considerable time from the other scopes
of the analysis. Fortunately, Python available libraries are capable of solving a large
number of problems. Numba [43] is a library which allows Just-In-Time Compilation
of Python code into machine code, making use of the LLVM compiler technologies.
It is best suited for numerically oriented applications, with a large use of for loops
and array manipulation, like in the computation of the system’s equations of motion.
Numba is distinguished from other Just-In-Time compiling libraries for its easiness of
use. Variables’ types don’t have to be explicitly defined, it is automatically handled by
the Numba function decorator. Naturally, there are some limitations to its capabilities:
not all Python objects and functionalities can be interpreted. However, Numba is
capable of autonomously manage the Numpy library, which is the main founding block
of Python scientific computing. Further, Numba also allows automatic parallelization
of loops and heavy computations over the available CPU cores, whenever it is possible.
The results allowed for a computational speedup of a factor of 20x. On top of that, for
future Python based applications, one might consider using Numbakit-Ode to perform
the integration. Numbakit-Ode is a Numba-based library which is specialized in
solving ODEs fast, exploiting Numba’s capabilities and speed. Additionally, it offers
many possibilities for the type of solver to be used. If both tools are used at the same
time, the speedup with respect to a native Python/Numpy implementation is in the
order of 100x.

The rope model was imported into the In-Air-Capturing larger scale simulation,
which is developed in Simulink [44]. A simple use of Matlab’s API allowed to
incorporate the Python code. A description of the simulation scheme is presented in
Section 4.2.
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4 Results
The modelling approach proposed in this thesis introduces original features compared
to the work from Fritzkowski et al. [30]. As a consequence, it must go through the
validation process. The verification of such a complex body model is a challenge,
since it cannot be done using standard, available benchmarks. While the experimental
validation is left for future work, this thesis still demonstrates the correctness of the
physical model, by analyzing the energy balance of the system. Test cases will be used
to show that the overall dynamics of the systems follows the intuition. The model is
later tested in the IAC general simulation. A sensitivity analysis on the rope parameters
is performed, to find a set of specifications which matches the requirements of the
application. The response of the system to perturbations, such as the TA wake and
control inputs on the ACCD, is shown.

4.1 Model Verification
Extensive testing of the proposed rope model is essential before its implementation
in full-scale simulations. However, validating such systems is not a straightforward
task, as there are no standard benchmarks in the literature that are well-suited for
this specific application. Traditional beam benchmarks, for instance, do not offer
meaningful insights into problems involving large displacements and deformations.
The ideal approach to validate the model would be to utilize experimental results. This
would allow for a precise comparison to verify if the dynamics and frequencies align
with the actual behavior of a flexible rope. Moreover, the presented model incorporates
physical parameters, such as bending stiffness and damping coefficients, which may
not be readily available in material datasheets. Experimental data would enable the
fine-tuning of these parameters, which are currently only estimated in this work. DLR
plans to conduct the experimental phase, which is inevitable for the validation process
of the IAC mission.

For the scope of this thesis, we limit ourselves to show the correctness of the physical
model, by analyzing the energy balance of the system. The methodology was described
in Section 3.4: variations in the mechanical energy of the system must be equal to the
cumulative work performed by the generalized forces. Although this analysis does
not guarantee that the model accurately describes the rope motion, it ensures that the
physical model is correct and that the proposed features are reasonable [30].

Subsequently, we proceed to test the model’s features in simple scenarios before
proceeding to the full-scale simulation. We start by analyzing a simple rope swing
and then progress to apply various external actions to the system, such as forces and
rheonomous constraints. Finally, we conduct an examination of the model’s sensitivity
to the rope discretization and the type of integration scheme employed.

4.1.1 Rope Swing

In this test case, a rope has its top end fixed and is let swing freely. The only external
force acting on the system is the rope weight. This test allows to check if the description
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of the 3D dynamics is correct. In fact, the original work only covered the 2D case, so
this is the first original feature introduced in this work. Initial condition for the rope
state is set so that we can check if the new set of angles is modelled correctly. First
node is fixed in the origin, polar angles are set to 𝜋/2, while the azimuth angles are
set to 𝜋/4.
A rope with the following specifications was used:

𝑛 𝐿𝑡𝑜𝑡 [m] 𝑚𝑡𝑜𝑡 [Kg] 𝑘 [N/m] 𝐾𝑡 [Nm2] 𝑐 [Nms/Kg] 𝑐𝑘 [Ns/mKg]
30 250 80 25000 170 1 50

In this test case, a low damping coefficient will be used, resulting in a very flexible
rope. In fact, the goal is to examine if the simulated dynamics resembles the intuitive
behaviour expected from slender, flexible bodies. The simulation is run for 15 seconds,
which allows to the rope to perform one full swing. A time step of 10−2 s was used,
along with a standard RungeKutta ODE solver of fourth order. A 3D visualisation is
displayed in Figure 4.1:

Figure 4.1: Rope simple swing under its own weight.

The rope shows oscillations which seem to match the expectedbehaviour. Compared
to the original work [30], it is clear how the addition of damping features to the system
allows to limit the chaotic dynamics of multi-pendulum models. In fact, the smoothness
of the swing is associated with the damping effect incorporated at the joints.
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Rope Elongation:

Figure 4.2 shows the elongation of the rope. The modelling approach for this feature
was described extensively in Section 3.3.6.

Figure 4.2: Rope elongation in the simple swing test case.

The rope starts with a null elongation, but this increases when the rope assumes a
vertical configuration. As one might expect, the stress is mostly relieved at the end of
the swing, where the rope finds itself with minimal velocity.

Energy Balance:

The energy balance of the system is displayed in Figure 4.3. It can be observed that
the system loses mechanical energy overtime, but this is exactly equal to the work of
dissipative forces, since there are no other external forces acting on the system.

It is interesting to notice that the majority of the dissipation takes place when the
rope is in a vertical configuration, where the velocity assumes the maximum value. If
we removed the damping out of the system, the last nodes would assume a very high
angular velocity due to the propagation of the high freq oscillations through the chain
of many elements. This can be observed in Fritzkowski’s work [32]: the contribution
of the velocity of the last nodes to the total kinetic energy is very large in this kind of
configuration. This is what would ultimately lead to the failure of the simulation due
to numerical instabilities, therefore the key importance of adding damping features to
the system.

The difference between the mechanical energy variation and the work done by
dissipative forces is minimal. It is effectively the residual error accumulated during the
integration steps. A visualisation of the error is shown in Figure 4.4. This percentage
shows the size of the integration error with respect to the maximum value of the
mechanical energy of the system during the simulation. The integration error, during
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Figure 4.3: Energy balance for the system, in the simple swing test case.

Figure 4.4: Residual error in the energy balance, in the simple swing test case.

most of the simulation, is below 0.1%. Given the relatively large time step used in the
simulation, the size of the error is overall small. However, this test case does not stress
the rope model with large external forces and actions. It is likely that the stability will
be challenged when increasing the forces applied to the rope. This can be seen as an
exploding relative error. Therefore, this kind of analysis must be performed also in
later tests.

The same simulation was run with a lower time step of 10−3 s. The relative error
is approximately ten times lower compared to the previous case. Using a lower time
step also helps with the stability properties.
It should be noticed that the most critical instant, from an integration accuracy

46



Figure 4.5: Residual error in the energy balance, but using a lower integration time
step.

perspective, corresponds to the rope approaching a straight configuration with large
momentum. In fact, a spike in the integration error can be observed for those time
instants. In general, in these kinds of configurations, the model shows a more "stiff"
behaviour. State velocities tend to change much more rapidly, compared to the state
variables. The effect is more evident when many elements are used in the rope
discretization: the system is more chaotic and prone to be unstable. In general, this
behaviour will be further examined in later tests.

4.1.2 External Forces

Let’s now transition to a test scenario more closely aligned with the IAC context. In
this case, the upper end of the rope remains anchored at the origin, while a consistent
external force with components (10, 0, 10) kN is exerted on the lower end. The initial
polar angles are set to 𝜋/4, while the azimuth ones are set to zero. For this test case,
we use a rope with stiffer specifications:

𝑛 𝐿𝑡𝑜𝑡 [m] 𝑚𝑡𝑜𝑡 [Kg] 𝑘 [N/m] 𝐾𝑡 [Nm2] 𝑐1 [Nms/Kg] 𝑐𝑘 [Ns/mKg]
30 250 80 25000 300 100 50

External forces of this magnitude require a stiffer rope, otherwise the system is
prone to go unstable or give unrealistic results. The Cartesian position of the rope
bottom end is shown in Figure 4.6.
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Figure 4.6: Position of the rope bottom extremity, in the external forces test case.

The external force is constant and in the same direction, so the rope continues
oscillating around an equilibrium position driven by its momentum. Higher damping
coefficients allow the system to start converging to a steady-state equilibrium. While
damping generally allows the system to be stabler, the use large values for the coefficient
also damping also increases the stiffness of the system equations. In fact, this test case
was unstable with time step h= 10−2 s, so h= 10−3 was used instead. It is possible to
use h= 10−2 as time step, but only if the rope was discretized with 20 or less elements.
As it was observed in the previous test case, using many elements contributes to the
stiffness of the equations, so a trade-off with damping must be done.

Rope Elongation:

Figure 4.7 shows the elongation of the rope during the simulation. The value mostly
oscillates around the outcome expected by directly applying Hooke’s law. However,
spikes are noticeable when the rope assumes a fully straight configuration. This
phenomenon arises due to those configurations possessing high momentum, and do so
being mostly critical from a numerical standpoint.
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Figure 4.7: Rope elongation in the external forces test case.

Energy Balance:

The energy balance for the system can be observed in Figure 4.8. The work done by
the external force drives the mechanical energy to change, but part of that energy is
lost by means of the dissipative forces. The variation in mechanical energy of the
system starts to converge to a constant value, because of the effect of the dissipation.
Even in this case, the balance is preserved, since the residual error is close to zero.

Figure 4.8: Energy balance for the system, in the external forces test case.

Figure 4.9 shows the relative violation of the conservation of energy during the
simulation. Comparing it to the previous test case, it is observed that the relative error
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remains of the same order of magnitude.

Figure 4.9: Residual error in the energy balance, in the external forces test case.

4.1.3 Rheonomous Constraints

In the following test case, we investigate the effect of rheonomous constraints applied
to the upper node. Until now, it has been assumed that the rope top end was fixed in the
origin. This form of constraint is classified as scleronomous, as it does not incorporate
time as an explicit variable. Consequently, the equation can be expressed solely in
terms of generalized coordinates [35]. We now assume that the rope upper end is
attached to a horizontal moving support, whose Cartesian position directly depends
on time. In this way, it is possible to test the effect of accelerations applied on the rope
top node.

In the test case there are no external forces applied to the rope, except for gravity.
At 𝑡=0, the rope is resting in a vertical configuration: all polar and azimuth angles are
set to be zero. The motion is imposed using the following constraint function:

𝑥0(𝑡) =
⎧⎪⎪⎨⎪⎪⎩
𝐴 sin2(𝜋𝐵𝑡) for 𝑡 ≤ 1/𝐵

0 for 𝑡 > 1/𝐵

with acceleration:

𝑎0(𝑡) = 𝑥̈0(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴𝐵2𝜋2

(︂
cos2(𝜋𝐵𝑡) − sin2(𝜋𝐵𝑡)

)︂
for 𝑡 ≤ 1/𝐵

0 for 𝑡 > 1/𝐵

The quantity 1/𝐵 is exactly equal to the period of oscillation: the top node will oscillate
once and will stay in the origin after. Parameter 𝐴 sets the amplitude of the oscillation.
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If we were to manually force an oscillation at the top of the node, the intuition makes
us think that we will see the propagation of the oscillation down the rope, thanks to
the effect of the gravity.

The rope parameters are chosen to let the body be very flexible.

𝑛 𝐿𝑡𝑜𝑡 [m] 𝑚𝑡𝑜𝑡 [Kg] 𝑘 [N/m] 𝐾𝑡 [Nm2] 𝑐1 [Nms/Kg] 𝑐𝑘 [Ns/mKg]
70 10 10 25000 1 0.01 50

A large number of elements is used: the focus is to accurately observe the oscillations
propagating through the rope. The evolution of the rope is shown in Figure 4.10.

Figure 4.10: Visualisation of the rope dynamics when a motion is imposed at the top
node.

The dynamics follows the intuition of the wave propagating throughout the rope. In
Figure 4.11 the same simulation is run, but removing the stiffness and damping effects
from the model. It is evident how introducing these features in the system allows for a
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more accurate description of the real physics. In general, the simple multibody system
cannot handle oscillations of higher frequency. When these reach the rope bottom
end, the system goes unstable, in a similar way as the previous test cases.

Figure 4.11: Visualisation of the rope dynamics when a motion is imposed at the top
node. Bending stiffness and damping coefficients are set to zero.

This simulation could provide a solid benchmark to compare the proposed model
with the dynamics of a real rope, given the simple setup and execution. Not only, one
could also find accurate values for the bending stiffness and damping coefficients,
through the means of the experimental validation. The same simulation will be later
performed with different number of elements, to analyze if less elements can still
describe oscillations with small wave length.

Figure 4.12 shows the energy balance of the system, when stiffness and damping
are included. The energy introduced by the top node acceleration is computed in the
same way as described in Section 4.1.2. While the balance is mostly preserved, small
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Figure 4.12: Energy balance of the system, with acceleration is applied at the top.

errors can be noticed during the imposed oscillations. The adoption of a smaller time
step reduces such deviations, so they can be attributed to larger integration errors
caused by the use of a continuous time law in a discrete setting.

4.1.4 Sensitivity to Rope Discretization

The overall number of elements employed in discretizing the rope holds significant
importance within the analysis. The aim is to describe the dynamics of the system with
good accuracy while simultaneously constraining the computational time. We explore
the effect by analyzing the test cases used in Section 4.1.2 and 4.1.3, which tackle two
substantially different configurations. The first one describes a very flexible rope, with
an induced oscillation whose wavelength is a fraction of the rope length. The latter is
a test case very close to the final application: stiff rope with high forces applied to its
end. In both cases, we test with a number of elements ranging from 10 to 70.

In Figure 4.13, the results of the rheonomous test case can be observed. The same
rope specifications are used, but with different discretization. It is evident how 10
elements fail to adequately capture the oscillations generated by the applied motion.
The overall dynamics exhibit notable differences due to the insufficient degrees of
freedom, preventing the portrayal of oscillations characterized by shorter wavelengths
and smaller amplitudes. By increasing the element count, a significantly more intuitive
behavior comes to light. Employing a finer mesh in the discretization process should,
in theory, lead the system to converge towards the real dynamics of the rope. However,
this assumption needs to be validated through experimental verification. While this
hypothesis is rational, it is likely that the stability of the model will be affected by
employing a vast number of elements.
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Figure 4.13: Rope dynamics when a motion is imposed at the top node, for different
number of elements in the discretization.

It has been demonstrated that employing a finer discretization is essential for
accurately representing oscillations of higher frequencies. However, the rope that
will be used in the full-scale IAC simulations will be much stiffer than the one of the
present test case. Most importantly, high forces will also be applied to the rope end,
maintaining the body mostly in a straight configuration. Consequently, a large number
of elements isn’t necessary to describe the operational conditions.

In general, using a mesh of 30 elements seems already able to capture the most
important oscillating modes, while also keeping a good estimate on the position of the
final element. Despite the increased stiffness of the rope in the IAC application, its
considerable length of over 100 meters justifies the use of numerous elements in the
discretization process.

Figure 4.14 illustrates the impact of rope discretization in the ‘External Forces’ test
case. This configuration closely resembles the eventual application, featuring a more
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rigid rope subjected to substantial forces at its end. Consequently, it is possible to
determine an appropriate discretization that can effectively depict the overall movement
while maintaining a reasonable computational load.

Figure 4.14: Position of the rope bottom end, under external forces and with different
discretization.

Utilizing 50 elements or more within the rope mesh triggers instabilities in the
simulation. This phenomenon arises from the utilization of large damping values in
the rope specifications, amplifying the stiffness of the equations. If the time step is set
to a smaller value, such as h = 10−4 s, the simulation would remain stable. Generally,
it can be postulated that once a certain threshold for the discretization hyperparameter
is surpassed, assuming other specifications remain constant, the system’s stability is
compromised.

Analyzing the results from Figure 4.14, it becomes evident that the different
discretizations yield relatively comparable results. In contrast to the preceding test
case, 10 elements appear capable of describing a very similar motion for the rope
lower end. In scenarios involving rigid ropes and large, applied forces, it can be
inferred that opting for a lower discretization does not result in significant accuracy
loss. This can be attributed to the configuration’s dynamics approaching that of a
beam. With concentrated forces acting at a single point, other contributions become
marginal. In essence, the rope assumes an almost straight configuration, rendering a
fine discretization unnecessary. Similar conclusions will be drawn in the IAC full-scale
simulation results section.

Generally, this indicates that when the rope is not slack, a high discretization level
is not needed. It is reasonable to explore in future work the use of an adaptive number
of elements, depending on the rope overall curvature.
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4.1.5 Choice of ODE Solver

As mentioned in the previous sections, the final set of ODEs manifests the phenomenon
of stiffness for certain configurations. While high damping coefficients and finer rope
discretization are often necessary to describe a natural dynamics, they both affect
the stability of the system. Adopting a low time step is generally sufficient to avoid
instabilities, but it compromises the computational efficiency requirement. The type of
ODE solver used in the simulation is likely to play a key role in guaranteeing stability
properties.
ODE integrators can be divided in explicit and implicit ones, depending on the type of
information they use to compute the new state [41]. Explicit methods compute the
new values 𝑦𝑖+1 directly from the current state 𝑦𝑖. Implicit ones, instead, require to
solve an equation involving both the current state and the later one, to estimate the
latter 𝑦𝑖+1. Consequently, implicit methods require heavier computation compared to
explicit schemes. Nevertheless, they exhibit superior stability when dealing with stiff
problems, allowing the adoption of a larger step size. In addition, ODE solvers can
also be classified in terms of their order, which generally reflects the level of accuracy
of the method.

The aim of this section is to explore different types of ODE solvers, investigating
whether they are able to keep the simulation stable with the defined step of ℎ = 10−2.
Finally, a trade-off with their computing efficiency will be performed. Driven by
these motivations, we run the ‘External Forces’ test case with different specifications
and with different numerical algorithms. The ODE solvers that will be tested are the
explicit RungeKutta4 and Dormand-Prince (RK8) methods, and the implicit Backwards
Difference Formula method of second order (BDF2). The general aim is to examine
whether implicit integrators show to be stabler than explicit ones. However, given
the higher computational burden of implicit schemes, it is also useful to check if
higher order explicit integrators are sufficient to solve numerical instability problems.
Additionally, different step sizes will be used, both the required ℎ = 10−2 and a
lower one ℎ = 10−3. The values of the damping factor 𝑐 and the number of elements
𝑛 have shown to affect the stability of the system. Consequently, they will be the
rope parameters of the analysis. Table 1 reports the results of the simulations for all
combinations of the parameters and solvers. For each simulation, it is only reported if
the simulation has stopped early due to instabilities. As it can be observed, the BDF2

Solver: RungeKutta4 Dormand-Prince BDF2

h: 10−2 s 10−3 s 10−2 s 10−3 s 10−2 s 10−3 s

c = 10, n= 20:
c = 10, n= 30:
c = 100, n= 20:
c = 100, n= 30:

Table 1: Stability of the simulation with different solvers, time steps, and rope
parameters.

remains stable in all the configurations of the parameters that were tested. On the
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contrary, explicit methods struggle to remain stable for larger number of elements or
larger damping coefficients. Using a higher order explicit solver partially solves the
stability issues, but only for a limited region of parameters.

In general, it is recommended to use implicit methods to solve the equations of
the model. However, this category of methods requires the solution of an equation to
obtain the state variables at the next step. Numerical algorithms to solve equations,
such as the common Newton-Rapson method, make use of the function derivative to
estimate the solution of the equation in the form 𝑓 (𝑥) = 0. This cannot be applied
to our model, since the derivative of Equation 3.6 cannot be computed analytically,
because of the complex form of the equations of motion. One must resort to other
kinds of methods, such as the secant method, which does not make use of derivatives,
but is definitely less efficient in terms of speed of convergence. The procedure of
implicit methods, in general, is slower than explicit methods, especially for systems
like the proposed rope model. In fact, the initial value problem is rather convoluted,
with every function evaluation being rather expensive. Given the absolute superiority
of implicit methods in the integration of the ODE, further work shall be done to seek
an efficient implementation for our system.

4.2 IAC Simulation
The rope model is now tested in the larger scale IAC simulation. A lumped mass,
equivalent to the total mass of the ACCD, is added at the end of the rope. In such
manner, the additional inertia is taken into account inside the rope equations of motion.
Methodology is described in Appendix A. Figure 4.15 briefly describes the scheme of
the rope sub-module that is input to the simulation. The rope model is essentially a
function that computes the equations of motion, in the form of 𝑿̇ = 𝒇 (𝑿). The EOM
system block requires a set of inputs:

• The TA acceleration. As explained in Section 3, the model describes the relative
motion of the rope with respect to the TA, since the rope shares the top node
with the aircraft. Accelerations in the TA motion will generate apparent forces,
due to the reference frame being no longer inertial. For this reason, the Cartesian
coordinates of the TA acceleration must be input to the model.

• External forces applied to the rope. These can be of two forms: distributed
along the rope or lumped, applied in a specific rope element. In the context
of application, lumped forces are only applied to the end of the rope, in the
connection point with the ACCD. Distributed forces can be generic, with
only gravity being present in this environment. Drag and lift have a custom
formulation, so they are handled directly in the model.

• Rope specifications. These can be directly fixed in the EOM block, but it’s
useful to keep it separate for parameter sensitivity analysis and for description
of the deployment dynamics in future work.

The EOM system block outputs the derivative of the state, which is fed to an ODE
solver. Initial conditions for the system, in the form of rope angles and elongation, are
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provided. In this application, the initial rope configuration will be set to be straight
and horizontal with respect to the plane. Fixing the rope length and its bottom end
position, one can easily obtain the rope polar and azimuth angles which produce
that configuration. This is reasonable since it will be very close to the steady-state
condition. In other fields of application, where the rope is slack, these initial conditions
might not describe a realistic scenario. As such, it is necessary to solve the inverse
kinematics problem to find a stable initial condition. Closed form solution for the
initial condition problem exist in the catenary equations [45], which describe the
natural curve of an hanging rope.

The new rope state is used to compute the position, velocity and acceleration of
the end node of the rope. This will be fed to the capturing device dynamics, effectively
imposing the kinematics of the ACCD top point. The two systems are now coupled,
constrained to share one point at the interface. Only the translational motion of the
ACCD is defined by the rope, since torsional effects are not considered for the time
being. In fact, the rotational motion of the ACCD was modelled separately, outside of
the rope model.

Figure 4.15: Scheme of the simulation environment.

The scope of this analysis is to test the rope model when incorporated in the larger
scale simulation. The simulations will be performed in cruise flight conditions for
the TA. First, the key requirements of the IAC manoeuvre are discussed. Then,
an extensive sensitivity analysis on the rope parameters is performed, to propose a
final set of rope specifications that fit the requirements of the application. The first
simulation will cover the most critical scenario from a stress perspective, specifically
when the RLV is connected to the ACCD. This will suggest the required rope breaking
strength and stiffness. Following, we study the maneuverability of the ACCD for a
number of rope parameters and environmental conditions. The aim is to find a set
of specifications which allows agile maneuvers for the capturing system, while also
achieving stability in reasonable time frame. In the first simulations, we will simply
release the capturing system from a completely horizontal position with respect to
the aircraft. A later step is to give the ACCD a set of open-loop control commands,
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to check the response and the maneuverability for different rope parameters. The
different command inputs applied to the ACCD are shown in Figure 4.16.

Figure 4.16: Control input to the ACCD angles.

Control commands set the ACCD fins deflections, which will then affect the ACCD
overall pitch and yaw angles. The mapping from the desired ACCD angle to the
command in flap deflection is left implicit, but it is accurately described in the work
[46]. The four fins of the ACCD can assume a vast number of configurations. Some
simplifications, based on a superposition approach, have been made to easily translate
the contributions of each fin to the aerodynamic actions. A behaviour close to the
reference signal will be actually observed in the ACCD angle of attack and side-slip
angle. In fact, these angles are measured in the ACCD aerodynamic frame, which is
relative with respect to the airflow. Further details can be found in the aforementioned
work.

Following, the analysis focus on the effect of the TA wake. This is essentially
a perturbation to the free stream velocity in space, so it might heavily affect the
maneuverability of the ACCD. Not only, its turbulent nature might potentially affect
the stability of the system.

A final element of analysis is the choice of the rope discretization. In the same
way as in the test cases, the aim to find a proper computation-accuracy trade-off.

4.2.1 Requirements

The feasibility of the IAC capturing phase imposes a set of technical requirements. The
objective of this Section involves determining rope parameters that can successfully
meet these requirements.

• The ACCD shall be as maneuverable as possible, allowing for a fast repositioning
in space during the capturing process. This can be examined by looking at the
ACCD position in space overtime.
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• The simulation shall be efficient from a computational efficiency perspective.
The global time step is set to h= 10−2 s. As a consequence, the parameters
that affect the computational load are the number of elements in the rope
discretization and the type of integration scheme. Trade-offs must always be
performed by also considering the accuracy and stability requirements.

• The ACCD shall lie below the wake zone (up to 30-40 m). Previous study [7]
has shown that control strategies struggle to make the ACCD controllable in the
region affected by the wake.

• The rope must be able to sustain the loads coming from the capturing device,
and later from the rocket first stage. It must mentioned that both the ACCD
and the RLV are winged, meaning that they are able to generate substantial
lift forces. As such, a large share of the weight of the two systems will be
counterbalanced by the aerodynamic forces. At this stage of the simulation, the
main loads applied to the rope will be the drag forces of the bodies attached to
its end.

• The capturing system must be in principle stable on its own, without the
necessity of control inputs to the ACCD. In other words, the system shall recover
autonomously from disturbances in pitch, yaw, roll angles. This property is called
aerodynamic stability. The ACCD is designed to possess such characteristics,
the aim is to verify that the rope does not affect it. Additionally, it is also of
great importance that the capturing system converges fast to a stable position,
so that is possible to perform multiple capturing attempts in the given window.

4.2.2 Choice of Rope Specifications

The choice of an optimal set of rope specifications is not a trivial task, due to it being
a multivariate optimization problem. While there are standard ways to tackle it in
the literature, the computational effort of running the simulation requires to divide
the problem in steps. Generally, the aim of this work is to propose suitable rope
specifications for this application. An in-depth optimization can be performed in
future work.

Hereafter the key rope parameters will be listed, along with their main influences
on the rope dynamics.

• E is the Young Modulus, measured in GPa. It is an intrinsic property of the
material, and affects the stiffness of the rope.

• d is the rope diameter, measured in meters. It will set the cross-section area, the
area moment of inertia 𝐼, and the material mass per unit length.

• 𝑳 𝒕𝒐𝒕 is the rope length, measured in meters. Its value affect the rope mass and
stiffness. Longer ropes allow for larger oscillations of the ACCD position.
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• 𝒌𝒂 is the axial stiffness coefficient, measured in N/m. It can be computed from
the other parameters as:

𝑘 =
𝐸𝐴

𝐿𝑡𝑜𝑡

• 𝑲𝒕 is bending stiffness coefficient, measured in Nm2. Its values is calculated
from:

𝐾𝑡 =
𝐸𝐼

𝐿
,

where 𝐿 is the length of a single rope segment.

• 𝑻𝒎𝒂𝒙 is the rope breaking strength, expressed in kN. Its value is directly
obtained from the technical datasheets, and it is a function of the rope material
and diameter.

• 𝒄 and 𝒄𝒌 are the damping coefficients, respectively at the joints and at the
linear spring. Their values are not available in technical documentations. In
this section we will use: 𝑐 = 10 and 𝑐𝑘 = 50. Proper, accurate values can be
estimated during the experimental validation of the model.

The first specification to be set is the rope breaking strength. It is crucial to
guarantee that the rope is able to sustain the loads in the most critical configuration of
the mission. This occurs when the RLV is connected to the capturing system, while
the airplane’s engines are providing maximum thrust. After having set the failure
characteristics, it is possible to move forward with choosing a fitting material for the
application. Suitable rope diameter and length are proposed, mostly by analyzing the
effect they have on the ACCD maneuverability. The tests are repeated for different
environment settings. First, the convergence of the ACCD is studied, starting from the
reference horizontal configuration. Following, sample control inputs to the ACCD are
enabled, to check the system’s response in terms of stability and repositioning.

Max Stress:

The most critical scenario for the rope consists in the RLV connected to the rope-ACCD
system, with the TA engines generating maximum thrust, while in the minimum drag
configuration. The TA is considered to be the long-range jetliner A340-600 with four
engines [47]. Each of these engines is expected to provide a maximum thrust of 260
kN when at sea level. At the same time, the RLV is the first stage of a 3-Stage-To-Orbit
rocket concept [48], with a mass of approximately 80 tons. The launch vehicle is
added to the model in the same way as the ACCD, so as a lumped mass attached to
the end of the rope. This is an extreme simplification, but it reasonable for the only
purpose of computing the max axial stress. Drag of the RLV is approximated to 50
kN, while the lift is supposed to balance the RLV weight.
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Figure 4.17: Rope tension in the most critical scenario.

Figure 4.17 shows the rope tension in the most critical scenario. In steady-state
conditions, the stress oscillates around 125 kN, while it surpasses 200 kN before
settling, due to inertia forces being in play. It must be reminded that the model makes
use of a simplifies spring model to calculate the elongation, and the related tension.
While it does not pretend to be a accurate description of the axial deformation, this
model still provides good estimates when the rope is in a straight configuration, which
is the case of this analysis. The field of application requires the use of high safety
factors in the structure design, to take into account unexpected and extreme situations.
A proper estimate of this coefficient requires a dedicated analysis, which will be left
for future stages of the IAC validation. For the time being, we will require the final
rope to be able to handle load which are at least four times greater than the value found
in the maximum stress simulation. In later steps of the present analysis, only ropes
with breaking strength greater than 500 kN will be considered.

The model with the RLV connected as a lumped mass is a substantial simplification,
which can only be performed to analyze the most critical scenario. From this point on,
the single capturing device will be attached to the rope bottom end. For the current
stage of the simulation, it is key to understand the maneuverability of the capturing
device.

Rope Material and Diameter:

The application requires materials with high performances. The focus mainly falls
on the two types of rope materials: polyester and steel. Concerning polyester ones,
UHMWPE ropes [49] have proven to show best performances under many perspectives.
They exhibit the best strength-weigth ratios, while also guaranteeing resistance to
fatigue and many chemical agents. While other ropes are cheaper, they are outclassed
from most perspectives. Nevertheless, an investigation into the potential use of steel
ropes was performed. Despite exhibiting inferior performance, they are considerably
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heavier compared to conventional fiber ropes. It is precisely due to this weight that they
could be fitting for the mission’s requirements. In fact, a heavier rope would probably
settle outside of the aircraft wake region. Nonetheless, due to their lower strength,
these ropes would necessitate a larger diameter compared to wire ropes. This might
lead to an excessive weight and stiffness. Ultimately, a trade-off must be reached.

For the UHMWPE ropes:

Diameter [mm] Mass per unit length [Kg/m] Breaking Strength [kN]
16 0.156 280
24 0.329 550
32 0.555 900

The displacement of the ACCD in the vertical direction, using a UHMWPE rope,
is shown in Figure 4.18.

Figure 4.18: ACCD vertical position in cruise flight, using different UHMWPE ropes
(L=250 m).

Initially, the ACCD is oriented horizontally to align with the aircraft, meaning it
starts from a zero Y position. Rope length is set to be 250 meters. The aerodynamic
stability of the ACCD is preserved, as the system quickly converges toward a steady-
state position. Larger diameters lead to oscillations with a similar period, but with
slightly greater amplitude. This behaviour will be observed also in later stages of the
analysis, when the length of the rope is changed. In general, increasing the mass of
the rope causes the ACCD to settle at a lower point, but at the cost of larger swings in
the repositioning. A rope diameter of 24mm is capable of sustaining the maximum
loads estimated in the previous section, while also allowing to find a stable position
outside of the wake region.
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The specifications for the steel ropes are hereby reported [50]:

Diameter [mm] Mass per unit length [Kg/m] Breaking Strength [kN]
24 2.34 375
32 4.1 645

The same simulation is run using a steel wire rope (Figure 4.19).

Figure 4.19: ACCD vertical position in cruise flight, using different steel wire ropes
(L=250 m).

As evident from the observations, the capturing device would settle lower than
100 meters from the aircraft’s horizontal reference direction. This outcome arises due
to the rope’s significantly greater mass, nearly ten times that of UHMWPE ropes of
identical diameter. While this ensures a considerable distance from the wake region,
it comes at the expense of exceedingly substantial oscillations. Opting for a 0.024
m diameter leads to extended oscillation damping times, because the rope inertia
becomes dominant. Enlarging the diameter even further compromises the overall
aerodynamic stability of the system. It is evident that steel wire ropes fail to meet the
agility prerequisites, making UHMWPE ropes the preferred choice.

Rope Length:

The length of the rope significantly influences the dynamics of the ACCD. When the
rope is almost straight, it effectively constraints the ACCD to maintain a fixed distance
from the towing aircraft. Consequently, longer ropes allow for larger repositioning
in space for the same angular movement. Moreover, longer ropes result in increased
mass of the system.

The objective of this study is to determine an appropriate rope length that enables
the ACCD to converge to a sufficiently low vertical position, with reasonable amplitude
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in the oscillations. To achieve this, the system’s response is tested by applying control
inputs to the ACCD, as shown earlier in Fig. 4.16.

Figures 4.20 and 4.21 respectively show the vertical position and the sideslip of
the capturing device, when the simulation is run for multiple rope lengths, with a fixed
diameter of 0.024 m.

Figure 4.20: ACCD vertical position with command inputs, using different rope
lengths.

Figure 4.21: ACCD side-slip with command inputs, using different rope lengths.

The results indicate that all tested rope length values maintain the stability of the
capturing device, with no configurations leading to unreasonable maneuvers of the
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ACCD. Longer ropes exhibit greater displacement potential with the same control
input, which may be advantageous for the IAC mission. However, longer ropes are
associated with larger amplitude and longer oscillation periods, potentially having a
heavy impact on the the repositioning time. The window for the capturing phase is
estimated to be around three minutes [2]. Considering the limited capturing phase
window, shorter repositioning times are preferred as they may allow for multiple
capture attempts within the given time frame. Shorter ropes may offer a faster cycle,
despite reduced movement capabilities. On the other hand, longer ropes achieve greater
displacements, at the cost of larger oscillations around the stable positions. These
considerations suggest that an intermediate rope length could allow an appropriate
trade-off.
Nevertheless, the final determination of the optimal rope length will be made after
analyzing the effects of the aircraft wake on the capturing system.

4.2.3 Sensitivity to Rope Discretization

As described in Section 3, the rope is discretized in sub-elements. A finer mesh
enhances the accuracy of representing the rope’s movement, particularly concerning
the position of the ACCD at the end of the rope. However, this refinement results
in a larger set of variables, subsequently increasing the computational load. In this
context, the objective of the parametric analysis is to determine an appropriate value
for n where further increments will not significantly improve accuracy. Moreover,
employing a larger number of elements has demonstrated the tendency to result in
stiffer equations.

Figure 4.22: ACCD vertical position with command inputs, with different rope
discretization.

In general, as it can be observed from Figure 4.22, the different rope discretization
appears to have a little effect in the overall behaviour of the system.
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This confirms the observation made in Section 4.1.4: when the rope is primarily
straight and subjected to high forces, using only a few elements in the discretization
does not significantly compromise accuracy. Even with n set to 5, reasonably accurate
estimates are obtained. Beyond n = 20, there appears to be no discernible difference.
Consequently, for this phase of the IAC simulation, a number of elements equal to 20
(or more) can offer a proper trade-off between accuracy and computational efficiency.

The majority of the forces are concentrated at the end, which is why even a few
elements are sufficient. The middle elements describe the catenary curve resulting
from these forces, while the end position remains relatively stable. It should be noted
that the applied control input is smooth, taking approximately 10 seconds to complete
the ramp. Using a more dynamic control input for the ACCD would likely result in
discrepancies with different values of n.

4.2.4 Effect of Aircraft Wake

Lastly, the effect of the towing aircraft wake is analyzed. Wake turbulence is a source
of disturbance that is generated as an aircraft passes through the air. As the capturing

Figure 4.23: Wake profiles, in terms of variation of airstream velocity (Source: [2]).

system is deployed from the towing aircraft and follows its trajectory, it may potentially
operate within the wake region.

Therefore, simulating the effect of the wake is essential, as it can impact the
stability and maneuverability of the system. As it was observed, longer and heavier
ropes tend to settle at a lower vertical position. While it is safer and preferable to avoid
the critical wake region entirely, it is also valuable to investigate its actual impact
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on the capturing system. Shorter ropes settle closer to the aircraft position, offering
their own advantages. Thus, if it is determined that the wake effect is not excessively
problematic, shorter ropes may be considered. Essentially, the wake changes the
velocity of the relative airflow, depending on the location in space. A visualization of
such effect can be observed in Figure 4.23, taken from Singh et al’s work [2].

For practical implementation, it is considered that the wake becomes negligible
after 50 meters. Hence, capturing systems settling below this threshold are considered
to be minimally affected by the wake. The effect of the wake is tested for TA angle of
attack equal to 6°, which represents the most critical scenario.

However, it is important to note that this analysis was conducted in an open-loop
system, where there is no active controller attempting to guide the ACCD along the
reference signal. In closed-loop simulations, the controlling strategy may encounter
challenges. As the wake effect varies with position, a controller lacking robustness in
this regard may lead to instability. This aspect is demonstrated in another study by
Singh [7].

Figure 4.24 displays the vertical position of the capturing device as it settles freely
with wake influence. As it is evident from the results, a longer rope, such as the

Figure 4.24: ACCD vertical position with aircraft wake and no control inputs.

300 m one, settles at a lower position with respect to the wake region. In previous
simulations, it was demonstrated that 250 m ropes settle just below 50 m, where the
wake has minimal impact. However, with such values, the ACCD would oscillate in
and out of the wake region during convergence to a steady position. Consequently, the
ACCD’s position would exhibit longer oscillations before reaching an equilibrium. To
avoid this behaviour, a 300 m rope is preferred.

Figure 4.25 illustrates the same simulation but with control inputs actively applied.
In this scenario as well, opting for a longer rope helps in avoiding the wake region as
much as possible, thus reducing unnecessary oscillations.
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Figure 4.25: ACCD vertical position with control inputs, aircraft wake enabled.

Figure 4.26 compares the final vertical position with and without the wake model,
for a 300m long rope. The wake leads to larger swings when the ACCD crosses that
region, but overall it remains manageable. Generally, critical issues associated with
wake are not found. Nonetheless, it’s crucial to prevent a scenario akin to the one
illustrated in Figure 4.24. Consequently, opting for a longer 300-meter rope is favored.

Figure 4.26: ACCD vertical position with and without aircraft wake.
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5 Conclusion and Future Work
This work aimed at developing an accurate and computationally efficient model for
the simulation of the rope dynamics. To achieve this, a novel Multibody approach was
introduced, providing a flexible framework to incorporate all the necessary features.
The model has been tested in a number of test cases, before being applied to the larger
scale IAC simulation. Based on the mission requirements, suitable rope specifications
are proposed. In this chapter, the simulation results are discussed, addressing the
research questions formulated in the Introduction. The discussion also includes an
examination of the limitations of the present model, along with recommendations for
further research and improvements.

5.1 Conclusions
In general, the presented model constitutes a versatile framework flexible to customiza-
tion for specific application requisites. Several features have been proposed to address
the requirements inherent to the context of the IAC maneuver. The rope model has
been first tested in simpler test cases, to verify its reasonableness. When inserted into
the larger scale IAC simulation, it allowed to propose a suitable set of specifications
for the rope model.
Conclusions will be drawn based on the research questions that were formulated in the
Introduction of the present work.

• Does the model provide a sufficiently accurate representation of the physics
governing the rope dynamics? Can it effectively describe the oscillations
commonly observed in slender bodies?
Rope bodies exhibit intricate and nonlinear dynamics, due to their capacity
for accommodating substantial deflection and deformation. Validation of the
presented model necessitates a comparative analysis against empirical data.
Given the absence of publicly available benchmarks in the literature, the aim
of the current work is focused solely on the verification of the model and its
associated features. An analysis of energy conservation was undertaken across
various test scenarios. The model seems to provide a valid description of the
underlying physics. Throughout the test instances, the rope demonstrates a
behavior which agrees with the intuition, as discerned from an examination of
its kinematic characteristics.

• What are appropriate rope material and specifications for the IAC mission?
It was observed that steel wire ropes of such lengths possess excessive mass. This
substantial inertia characteristic poses implications for the stability properties of
the ACCD, resulting in extended oscillatory behaviors near the equilibrium state.
In contrast, UHMWPE ropes offer a more expeditious and stable repositioning
of the ACCD, while concurrently maintaining or even surpassing stress failure
thresholds. A diameter of 0.024 m emerges as to be suitable to handle the most
stressful configuration, with commendable factor of safety. While the potential
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inclusion of larger diameters may exert a modest influence on stability charac-
teristics, the resultant impact is deemed of minor consequence. Furthermore,
ropes with larger diameters manifest lower settling positions, thereby attenuating
potential perturbations arising from wake phenomena.
Longer ropes grant the ACCD greater freedom of movement in space. Modest
control inputs to the capturing device flaps detection yield large repositioning.
Nonetheless, this gives rise to larger overshoots and oscillation periods, which
must be limited. Faster displacements can potentially allow for more capturing
attempts in the same formation flight. In the end, longer ropes remain the more
favorable choice as they steer clear of the aircraft wake area, preventing its
destabilizing impact on the system’s control. Optimal compromise in this regard
appears to be a 300 m rope length. However, in future control simulations,
it must be checked if longer settling times can compromise the capability of
performing multiple maneuvers with the limited formation time.

• Is the capturing system stable in the reference configuration? Does the wake of
the aircraft affect the maneuverability of the system?
The capturing system generally achieves aerodynamic stability, predominantly
attributed to the ACCD properties. Utilizing UHMWPE as the rope material
has enabled the preservation of these characteristics, owing to its low weight
and inertia. The ACCD demonstrates remarkable maneuverability when flap
deflections are executed through control inputs. Even after repositioning, the
capturing system will settle into a stable, steady-state arrangement. The aircraft’s
wake generates an area where the airflow velocities could be altered, potentially
introducing chaotic effects. This becomes critical for ropes ranging from 200
to 250 meters in length, as they tend to settle near the edge of the wake zone.
During the process of converging to a stable position, oscillations intensify due
to the continuous entry and exit from the wake region. As previously discussed,
a longer rope of 300 meters largely avoids the wake region. If control inputs
cause the ACCD to move within the wake zone, this might slightly increase the
oscillation overshoot. Nonetheless, the reference configuration remains stable.

• Does the final set of ODEs manifest numerical problems during the integration?
Is it sensitive to the type of ODE solver used and the choice of the integration
step size?
Stiffness phenomena have been observed in the integration of the equations of
motion, particularly evident when employing a fine mesh in conjunction with
elevated damping coefficients. Implicit ODE solvers are recognized as optimal
for addressing such challenges. This assertion is confirmed by simulation
outcomes: employing the BDF2 integration scheme ensures stable simulations
across all tested setups. Nonetheless, given their computational load, explicit
schemes are preferred. Higher-order RK solvers mitigate some of the instability
concerns, rendering them suitable for reasonably demanding scenarios.
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• Is it possible to achieve a reasonable trade-off between accuracy and computation
time?
A fine mesh for the rope is not needed in the IAC simulation. As previously
discussed, when significant forces are exerted on the rope, the body will mostly
assume a straight configuration, eliminating the need to account for substantial
deformations and displacements. In the simulations, noticeable discrepancies in
outcomes are indiscernible when employing more than 20 elements to represent
the rope. Consequently, adopting this value for the discretization parameter is a
suitable balance between computational efficiency and accuracy. Interestingly,
in situations where the RLV is connected and subject to very large loads, it could
even be sensible to transition to a simplified beam model. This arises due to
the magnitudes of the forces involved. Regarding integration strategies, explicit
methods should be favored if they demonstrate stability at the chosen step size.
Fourth and eighth-order Runge-Kutta methods typically maintain integration
stability across a majority of hyperparameter configurations. The parallelization
of the software across multiple cores has facilitated faster computations without
imposing constraints on other processes.

5.2 Limitations and Future Work
In this final section, the limitations of the current study are addressed, proposing
recommendations to shape the trajectory of future research. Initially, we will examine
the constraints associated with the modelling methodology. Subsequently, we will
discuss the next scenarios of the IAC maneuver that shall be simulated. Lastly, we
will delve into strategies aimed at further accelerating computations and solving the
numerical challenges.

Modelling Methodology:

In its current developmental phase, the suggested model does not take into account
torsional or twisting effects for the rope. Presently, the connection between the lower
end of the rope and the ACCD can be perceived as an ideal, frictionless revolute
joint, enabling rotation around the roll axis. It is expected that the ropes’ torsional
stiffness is not significant, especially for the lengths proposed within our application.
Indeed, as the rope length increases, its torsional stiffness decreases. Ropes of this
particular length can undergo multiple rotations around their central axis without
incurring significant reactive torque. This aspect could potentially impact the rope’s
breaking strength, if an unstable configuration is reached. Moreover, even if modest,
the torsional stiffness of the rope might aid in stabilizing the ACCD roll rotations. The
outlined MBS is a relatively adaptable framework. It is possible to introduce a set of
angles to describe torsional displacement which, depending on the formulation, could
potentially be interconnected with other variables.

Furthermore, as discussed in Section 3.3.1, the current modelling of the bending
stiffness simplifies the 3D description of the rope. In fact, two bending moments are
introduced, describing the deflection of the body in the x-y and x-z planes. In this
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way, it was possible to simplify the expression of the rope curvature, from a complex
formula for the 3D case to an easier one which describes a 2D curve. Nevertheless, this
method de facto decouples the angular coordinates, handling them separately in their
respective planes. While the approach provides reasonably accurate results, it is not a
rigorous description of the underlying physics. Therefore, future work shall examine
if applying the 3D curvature description improves the model accuracy significantly.

As widely discussed, a complete validation of the model necessitates a comparative
analysis with empirical data. While the fundamental depiction of the physics has
undergone verification via the analysis of the energy balance, features like the body’s
frequency response are yet to be validated. This aspect is especially critical, due to
the unavailability of direct damping coefficient data in material specifications. This
mode of validation remains indispensable for any model proposed for this application,
including those which can be tested through the beam benchmark. In fact, satisfying
the beam theory does not inherently ensure precision in scenarios involving large
displacement and deformation.

Generally, retaining a more precise implementation based on the finite element
method would serve as a valuable reference for comparison. Although this approach is
likely to be inherently slower, regardless of the techniques employed for implementation
or parallelization, the resulting accuracy is likely to be considerably enhanced. Only
after this step can a genuine trade-off be comprehensively assessed. The ANCF
approach has convincingly proven its suitability for addressing the challenges posed
by large displacements and deformations. Continuing to advance in this direction
holds substantial promise: an intricate engineering feat such as the IAC maneuver
necessitates meticulousness in evaluating rope stresses and kinematics. Nevertheless,
the model proposed in this work still offers a computationally light tool that adeptly
addresses the requirements, facilitating the estimation of numerous parameters within
the expanded simulation.

Future IAC Simulations:

In the present work, the simulations were conducted assuming a cruise flight configu-
ration for the towing aircraft. In subsequent stages of the IAC mission validation, it
will become imperative to replicate the deployment sequence of the capturing system.
This sequence involves the gradual release of the rope and capturing device from
the aircraft, and it may introduce unique forces and torques that could pose potential
challenges. A not fully deployed rope is lighter. Consequently, it can get closer to the
wake region, potentially compromising the instability of the system. In the proposed
model, the rope’s length is integrated into the equations of motion as a hyperparameter.
Therefore, simulating the deployment could be relatively straightforward if the rope
length is incrementally extended. If this process is performed slowly enough, the
angles used to define the rope’s state will naturally adapt to represent the new length.

The model also needs to be tested during the TA gliding phase. This step
is characterized by the towing aircraft’s descent without propulsion, intended to
synchronize with the RLV’s motion. In such a scenario, the relative airflow’s direction
will alter, leading to corresponding shifts in drag and lift forces. Consequently,
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the capturing system will adopt a new stable position, likely higher in its vertical
alignment. This adjustment could potentially trigger stability concerns, as segments
of the rope might intersect the region where the aircraft’s wake exerts maximum
influence. It might be necessary to propose new rope length values in order to attain
a configuration of heightened stability. This specific configuration is paramount for
executing the capturing phase. Given that the responsiveness to control inputs is a
pivotal requirement, a comprehensive new analysis is imperative from this perspective.

Computational Efficiency and Numerical Stability:

As extensively discussed in the Section 4, the rope needs a detailed mesh only in
specific cases to get accurate results. In fact, the higher the forces in play, the more
the rope approaches a configuration where it’s completely straight. In these cases,
there is no need for a high describing power to catch both low and high frequency
oscillations, because everything will dampen out and leave space to just the longitudinal
deformation. Therefore, we might want to consider the use of an adaptive mesh,
depending on the stresses and the configuration. On the other hand, modifying the
number of elements employed in the discretization of the rope might present more
intricate issues. This is because interpolation of the values of the rope angles would
be necessary to attribute meaningful states to the new mesh configuration.

Lastly, additional efforts can be directed towards improving the handling of
numerical challenges that arise during the integration steps. In this work, a sensitivity
analysis on the rope model parameters was performed, and it showed that the ODEs
manifest the stiffness phenomena for some configurations of the parameters. Implicit
solvers have shown to remain stable in all cases, while explicit ones struggle to be
stable with the required step size. However, the first have a much larger computational
overhead, because they require the solution of an equation at every time step, and the
call to the ODE function is expensive. Therefore, it is advisable to perform future work
aimed at implementing an implicitly-based scheme in the integration of the equations
of motion.
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A Full Equations of Motion
The final equations of motion, before the transformation to a first-order system, can be
schematized as follows:

𝑴 (𝒒) 𝒒̈ = 𝒇 (𝑡, 𝒒, 𝒒̇)
where:

𝑴 (𝒒) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑀1,1 𝑀1,2 · · · 𝑀1,𝑘
𝑀2,1 𝑀2,2 · · · 𝑀2,𝑘
...

...
. . .

...

𝑀𝑘,1 𝑀𝑘,2 · · · 𝑀𝑘,𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝒇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑓1
𝑓2
...

𝑓𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

𝑘 is the total number of variables in the system, and is equal to 2𝑛 + 1. In fact, two
angle variables per element (𝜙𝑖 and 𝜓𝑖) and the elongation variable 𝑠 are used in the
final system.
The set of equations is rather complex because of the interaction of the two set of
angles, and the complicated expression of the inertia forces that appear in the right-hand
side. In addition to this, the elongation variable at the beginning adds an extra layer of
complexity. A much cleaner expression for the equations of motion could be obtained
without the introduction of 𝑠.

A.1 Mass Matrix
The in-depth scheme of the mass matrix 𝑴 is hereby presented. The matrix is
symmetric, so the lower triangular part has been omitted. The entries have been
ordered such that they follow the order of the variables: [𝑠, 𝜙1, ..., 𝜙𝑛, 𝜓1, ..., 𝜓𝑛]. For
readability purposes, the matrix is divided in sub-blocks:

𝑴 (𝒒) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛𝑚𝐿 𝑀𝑠𝜙1 · · · 𝑀𝑠𝜙𝑛 𝑀𝑠𝜓1 · · · 𝑀𝑠𝜓𝑛

𝑀𝜙1,1 · · · 𝑀𝜙1,𝑛 𝑀𝜙𝜓1,1 · · · 𝑀𝜙𝜓1,𝑛

. . .
...

...
. . .

...

𝑀𝜙𝑛,𝑛 𝑀𝜙𝜓𝑛,1 · · · 𝑀𝜙𝜓𝑛,𝑛

𝑀𝜓1,1 · · · 𝑀𝜓1,𝑛

. . .
...

𝑀𝜓𝑛,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Using the same notation used above, we can specify the expression for the matrix
entries:

𝑀𝑠𝜙 𝑗
= −𝑏 𝑗𝑚𝐿 cos𝜓1 cos𝜓 𝑗 sin

(︁
𝜙 𝑗 − 𝜙1

)︁
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𝑀𝑠𝜓 𝑗
= 𝑏 𝑗𝑚𝐿

[︁
cos𝜓 𝑗 sin𝜓1 − cos𝜓1 sin𝜓 𝑗 cos

(︁
𝜙 𝑗 − 𝜙1

)︁ ]︁
𝑀𝜙𝑖, 𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑚 cos (𝜓1)2 (︁

𝑐𝑖𝐿
2 + 2𝑏𝑖𝑠𝐿 + 𝑛𝑠2

)︁
+ 𝐿

2

12
for 𝑖 = 𝑗 , 𝑗 = 1

𝑚𝐿2

12
(︁
𝑐𝑖 cos (𝜓𝑖)2 + 1

)︁
for 𝑖 = 𝑗 , 𝑗 ≠ 1

𝑏 𝑗 ℎ𝑖 𝑚𝐿 cos𝜓𝑖 cos𝜓 𝑗 cos
(︁
𝜙 𝑗 − 𝜙𝑖

)︁
else

𝑀𝜙𝜓𝑖, 𝑗
= −𝑏 𝑗𝑚𝐿 ℎ𝑖 cos𝜓𝑖 sin𝜓 𝑗 sin

(︁
𝜙 𝑗 − 𝜙𝑖

)︁
𝑀𝜓𝑖, 𝑗

=

⎧⎪⎪⎨⎪⎪⎩
𝑏𝑖, 𝑗 𝑚𝐿

2 + 2𝑏𝑖𝑚𝑠𝐿 + 𝑛𝑚𝑠2 for 𝑖 = 1, 𝑗 = 1

𝑏𝑖, 𝑗 ℎ𝑖 𝑚𝐿
[︁
cos𝜓𝑖 cos𝜓 𝑗 + sin𝜓𝑖 sin𝜓 𝑗 cos

(︁
𝜙 𝑗 − 𝜙𝑖

)︁ ]︁
else

The following parameters were used to lighten the notation:

ℎ𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝐿 + 𝑠 for 𝑖 = 1

𝐿 else

𝑏𝑖 =
2(𝑛 − 𝑖) + 1

2

𝑐𝑖 =
3(𝑛 − 𝑖) + 1

3

𝑑𝑖 =
4(𝑛 − 𝑖) + 1

4

A.2 Right-Hand-Side
Right-hand side assumes a convoluted expression, due to the complex expression of
inertia forces. The overall structure is the following:

𝑟ℎ𝑠 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓𝑠
𝑓𝜙1

𝑓𝜙2
...

𝑓𝜙𝑛
𝑓𝜓1

𝑓𝜓2
...

𝑓𝜓𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The elongation variable 𝑠 also affects the expression for the first azimuth angle.
As a matter of fact, it is necessary to separately describe the elements 𝑓𝜙1 and the
remaining components 𝑓𝜙2 , ..., 𝑓𝜙𝑛 . The same reasoning applies to the side-slip angle
components.
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𝑓𝑠 = 𝑚𝐿 cos𝜓1

𝑛∑︁
𝑗=2

𝑏 𝑗 cos𝜓 𝑗 cos
(︁
𝜙 𝑗 − 𝜙1

)︁ (︂
𝜙 𝑗̇ 2 + 𝜓 𝑗̇ 2

)︂
−2𝑚𝐿 cos𝜓1

𝑛∑︁
𝑗=2

𝑏 𝑗 sin𝜓 𝑗 sin
(︁
𝜙 𝑗 − 𝜙1

)︁
𝜙 𝑗̇ 𝜓 𝑗̇

+𝑚𝐿
2

sin𝜓1

𝑛∑︁
𝑗=2

𝑏 𝑗 sin𝜓 𝑗 𝜓 𝑗̇ 2

+ (𝑏1𝑚𝐿 + 𝑛𝑚𝑠)
[︂
𝜙1̇

2 (cos𝜓1)2 + 𝜓1̇ 2
]︂

𝑓𝜙1 = 𝑚𝐿 ℎ1 cos𝜓1

𝑛∑︁
𝑗=2

𝑏 𝑗 cos𝜓 𝑗 sin
(︁
𝜙 𝑗 − 𝜙1

)︁ (︂
𝜙 𝑗̇ 2 + 𝜓 𝑗̇ 2

)︂
+2𝑚𝐿 ℎ1cos𝜓1

𝑛∑︁
𝑗=2

𝑏 𝑗 sin𝜓 𝑗 cos
(︁
𝜙 𝑗 − 𝜙1

)︁
𝜙 𝑗̇ 𝜓 𝑗̇

+2𝑚 cos𝜓1 sin𝜓1

(︂
𝑐1𝐿

2 + 2𝑏1𝑠𝐿 + 𝑛𝑠2
)︂
𝜙1̇𝜓1̇

−2𝑚 (cos𝜓1)2 (𝑏1𝐿 + 𝑛𝑠) 𝑠̇ 𝜙1̇

𝑓𝜙𝑖 = 𝑚𝐿 cos𝜓𝑖
𝑛∑︁
𝑗=2

ℎ 𝑗 𝑏 𝑗 cos𝜓 𝑗 sin
(︁
𝜙 𝑗 − 𝜙𝑖

)︁ (︂
𝜙 𝑗̇ 2 + 𝜓 𝑗̇ 2

)︂
+2𝑚𝐿 cos𝜓𝑖

𝑛∑︁
𝑗=2

ℎ 𝑗 𝑏 𝑗 sin𝜓 𝑗 cos
(︁
𝜙 𝑗 − 𝜙𝑖

)︁
𝜙 𝑗̇ 𝜓 𝑗̇

+2𝑏𝑖 𝑚𝐿 cos𝜓𝑖 𝑠̇
[︁
sin𝜓1 sin (𝜙𝑖 − 𝜙1) 𝜓1̇ − cos𝜓1 cos (𝜙𝑖 − 𝜙1) 𝜙1̇

]︁
+2𝑐𝑖𝑚𝐿2 cos𝜓𝑖 sin𝜓𝑖 𝜙𝑖̇ 𝜓𝑖̇

𝑓𝜓1 = −𝑚𝐿 ℎ1 sin𝜓1

𝑛∑︁
𝑗=2

𝑏 𝑗 cos𝜓 𝑗 cos
(︁
𝜙 𝑗 − 𝜙1

)︁ (︂
𝜙 𝑗̇ 2 + 𝜓 𝑗̇ 2

)︂
+2𝑚𝐿 ℎ1 sin𝜓1

𝑛∑︁
𝑗=2

𝑏 𝑗 sin𝜓 𝑗 sin
(︁
𝜙 𝑗 − 𝜙1

)︁
𝜙 𝑗̇ 𝜓 𝑗̇

+𝑚𝐿 ℎ1 cos𝜓1

𝑛∑︁
𝑗=2

𝑏 𝑗 sin𝜓 𝑗 𝜓 𝑗̇ 2

−𝑚 cos𝜓1 sin𝜓1 𝜙1̇
2
(︂
𝑐1𝐿

2 + 2𝑏1𝑠𝐿 + 𝑛𝑠2
)︂

−2𝑚 (𝑏1𝐿 + 𝑛𝑠) 𝑠̇ 𝜓1̇
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𝑓𝜓𝑖
= −𝑚𝐿 sin𝜓𝑖

𝑛∑︁
𝑗=2

ℎ 𝑗 𝑏 𝑗 cos𝜓 𝑗 cos
(︁
𝜙 𝑗 − 𝜙𝑖

)︁ (︂
𝜙 𝑗̇ 2 + 𝜓 𝑗̇ 2

)︂
+2𝑚𝐿 sin𝜓𝑖

𝑛∑︁
𝑗=2

ℎ 𝑗 𝑏 𝑗 sin𝜓 𝑗 sin
(︁
𝜙 𝑗 − 𝜙𝑖

)︁
𝜙 𝑗̇ 𝜓 𝑗̇

+𝑚𝐿 cos𝜓𝑖
𝑛∑︁
𝑗=2

𝑏 𝑗 ℎ1 sin𝜓 𝑗 𝜓 𝑗̇ 2

+2𝑏𝑖 𝑚𝐿 sin𝜓𝑖 𝑠̇
[︁
cos𝜓1 sin (𝜙𝑖 − 𝜙1) 𝜙1̇ − sin𝜓1 cos (𝜙𝑖 − 𝜙1) 𝜓1̇

]︁
−2𝑏𝑖 𝑚𝐿 cos𝜓1 cos𝜓𝑖 𝑠̇ 𝜓1̇

−𝑐𝑖𝑚𝐿2 cos𝜓𝑖 sin𝜓𝑖 𝜙 𝑗̇ 2

Gravity has been omitted from the equations, since it can be modelled as a distributed
external force. The final right-hand side for the system, adding the contribution of the
non-lagrangian components, will be:

𝒓𝒉𝒔 = 𝒇 + 𝑸𝐷 + 𝑸𝑀 + 𝑸𝑎𝑒𝑟𝑜 + 𝑸𝑒𝑥𝑡 (A1)

where 𝑸𝐷 , 𝑸𝑀 , 𝑸𝑎𝑒𝑟𝑜 and 𝑸𝑒𝑥𝑡 are described in Section 3.
The IAC simulation required the addition of a lumped mass at the end of the rope,

to simulate the presence of the ACCD. This can be done by modifying all entries
of the mass matrix and right-hand side. The correction term is exactly the same as
the equations aforelisted, but using the lumped mass instead of the mass of the rope
element. In the calculation of this new term, the parameters 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and 𝑛 must not
be considered.
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