TanDEM-X: A Satellite Formation for High Resolution SAR Interferometry

G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Eineder, M. Zink, M. Werner

German Aerospace Center (DLR)

Microwaves and Radar Institute

Postfach 1116
82230 Weßling, Germany
e-mail: Gerhard.Krieger@dlr.de

December 2005
TanDEM-X
Mission Goals

→ acquisition of a global DEM according to HRTI-3 standard

→ generation of local DEMs with HRTI-4 like quality

→ demonstration of innovative bistatic imaging techniques and applications

TerraSAR add-on for Digital Elevation Measurements
TanDEM-X Timeline

- 2003: German Call for Proposals for a Future Earth Observation Mission
- 2004: Selection of TanDEM-X for Phase A Study
- 2005-2015: Phase A Study
- 2005-2015: Final Decision
- 2006-2015: Phase B/C/D
- 2009-2015: TanDEM-X Operation
- 2009-2015: TerraSAR-X Operation

All TanDEM-X mission objectives are achieved within 3 years of joint operation.
Investigations in Phase A Study

Derivation of User and Mission Requirements:

• Organisation of Science Team (currently 97 members)
• Scientific and Commercial User Survey
• Product Definition (DEM, radar data products, …)
• Performance Analyses (DEM, PolInSAR, GMTI, DBF, …)
• Mission Planning and Data Management
• PRF and Phase Synchronisation (design upgrade)
• Close Formation Flying (collision avoidance)
• Precise Baseline Determination (double difference GPS)
• Bi-Static and Interferometric Data Processing
• Interferometric Calibration (tie points, crossing orbits, …)
• …
User Survey:
- application areas
- basic user needs
- technical requirements
- ...

Product and Mission Definition

- system parameters:
 - $B_{\text{cross}} = \ldots \text{m}$
 - $B_{\text{along}} = \ldots \text{m}$
- deliverable data:
 - SLC SAR images
 - SAR raw data
 - TanDEM-X interferograms
 - orbit state vectors

Product and Mission Definition

- predefined accuracies:
 - $\Delta h = 2 \text{ m}$ @ $\Delta x = 12 \text{ m}$
 - $\Delta h = 4 \text{ m}$ @ $\Delta x = 6 \text{ m}$
 - $\Delta h = 1 \text{ m}$ @ $\Delta x = 25 \text{ m}$
 - $\Delta h = 0.5 \text{ m}$ @ $\Delta x = 50 \text{ m}$

- deliverable data:
 - standard DEM
 - detected SAR images
 - coherence maps
 - height error maps

- temporal requirements:
 - different seasons
 - different years

- deliverable data:
 - customised DEM
 - detected SAR images
 - coherence maps
 - height error maps

Compliance

- fully
- partially
- not

- 17%
- 7%
- 76%

Standard DEM
(globally HRTI)

- customised accuracies:
 - $\Delta h = \ldots \text{ m}$ @ $\Delta x = \ldots \text{ m}$
- temporal requirements:
 - different seasons
 - different years
- deliverable data:
 - customised DEM
 - detected SAR images
 - coherence maps
 - height error maps

Customised DEM
(local)

Radar Data Products

- system parameters:
 - $B_{\text{cross}} = \ldots \text{m}$
 - $B_{\text{along}} = \ldots \text{m}$
 - ...
- deliverable data:
 - SLC SAR images
 - SAR raw data
 - TanDEM-X interferograms
 - orbit state vectors
HRTI-3 DEM Definition

<table>
<thead>
<tr>
<th></th>
<th>Spatial Resolution</th>
<th>Absolute Vertical Accuracy (90%)</th>
<th>Relative Vertical Accuracy (point-to-point in 1° cell, 90%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTED-1</td>
<td>90m x 90m</td>
<td>< 30 m</td>
<td>< 20 m</td>
</tr>
<tr>
<td>DTED-2</td>
<td>30m x 30m</td>
<td>< 18 m</td>
<td>< 12 m</td>
</tr>
<tr>
<td>HRTI-3</td>
<td>12m x 12m</td>
<td>< 10 m</td>
<td>< 2 m</td>
</tr>
<tr>
<td>HRTI-4</td>
<td>6m x 6m</td>
<td>< 5 m</td>
<td>< 0.8 m</td>
</tr>
</tbody>
</table>

- SRTM / X-SAR ~ DTED-2
- E-SAR ~ HRTI-3
Relative Height Accuracy ($B = 500$ m)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>0.031 m</td>
</tr>
<tr>
<td>Chirp Bandwidth</td>
<td>≤ 150 MHz</td>
</tr>
<tr>
<td>Peak Transmit Power</td>
<td>2260 W</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>18 %</td>
</tr>
<tr>
<td>Noise Figure TRM</td>
<td>4.3 dB</td>
</tr>
<tr>
<td>Losses (rad., atm.,...)</td>
<td>4.1 dB</td>
</tr>
<tr>
<td>Antenna Size (Tx, Rx)</td>
<td>4.8 m x 0.7 m</td>
</tr>
<tr>
<td>Antenna Tapering</td>
<td>linear phase</td>
</tr>
<tr>
<td>PRF (swath variant)</td>
<td>~ 3500 Hz</td>
</tr>
<tr>
<td>Processed Bandwidth</td>
<td>2266 Hz</td>
</tr>
<tr>
<td>Mis-Registration</td>
<td>1/10 pixel</td>
</tr>
<tr>
<td>Quantization</td>
<td>4 bit (BAQ)</td>
</tr>
<tr>
<td>Sigma Nought Model (90% occurence)</td>
<td>Ulaby (X-Band, VV, Soil)</td>
</tr>
<tr>
<td>Baseline (perp.)</td>
<td>500 m</td>
</tr>
<tr>
<td>Along-Track Displ.</td>
<td>< 1 km</td>
</tr>
<tr>
<td>Swath Width</td>
<td>30 km</td>
</tr>
<tr>
<td>Post Spacing</td>
<td>12 m x 12 m</td>
</tr>
</tbody>
</table>

Diagram:

- **Relative Height Accuracy (90% Point-to-Point and Stdev)**
- **Bistatic Strip map**
 - $B = 500$ m
 - $\Delta x = 12$ m
- **90% point-to-point errors**
- **σ (standard deviation)**
Relative Height Accuracy ($B = 1000$ m)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>0.031 m</td>
</tr>
<tr>
<td>Chirp Bandwidth</td>
<td>≤150 MHz</td>
</tr>
<tr>
<td>Peak Transmit Power</td>
<td>2260 W</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>18 %</td>
</tr>
<tr>
<td>Noise Figure TRM</td>
<td>4.3 dB</td>
</tr>
<tr>
<td>Losses (rad., atm,...)</td>
<td>4.1 dB</td>
</tr>
<tr>
<td>Antenna Size (Tx, Rx)</td>
<td>4.8 m x 0.7 m</td>
</tr>
<tr>
<td>Antenna Tapering</td>
<td>linear phase</td>
</tr>
<tr>
<td>PRF (swath variant)</td>
<td>~3500 Hz</td>
</tr>
<tr>
<td>Processed Bandwidth</td>
<td>2266 Hz</td>
</tr>
<tr>
<td>Mis-Registration</td>
<td>1/10 pixel</td>
</tr>
<tr>
<td>Quantization</td>
<td>4 bit (BAQ)</td>
</tr>
<tr>
<td>Sigma Nought Model (90% occurrence)</td>
<td>Ulaby (X-Band, VV, Soil)</td>
</tr>
<tr>
<td>Baseline (perp.)</td>
<td>1000 m</td>
</tr>
<tr>
<td>Along-Track Displ.</td>
<td>< 1 km</td>
</tr>
<tr>
<td>Swath Width</td>
<td>30 km</td>
</tr>
<tr>
<td>Post Spacing</td>
<td>12 m x 12 m</td>
</tr>
</tbody>
</table>

Graphical Representation

![Relative Height Accuracy Graph](image)
Phase Unwrapping

TanDEM-X enables large baselines which allow for ultra high resolution DEMs with height accuracies in the sub-meter range, but …

\[\Delta \varphi = 2\pi \]
(height of ambiguity)

Compromise on Accuracy for Global DEM
- use reduced baselines
- additional acquisitions for difficult terrain

Local/Regional Ultra High Resolution DEMs
- use multiple data acquisitions with large and small baselines

acquisition scenario for global DEM according to HRTI-3

regional DEMs with sub-meter resolution (e.g. HRTI-4)
TanDEM-X Data Acquisition Strategy

<table>
<thead>
<tr>
<th>Terrain Type</th>
<th>Percentage of Total Landmass</th>
<th>Number of Acquisitions</th>
<th>Required Time (without RDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderately Sloped Areas</td>
<td>50 %</td>
<td>1 (h<sub>amb</sub> ~ 35 m)</td>
<td>~ 7 months</td>
</tr>
<tr>
<td>Hilly Areas, Tall Forests</td>
<td>30 %</td>
<td>2 (+ different h<sub>amb</sub>)</td>
<td>~ 8 months</td>
</tr>
<tr>
<td>Mountainous Areas</td>
<td>< 20 %</td>
<td>4 (+ asc. / desc.)</td>
<td>~ 11 months</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
<td>1 - 4</td>
<td>~ 26 months (incl. margin)</td>
</tr>
</tbody>
</table>

TanDEM-X Mission Scenario for 3 Years

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Global HRTI-3 DEM</td>
<td>(incl. multiple acquisitions for difficult terrain)</td>
</tr>
<tr>
<td>Additional Applications</td>
<td>(local HRTI-4, ATI, new techniques, …)</td>
</tr>
</tbody>
</table>

Total Landmass:
- ~ 150 Mio km\(^2\)
- ~163 Mio km\(^2\)/year (stripmap, 140s/orbit)

Helix Satellite Formation:

HELIX satellite formation enables safe operation

- Horizontal cross-track separation at equator by different ascending nodes.
- Vertical (radial) separation at poles by orbits with different eccentricity vectors (periodic motion of libration is compensated by regular manoeuvres).

© Moreira, Krieger, Mittermayer, 2003
Baseline Estimation and DEM Calibration

- Both satellites are exposed to almost identical orbit perturbations
 - negligible azimuth modulation / twisting of DEM swath (\(\Delta B < 0.25 \text{ mm} \) for 500 km swath and ‘unmodelled’ \(\delta a < 100 \text{ nm/s}^2\))
 - vertical bias and tilt of raw DEM swaths due to initial baseline estimation errors

- Precise baseline estimation by
 - double-difference GPS carrier-phase measurements
 - accurate orbit propagation model
 - several studies predict a 3-D accuracy in the order of 1-2 mm
Impact of Oscillator Noise

Major effects:
- interferometric phase errors (azimuth ‘modulation’ of DEM)
- azimuth displacement
- increased azimuth sidelobes
- range drift (walk of receiving window)
Phase Referencing in TanDEM-X

Synchronisation Link

Analysis of Residual Errors

phase referencing can achieve a short term rmse below 1° in standard DEM acquisition mode by integrating multiple sync pulses (for B < 1 km)
Secondary Mission Goals & New Techniques

Pol-InSAR
(fully polarimetric !)

Along-Track Interferometry
(HELIX formation !)

Digital Beamforming
(4 phase centres !)

Multi Baseline InSAR
(flexible baselines !)

Super Resolution
(large bandwidth !)

Bistatic Observations
(bistatic angle !)
Along-Track Interferometry

HELIX formation enables:
- short along-track baselines
 (arbitrary satellite shifts along the orbits)
- vanishing cross-track baselines
 (for specified latitude/incident angle combinations)

Example (bistatic mode):
- $B_{\text{along}} = 100$ m
- posting = 10 m
- $\sigma^0 = -12$ dBm2/m2
- $\theta_{\text{inc}} = 45^\circ$
- $v_{\text{amb}} = 11$ km/h
 $\Rightarrow dv \sim 0.15$ km/h (stdv.)
SAR Imaging with four Phase Centres

- **short baseline**
 - $\Delta t \approx 0.2\text{ ms}$
 - Sensitive to fast movements

- **long baseline**
 - $\Delta t \approx 10\text{-}200\text{ ms}$
 - Sensitive to slow movements

split antenna

- **highly accurate velocity estimates for slow and fast object movements**
SAR Imaging with four Phase Centres

- **Ch. 1**: $P_1(f)$
- **Ch. 2**: $P_2(f)$
- **Ch. 3**: $P_3(f)$
- **Ch. 4**: $P_4(f)$

Without reconstruction

SAR Proc.

With reconstruction

- Enables High Resolution
- Wide Swath Imaging

Ambiguity Suppression

![Graphs showing amplitude vs. along track position for with and without reconstruction](image_url)
PollInSAR Example: Sunflower

Parameters

- $h = 1.2 \text{ m}$
- $\beta = 4.0 \text{ dB/m}$
- $\mu_{\text{min}} = -7.0 \text{ dB}$
- $\mu_{\text{max}} = 3.0 \text{ dB}$
- $B_\perp = 4 \text{ km}$
- $\theta_{\text{inc}} = 35^\circ$
- $\Delta x = 30 \text{ m}$

![Graph showing height error and height bias with pdf(μ_{min}) and pdf(μ_{max}) curves.](image)
“Double Differential SAR Interferometry”
e.g. difference between two single-pass cross-track interferograms

\[\Delta h \sim \varphi_2 - \varphi_1 \]

→ *Grounding line detection, vegetation growth, snow/ice accumulation, ... ?*

Relative Height Accuracy (Stdv)

- Bistatic Strip map
 - \(B = 3000 \text{ m} \)
 - \(\Delta x = 12 \text{ m} \)

\(\Delta h < 10 \text{ cm} \)
TanDEM-X Summary

• TanDEM-X passed a phase A feasibility study with great success
• TanDEM-X has outstanding scientific and commercial potentials
• TanDEM-X will be implemented as a public private partnership
• TanDEM-X key technologies are:
 – bistatic radar operation and phase synchronisation
 – precise baseline determination
 – close formation flying capability
 – new algorithms for interferometric processing
• TanDEM-X plays a key role in the development of next generation SAR missions