Simulation building blocks for predicting critical
system changes
The impact of crises on critical infrastructures
Jacopo Bonari,¹ Max von Danwitz,¹ Alexander Popp,^{1,2}
1. Institute for the Protection of Terrestrial I **2. Institute for Mathematics and Computer-Based Simulation, University of the Bundeswehr Munich**
2. Institute for the Protection of Terrestrial Infrastructures
2. Institute for the Protection of Terrestrial Infrastructure Simulation building blocks for predicting critical
system changes
The innect of crises on critical infectructures Simulation building blocks for
system changes
The impact of crises on critical infrastructures

The impact of crises on critical infrastructures

Jacopo Bonari,¹ Max von Danwitz,¹ Alexander Popp,^{1,2}

-
-

The Institute for the Protection of Terrestrial Infrastructures, DLR-PI

- security of critical infrastructures on Earth;
- strengthen and improve the resilience of organizations and systems are developed;
- tool for responding to threats and improving the resilience of infrastructures.

Accidents, damages, negligence Cyber-crime

Technical failure, lifetime **Extreme** weather events

Terrorism Sabotage Sabotage

Organization of the Institute

Digital twins and hybrid digital twins for CIP

Coupling of simulators and sensors/actuators within a virtual reality environment at DLR-PI.

Situational awareness table built from open data coupled with risk analysis tool, Franke et al. [1].

Motivations

Modeling and predicting the dynamic behavior of complex critical infrastructure systems in normal operation and crisis situations has reached a double dead-end.

Physics-based modeling and classical direct numerical simulation (DNS)

Data-based modeling and classical machine learning (ML)

Digital twins and hybrid digital twins for CIP

Application (1/2): Responsive and Fast Planning of Safe Evacuation Paths Application (1/2): Responsive and Fast Plannin
Evacuation Paths
Chemical accident forward problem
Where will the contaminant be transported? Application (1/2): Responsive and Fast Planning
Evacuation Paths
Chemical accident forward problem
• Where will the contaminant be transported?
• Can we identify the source based on sparse Application (1/2): Responsive and Fast Pla

Evacuation Paths

Chemical accident forward problem

• Where will the contaminant be transported?

Inverse problem

• Can we identify the source based on sparse

• Where to add s Application (1/2): Responsive

Evacuation Paths

Chemical accident forward problem

• Where will the contaminant be transported?

Inverse problem

• Can we identify the source based on sparse

measurement data?

• Where to

Inverse problem

- measurement data? Chemical accident forward problem
• Where will the contaminant be transported?
Inverse problem
• Can we identify the source based on sparse
measurement data?
• Where to add sensors to ensure
safe meeting points?
Optimizati • Where will the contaminant be transported?

Inverse problem

• Can we identify the source based on sparse

measurement data?

• Where to add sensors to ensure

safe meeting points?
 Optimization

• Which is the best pa
- safe meeting points?

Optimization

to the meeting point?

Routing

spot?

Domain creation and mesh generation

Wind field evaluation and model order reduction (MOR)

Different wind field evaluations based on MOR, Bonari at al. [3].

Jacopo Bonari, Darmstadt, Thursday, 26th September 2024

Identification of the source locations of a pollutant released and transported by the wind

algorithmically determined sources, ibid.

Safe evacuation routes: coupled simulation of pollutant transport and pedestrian flows

distance and presence of contaminant.

Data assimilation techniques

Application (2/2): scientific machine learning for damage detection on wind turbine blades (SHM), framework

Application (2/2): scientific machine learning for damage detection on wind turbine blade (SHM), experimental setup

Thank you for your attention!

jacopo.bonari@dlr.de www.dlr.de/pi

Our collaboration partners:

- computational mechanics;
- staff.

www.unibw.de/imcs

- 2021, applicationmotivated research in CIP;
- staff.

www.dtecbw.de/risk.twin

[1] Franke, K., St ürmer, J. M., & Koch, T., (2023). Automated simulation and virtual reality coupling for interactive digital twins, Winter Simulation Conference (WSC), pp. 2615–2626.

[2] Sahin, T., Wolff, D., von Danwitz, M., & Popp, A. (2024). Towards a Hybrid Digital Twin: Physics-Informed Neural Networks as Surrogate Model of a Reinforced Concrete Beam, http://arxiv.org/abs/2405.08406

[3] Bonari, J., Kühn, L., von Danwitz, M., & Popp, A. (2024). Towards Real-Time Urban Physics Simulations with Digital Twins, http://arxiv.org/abs/2405.10077

[4] von Danwitz, M., Bonari, J., Franz, P., Kühn, L., Mattuschka, M., & Popp, A. (2024). CONTAMINANT DISPERSION SIMULATION IN A DIGITAL TWIN FRAMEWORK FOR CRITICAL INFRASTRUCTURE PROTECTION, https://arxiv.org/abs/2409.01253

[5] Gioia, D., Bonari, J. (in press). Sequential drone routing for data assimilation on a 2D airborne contaminant dispersion problem.

