

MAPPING PV SOILING LOSSES IN EUROPE THROUGH AN ENVIRONMENTAL-BASED MODEL

Álvaro Fernández Solas¹, Nicholas Riedel-Lyngskær², Stefan Wilbert¹, Natalie Hanrieder¹, Fernanda Norde Santos¹, Elena Ruiz Donoso¹, Mari B. Øgaard³, Heine Nygard Riise³, Jesús Polo⁴, Diego L. Talavera⁵, Leonardo Micheli⁶

- 1 German Aerospace Center (DLR e.V.), Institute of Solar Research, Almería, Spain,
- 2 European Energy, Søborg, Denmark,
- 3 Department for Solar Power Systems, Institute for Energy Technology (IFE), Kjeller, Norway,
- 4 CIEMAT, Photovoltaic Solar Energy Unit, Madrid, Spain,
- 5 Advances in Photovoltaic Technology, University of Jaén, Spain
- 6 Sapienza University of Rome, Italy

BACKGROUND

Soiling impact

Last year, the annual revenue losses due to soiling in PV systems were estimated to be at least **5 billion €.**

The forecasted **increase** in the **PV capacity** in the next years will **multiply the losses** due to soiling.

Some scenarios indicate global annual soiling losses > **15 billion** € in **2026**.

Economic losses due to soiling

Data sourced from International Energy Agency – Task 13 Report (2022) "Soiling Losses – Impact on the Performance of Photovoltaic Power Plants" [1[.

Soiling impact: Europe

The impact of soiling on PV has been typically overlooked in Europe. Rainy locations were commonly considered as soiling-free.

Fortunately, this is starting to change! ③

J. Polo et al. (2021), "Modeling soiling losses for rooftop PV systems in suburban areas with nearby forest in Madrid", Renewable Energy, <u>https://doi.org/10.1016/j.renene.2021.06.085</u>
IEA PVPS Task 13 (2022), "Soiling Losses – Impact on the Performance of Photovoltaic Plants", <u>https://iea-pvps.org/wp-content/uploads/2023/01/IEA-PVPS-T13-21-2022-REPORT-Soiling-Losses-PV-Plants.pdf</u>

Soiling impact: Europe

Increase in both the frequency and intensity of Saharan dust intrusions over the Western Mediterranean in the last decades [1].

A Saharan dust cloud engulfing the skies over France, Spain and Portugal on 15 March 2022.

Impact of two Saharan dust intrusions on the soiling profile of a site located in Évora, Portugal [2].

[1] P. Salvador et al. (2022), "Increasing atmospheric dust transport towards the western Mediterranean over 1948–2020," https://doi.org/10.1038/s41612-022-00256-4

[2] R. Conceição et al., "Saharan dust transport to Europe and its impact on photovoltaic performance: A case study of soiling in Portugal," <u>https://doi.org/10.1016/j.solener.2017.11.059</u>

PV Soiling Modelling

Use of environmental-based models to estimate the soiling losses in **PV** systems

 \checkmark It makes possible to know the impact of soiling at a site prior to the PV system installation

Analysis of environmental parameters and PV system configuration

Calculation of the dust density accumulation

Calculation of the soiling losses

Research Question

1 Soiling magnitude, Soiling variability

What are the magnitude and variability of soiling losses in PV systems across Europe?

- First continental assessment: energy implications of soiling in PV.
- Application of a recalibrated environmental-based soiling model.

METHODS

and the second se

Soiling magnitude: HSU soiling model

It considers particulate matter (PM) concentrations and precipitation intensity as drivers of soiling accumulation/removal.

It assumes that a day with precipitation higher than a threshold restores the soiling loss to 0. Sometimes, rain does not completely clean the modules & using a daily threshold may not be an accurate approach to model the soiling removal.

Soiling magnitude: Recalibrated HSU model

Calibration approach – Rain events totally clean PV modules (Perfect cleaning)

Identification of the pair of values (cleaning threshold and settling velocity) that provides the best fit for the measured data.

Assumptions

10

- Single settling velocity \rightarrow No difference between PM_{10-2.5} and PM_{2.5}.
- We aimed **to apply the same settling velocity and the same threshold for all Europe** by tuning these parameters using measured soiling data from 9 different locations.

Sit ID	e)	Country	Soiling Sensor	Tilt angle [°]	Average Soiling Loss [%]	Time frame [Start – End] [dd/mm/YYYY]
DK	1	Denmark	DustIQ	25	0.87	07/03/2020 - 03/03/2022
DK	2	Denmark	DustIQ	25	0.68	17/03/2021 - 31/10/2022
DK	3	Denmark	DustIQ	25	0.35	13/02/2020 - 18/10/2022
ES	1	Spain	Atonometrics Soiling Station	30	1.50	01/03/2019 - 31/12/2022
ES	2	Spain	DustIQ	8	1.84	27/02/2019 - 21/08/2021
ES	3	Spain	DustIQ	45	1.68	13/02/2018 - 31/12/2022
FR	1	France	DustIQ	6	1.57	17/10/2020 - 31/12/2022
FR	2	France	DustIQ	Single Axis Tracker E-W	0.57	09/09/2021 - 31/12/2022
NC	C	Norway	DustIQ	46	0.52	24/04/2019 - 18/07/2022

Soiling magnitude: Recalibrated HSU model

Calibration approach – Rain events only remove a small part of the soiling (Partial cleaning)

Metrics: Soiling Variability

SVI: Soiling Variability Index

This metric is calculated as sum of the absolute deviations of the losses accumulated on a month from the monthly mean, divided by the total annual loss.

$$SVI(site) = \frac{\sum_{m=1}^{12} \left| S_m(m) - \frac{S_{m_sum}}{12} \right|}{S_{m_sum}}$$

$$S_{m_sum} = \sum_{m=1}^{12} S_m(m)$$
 $S_m(m) = \sum_{s=1}^{n_d} S_L(d)$

CoV: Coefficient of Variation

This metric represents the interannual-variability of soiling losses. It is calculated as ratio of the standard deviation to the mean of the annual mean losses over the investigated period (2005-2019).

$$CoV(site) = \frac{\sigma_{SL_y}}{\overline{SL_y}}$$

 $\sigma_{SL_{\gamma}} \rightarrow Standard \ deviation$

 $\overline{SL_y} \rightarrow Mean \ so iling \ loss$

The higher their values the greater the variability

RESULTS

with the second s

nitude

rradiance-Weighted Soiling Loss [%/y

Results

Soiling magnitude

Perfect cleaning

 $\,\circ\,$ Average annual soiling loss of 1.0%.

- Significant uneven distribution of losses across the continent.
 - Maximum annual losses of ~3.5% in some regions of the southernmost countries (Spain, Türkiye and Greece).
 - Minimum losses (<0.5%) in the northern countries (Sweden, Norway, Ireland)

- Average annual soiling loss of 5.3%.
- Peaks > 10% in some regions of the southernmost countries (Spain and Türkiye).
- Minimum losses, with median values of ~3% in the northern countries.

Results

Variability Index

Soiling variability

Seasonality

- Clear contrast between southern and central and northern countries.
- High seasonality in the south (long and dry summers).
- Consistent losses in central Europe (France, Netherlands, Germany) due to frequent rainfalls over the year.
- The higher values in the Nordic countries can be due to the low soiling losses.

- The larger the value, the higher the variability from one year to another.
- o Locations with the highest losses are also those with the highest variability (losses can vary by more than 100% in some regions).
- The high variability in the southernmost countries may be due to the impact of Saharan dust intrusions, which can vary in magnitude and frequency from year to year.
- The lowest values (< 10%) are found in countries with lower losses, such as Ireland, Norway and Sweden.

CONCLUSIONS

Conclusions

- Evaluation of both soiling magnitude and variability in Europe (regions with the highest losses are often those with the greatest seasonality and interannual variability).
- The results highlight the importance of soiling monitoring to assess the actual level of soiling.
- Limitations of current soiling models, particularly regarding the completeness of cleaning by rain.
- Future works should promote the adaptation and validation of models in soiling-prone sites (agrivoltaics, near railroads, close to certain factories...).

Both soiling modelling and soiling monitoring are required!

Thanks for your attention!

Álvaro Fernández Solas

<u>alvaro.fernandezsolas@dlr.de</u>

