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Abstract: The development and validation of lateral control strategies for railway running gears
with independently rotating driven wheels (IRDWs) are an active research area due to their potential
to enhance straight-track centering, curve steering performance, and reduce noise and wheel–rail
wear. This paper focuses on the practical application of theoretical models to a 1:5 scaled test rig
developed by the German Aerospace Center (DLR), addressing the challenges posed by unmodeled
phenomena such as hysteresis, varying damping and parameter identification. The theoretical
model from prior work is adapted based on empirical measurements from the test rig, incorporating
the varying open-loop stability of the front and rear wheel carriers, hysteresis effects, and other
dynamic properties typically neglected in literature. A transparent procedure for identifying dynamic
parameters is developed, validated through closed- and open-loop measurements. The refined model
informs the design and tuning of a cascaded PI and PD controller, enhancing system stabilization
by compensating for hysteresis and damping variations. The proposed approach demonstrates
improved robustness and performance in controlling the lateral displacement of IRDWs, contributing
to the advancement of safety-critical railway technologies.

Keywords: independently rotating wheels; active steering; system identification; parameter
identification; cascaded control; hysteresis

1. Introduction

Railway running gears with independently rotating driven wheels (IRDWs) have
been a prominent research focus over the past decades due to their significant advantages.
These include improved straight-track centering, enhanced curve steering performance,
and notable reductions in noise and wheel–rail wear. However, these benefits require active
control systems, leading to the development of new technologies that are highly safety-
relevant and subject to rigorous approval processes. This contrasts with the well-established,
simple, and cost-effective passive track guidance systems that have been used for nearly
200 years. With the increasing demands of modern railway systems, particularly the
introduction of high-speed and urban light rail vehicles, new approaches and innovations
are necessary to address challenges like curving ability and hunting stability at higher
speeds [1].

In response to these challenges, the German Aerospace Center (DLR) initiated the
internal project “Next Generation Train (NGT)” [2], which explores running gears utilizing
independently rotating and driven wheels. In this context, a 1:5 prototype of such a
running gear was developed, building on previous research [2–5]. Roller rigs are widely
used in railway vehicle research for their high controllability, repeatability, and flexibility
in experiment setups, as well as their lower cost compared to field tests [6]. They are
particularly valuable when evaluating the stability properties of independently rotating
driven wheels (IRDWs) [7–10]. The roller rig discussed in this paper is distinctive, featuring
motorized actuation for each wheel and incorporating two separate wheel carriers with
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different stability characteristics, unlike conventional designs that typically employ only
one. The main challenges in controlling IRDWs are twofold.

First, the control design itself is challenging due to the complex and difficult-to-model
wheel–rail contact. The simplest solution is to mimic the behavior of a traditional wheelset
by controlling the angular velocity to zero [11,12]. While this stabilizes the system, it forfeits
many of the advantages of IRDWs. The next step is to control the yaw angle to stabilize the
system [13]. This can also be achieved passively by altering the wheel tread conicity to a
negative value [10]. However, this approach does not allow for precise control of the lateral
displacement necessary to reduce wear and noise.

Therefore, the most fundamental control strategy to drive the lateral displacement to a
reference value is the use of PID control, as presented in [14]. Despite its simplicity, PID
control has limitations in performance and robustness, prompting the exploration of more
advanced control strategies such as H∞ control [15,16], semi-active control [17,18], sliding
mode control [19], feedback linearization [20], reinforcement learning [21,22], and model
predictive control [23].

The second major challenge is accurately acquiring the lateral displacement used
for control. Optical sensors, while effective, are prone to interference from dirt, ballast,
and weather conditions due to their proximity to the rail bed [21]. Consequently, the
use of observers, which estimate the lateral displacement from other measurements such
as yaw angle and angular velocity, is investigated. This approach is explored in [5] for
different sensor configurations using different versions of Kalman Filters. Simpler observers
using less model information are also developed [24]. A key requirement to allow for an
observation of the lateral displacement is the non-linearity of the wheel profile. This
non-linearity is often characterized by a parameter known as equivalent conicity. While
low-fidelity models typically assume a constant equivalent conicity, more advanced designs,
such as in [25], employ an observer to estimate this parameter in real time.

For these observers to be effective, the underlying model dynamics must be accurate.
The quality of the observer and the design and tuning of the controller are both improved
with better underlying models. Although many theoretical models of varying complexity
have been proposed for the IRDW system, practical adaptation of these models to the test
rig and procedures for parameter transformation have been lacking.

This paper contributes by adapting the model used in previous work [24] based on
measurements from the 1:5 test rig. It incorporates commonly neglected properties such as
different stability behavior of the wheel carriers, hysteresis effects, and varying damping
into the system model. Additionally, a transparent procedure for identifying individual
dynamic parameters is developed. Both closed- and open-loop measurements validate
the developed model and parameters. Finally, the model is used to design and tune a
cascaded PI and PD controller (PI-PD controller) that compensates for hysteresis and
varying damping effects.

2. System and Sensor Setup

A visual impression of the 1:5 test rig investigated throughout this paper can be found
in Figure 1.

The running gear consists of four IRDWs, each independently driven by motors
housed within the wheels. These motors are permanently excited synchronous machines,
each controlled by its own power converter and provide based on the commanded input
current u the required differential torque to steer the system.

Each pair of wheels is connected by an axle bridge, which is coupled to the running
gear frame via a leaf spring guidance system that enables the yaw motion of the axle
bridges. The running gear is mounted on two revolving rollers, simulating the longitudinal
motion of the vehicle.
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The test rig is equipped with several sensors for the control and monitoring of the
IRDWs as displayed in Figures 1 and 2. First, two laser sensors are mounted on the roller
rig frame which measure the distance to two metal plates at the front and rear bf/br. These
signals can be used to obtain the mean distance ym = bf+br

2 − b0, where b0 is the nominal
lateral distance between the laser sensors and the metal plates if the vehicle centre aligns
with the track centre. Further, the angle between frame and rail is sin(ψm) = bf−br

lL
, where

lL denotes the distance between the front and rear laser sensor. The signals are propagated
to obtain the control variables and the lateral displacement of front and rear wheel carrier as

yf = ym + sin(ψm)l0 yr = ym − sin(ψm)l0

where l0 defines the distance of front/rear wheel carrier to the middle of the frame.
Second, four laser sensors are mounted at the front left, front right, rear left, and rear

right on the running gear frame, measuring the distances to the front/rear wheel carrier
sfl, sfr, srl, srr. These allow to obtain the angle between frame and front/rear wheel carrier as

ψaf = tan
(

sfl − sfr
d0

)
ψar = tan

(
srl − srr

d0

)
where d0 denotes the distance between the left and right laser sensor measuring the yaw
angle, respectively.

Third, the angular velocity of the front left, front right, rear left, and rear right wheel
ωfl, ωfr, ωrl, ωrr is measured using encoders mounted inside the wheels.

Finally, each axle bridge is equipped with force-torque sensors mounted on the left
and right sides, yielding force torque signals along the x, y, z axis denoted by Fijk,Mijk
where i ∈ {x, y, z}, j ∈ {f, r} and k ∈ {l, r}. A sketch illustrating some of these quantities
discussed is given in Figure 2 which is analyzed in detail in Section 4.

The running gear hardware is connected to a rapid control prototyping environment.
Simulation models are implemented in MATLAB/Simulink 2015b and compiled using the
Simulink Real-Time 2015b environment and a sampling time of h = 0.005 s. For a more
detailed description of the test rig and its technical details, refer to [5].

Figure 1. Images of the test rig. Actuator and sensors used are marked. (1) Laser sensors for
measuring the lateral displacement; (2) Laser sensors for calculating the yaw angle; (3) Encoders for
measuring the angular velocity; (4) Force torque sensors to quantify external disturbances.
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Figure 2. Illustration of the sensor measurements and derived variables and states. The left hand-side
shows the nominal state without lateral displacement and yaw angle. The right hand-side illustrates
the change in variables for a non-zero lateral displacement and yaw angle. All quantities are highly
exaggerated for clarity.

3. Motivation

To provide an initial insight into the system dynamics, a step input current applied
solely to the rear wheels, with the front wheel carrier not in contact with the rollers, is
illustrated in Figure 3. This setup yields the yaw angle measurements depicted in Figure 4.
The experiment was conducted three times, revealing qualitatively consistent behavior
across all trials but with quantitative differences of up to 1 rad relative to a total change of
7 rad. Surprisingly, the measurement signals indicate an open-loop stable system, contrary
to expectations from models such as those in [5], in which integrating behavior from yaw
angle to lateral displacement is suggested. Moreover, the measurements exhibit unexpected
steady-state behavior, where the stationary value for u = 0 differs before and after t = 300 s.
Additionally, the step response shown in Figure 4 demonstrates varying dynamics over
time. At approximately t ≈ 20 s, a significant yaw angle jump occurs, indicative of a
system with very small damping. However, beyond t ≈ 20.2 s, the convergence to a steady-
state value is slow, characteristic of a system with high damping. These observed effects,
along with their modeling and parameter identification, are thoroughly discussed in the
subsequent sections of this paper.
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Figure 3. Open-loop input ∆u.
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Figure 4. Measured yaw angle.

4. Modeling and System Identification

This section develops the model describing the system dynamics based on models
and notation from [24,26]. These foundational models are expanded and their parameters
identified using measurements specific to scenarios on the 1:5 test rig. The model encom-
passes three primary dynamics: lateral, angular velocity, and yaw dynamics for both front
and rear wheel carriers, which may not be fully decoupled. Variables for the wheel carriers
are denoted with subscripts ·f for the front wheel carrier and ·r for the rear wheel carrier.
Broadly, the dynamics describe how a differential torque ∆u applied to the wheels induces
a differential angular velocity ∆ω, leading to a yaw angle ψ and subsequently influencing
lateral displacement y dependent on velocity v. This mathematical framework, incorpo-
rating geometric and physical parameters, is detailed in the remainder of this section. For
all tasks regarding the identifications of these parameters, an optimization problem of
the form

min
c

∫ tend

tstart
|e(t)|2dt (1a)

s. t. ẋ = f (x) (1b)

x(0) = xmeas(0) (1c)

is solved, where c ∈ Rnc denotes the parameters to be identified, e(t) ∈ Rne is the error
vector defined by the states x(t) ∈ Rnx obtained from the model and its dynamics f
with f (x(t)) ∈ Rnx and the measurements xmeas(t) ∈ Rnx obtained from the test rig with
nc, ne, nx ∈ N and t, tstart, tend ∈ R≥0. The optimization is performed using the MOPS
(Multi-Objective Parameter Synthesis) software version 6.8 environment, an optimization
tool from the Institute of System Dynamics and Control of the German Aerospace Center,
as presented in [27]. An overview of all the parameters discussed in the upcoming Section
is available in Table 1. The table includes nominal values used in previous work [5] and
identified values resulting from the optimizations conducted in this study. Parameters
without identified values retain their nominal values, indicating undetermined aspects in
the proposed model. Additionally, Table 2 shows constraints arising for some of the state
variables and the input due to physical or security limits. The following sections detail
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the modeling and parameter identification processes for lateral dynamics, angular velocity
dynamics, and yaw dynamics.

Table 1. Parameters and constants.

Notation Description Nominal Identified

v longitudinal velocity 1 m s−1

r0 wheel radius 0.1 m
b track width 0.3 m
lL distance between laser sensors measuring lateral displacement 0.1535 m
b0 nominal distance from laser sensors to metal plates 0.065 m
d0 distance between laser sensors measuring yaw angle 0.185 m
kτ motor constant 0.27 N m A−1

l0 distance wheel carrier and middle frame 0.25 m 0.28 m
δ0 equivalent conicity 0.024 rad 0.050 rad
yoff offset lateral displacement 0 m −0.0006 m

Jx wheel inertia w.r.t rolling 0.027 kgm2

c̄11 extended Kalker friction coefficient 3.6 × 104 N rad−1 3.85 × 104 N rad−1

ωoff offset angular velocity 0 rad s−1 −0.002 rad s−1

Jz axle bridge inertia w.r.t yawing 0.8 kgm2 0.28 kgm2

kc equivalent stiffness 66.0 N m−1 98.8 N m−1

kd equivalent damping 0.66 N s m−1 21.0 N s m−1

ψoff offset yaw angle 0 rad −1.8 × 10−3 rad

Table 2. Constraints.

Variables Description Value

y lateral displacement [−3.5, 3.5] mm
ψ yaw angle [−0.03, 0.03] rad
ω angular velocity [−41, 41] rad s−1

∆u current input [−4, 4] A

4.1. Lateral Dynamics

Beginning with the lateral dynamics, these components are crucial for the control task
and are presented herein in a form that is both straightforward to model and allows for easy
identification of parameters while still capturing the complexities of real-world dynamics.

4.1.1. Modeling

The model of the lateral dynamics is derived following the approach in [24,26], utiliz-
ing linearization, small-angle approximations, and the assumption of no side slip. While
the no side-slip assumption may be compromised in real-world applications due to factors
such as bad weather, debris, or leaves on the rail, it is justified under the controlled labo-
ratory conditions of this study. This assumption allows for the design, identification, and
validation of a model that minimizes the need for frequent online parameter adjustments.
The model takes the form

ẏf = c̄yvψf ẏr = c̄yvψr

where yf/yr is the front/rear lateral displacement, ψf/ ψr is the angle between the rail and
the front/rear wheel carrier normal, and v is the velocity. The parameter accounting for the
non-flatness of the wheel is denoted by c̄y which is defined as

c̄y = (2r0 cos(δ0)
3−2r0 cos(δ0)+b cos(δ0)

2 sin(δ0))
b sin(δ0)

, where b is the track width, r0 is the wheel ra-
dius, and δ0 is the equivalent conicity.

The angles ψf/ψr result from the superposition of ψaf/ψar, which is the angle between
the wheel carrier and the frame, and ψm, the angle between the frame and the rail, expressed
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as ψf = ψaf + ψm illustrated in Figure 2. Laser sensors measure ψaf/ψar, while ψm can be
expressed as a function of the lateral displacement,

ψm = tan
(

yf − yr

2l0

)
≈ yf − yr

2l0

where 2l0 is the distance between the front and rear wheel carrier. Thus, the dynamics take
the form

ẏf = +
c̄y

2l0
vyf −

c̄y

2l0
vyr + c̄yvψaf (2a)

ẏr = −
c̄y

2l0
vyr +

c̄y

2l0
vyf + c̄yvψar. (2b)

It can be seen that considering ψaf as input and for positive velocity v > 0 and constant
rear displacement yr = 0, the uncontrolled lateral dynamics at the front wheel carrier (2a)
are unstable since vc̄y

2l0
> 0. Conversely, with the same reasoning, the rear wheel carrier

dynamics (2b) are stable. Both of these properties become inverted if v < 0. This is
an observation that is rarely discussed in current literature and significantly influences
parameter identification, control, and observer design. Identifying an open-loop stable
system is inherently easier since it does not necessitate control for obtaining measurements
during system identification. Therefore, the method proposed in this work focuses on
separately identifying the two wheel carriers. For the rear wheel carrier, this entails
conducting measurements under v > 0 with the front wheel carrier unactuated and lacking
roller contact. These measurements allow for the identification of parameters in the lateral
dynamics (2b) where yf(t) = 0 for all t. Similarly, the yaw and angular velocity dynamics of
the rear wheel carrier can be independently identified, which is detailed in the next section.
The same approach applies for identifying the front wheel carrier dynamics under v < 0. In
this work, however, we restrict ourselves on presenting the modeling, system identification,
and control of the rear wheel carrier for v = 1 m s−1. Analysis of the unstable case and
integration of both wheel carriers will be explored in future studies. To enhance readability,
variables yr, ψar, and ∆ωr are denoted without subscripts ·r and ·ar in the remainder of
this work.

4.1.2. Parameter Identification

Augmenting dynamics (2b) by adding a constant offset yoff in the form of v
2l0

yoff to
the right hand side compensating calibration and misalignment errors allows to obtain
a good model of the lateral dynamics. Using the input ∆u from Figure 3 as discussed in
Section 3 leads to one measurement with the yaw angle presented in Figure 4 and the
lateral displacement shown in Figure 5. For comparison, dynamics (2b) are simulated
with the measured yaw angle ψ = ψmeas, the nominal parameters from Table 1, and an
optimized offset yoff. The result is also displayed in Figure 5. It can be seen that this
nominal trajectory follows the measurement pretty well and the error is most of the time
smaller than the actual measurement noise. However, in particular at the end of the
measurement, the error becomes quite large, which motivates the optimization of these
theoretical parameters. Velocity v is well known and widely used throughout the model,
and parameter δ0 in c̄y is obtained from the optimization in Section 4.2. This leaves the
offset yoff and the length l0 as the optimization parameters. The variation of the latter is
to be seen as compensating potential alignment errors and model uncertainties. Thus, we
consider optimization problem (1) with parameters c = (yoff, l0) with measured lateral
displacement ymeas, error e = ymeas − y, and lateral displacement y subject to dynamics (2b).
This leads to the identified parameters displayed in Table 1 which remain reasonably close
to the nominal parameters. The simulated results are also displayed in Figure 5. It can be
seen that the errors are smaller throughout the entire simulation horizon compared to the
nominal simulation.
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Figure 5. Measured and simulated lateral displacement.

4.2. Angular Velocity Dynamics

The angular velocity dynamics represent the input–output relationship between the
differential input current ∆u and angular velocity. These dynamics also encompass the
motor behavior, which is inherently nonlinear and presents a significant challenge for both
modeling and control—a complex research topic in its own right. Modeling the interaction
between the rail and wheel is another intricate task. The two main models in this area are
the Kalker model, based on linear Kalker theory [28], and the Polach model [29]. While the
Polach model is more accurate and accounts for adhesion limits, the Kalker model is linear
and computationally efficient. In this work, we adopt the latter to generate a simple linear
model, as in [24], which takes the following form:

∆ω̇ =
bc̄11

2Jx
Γy +

bc̄11r0

2Jxv
ψ̇ −

c̄11r2
0

Jxv
∆ω +

1
Jx

kτ∆u (3)

where c̄11 denotes the extended Kalker friction coefficient [26,30], Jx is the inertia of the
wheels with respect to rolling, kτ is the motor constant, and Γ = tan(δ0)

b
2−r0 tan(δ0)

is a geometric

parameter. By employing the nominal parameters from Table 1, it can be seen that the
angular velocity dynamics are much faster compared to the lateral and yaw dynamics.
Thus, it is sensible to assume the angular velocity dynamics to be in steady state ∆ω̇ = 0,
i.e., as in [24], the angular velocity can be obtained as

∆ω =
Γvb
2r2

0
y +

b
2r0

ψ̇ +
v

r2
0 c̄11

kτ∆u . (4)

This relation (4) is sufficient and can replace dynamics (3) as can be seen in the next
section. Additionally, it can be used as shown in [24] to design an observer which estimates
the lateral displacement based on the input, yaw angle, and angular velocity.

Identification

In order to identify the parameters in Equation (4), the angular velocity measurements
for one of the open-loop measurements introduced in Section 3 are used and displayed in
Figure 6. It can be seen that the raw measurements admit a very bad ratio from unmodeled
dynamics to actual modeled dynamics defined by the lateral displacement, yaw angle,
and input. However, by introducing a simple forward–backward low-pass filter with
edge frequency of 0.5 Hz, it is possible to reduce the effect of the unmodeled dynamics.
For parameter identification, the raw measurements are used, and the right hand-side
of (4) is augmented by offset ∆ωoff. Optimization problem (1) for c = (δ0, c̄11, ∆ωoff),
e = ∆ωmeas − ∆ω is solved where ∆ω is obtained by (4) and using the measurements for
the right hand-side variables, i.e., y = ymeas and ψ̇ = ψmeas(k+1)−ψmeas(k)

h . The optimization
results can be found in Table 1, and the simulated signal ∆ω and its filtered version are
displayed in Figure 6. It can be seen that the simulation results closely match the measured
values. Among the identified parameters, the equivalent conicity angle δ0 is particularly
crucial as it significantly impacts the accuracy of lateral displacement estimation, as dis-
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cussed in [24]. The identified angle is approximately double the nominal value, influenced
by factors such as wear, design variations, and assembly inaccuracies affecting the wheel
profile. More importantly, the equivalent conicity, following [30], establishes an approxi-
mate relationship between differences in rolling radius and lateral displacement amplitude
during hunting motion. In Equation (4), this parameter plays a pivotal role, accommodating
other potential unmodeled influences through optimization. Conversely, parameter c̄11
in Equation (4) governs the input’s effect on ∆ω, though its impact is relatively minor
compared to lateral displacement and yaw rate. Consequently, optimization outcomes
exhibit notable variability based on initial values and dataset choices, yet the identified
parameter remains close to its nominal value.

0 100 200 300 400 500

-0.05

0

0.05

0 10 20 30 40

-0.02

-0.01

0

0.01

Figure 6. Measured and simulated angular velocity.

4.3. Yaw Dynamics

The yaw dynamics play a pivotal role in driving the lateral dynamics and prove to be
the most difficult to capture among all dynamics discussed in this work.

4.3.1. Modeling

As given in [24], the dynamics of the yaw angle can be written as

ψ̈ = − b2 c̄11

2Jzr0
Γy +

−kc

Jz
ψ −

(
kd
Jz

+
b2 c̄11

2Jzv

)
ψ̇ +

bc̄11r0

Jzv
∆ω (5)

with Jz being the inertia of the axle bridge with respect to yawing, kc is the equivalent
stiffness, and kd is the equivalent damping. The use the assumption of fast angular velocity
dynamics allows to substitute (4) into the yaw dynamics, which leads to a simple standard
second-order system

ψ̈ = − kc

Jz
ψ − kd

Jz
ψ̇ +

b
r0 Jz

kτ∆u .

Based on the measurements observed in Figure 4 discussed in Section 3, it is evident
that this linear model does not cover all relevant dynamics. Thus, an additional constant
offset parameter ψoff accounting for calibration and misalignment errors, a new state
zhyst, and a non-linear term accounting for hysteresis fhyst(ψ̇, zhyst) and a different set of

parameters ω0 =
√

kc
Jz

, D = kd
2Jzω0

, K = b
r0 Jzω2

0
kτ to allow for a simple interpretation of

steady state and transitional phase is introduced. Then, the dynamics have the form

ψ̈ = −2Dω0ψ̇ − ω2
0ψ + Kω2

0∆u + ω2
0ψoff + fhyst(ψ̇, zhyst) . (6)

It remains to identify parameters ω0, K, D and describe the term fhyst(ψ̇, zhyst) and the
dynamics of zhyst. Instead of identifying all parameters at once with the measurements
from Section 3, we carry out additional measurements specificly designed to isolate the
effects of the corresponding parameters and use these to identify the parameters based on
minimizing optimization problem (1) with e = ψmeas(t)− ψ(t) where ψmeas denotes the
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measured yaw angle and ψ the yaw angle obtained with dynamics (6) and initial values
defined by the measurements.

4.3.2. Natural Frequency Identification

As discussed in Section 3, the main non-linear effects are the damping D and the
hysteresis fhyst(ψ̇, z). The first results from the contact between wheels and roller, while
the latter is particularly present for high or high frequent input torques ∆u. Therefore, the
complete wheel carrier is lifted, the wheel roller contact is removed, and a free response
of the system is measured with non-zero initial conditions, ∆u = 0 and ψ(0) ̸= 0. The
fast movement and the missing roller contact verify the assumption that the damping is
constant and the hysteresis can be neglected, fhyst(ψ̇, z) = 0. Then, optimization (1) can be
carried out for c = [ω0, D, ψoff]. Figure 7 shows five measurements made in the presented
setup and the results of the simulation for dynamics (6) with the optimized parameters,
presented in Table 3, at one of the initial states. It can be seen that the oscillation frequency
of the measurement changes slightly over the course of the response, which cannot be
modeled by a linear model with constant parameters. Despite this discrepancy, the fit lies
well within the variance of the measurements, and the identified parameter ω0 can be used
for the proposed model.

0 0.5 1 1.5

-0.01

0

0.01

0.02

Figure 7. Measured and simulated yaw angle of the free response of the axle bridge. Three measure-
ments in different shades of grey are depicted in the same style as in Figure 4.

4.3.3. Damping Modeling and Identification

Naturally, by restoring the contact between wheels and roller, the damping behavior
changes compared to the previous section and only the numerical value of parameter ω0
can be used for the model. Further, as discussed in Section 3, damping D appears to be
not constant but varying over the course of a step response. Thus, measurements were
carried out that allowed for a longer time period after the step occurred. Three of these
measurements can be seen in Figure 8 in three different shades of grey. It can be observed
that these step responses can be divided into one part before around 0.2 s with very small
damping and the reaming part where the damping is very high. This can be quantified
by splitting the step response and carrying out optimization problem (1) for tstart = 10,
tend = 10.2 and tstart = 10.2, tend = 70. Parameters K, ψoff are easily obtained from the
stationary values of the step response, allowing to neglect the hysteresis, i.e., fhyst(ψ̇, z) = 0
leaving only the damping parameter c = D for optimization. The parameters including
the resulting damping values can be found in Table 3. It can be seen that even the lower
damping value corresponds to an overdamped system. In Figure 8, it can be seen that the
light green step response resulting from these piecewisely defined two dampings leads
to a response that aligns very well with the measurement used to fit, especially when
compared to the variance of the three step responses. It can also be seen that the two step
responses in light and dark blue with the corresponding constant low and high damping
values from Table 3 over the whole time period lead to large errors and do not capture the
desired system behavior. The key question remaining is how can the change in damping
be modeled accordingly and what are the variables and states the change depends on.
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Different experiments have shown that quick changes in the input lead to smaller damping,
which motivates modeling the damping as a function of the derivative of the velocity.
Furthermore, in order to keep the damping within bounds, it is convenient to introduce a
saturation as well, i.e., the damping is obtained in a piecewise linear manner as

D(u̇) =

{
Dmin |u̇| >= cu̇max

− |u̇|
cu̇max

(Dmax − Dmin) + Dmax |u̇| < cu̇max

. (7)

As the input function is not necessarily differentiable, the derivative of the input is
obtained from the low-pass filtered input signal with an edge frequency of 10 Hz. With
these adjustments, optimization (1) is carried out with the variable damping (7) with Dmin,
Dmax as the results of the previous optimization results and c = cu̇max as the only tuning
variable and tstart = 0, tend = 80. The parameter can be found in Table 3 and the simulation
result in Figure 8. It can be seen that the response aligns closely with the piecewise damping
response and therefore also with the measurements.

Table 3. Yaw dynamics parameter identification results.

Identification Scenario ω0 D ψoff K cu̇max aBouc βBouc γBouc

Natural Frequency (Section 4.3.2) 18.8 0.28 1.7 × 10−3 - - - - -
Damping Identification (Section 4.3.3) 18.8 [2.2, 100] −1.8 × 10−3 8.2 × 10−3 0.3 × 10−4 - - -
Hysteresis Identification (Section 4.3.4) 18.8 100 −1.4 × 10−3 6.3 × 10−3 - 0.48 7362 −7164
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Figure 8. Step response of the yaw angle.

4.3.4. Hysteresis Modeling and Identification

It remains to model the hysteresis, which plays a significant role particularly in the
steady state values as can be seen in Section 3. Hysteresis is widely understood as a
nonlinear phenomenon due to which a dynamic system does not provide the same input–
ouput relation for low-frequency inputs when loading or unloading [31]. Or, in different
words, for a linear system in the form of (6) with fhyst(ψ̇, z) = 0 and a sinusoidal input
∆u = sin(2πνt), the plot of ψ over ∆u is an ellipse which semi-minor axis vanishes for
decreasing ν and converges to a simple line described by ψ = K∆u + ψoff for ν → 0.
However, if the semi-minor axis of the ellipse does not vanish and is independent of
the frequency, this is referred to as a ”rated-independent hysteresis” [32]. This behavior
is illustrated in Figure 9, where the linear system is simulated for the higher damping
obtained in the previous section and the input ∆u = A sin(2πνit) with i ∈ {1, 2}, where
ν1 = 4.8 mHz, and even lower frequency ν2 = 2.4 mHz. It can be observed that the minor
axis of the dark orange ellipse, representing the higher frequency ν1, decreases in size
compared to the lighter orange ellipse, which represents the smaller frequency ν2. In
contrast, the results of the measurements displayed in light and dark grey show only
minor changes between the two different frequencies. In order to capture this behavior, a
hysteresis term is introduced. This can be achieved in different ways as there exist multiple
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approaches to model hysteresis, e.g., the Preisach model [33], the Duhem model [34], or the
Prandtl–Ishlinskii model [35] to name but a few. In this work, we decided to use the Bouc
Wen model [31] due to its compactness and manageable number of variables. This model
defines the term

fhyst(ψ̇, z) = ω2
0ψ − ω2

0(aBoucψ + (1 − aBouc)zHyst) (8)

where parameter aBouc ∈ [0, 1] represents the ratio of the back-to-front stiffness of the yield
value, i.e., when aBouc = 1, the system has an ordinary linear elasticity as fhyst(ψ̇, zhyst) = 0.
State zhyst is defined by the differential equation

żhyst = ABoucψ̇ − βBouc|ψ̇||zhyst|nBouc−1zhyst − γBoucψ̇|zhyst|nBouc (9)

where ABouc ∈ R, βBouc > 0, γBouc ∈ R and nBouc ∈ N are dimensionless parameters
controlling the behavior of the model. These parameters are not straightforward to inter-
pret, and efforts to address this limitation through identification and investigation were
made [36]. The set of parameters was shown to be redundant [37]; thus, parameter ABouc
was set to 1. Additionally, parameter nBouc was chosen to be 1 to reduce the complexity of
the model.

Parameter K was easily obtained solving optimization problem (1) for the linear
system with fhyst(ψ̇, z) = 0, where there are parameters D and ω0 from the previous
fits or the simple consideration of approximating the ellipse of Figure 9 by a line with
ψ

∆u ≈ −0.006−0.003
−0.7−0.7 = 0.0064. The optimization result is found in Table 3. The remaining

parameters c = [ψoff, aBouc, βBouc, γBouc] were obtained solving optimization problem (1)
with the previously identified parameter K, ω0 and higher damping D. The optimization
results can be found in Table 3 and the resulting simulation trajectory can be seen in
Figure 9 for frequency ν1 and ν2 displayed in green. It can be seen that the results match
the measured trajectories closely and are barely influenced by the change in frequency
as desired.
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Figure 9. Yaw angle in open loop for a sinusoidal input.

4.3.5. Verification

In order to verify the results of the modeling and identification of the previous section,
an independent measurement is used. The measurement introduced in the motivation is
not used for the parameter fit and is therefore used for the verification as it showcases both
the influence of the variable damping and the hysteresis. For the simulation, model (6),
(9) with (8), variable damping model (7), and the optimized parameters of Table 3 from
the last row and cu̇max of the second to last row are used. In Figure 10, the simulation
results are shown with three measurements. It can be observed that the simulation follows
the measurements for the application purpose in a sufficient manner. The measured
steps exhibit two different damping behaviors, a characteristic that is also apparent in
the simulation. While the dynamics of the first step align well, subsequent steps show
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some offsets. However, towards the final steps, the simulations once again closely match
the measurements.

This indicates that the proposed model effectively captures the hysteresis effect, though
it does not precisely replicate the induced offsets. Nevertheless, this level of fidelity is
adequate as it models the primary effects to be addressed by a controller. Overall, the model
with the identified parameters accurately represents the system behavior and represents
a significant improvement over the academic models and parameters used in previous
studies. Particularly noteworthy are the representations of variable damping and hysteresis,
crucial considerations for the controller design discussed in the subsequent section.
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Figure 10. Simulated steps for validation.

5. Closed-Loop System and Control Design

In this section, we undertake control design based on the model and parameters
developed in the previous section. Although nonlinear effects like hysteresis and variable
damping imply a need for advanced control strategies such as feedforward control or
robust methods like sliding mode control, this study concentrates on proposing straightfor-
ward controllers with minimal complexity. These controllers facilitate quick adaptation to
environmental changes while effectively mitigating major drawbacks associated with these
effects, such as steady-state error and destabilization. The design of more sophisticated
control architectures is left for future research. For the design of the control and stability
proof, the linear part of system (6) combined with lateral dynamics (2b) is used. This
can be formulated in state space as ẋ = Ax + Bu, where x =

[
y ψ ψ̇

]⊤
+ A−1xoff with

xoff =
[

c̄y
2l0

v(yf + yoff) 0 w2
0ψoff

]⊤
and

A =

−
vc̄y
2l0

vc̄y 0
0 0 1
0 −ω2

0 −2Dω0

 B =

 0
0

Kω2
0

 . (10)

Two control designs are discussed in this section. First, a simple P-control law is intro-
duced to demonstrate the fundamental principles of system control while also highlighting
the limitations of such a basic approach. Following this, a cascaded PI-PD control scheme
is proposed. This design offers sufficient flexibility to meet closed-loop requirements
effectively while also enabling straightforward gain tuning strategies.

5.1. P Control Design

As discussed in Section 4.1, the rear wheel carrier lateral dynamics are stable. Com-
bined with the yaw dynamics of system (10), this also leads to an open-loop stable system.
Therefore, the control of the rear wheel carrier mainly robustifies the system and improves
its dynamics. Keeping in mind that l0 is large for a 1:1 prototype, it should be noted that
system (10) contains a pole at 0 for l0 → ∞. This makes a control indispensable to obtain
a stable system. In this case, due to the form of the system, however, a P-controller is
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sufficient to stabilize the system. Thus, such a P-control is investigated in this system to
establish a baseline performance and also validate the model proposed in the previous
sections on the closed-loop system. Figure 11 shows the root locus of system (10) for output
y and input u = KP(yref − y). The crosses indicate the three poles for the open-loop system.
It can be seen that due to the yaw dynamics being overdamped, one of the poles is very far
in the left half plane while the other two have a real part of −4.5 and −1.73. The latter two
eigenvalues bifurcate into a complex pole pair for rising KP and reach the right half plane
for KP > 18605, indicating that the choice of KP must be taken with care as it might lead to
an unstable system. Naturally, this stability boundary depends on the damping of the yaw
dynamics, and as discussed in Section 4.3.3, this damping varies dependent on the input
and is not easy to model. With this in mind, the evolution of the poles with the highest real
value is shown in Figure 12 for different damping D. It can be observed that an optimal
gain KP exists for every D, which leads to the lowest possible real part. If the gain is higher
than the optimal value, the real part rises until the system becomes unstable, while for
smaller values, the real part is smaller, and therefore not the best possible performance is
reached. For high damping, a similar behavior can be observed. For very high damping,
the optimal KP value is also very high, and the stability boundary is also consequently
much higher.

These considerations together with the previous identification of the damping suggest
that the choice of Kp = 500 is close to the optimum while also offering enough margin
to the instability boundary. The yaw angle ψ of the closed-loop system for this control
can be seen in Figure 13, where a step of ∆y = 0.2 mm is followed. The three different
measurements for the same setup can be seen in the three different shades of grey while
three measurements for D ∈ {0.04, 0.06, 2} are displayed. It can be observed that the three
measurements behave very differently despite these measurements being from the same
setup. Two of the measurements converge to a constant value with different dampings,
while the first measurement indicates that the system is unstable. This behavior shows
that there is also a dynamic in the system that is not modeled in the proposed system.
However, it can be seen that adjusting the damping value leads to an unstable response as
well. Notably, this damping value is around 100 times smaller than the one identified in
Section 4.3.3 due to the high frequent input. Combined with the fact that the closed loop
with the proposed control law does not admit a consistent system behavior, this renders a
simple P controller insufficient for the real test rig. Thus, a different control is proposed
that generates consistent system behavior.
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Figure 11. Root locus for the P-controller.
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Figure 12. Smallest eigenvalue for different damping D. Left side shows D ∈ {0, 0.1, . . . , 1} and right
side D ∈ {1, 0.3, . . . , 2.8, 3, 6, 9, 20, 40, . . . , 100}.
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Figure 13. Measured step responses for identical experiment compared to three simulations with
different damping.

5.2. Cascaded PI-PD Control

In this section, we propose the usage of a cascaded PI-PD control design illustrated
in Figure 14. The section is divided into four parts. First, the structure of the control is
presented, as well as the resulting closed-loop dynamics. Second, methods and guidelines
for the gain tuning are proposed. Third, the performance of the proposed controller
is assessed on the test rig by observing its response to a sequence of step inputs while
simultaneously verifying the model presented in Section 4. Finally, the robustness of the
control is investigated by applying various perturbations to the test rig.

PI PD Yaw Lateral
yref ey ψref eψ u ψ y

−

ψ

−

y

Figure 14. Block diagram PI-PD controller.

5.2.1. Control Structure

The previous observations have shown that there are multiple key points that must be
taken into account when designing the control law. First, the damping of the system is not
constant and it is therefore advisable to add damping by the means of control to obtain a
robustly stable system. Second, the change in damping and the inconsistency of the system
occurs mainly for large and high frequent input u. Thus, the control parameters should be
chosen such that a maximal threshold is not exceeded.
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Due to the staircase form of system (10) and the points mentioned beforehand, the
design of a cascaded control is proposed. Its structure is illustrated in Figure 14 with an
inner PD control defined for a reference yaw angle ψref,

u = KP,ψeψ + KD,ψ êψ̇ (11)

with tuning parameters KP,ψ, KD,ψ ∈ R, where eψ = ψref − ψ and êψ̇ is an estimation of
the derivative of the error eψ̇ = ψ̇ref − ψ̇ provided by a standard linear differentiator with

transfer function G(s) = s
Tfs+1 defined in state space by êψ̇ = ψ̇ref − ˆ̇ψ where

ẋdiff = − 1
Tf,ψ

xdiff + ψ , ˆ̇ψ = − 1
T2

f,ψ
xdiff +

1
Tf,ψ

ψ (12)

with the tuning parameter Tf ,ψ ∈ R close to zero. The reference yaw angle is given by the
outer PI controller,

ψref = KP,yey + KI,yxI (13)

where KP,y, KI,y ∈ R are the tuning parameters, ey = yref − y is the displacement error, and
xI is this error integrated over time, i.e.,

ẋI(t) = ey . (14)

5.2.2. Closed-Loop Dynamics

The closed inner loop is obtained combining the yaw dynamics (10) and control (11).
In the ideal case, if ψ̇ is available and is not approximated by (12), the closed loop is defined
by ėψ,ψ̇ = Aψ,cleψ,ψ̇ + gψ,ψ̇(ψref, ψ̇ref, ψ̈ref) with eψ,ψ̇ = [ψref − (ψ − ψoff) ψ̇ref − ψ̇]⊤ and

Aψ,cl = Aψ − Bψ

[
KP KD

]
gψ,ψ̇(ψref, ψ̇ref, ψ̈ref) =

[
ψ̇ref
ψ̈ref

]
− Aψ

[
ψref
ψ̇ref

]
(15)

where Aψ = A2:3,2:3 and Bψ = B2:3 denote the submatrices of the dynamics matrices in
Equation (10) governing the yaw dynamics. If ψ̇ is not available and the approximation ˆ̇ψ
defined by (12) based on ψ is carried out, the closed loop is of one dimension higher. It has
the form ˙̄eψ,ψ̇ = Āψ,cl ēψ,ψ̇ + ḡψ,ψ̇(t) with ēψ,ψ̇ = [eψ,ψ̇ xdiff]

⊤ and

Āψ,cl =


0 1 0

−ω2
0 − Kω2

0(Kp +
KD
Tf,ψ

) −2Dω0 −KKDω2
0

T2

−1 0 − 1
Tf,ψ

 (16a)

gψ,ψ̇(ψref, ψ̇ref, ψ̈ref) =

 0
ψ̈ref + ψrefω

2
0 +

K
T Kd,ψψrefω

2
0 + 2Dψ̇refω0 − KKd,ψψ̇refω

2
0

ψref

 . (16b)

Naturally, the eigenvalues of Āψ,cl converge to the eigenvalues of Aψ,cl for Tf,ψ con-
verging to zero.

Considering the outer loop and assuming that the inner loop is very fast such that the
assumption ψ = ψref holds, where ψref is defined in (13), the following system is obtained:

Ay,xI =

[
0 1

KI,y c̄yv − c̄yv
l0

− c̄yvKP,y

]
gy,xI =

[
0

c̄yv
l0

yref + l0ẏref

]
. (17)
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In order to define the closed outer loop without this assumption, more extensive
calculations have to be carried out. In order to achieve this, we use e1 AB = 0 and obtain,
iteratively, relations

ẏ = e1(Ax + Bu) ÿ = e1(A2x + Bu) (18a)

ėy = ẏref − ẏ ëy = ÿref − ÿ (18b)

ψ̇ref = KP,y ėy + KI,yey ψ̈ref = KP,y ëy + KI,y ėy . (18c)

Using Equation (14), (18b) and substituting the variables from Equation (18) into
Equation (15) allows to define the complete dynamics as f (e) = [ẋI ėy ėψ,ψ̇]. These dynam-
ics may be written in linear fashion as ė = Acle + g(yref, ẏref, ÿref) with e = [xI ey eψ,ψ̇]

⊤

and

Acl =
∂ f (e)

∂e
g(yref, ẏref, ÿref) = f (e)− Acle . (19)

Note that g is not a function of e any more but only of the lateral reference vector and
its derivatives due to the linearity of the individual components in f (e). This derivation
has shown how to obtain the system for ψ̇ available, e.g., by means of measurements. The
analogue derivation using ēψ,ψ̇ and Equation (16) instead of eψ,ψ̇ and (15) leads to variables
ē, Ācl and gcl if ψ̇ is obtained by means of numerical differentiation.

5.2.3. Gain Tuning

Selecting the gains KP,y, KI,y, KP,ψ, KD,ψ̇, Tf,ψ is crucial for ensuring effective control
performance and robustness. A procedure on tuning these parameters is presented to
ensure that (i) the constraints in Table 2 are satisfied in the case of maximum tracking error,
(ii) stability can be guaranteed, and iii) finding a good performance/robustness tradeoff by
placing the inner and outer loop poles accordingly.

Numerous methods exist for tuning these parameters, yet the task is not trivial.
While the proposed control resembles full-state feedback, typically achieved through
pole placement, its cascaded structure simplifies design and allows iterative parameter
adjustments. This facilitates quick adaptation to varying system conditions during field
tests. A procedure on tuning these parameters is presented in the following. The resulting
gains are presented in Table 4.

Table 4. Tuned parameters.

Inner Loop Parameter Value Outer Loop Parameter Value

KP,ψ 40 KP,y 3
KD,ψ 5 KI,xI 9
Tf,ψ 0.3

The first step involves tuning the inner loop using KP,ψ, KD,ψ, and Equation (15). As
seen in Sections 4.3.3 and 5.1, the damping parameter may vary heavily with the inputs
of high dynamics. Therefore, KD,ψ should be sufficiently high to ensure damping and
compensate for uncertain parameters while avoiding amplification of measurement noise
beyond the system’s stability limits. On the flipside, parameters KP,ψ, KD,ψ should be
chosen small enough to keep the input small to reduce the uncertainty of D and induce
a better robustness. Based on the previous sections and measurements, the developed
criterion is chosen such that for a maximal yaw angle 0.05 rad as given in Table 2 and
rate 0.4 rad s−1, the resulting input should not exceed 2 A. This leads to gains KP,ψ = 40,
KD,ψ = 5 yielding eigenvalues of [−88.9,−5.0] for closed-loop matrix (15).

In the second step, Tf,ψ is selected such that the measurement noise is not too heavily
amplified and the eigenvalues of (16) are in a similar region as the ones from (15). Choosing
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Tf,ψ = 0.3 leads to eigenvalues [−67.1,−40.7,−4.9], so in particular, the slowest eigenvalue
is of the same magnitude as in the ideal case, which deems the choice of Tf,ψ suitable.

As the third step, parameters KP,y, KI,y of the outer loop are designed using the
dynamics presented in Equation (17). It can be easily seen that already small control gains
lead to a stable system with sufficiently fast eigenvalues. However, a choice of sufficiently
high KI,y is important as this is currently the only part of the control counteracting the
stationary influence of the hysteresis. In a similar manner as before, we formulate as a task
that for a maximal lateral displacement of 0.008 mm the desired yaw angle is smaller than
0.06 rad and that the slowest eigenvalue is not smaller than −1.5. This leads to parameters
KP,y = 3 and KI,xI = 9 which leads to eigenvalues [−4.5,−2.0].

As the final step, the eigenvalues of the complete closed-loop system (19) are verified
to ensure they remain in a similar range as those designed for the inner and outer loops.
In the proposed case, the resulting eigenvalues [−66.5,−41.0,−4.4,−3.7,−0.5] are mostly
within the expected range, with the slowest eigenvalues slightly slower than initially
designed. This discrepancy does not compromise the satisfactory dynamics and robustness
demonstrated in the following sections.

5.2.4. Performance

In this section, the performance of the proposed controller with the gains developed
in Section 5.2.3 is investigated by applying the control for lateral reference signal similar
to the one in Section 3. The reference signal consists of a sequence of steps from 0 to
yfinal where yfinal ∈ {−3.5,−3.3, . . . 3.5}. This reference signal showcases the stationary
convergence of the closed-loop system despite the significant influence of the hysteresis
while also showcasing the dynamics properties. Additionally, the simulation with the
model developed in Sections 4.1–4.3 and the parameters from Table 1 are discussed. The
lateral displacement, yaw angle, differential angular velocity, and input can be seen in
Figures 15 and 16. Both plots show three different measurements of the same scenario in
different shades of grey, and the simulations results aremin green. First, we point out that
the three measurements align very closely, showing that the closed loop under this control
yields very consistent results, especially when compared to the measurements in Section 5.1
where even the stability properties vary. For the simulation results, it can be seen that the
simulated lateral displacement, yaw angle, angular velocity, and input align very well with
the real measured lateral displacements. For the performance of the control, it can be seen
that input u is well within the saturation limits of 4 A given in Table 2. Additionally, the
reference is followed closely with a rising time of around 2.7 s, a small overshoot of 6%,
and a 2% settling time of around 7.3 s. All in all, the proposed control offers satisfying and
consistent results, fast transitional behavior, and negligible steady–state error.

5.2.5. Robustness

The robustness of the controller with the gains developed in Section 5.2.3 is examined
in this section. To evaluate this, the reference lateral displacement is set to a constant
zero, and disturbances are applied to the system. Specifically, at 10 s, 15 s, and 20 s, rapid
perturbations with increasing amplitudes simulate the effects of rail irregularities. At 25 s
and 45 s, an approximately constant force is applied to the test rig for 10 s, mimicking the
effect of side wind. The measured force and torque of the right force–torque sensor are
shown in Figure 17, while the measured lateral displacement is depicted in Figure 18.

It is observed that during the initial three rapid perturbations, the lateral displace-
ment changes significantly within a few seconds but returns to the desired value within
approximately 3 s. Naturally, higher perturbation forces lead to larger induced lateral
displacements, though they still converge back to the desired steady state.
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Figure 15. Performance of the PI-PD control law, legend as in Figure 16.
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Figure 16. Performance of the PI-PD control law (single step).

For the constant force perturbations, an initial lateral displacement is induced, but
the integrator part of the controller generates a corrective force that brings the lateral
displacement back to zero. Upon removal of the perturbation, new transient behavior
occurs as the integrator adjusts to the absence of the disturbance.

Overall, the proposed controller design exhibits robust behavior. The system is resis-
tant to destabilization by high-magnitude perturbations, and constant-magnitude distur-
bances can be effectively compensated by the controller.



Electronics 2024, 13, 3983 20 of 22

0 10 20 30 40 50 60
t [s]

-100

-50

0

50

F
y

[N
m

]

-4

-2

0

2

4

6

M
z

[N
m

]

Figure 17. Force and torque measurements.
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Figure 18. Lateral displacement under PI-PD control and perturbations.

5.2.6. Discussion

Overall, the proposed cascaded PI-PD controller demonstrates satisfactory perfor-
mance. The lateral displacement tracks its reference quickly, with minimal overshoot. The
integral component of the controller effectively compensates for the steady-state effects of
hysteresis. The closed-loop system also exhibits robustness against both constant and rapid
disturbances, all achieved with a simple control structure and easily tunable gains.

However, this straightforward design has its limitations in terms of performance and
adaptability to varying working conditions. A more tailored control design, specifically
addressing the variable damping phenomenon, could further enhance tracking perfor-
mance and ensure system stability. The same applies to adapting the controller to different
operational conditions.

Future work should explore whether a single set of gains can provide robust and high-
performance control under all operating conditions, including high side-slip scenarios, or
if some form of online gain adaptation is required to achieve optimal results.

6. Conclusions

In this work, we successfully adapted theoretical models to practical applications for
the lateral control of independently rotating driven wheels (IRDWs) using a 1:5 scaled
test rig developed by DLR. The parameter identification process proved effective, yielding
small errors that validate the accuracy of the derived model. However, challenges remain,
particularly in accurately modeling yaw dynamics, variable damping, and hysteresis
behavior, all of which are critical factors influencing the system’s overall dynamics.

The designed PI-PD controller demonstrates good performance, with rise and settling
times on the order of a few seconds, indicating a rapid and stable response. Furthermore,
the controller shows robustness against both constant forces and short, strong disturbances,
ensuring reliable operation under controlled conditions. Despite these promising results, it
is important to recognize that the current conclusions are based on laboratory conditions.
Real-world applications, where safety is paramount, introduce additional complexities.
For example, IRDWs are particularly susceptible in cases of motor outages, as lateral
stability is no longer passively maintained. Future work will focus on reconfiguration
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scenarios to mitigate these risks and ensure a safer, more reliable system in the event of
component failures.

Regarding efficiency, IRDWs offer potential advantages by allowing precise tracking
of lateral displacement, which can reduce wheel wear. This could lead to less frequent
replacement of wheels, lowering maintenance costs, and enhancing the system’s long-
term efficiency. However, further investigations are needed to quantify these efficiency
gains under real operating conditions, particularly considering variations in track and
weather environments.

In summary, while the PI-PD controller shows promise in improving the lateral stabil-
ity and performance of IRDWs, further work is necessary to fully validate its robustness,
safety, and efficiency in broader operational contexts. This ongoing research will contribute
to advancing railway vehicle technology with improved safety, reliability, and reduced
maintenance requirements.
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